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Abstract—We have developed and evaluated a new method
called ESBMC-Arduino that combines the ESBMC model
checker with the Arduino hardware platform. This verification
method helps ensure the safety and safety of Arduino C code
by finding and, to some extend, preventing errors, thus making
the entire system code more reliable. This collaboration is par-
ticularly useful for critical embedded systems, improving safety
analysis, and promoting contract-driven development practices.
We also advocate that our proposed method is valuable for
teaching and advanced research in formal verification and em-
bedded systems safety. Our experimental results show that using
ESBMC for formal verification of Arduino code leads to better
error detection, more accurate code, and increased reliability.
This demonstrates that ESBMC-Arduino effectively identifies
software vulnerabilities (e.g., memory management and overflow
prevention) and enhances the safety of embedded systems.

Index Terms—ESBMC, Arduino, Embedded Systems, Formal
Verification, and Software safety.

I. INTRODUCTION

Due to technological advancements, embedded systems
have rapidly become integral to our daily lives [1]. Embedded
systems constitute one of the three basic classes of digital sys-
tems, emulation and prototyping systems, and general-purpose
computing systems [2]. Their definition can be understood as
a specialized computational system integrated into a larger
system or machine [3]. These systems are designed to interact
continuously with a dynamic external environment [4]. They
can exist in physical forms, such as mobile robots and factory
process controllers, as well as purely computational entities
like calendar management programs [5]. Their prevalence
spans various sectors, including industry, energy, agriculture,
space, health, and education. This is due to the potential
benefits that these systems can provide, ranging from their
compact size to energy efficiency [6]. These advantages are
tied to their main characteristic, functionality, as they are
designed to perform highly specific procedures [7].

One such example is the Arduino UNO Rev3 board, part
of the third revision of the Arduino UNO platform [8]. This
board can collect data from attached sensors and connect
to wireless communication modules, enabling information
exchange through networks like Wi-Fi and Bluetooth. The
C/C++ programming language is often employed in this
context [9]. Like a Programmable Logic Controller (PLC),
Arduino plays a role in managing industrial systems [10].

Its primary proposal is simplifying automation for control
levels in residential, commercial, or mobile environments [11].
Additionally, Arduino’s applications can be expanded through
boards incorporating various devices and easily connected to
the platform [12]. These boards, known as modules or Shields,
can operate in multiple functions, such as GPS receivers,
Ethernet or wireless network modules, and other features [13].

As these systems become increasingly intertwined with
our daily lives, ensuring their safety and reliability becomes
crucial [14]. These safety requirements can be formalized and
applied automatically to verify programming languages such
as C [15] and C++ [16]. These works use the Bounded Model
Checking (BMC) technique, which is a method to explore
and verify a transition system up to a limited bound k. BMC
has also been extended to support the proof by induction of
safety properties in C programs [17]. To apply the technique
for Arduino, there is a need to create operational models
describing the system behavior [18].

Here, we propose a method to verify Arduino Software
using BMC formally. The method consists of taking advantage
of previous C/C++ BMC tools and extending them to support
the intrinsic features of the Arduino Language. The prototype,
named ESBMC-Arduino, was implemented on top of the
Efficient SMT-based Context-Bounded Model Checker (ES-
BMC) [15], an award-winning BMC for automatic verification
of C programs. In summary, this work has the following
original contributions:

• A method to automatically verify Arduino software based
on BMC;

• A series of operational models for the Arduino platform
that BMC tools can use to verify Arduino Language;

• Benchmarks for the Arduino Language. These bench-
marks range from memory properties to arithmetic and
even user-defined properties.

II. PRELIMINARIES

In the context of this work, the following terms are used:
• Safety Properties: Safety properties are properties that

ensure a good behaviour of the systems, such as memory
constraints [19] or time.

• Reliability: by ISO/IEC 27000:2018 [20] is the property
of the system having consistent behaviour and results.



• Integrity: by ISO/IEC 27000:2018 [20] is the property
of regarding accuracy and completion.

A. Bounded Model Checking

The Model Checking (MC) technique is widely used in
the automated verification process of systems. This approach
makes it feasible to model systems and define properties that
require validation using automated theorem proofs formulated
from logical expressions. Some systems, however, can lead to
exponential formulas. Bounded Model Checking (BMC) was
conceived to expedite the detection of property violations in
fixed bound. This is achieved by imposing restrictions on the
number of loop iterations and recursion depth during analysis.
However, this approach cannot guarantee accuracy unless all
loops and recursions are fully expanded, which may not be
feasible in certain programs involving infinite loops [21].
ESBMC represents an open-source model checker with a
consolidated solution that adopts a permissive license, en-
abling the verification of single-threaded and multi-threaded C
programs [22]. ESBMC can automatically examine predefined
properties, such as bounds validation, pointer protection, and
overflow prevention. Furthermore, it allows users to establish
custom assertions for their programs, which are also subject
to automated verification [23]. Through C++ and Python
interfaces, ESBMC provides APIs that allow for exploring
internal data structures, enabling analysis and expansion at
any stage of the verification process [15].

III. VERIFYING THE ARDUINO LANGUAGE

Arduino is programmed through the Arduino Language,
which is a C-like language with additional constructs1. The
language gives developers easy interfaces to control attached
devices (e.g., GPIO controller). In addition, C/C++ languages
are expected to have a “main” entry point. In the Arduino
Language, this is replaced with the intrinsic functions setup
(used to set up the application I/O) and loop (the code to be
executed uninterruptedly). Finally, the language can be used
with C/C++ with a few caveats2.

The language contains intrinsic variables and functions to
enable the use of Arduino boards. They are configured and set
as board bases on the Arduino.h header. Listing 1 contains
an example of using the libraries to set up a blinking LED.
The header also provides facilities to write analog and digital
inputs as a method to pool ports. Lastly, the header also offers
interfaces to use PINs as interrupts. This lets developers set
actions to happen based on the status of some ports (e.g., the
user presses a button). An example of interrupt is shown in
Listing 2.

When considering formal verification, the main challenges
for Arduino are: modeling the behavior of the PINs (both
analog and digital), the unbounded nature of the “loop” entry-
point, and the non-deterministic behavior of interrupts.

1https://www.arduino.cc/reference/en/
2https://playground.arduino.cc/Main/UsingCPlusPlus/

1 # i n c l u d e <Arduino . h>
2 void s e t u p ( ) {
3 pinMode ( LED BUILTIN , OUTPUT ) ;
4 }
5
6 void l oop ( ) {
7 d i g i t a l W r i t e ( LED BUILTIN , HIGH ) ;
8 d e l a y ( 1 0 0 0 ) ;
9 d i g i t a l W r i t e ( LED BUILTIN , LOW) ;

10 d e l a y ( 1 0 0 0 ) ;
11 }

Listing 1: Blink example taken from Arduino Documentation.
In the example, the initial “setup” sets LED_BUILTIN as an
OUTPUT in the program (by setting the pinMode). The LED
actual number varies from board to board, and setting it as an
“OUTPUT” only reserves the pin for this process. The function
loop consists of setting the pin to “HIGH” (i.e., activating it),
waiting for a delay of 1 second, and then setting it to “LOW”
(i.e., deactivating it). This loop is repeated until the process is
killed.

1 c o n s t b y t e l e d P i n = 1 3 ;
2 c o n s t b y t e i n t e r r u p t P i n = 2 ;
3 v o l a t i l e b y t e s t a t e = LOW;
4
5 void s e t u p ( ) {
6 pinMode ( l e d P i n , OUTPUT ) ;
7 pinMode ( i n t e r r u p t P i n , INPUT PULLUP ) ;
8 a t t a c h I n t e r r u p t (
9 d i g i t a l P i n T o I n t e r r u p t ( i n t e r r u p t P i n ) ,

10 b l i n k ,
11 CHANGE) ;
12 }
13
14 void l oop ( ) {
15 d i g i t a l W r i t e ( l e d P i n , s t a t e ) ;
16 }
17
18 void b l i n k ( ) {
19 s t a t e = ! s t a t e ;
20 }

Listing 2: Interrupt example taken from Arduino Docu-
mentation. In the example, the initial “setup” sets the
interruptPin to be used as an input with the default value
being “HIGH”. This pin is then attached to an interrupt event,
which calls the function blink on any CHANGE on the pin
value. The blink function changes the value that should be
written into the ledPin in the main loop. If a button is
connected to the pin, pressing it would turn the board LED
on and off.

A. Operational Models for Arduino
Each OM (Operational Model) is constructed by analyzing

the Arduino program and its respective libraries and functions.



In our main example, “led.c”, the “Arduino.h” file contains
functions for controlling analog and digital pins, which were
modeled in “Arduino.c” following the function’s signature, as
can be observed with the digitalWrite(), delay(), and
pinmode() functions. Listing 3 illustrates the prototypes in
the “Arduino.c” file. In its core, this action enables BMCs
to recognize and understand how Arduino functions should
behave.

1 # i n c l u d e <Arduino . h>
2 u i n t 8 t PINS value [ NUM DIGITAL PINS ] ;
3 u i n t 8 t PINS mode [ NUM DIGITAL PINS ] ;
4
5 void d i g i t a l W r i t e
6 ( u i n t 8 t pin , u i n t 8 t v a l u e ) {
7 a s s e r t ( PINS mode [ p i n ] == INPUT
8 | | PINS mode [ p i n ] == OUTPUT ) ;
9 PINS value [ p i n ] = v a l u e ;

10 }
11
12 void d e l a y ( unsigned long ms ) {
13 / / no o p e r a t i o n
14 }
15
16 void pinMode
17 ( u i n t 8 t pin , u i n t 8 t mode ) {
18 PINS mode [ p i n ] = mode ;
19 }

Listing 3: Operational model of led-blinking-specific function
prototypes. The models rely on a global array that will keep
track of values for the PIN, and the same approach can be used
for Analog inputs. The delay function is modeled as a no-op
and can be used to force a thread interleaving. Finally, these
models were simplified for readability, and I/O is assumed to
be atomic.

B. Arduino entry-point

In Arduino, the program initializes through the setup
function into the unbounded loop function. For BMC, we
can describe it as an implication rule, i.e., the loop can only
happen if the setup has succeeded. We need the C equivalent
of the entry point to use an off-the-shelf C-verifier. Listing 4
illustrates the equivalent C version.

C. Modelling interrupts

The interrupts of Arduino can be modeled similarly to those
proposed by Cordeiro [24]. The algorithm consists of creating
a thread that keeps pooling for the value. If the value changes,
then the function can be invoked. Listing 5 illustrates an
example of the interruption program.

D. Dynamic Inputs

It is worth noting that Arduino projects can rely on real-
world states [8]. For example, a sensor can read temperatures,
and a set of buttons might be pressed in a specific order. This

1 i n t main ( ) {
2 s e t u p ( ) ;
3 whi le ( 1 ) {
4 loop ( ) ;
5 }
6 re turn 0 ;
7 }

Listing 4: Equivalent entry-point for an Arduino program in
C. This program assumes that the setup and loop functions
were defined (or are trivial).

1
2 void s e t u p ( ) {
3 / / . . .
4 c r e a t e t h r e a d ( i n t e r r u p t L o o p ) ;
5 }
6
7 void i n t e r r u p t L o o p ( ) {
8 whi le ( 1 ) {
9 i f ( * ) b l i n k ( ) ;

10 }
11 }

Listing 5: Interrupt BMC equivalent for Listing 2. In the
example, the intrinsic function create_thread creates a
thread, and the thread keeps pooling a non-deterministic value
(represented through the symbol ∗).

behavior can be modeled as non-deterministic inputs. Each
time these values are queried, the symbolic execution [25]
creates a new symbol in the formula.

IV. ESBMC-ARDUINO

A. Architecture

The method was integrated into our prototype ESBMC-
Arduino. The prototype was implemented on top of ESBMC,
a BMC with a permissive license and support for the C lan-
guage3. To support Arduino, additional changes are required
to match the method (i.e., interrupts, operational models, and
entry points). The full architecture can be seen in Figure 1.

In the environment setup, the verification environment was
configured to accommodate the integration of ESBMC and
Arduino. ESBMC was installed along with the necessary
Arduino header (i.e., Arduino.h4) and the accompanying
operational models in Arduino.c. At the time of writing, we
have made available the operational models for pinMode(),
digitalWrite(), and delay() [15].

The major addition of the prototype was in the C Frontend
stage (see Figure 1). Specifically, the operational models
also encode safe properties through the ESBMC commands
(ASSERT / ASSUME), which indicate whether pre-established
safety criteria are being violated. The ASSERT command

3https://github.com/esbmc/esbmc
4This header is obtained directly from the board SDK
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Fig. 1. The ESBMC-Arduino architecture. Starting from a supported input, the input will be sent to the C frontend of ESBMC. The C frontend will be
incremented to support the Arduino-specific features and the GOTO representation. The GOTO program is symbolically executed (or interpreted) into a
formula (or state), resulting in a Decision Procedure [26], which will evaluate whether the program is safe.

defines serious safety violations, while ASSUME handles ver-
ification pre-conditions. ESBMC success verification involves
a safety check concerning the parameters indicated by the
ASSERT and ASSUME programs present in the Arduino code.

B. Illustrative example

In this section, we present an illustrative example of using
the Symbolic Model Checker (ESBMC) with Arduino to verify
a simple Arduino program.

1) Arduino Program Description: We begin by describing
the Arduino program under consideration. The program aims
to control an LED connected to pin 13 on the Arduino board,
making it blink at regular intervals. Below is the code for the
Arduino program named “led.c”:

1 # i n c l u d e <Arduino . h>
2
3 # d e f i n e LED PIN 13
4
5 void s e t u p ( ) {
6 pinMode ( LED PIN , OUTPUT ) ;
7 }
8
9 void l oop ( ) {

10 d i g i t a l W r i t e ( LED PIN , HIGH ) ;
11 d e l a y ( 1 0 0 0 ) ;
12 d i g i t a l W r i t e ( LED PIN , LOW) ;
13 d e l a y ( 1 0 0 0 ) ;
14 }

The above code follows the standard Arduino syntax and
uses the Arduino.h library for necessary functions like
pinMode, digitalWrite, and delay.

2) GOTO program Generation: Next, ESBMC will parse
the Arduino file as a C input. If the parsing is done correctly,
it will result in a GOTO program. The GOTO program is then
instrumented and linked with the Arduino operational models.

3) Symbolic execution: The GOTO program is symbolically
executed in the BMC engine up to the k-bound. This bound
is context-aware (i.e., keeps track of thread and function
interleavings) and holds a trace of the execution. This trace
contains information about the program flow (i.e., assignments,
assumptions, and assertions).

4) Decision Procedure: Lastly, the trace is converted into
an SMT formula that uses a decidable fragment of first-
order logic [27]. This formula is sent to a solver to verify
the program’s soundness. The SMT solver will try to find
an assignment to variables that satisfies the constraints and
violates at least one property. If the SMT solver finds a model,
ESBMC-Arduino will generate a program counterexample: a
set of assignments and the program’s violated property.

V. EXPERIMENTAL EVALUATION

A. Setup and Benchmark description

In this section, we present the benchmarks used to evaluate
the integration of ESBMC with Arduino for formal verifica-
tion. We assessed ESBMC-Arduino utilizing a set of bench-
marks and compared its results with Arduino lint5. Arduino-
lint is primarily geared towards scrutinizing the organization,
metadata, and setup of Arduino projects, emphasizing these
aspects rather than the code itself. The rules include adhering
to specifications, meeting the criteria for Library Manager
submissions, and following recommended practices. Unfortu-
nately, as a consequence, considering other benchmarks was
hindered as there is no other BMC tool for Arduino.

To evaluate ESBMC-Arduino, we devised a set of small-
scale benchmarks as presented in Table I: columns “id” and
“property” contains an identifier and the type of safety check
that it violates (except “No Violation”), the column “Found”
and “CE” regards wether the verifier was able to find the
vulnerability and generate a Counter Example that lead to
the violation, finally the “Correct Results” row summarizes
the panorama of obtained results. These benchmarks were

5https://arduino.github.io/arduino-lint/1.2/



designed to test the correctness of ESBMC-Arduino, covering
execution paths that have the potential to reveal faults, as
well as execution paths that do not violate specified prop-
erties. Evaluated properties include user-defined assertions,
memory management, and overflow prevention. Additionally,
the benchmarks were designed to incorporate nondeterministic
behaviors.

TABLE I
EXPERIMENTAL RESULTS OF ESBMC-ARDUINO AND ARDUINO LINT

Benchmark ESBMC-Arduino Arduino Lint
IDs Property Found CE Found CE

TC0-2 No Violation No N/A No N/A
TC3-5 Overflow Yes Yes No No
TC6-8 Assertion Fail Yes Yes No No

TC9-10 Custom Properties Yes Yes No No
Correct Results 100% 28%

B. Results and Discussion
By comparing the verification results with traditional man-

ual code inspection and testing, we measured the benefits of
formal verification in error detection and correction. In partic-
ular, after the implemented integration, the key libraries used
in the Arduino core code, Arduino.h and stdint.h, were
formally verified in the ESBMC framework and did not ex-
hibit faults. Additionally, functions like digitalWrite(),
pinMode(), and delay() were also introduced into the
verification model through their prototypes. Libraries such
as WiFi.h and IRtext.h, commonly used in industrial
projects, were verified but still presented errors that can be
addressed in future research.

The evaluation also focused on safety analysis features of
ESBMC-Arduino. Leveraging formal verification, we aimed
to identify safety vulnerabilities in Arduino programs and
libraries used in the industrial sector through ESBMC safety
commands (ASSERT / ASSUME). Custom or non-custom
properties were analyzed through test cases and compared with
the Arduino lint tool. Table I presents the results, demonstrat-
ing that ESBMC-Arduino can verify benchmarks that Arduino
Lint fails to, as within the benchmark analysis, we were able
to confirm in TC6-8 that there was no detection of Assertion
Fail property violation that exposes a safety concern, while
successfully detecting safety violations for other TCs. Arduino
lint did not find any bugs.

Note that Arduino lint, despite being the only available
option for Arduino code verification, was not designed for
safety checks; hence, it was not able to detect any property
violations, which could be the reason why ESBMC-Arduino
emerges as the only suitable BMC tool for Arduino code
verification. safety analysis using ESBMC identified potential
safety vulnerabilities in Arduino programs and libraries used
in the industrial sector. We successfully detected safety flaws
through rigorous code analysis. This analysis led to crucial
improvements in the safety posture of embedded systems, en-
hancing their resilience against safety threats. The experimen-
tal evaluation results highlight the effectiveness of ESBMC-
Arduino integration in verifying safety/protection properties

in embedded systems. The successful formal verification of
Arduino code for the industrial sector demonstrates its poten-
tial to enhance error detection, code correction, and reliability.
Furthermore, ESBMC’s safety analysis features improve the
safety of embedded systems, making them more robust against
potential cyber threats.

C. Threats to the validity

• Compilers have the potential to introduce or remove
errors during the translation phase. Our methodology
adopts the translation steps of processing an Arduino file
as a C input (which is compiled into the GOTO language);

• ESBMC-Arduino employs operational models (OMs) to
enable program verification. OMs have been developed
for a specific set of frequently used Arduino libraries
in industrial scenarios. These scenarios, however, can be
incomplete. In our work, we only verified digital inputs;

• The test suite is limited to only sequential (no interrupt)
and digital inputs.

• ESBMC-Arduino shares the same memory model used in
the C/C++ analysis implemented in ESBMC. Properties
that can be violated due to low resource availability may
give wrong validation results.

VI. RELATED WORK

ESBMC demonstrated its effectiveness as a robust BMC
tool for embedded systems verification with enhanced effi-
ciency. Serving as a foundational SMT-based model checker
for real-world C programs [15], its application follows an
incremental approach to desired property satisfiability from
provided counterexamples [28]. Adapting ESBMC (Efficient
SMT-Based Context-Bounded Model Checker) to Arduino
platforms, while promising, posed challenges arising from
discrepancies between typical Arduino programming and stan-
dard C/C++.

Another direction not explored in this work is using dy-
namic tools such as Sanitizers and Valgrind [29]. These
methods instrument the binary application, injecting assertions
that can be verified during runtime. These options, however,
can be very costly when used in an embedded system (Google
estimates that Clang’s Address Sanitizer causes a 2x slowdown
in the program6). This is worsened if we consider that for
verification purposes at least a fuzzer would be needed [30],
[31], resulting in multiple executions.

VII. CONCLUSIONS AND FUTURE WORK

We present and assess ESBMC-Arduino, a groundbreaking
software model checker engineered specifically for Arduino
code. In our evaluation, we juxtapose and surpass the capa-
bilities of the Arduino lint verification tool. Our approach
not only identifies bugs more effectively but also provides
corresponding counterexamples. While ESBMC-Arduino is in
its nascent developmental stages, the outcomes attained thus
far are highly promising. Our current thrust revolves around

6https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers



achieving comprehensive 100% coverage for the Arduino lan-
guage, with a priority on the essential safety criteria that ES-
BMC addresses. Furthermore, we are exploring incorporating
the k-induction proof method into Arduino [17], a pivotal step
toward enabling safety proofs in Arduino’s unbounded loop
nature. We envision extending our endeavors by implementing
customized safety criteria tailored to the Arduino platform.
On the other hand, another future work would be to confirm
whether the violations (and proofs) found by our prototype are
valid. This could be done by expanding the approach used for
C validation (i.e., witness validation [32]). Another idea, is to
combine BMC with other static analysis techniques such as
Abstract Interpretation [33]. This would enable a framework
for static analysis of Arduino code.
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