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Abstract—In a modern world, aspects of cybersecurity become
more of a requirement to software, systems, applications than just
a feature implemented by programmers in their spare time. On
the one hand, blockchain remains a pastime for people interested
in digital currencies or decentralized, anonymous environments
such as auctions or voting. On the other hand, cyberattacks
are also not an exception to the blockchain community. Most
of those attacks were made through smart contracts - pieces of
code through which blockchain users interact with the actual
blockchain. This paper analyses the background of blockchain
technology, the implementation of smart contracts, and the
cybersecurity aspect in the blockchain field. We describe an in-
depth analysis of five static analysis tools (or code verifiers),
their capabilities and drawbacks. These are tested with smart
contracts with vulnerabilities deliberately included in their source
code. The vulnerabilities are tailored so that they fit into
the cybersecurity properties. After the implementation process,
analysis is presented. We have found out which state-of-the-art
static analysis tool is the most appropriate to secure the smart
contract code from future cyberattacks on the blockchain.

Index Terms—Blockchain, Cybersecurity, Static Analysis, Soft-
ware Verification.

I. INTRODUCTION

Blockchain technology nowadays tends to become more and
more popular [1], with more people finding various interest-
ing approaches and applications of blockchain, starting from
decentralized forms of cryptocurrencies, such as Bitcoin [2]
or Ethereum [3], ending with secure sensitive patient data
transfer in healthcare institutions, Internet of Things (IoT)
device management systems, and even voting systems [4]. To
implement these ideas, one has to create a smart contract,
which is a piece of code, written in some of the programming
languages such as Solidity [5], also called a “block”, which is
then appended to the end of the whole system of other blocks
chained together; thus, the name “blockchain”1 [6], [7]. These
blocks may contain any code written by a programmer, and
anyone who has access to the blockchain can execute the code
in the block. Furthermore, as the blocks cannot be altered
or deleted from the blockchain under normal circumstances,
the blocks act as a ledger for users to track interactions
with blocks [8], named transactions. As a result, this feature
provides some important security aspects to the technology,
such as integrity and transparency. However, blockchain tech-
nology is not immune to cyberattacks. The main concern is
the block’s code verification before they are appended to the
blockchain so adversaries cannot exploit it with malicious

1The original bitcoin white paper creator, Satoshi Nakamoto, mentions
“chains of blocks”, but not exactly “blockchain” [2].

intent. Most of the attacks performed on blockchain were
caused by abusing simple things that a programmer might
have forgotten to implement, such as logical errors, uncaught
exceptions, or even the classical buffer overflow problem [9],
[10], [11]. However, smart contract programmers are not alone,
as several verifiers are created to tackle the problem.

This paper aims to perform an overview of existing smart
contract verifiers written in Solidity language and used for
Ethereum smart contracts, finding out the most efficient and
accurate static analysis tool for Ethereum smart contracts.
The objectives for this paper are as follows. (1) Writing
various smart contracts as tests for verifiers to check their
accuracy and efficiency. This is the central aspect of the
technical implementation part of this paper, as the analysis and
statistics would be derived later from the smart contracts which
deliberately have vulnerabilities in them. It has to be noted
that many different vulnerabilities exist in smart contracts.
However, only the ones that can cause a real cybersecurity
threat to the user and/or system are analyzed here. (2) Finding,
using and adapting tests where applicable to various existing
smart contract verifiers. To perform analysis, several verifiers
have to be used and tested out. It could be the case that
a uniform smart contract vulnerability test might not fit all
verifiers; therefore, the tests have to be tweaked for the
verifiers to work while preserving the properties of the test.
(3) Performing benchmarking tests on verifiers. In this paper,
not only the accuracy of the verifier matters but also its
performance, such as verification time, memory and CPU
consumption rates and other parameters, which are essential
for users. Lastly, (4)performing analysis and statistics given
benchmarks and verifier accuracy to derive conclusions. Here,
our goal is to conclude the most appropriate static analysis tool
to verify security vulnerabilities in smart contracts.

We describe state-of-the-art static analysis tools, which
could or are already being used in the industry as efficient
and trustworthy tools for verifying smart contract code [12],
[13], [14], [15], [16]. By performing an in-depth analysis of
these tools, it is possible to derive some conclusions about
their efficiency, accuracy, and reliability. Therefore, one can
objectively choose one static analysis tool over another to
detect some exact or all possible vulnerabilities in the code
before deploying the blockchain. Moreover, as cybersecurity
becomes more and more important in today’s industry, the
analysis performed here and its results would greatly help
other people in determining what currently available tools
are the best for particular vulnerabilities as well as deciding



where and what improvements have to be made in the field of
verifying smart contract code.
Contributions. The main original contribution of this paper is
the creation of Solidity smart contract tests containing security
vulnerabilities and their verification with various static analysis
tools designed for Solidity smart contracts. It is crucial to point
out that the tests are written with cybersecurity properties
in mind. Thus, the vulnerabilities and risks of tests were
assessed and prioritized with established cybersecurity risk
assessment methods [17], [18]. However, these methods are
created for other programming languages, systems, programs,
and frameworks. The general concepts inside the methods
can be transferred to any programming language, program,
or system, thus leading to one of our contributions.
Outline. This paper is divided into five distinct sections. The
first part is the introductory one, explaining the aims and
objectives of this paper. The second part summarizes the
background theory needed for the paper, while the third part
delves briefly into the technical part of our work. The fourth
part discusses the data gathered from the research and shows
the analysis of the results. Lastly, we summarize our work
with notes about achievements and possible future work.

II. VERIFYING SECURITY VULNERABILITIES FOR
BLOCKCHAIN-BASED SMART CONTRACTS

A. Background

A blockchain is a write-only list of data structures, called
“blocks”, chained together [19]. On the blockchain, smart
contracts are deployed so that the users can interact with the
blockchain. Smart contracts, in this paper, are written with
the Solidity programming language. In order to have a viable
and fully functional product, say a system or a program, it
needs to be bug-free, robust, and available at all times. In
order to achieve this, various manual and automated testing
methods are used; one of them is static analysis, e.g., lexical
and dataflow analysis, symbolic execution (can be shortened
to symex), and model checking [20]. The concepts from the
cybersecurity field needed in this paper are the CIA triad
[18] and the SEI CERT C Coding Standard’s risk assessment
methodology [17].

B. Testing approach

The overall testing strategy and research methodology fol-
low a cyclic pattern seen in Figure 1, as it involves testing
each of the tests, described more in detail later in Section II-F.
In order to describe one cycle of this pattern, the following
methodology was used. (1) Find out a vulnerability that can be
exploited through the Solidity smart contract code. (2) Write
an example test containing the previously mentioned vulner-
ability. (3) Test the example with various static analysis tools
and write the results under normal conditions. Finally, write
down the outcome of the tool (vulnerability found/not found).
(4) Repeat the test by reducing the number of threads or
programs running on the system, write down the results under
ideal conditions. (5) Repeat the test by introducing stress tests:
100% CPU consumption, 77% memory consumption, 90%
memory consumption, and a full test: 100% CPU consumption

and 90% memory consumption. For each of the stress tests,
write down the results under each of the stress conditions.

This cycle is repeated for each of the vulnerabilities found
and each of the static analysis tools used. Fig. 1 visually sum-
marizes the overall testing strategy and research methodology
of this paper.

Figure 1: The lifecycle of a Solidity smart contract vulnerab-
ility.

Our research hypothesis is as follows: H1: The more com-
plex and technically powerful system or tool or program is
slower and consumes more resources available to the system,
i.e., CPU power, memory and/or disk capacity, etc. at the
expense of system accuracy. This hypothesis will be checked
against in the analysis part of this paper, where it will be
possible to derive if the hypothesis holds given the data
gathered from the testing.

C. Static analysis tools
Here, various static analysis tools were considered for secur-

ity testing purposes. However, we faced some issues – some
tools were not maintained for a long time [21], [22], others
did not work with newer Solidity compiler versions [23]2.
Some tools require a complex setup process, which may
not be viable in commercial and industrial environments.
Therefore, they were discarded from the testing process as
well. Another important factor was tool availability. Some
tools are not publicly available, and one has to buy a license to
use the tool. Although this can be acceptable in the industry,
these types of Solidity static analysis tools were not used for
research purposes in this paper. Therefore, we are left with
five Solidity static analysis tools, which satisfy availability,
usability, and preferably maintainability requirements. The
tools are as follows: Remix IDE static analysis plug-in [24];
Slither [13]; Oyente [14]; Mythril [15]; and SmartCheck [16].
These tools are written in different programming languages
with different verification approaches – most of them employ

2A new Solidity major compiler version is a “breaking” one – e.g. a smart
contract compiled with compiler version 0.6.0 might not work with compiler
version 0.7.0 and vice versa.



already existing Satisfiability Modulo Theories (SMT) solvers,
such as the Z3 SMT solver [25].

D. Tools and equipment
One laptop was used with technical parameters to simulate

average working conditions and tools available in a commer-
cial/industrial setting. The laptop has an Intel i7-3667U type
CPU with four cores running at a clock speed of 2 GHz.
The laptop has 8 GB of total available memory. However,
7.32 GB of RAM can be used for any purpose – the system
consumes the remaining part. The laptop has Linux operating
system (OS) with Ubuntu distribution, version 20.04. The disk
capacity of the laptop is 180 GB. There was another PC with
Windows OS in consideration for usage in this paper, but,
as it turned out, most static analysis tools and other testing
or benchmarking tools are not very friendly with Windows.
Therefore, the idea of having several computers had to be
scrapped.

For benchmarking, publicly available tools were used. To
track resource consumption rates better, htop was used [26].
It is similar to the in-built top Linux command and is easily in-
stallable. While top already shows how much CPU or memory
each thread or program uses, htop also produces graphs and
gives better visual feedback to the user. For benchmarking
and average script running time tracking, hyperfine command-
line benchmarking tool was installed in the laptop and used
throughout the paper [27]. The main advantage of hyperfine
is that it allows benchmarking commands and running several
benchmarks at the same time, saving time running a static
analysis tool on each of the tests manually.

E. Performance metrics
In order to gather data and derive results, it was necessary

to establish what qualities of the verification process would
be measured. It is essential to find the most efficient and
accurate static analysis tool. Therefore, the following perform-
ance metrics were chosen. (1) Accuracy: one of the most
crucial requirements for any static analysis tool is its ability to
accurately report the number of vulnerabilities in the Solidity
smart contract code. A poor accuracy score means that either
the static analysis tool is very simple and not fit for real-life
use or it does not have to detect some types of vulnerabilities,
as there are static analysis tools that specialize in some types
of vulnerabilities, e.g., out-of-gas-vulnerabilities [28][29]. A
good accuracy score shows that the static analysis tool is
competent in reporting different bugs and can be used in
business environments. (2) Speed: a fast static analysis tool
increases the overall cybersecurity level of the blockchain, as
people would be more compelled to use tools that take only
a fraction of their time. (3) CPU consumption: efficient tools
are essential so that their operations would not block other
processes happening at the same time. A user would likely run
a static analysis tool while browsing the Internet and having
several programs and/or applications open or running in the
background. (4) Memory consumption: The same argument
mentioned about the CPU consumption applies here, although
a high memory consumption rate for a prolonged period can
have unwanted consequences, e.g., other programs or threads
(or even the static analyzer itself) might be killed by the kernel

due to insufficient memory, and in the extreme cases, the
computer might crash. Therefore, it is desired that the static
analysis tools would have low memory consumption rates to
prevent errors and crashes.

F. Smart contract tests
There were thirteen different Solidity smart contracts cre-

ated and used for our experiments. Each test was evaluated
in terms of several cybersecurity concepts: whether the par-
ticular vulnerability violates one or more of CIA properties
- confidentiality, integrity, and availability. Also, each smart
contract is given a priority level according to the SEI CERT C
Coding Standard risk assessment [17]. The tests are prioritized
in severity levels: source code containing Level 1 (L1) security
vulnerabilities are the most severe and require fixes and repairs
as soon as possible, while Level 3 (L3) bugs can wait for their
patching, and they have a low severity rating.

The following is the list of tests with vulnerabilities in them:
Test 1 - canary test, no vulnerabilities; Test 2 - re-entrancy
vulnerability; Test 3 - dead code vulnerability; Test 4 - weak
PRNG and timestamp dependency vulnerabilities; Test 5 - lost
contracts and unprotected self-destruction vulnerabilities; Test
6 - out-of-gas vulnerability; Test 7 - gas griefing vulnerability;
Test 8 - usage of tx.origin for validation; Test 9 - unchecked
value transfer and contract locking vulnerabilities; Test 10 -
double constructor vulnerability; Test 10.1 - constructor-like
functions; Test 11 - inline assembly code usage vulnerability;
Test 12 - code size test, no vulnerabilities.

III. EVALUATION AND ANALYSIS

A. Description of benchmarks
Overall, all five static analysis tools were measured with

all 13 tests3 4. Each test was run 10 times with each static
analysis tool; the average running times can be observed in
Fig. 2. Thus, each static analysis tool was run 130 times - 650
test runs in total were done to obtain the data represented in
Tables I to IX5. The number of runs for each test was not
chosen for some specific reason – if one performs more runs
for a single test, one can derive more accurate data with lesser
error margins. Time and resource constraints for this project
were decisive in choosing the amount of test runs; therefore,
the optimal number of 10 runs for each test was chosen.

Fig. 2 illustrates the average running times for each test and
each static analysis tool. The graph is logarithmic to improve
the readability and understanding of outlier values produced
by Oyente [14] and Mythril [15].

The benchmarks were divided into several parts. (1) Normal
conditions (time and accuracy test) - all 13 tests were run
under the ordinary operation of the laptop without any extra
processor or memory load. The primary objective was to
obtain average running times of code verification of each of the
smart contract analyzers and to check the outcomes of static
analysis tools. (2) Normal conditions (resource management

3Two tests are marked Test 10 and Test 10.1, indicating the similar
properties of the source code, but are counted as different tests.

4The Github repository for these tests can be found here: https://github.
com/nedasma/solidity-vuln-tests

5The detailed experimental results are available at https://drive.google.com/
file/d/19DlLyRPr7zekhqR8C5Cgv5E-ezBGqlaM/view?usp=sharing



Figure 2: Avg. running times for each test in log-scale

test) - all 13 tests were run under the ordinary operation of
the laptop without any extra processor or memory load. This
time, the objective was to observe and document the CPU
and memory consumption rates for each static analysis tool
and each smart contract test. (3) Stress test 1 (maximum CPU
load) - again, all 13 tests were run, but under the full load of
the CPU cores. The objective was to observe and document
the average running times for all smart contracts used for
code verification. (4) Stress test 2 (77% memory load) - all
tests were run under the 77% of RAM usage by executing
several commands to increase the memory load artificially.
The objective was similar to other tests - observe the behavior
of analyzers and record running times. (5) Stress test 3 (90%
memory load) - 13 tests were run under 90% of RAM usage.
The objective is the same as for the stress test 2. (6) Stress
test 4 (maximum CPU load and 90% memory load) - all tests
were run under combined CPU and memory load, while still
keeping the computer alive, as having 100% of memory load
can cause crashes. The objective was to observe the static
analysis tools, check for any abnormal behavior and get the
average running times for each static analysis tool used with
all source code of smart contracts verified.

B. Summary of tests
Overall, from the resource consumption perspective, Remix

IDE plug-in [12] leads to the best CPU usage rates while
Slither [13] manages memory usage; therefore, lower-end
computers can handle both tools. Mythril [15] and SmartCheck
[16] displayed the worst result in CPU rating since they con-
sume the most memory on average. However, Oyente [14] has
shown the most inconsistent results, meaning that it is prone
to specific types of codebases, such as those containing lots of
loops or contract sub-calls. In terms of robustness under stress
conditions, Remix IDE plug-in [12] and Slither [13] showed
the best results while having zero timeouts. The third-place
goes to SmartCheck [16] because it had no timeouts, although
stress conditions are not the ones SmartCheck [16] can deal
with smoothly. Oyente [14] shows the worst performance with
three timeouts and average longest-running times for CPU and
memory stress tests.

C. Setup
The setup and execution process is very simple in order to

run the tests. To start off, the equipment and tools used are

explained in section II-D. To run a test with all static analysis
tools, in the general case, one has to make four command
statements in the Linux terminal and one statement online in
the Remix IDE case. As for the example, we will take Test 2 as
a placeholder value for static analyzers, and the source file of
Test 2 code is called test2.sol. Note, that Oyente accepts only
Solidity compiler versions 0.4.17 and lower, although it tends
to work well with version 0.4.22 as well, while other tools
and tests are written for mostly the newest compiler version
(0.8.6 is the newest, but there are tests for compiler versions
0.7.0). Therefore, one has to change the Solidity compiler
version in order to run Oyente properly. To do this, a tool
called solc-select [30] is used to install and switch to other
installed Solidity compiler versions. To switch to the required
version supported by Oyente, run
solc-select use 0.4.17

where “0.4.17” is the Solidity compiler version. Also, the code
has to be slightly modified in order to compile well with old
Solidity versions, therefore, the test source code for Oyente
are usually denoted with the name testName cpy.sol, where
testName is the name of the test, e.g. “test2”.

The following list explains what commands should be run in
order to verify the source code of Test 2 with each of the static
analysis tools: (1) Remix IDE static analysis plug-in: click
“compile” on test2.sol when in the “Solidity compiler” section,
then click “run” after selecting the “Solidity static analysis”
section. Uncheck the “autorun” property if it was selected in
the first place to run the compiler and the analyser separately
or keep it checked if both compilation and analysis are wanted
to be done in a single “compile” click. (2) Slither: slither
test2.sol. (3) Oyente: oyente -s test2 cpy.sol. (4) Mythril: myth
analyze test2.sol. (5) SmartCheck: smartcheck -p ./test2.sol.

However, doing this is time-consuming, especially when
there are 13 tests to be done. Therefore, hyperfine comes to
help by automating the runs and performing time benchmarks
on each of them. Unfortunately, some tests are written for
specific compiler versions, so by changing the versions one
might not be able to verify the tests correctly. Therefore,
Table I shows the groupings of tests by Solidity compiler
versions. Note that this table does not apply to Oyente in most
cases because its tests were slightly adapted to comply with
the newest acceptable version by Oyente. Neither the overall
existence of the vulnerability nor the logic in the code changes
in these modified files, which can be recognized by having a
cpy in the file name at the end. To run hyperfine in the Linux

Table I: Test groupings by Solidity compiler version

Solidity compiler version Test numbers
0.8.6 1, 7, 10.1, 11
0.7.0 2, 3, 5, 6, 8, 9
0.6.0 4
0.4.22 10

terminal, write:
hyperfine -L version 1,7,10.1,11 ’slither test{

version}.sol’ -i

Here the tests would be run for the Solidity compiler version
0.8.6, the analysis of tests would be done by Slither, and any



output by the analyzers is suppressed by the -i flag in order
to have hyperfine working properly. To adjust the command,
use different version numbers explained in Table I and other
static analysis tools. For stress testing, the stress package is
used, and it allows filling up the memory or consume a lot of
processing power. To obtain 100% of CPU usage, run
stress --cpu 4 -t 60

This will keep the CPU at 100% of usage for 60 seconds on
all CPU cores, which are four of them in the testing laptop.
For obtaining around 77% of memory consumption, run
stress --vm-bytes $(awk ’/MemAvailable/{printf ’’\%d

\n’’, $2 * 0.99;} ’ < /proc/meminfo)k --vm-keep
-m 1 -t 60

This will keep the memory busy at around 77% of its capacity
for 60 seconds. In order to get 90% or more of RAM usage,
one can use the following command on the terminal:
sudo </dev/zero head -c 7000m | pv -L 500m | tail

This will use around 7 GB of memory6, with each tick
increasing the usage by 500 MB. The pv command gives a nice
visualization to the programmer only. However, one must be
aware that using very large amounts of memory might trigger
the kernel’s out-of-memory killer (OOM), therefore, in order
to keep the stress test command alive and not killed by the
kernel, use the following command:
sudo echo -1000 > /proc/procNo/oom_score_adj

where procNo is the process ID of the stress command. The
ID with the benchmarks for resource management of the tools
can be found in the htop interactive process viewer.

D. Objectives
The objectives of this testing are as follows. (1) Test out

all five static analysis tools in question - namely: Remix IDE
static analysis plug-in [12], Slither [13], Oyente [14], Mythril
[15], and SmartCheck [16] and see if they work correctly. (2) If
point one is satisfied, run all designed tests with vulnerabilities
and find out the accuracy rating of each static analysis tool.
(3) Find out if there are any tests whose vulnerabilities cannot
be caught by any of the static analysis tools. (4) Observe
the performance of the analyzers under normal conditions and
stress conditions.

From these main objectives described, it is possible to derive
which static analysis tool is the best in terms of accuracy
and performance when finding security bugs in Solidity smart
contracts. The summary section of this section in section III-G
gives an overview of the results and achieves the main goals
laid out in section I.

E. Results
The analysis of the results presented in Section III-A can be

seen in three different perspectives: from the accuracy point
of view, from the resource usage point of view and combined.
However, remembering the hypothesis given in Section II-B
requires us to look at a combined approach – whether there is a
possibility to find a correlation between accuracy, complexity

66.83 GB to be more exact in the binary base.

Figure 3: Avg. CPU and RAM usage per test

and efficiency of static analysis tools. First of all, it is crucial
to look at the accuracy Table III displayed in the separate
document7 and compare it to the results obtained in Fig. 3 of
this document.

As an example, consider Remix IDE graph part in Fig. 3
of this paper, colored in lighter blue, showing how CPU and
memory consumption as well as running time changes from
Test 1 to Test 12 for Remix IDE static analysis plug-in. It can
be seen that the upper bound for CPU usage increases almost
linearly for each test, while the lower bounds stay pretty much
the same at 3-5% of CPU consumption. It is also shown that
the memory usage for all tests stays quite consistent, although
the upper bound for Test 10 is an outlier. Comparing that to
the accuracy table, we cannot determine any patterns between
accuracy and consumption, as Test 3 requires less computing
power than, say, Test 10, but both are marked that the analyzer
could not find any vulnerabilities in both of them. The reverse
argument is also valid by comparing Tests 4 and 5. What can
be determined, though, is the relation between inline assembly
code in Test 11 - the CPU consumption rises to 28%. At the
same time, the upper bound for test verification time illustrated
in Fig. 2 has also increased significantly compared to other
tests.

As for the accuracy rating, Remix IDE static analysis plug-
in finds 8 out of 12 security vulnerabilities in Solidity smart
contracts correctly, therefore getting the accuracy rating of
66.67%. The low memory usage, processing power consump-
tion, and fast verification process put the plug-in in a high
place for the competition to find the best static analysis tool
for Solidity smart contracts.

As a slight jump back to the performance analysis, we
established that Test 11 was verified incorrectly by the Remix
IDE static analysis plug-in; therefore, it would be interesting
to look at Slither, which correctly identified inline assembly
code in the source code of the test in question. Compared
to Remix IDE plug-in’s CPU consumption patterns, Slither
seems to have a completely different graph, as illustrated in
Fig. 3 of this document. Here, the largest upper bound was
observed in Test 3 with the CPU usage nearing 30%. On
the other hand, the memory usage, seen in the same graph,
is consistent, similarly to Remix plug-in. Fig. 2 illustrates

7The corresponding details can be found in the footnote of Section III-A.



that Slither runs consistently regardless of the test – the
only exception being Test 12, which is effectively a code
size test. However, this shows that inline assembly does not
affect resource consumption or speed of the static analysis tool
because, for Slither, Test 11 is verified as consistently in terms
of metrics discussed as other tests. It is also worth noting that
Slither correctly identified inline assembly usage in the source
code of Test 11. Overall, Slither tends to consume less memory
than Remix IDE static analysis plug-in, while the CPU usage
is quite similar. However, Slither is way more consistent in
terms of average running times, as illustrated in Fig. 2.

Slither’s accuracy rating is the best of all static analysis
tools tested in this paper, with a rating of 75% achieved by the
analyzer. Combined with robust performance, constant running
times and average resource management, it aims to be one of
the best static analysis tools to date.

Let us look at Oyente. As we can see from the CPU and
memory consumption graph in Fig. 3 of this document, colored
in green, the problematic tests (Test 3, 7 and 11) stand out in
the graph as having the upper bound at 100% CPU usage. As
one of these tests (Test 7) did not finish successfully and it
timed out after exceeding the threshold limit of 10 minutes, it
can be assumed that longer running times can correlate with
higher CPU usage for Oyente static analysis tool. For compar-
ison, the code of Test 3 was verified for about 8 minutes, while
the code for Test 11 took about 5 minutes and 30 seconds. This
can be seen both in Fig. 2, showing the visual “spikes” for
Tests 3, 7 and 11. The memory consumption also indicates the
problematic tests as visual “spikes” in Fig. 3 of this document.
Therefore, in Oyente’s case, one can conclude that a longer
verification process leads to abnormal resource usage by the
static analysis tool. If we let it run for a prolonged period,
the kernel would likely kill the analyzer’s process, making the
verification process useless. It also needs to be emphasized that
Oyente is an old static analysis tool, with its first incarnation
released to the public over 5 years ago [14], where blockchain
technology and Solidity programming language were still in
their infancy. Therefore, it is only natural that currently, there
are better optimized, faster, and more accurate static analysis
tools than Oyente. Oyente’s accuracy rating is the lowest of
all 5 static analysis tools tested – only 3 out of 12 security
vulnerabilities were identified correctly by Oyente, giving the
accuracy percentage of 25%.

Mythril is a bit newer static analysis tool than Oyente. Thus,
it is expected that it will outperform Oyente on several metrics,
and this statement is correct regarding running time. However,
as we can see in Fig. 3 of this document, colored in cyan,
Mythril takes a greedy approach to resources, especially the
computing power of the processor. Mythril verifies the tests
almost in all cases by using 100% of CPU power, which is
not the best outcome if, e.g., a user has other CPU-intensive
processes running. In that case, the computer would slow down
and all processes, including Mythril’s static analysis. However,
memory usage is sustainable, although both Slither and Remix
IDE plug-in use less memory than Mythril counterpart. It is
also essential to note that Mythril, on average, takes more time
to verify Solidity smart contracts, a perk not seen in other static
analysis tools, including SmartCheck, which results will be

explained later in this section. For example, Test 5, concerned
with unprotected self-destructs, and arbitrary data sends. The
running time bounds, which can be seen in Fig. 2, takes
about two-and-a-half minutes for Mythril to verify the source
code, while all other tools take a maximum of 2 seconds to
complete the analysis. Furthermore, Mythril does not handle
inline assembly code in Solidity smart contracts – the static
analysis of Test 11, a test related to the security vulnerability
in question, timed out after running for 10 minutes.

Mythril’s accuracy is below average, with a 41.67% accur-
acy rating (5 out of 12 vulnerabilities identified correctly). The
tool tries to compete with Remix IDE plug-in and Slither but is
underperforming both in resource management and accuracy.
The largest drawback is probably speed - on average it runs
the longest compared to all other tested static analysis tools.

The performance of SmartCheck, in terms of resource
management, is satisfactory considering that the analyzer is
written in Java, which means that code compilation, translation
processes and garbage collection take more memory resources
in general. However, SmartCheck handles the memory con-
sumption very well - fig. 3 of this document (colored in
light brown) shows that the static analysis tool does not reach
10% of available RAM for use. On the other hand, the same
figure shows large averages between CPU consumption rates,
sometimes the range reaches 60 per cent. This tells us that
during the execution process the CPU usage increases at a
very large rate until it reaches 100% of consumed processing
power. The running times for SmartCheck, seen in fig. 2, are
quite consistent and the graph resembles Slither’s part in the
same figure. Unfortunately, the tool is not very accurate -
the accuracy of SmartCheck is only 25 per cent, and it does
not show any signs of being different to other tools in terms
of vulnerability catching process, that is, if other analyzers
do not catch a particular vulnerability, it is very likely that
SmartCheck will not catch it as well, therefore the tool is not
very suitable for cross-checking the source code for additional
vulnerabilities.

F. Threats to validity
The experiments carried out with the static analysis tools for

Solidity smart contracts are accurate and done consistently to
prevent bias in the results gathered. However, the experiments
and evaluations are not perfect, and there is always room for
improvement. First, there are 13 tests written in total; 11 of
them have security vulnerabilities. While the aim was to create
the tests that contain the most common security vulnerabilities
w.r.t. cybersecurity properties, the list of vulnerabilities is
by no means exhaustive. For example, the SWC registry
contains 36 different vulnerabilities. However, not all of those
weaknesses can cause cyberattacks or attacks, which can cause
actual damage - one of the examples would be the floating
pragma (Solidity compiler version). Also, there is the case of
“known unknowns” – we know that security vulnerabilities
exist, but we do not know how many of them exist on the live
blockchain. Therefore, the limit of tests to be included in the
experimentation is not bound to a specific number. If there are
any new vulnerabilities discovered, likely, the static analysis
tools will not catch them. Moreover, one should not discard
the possibility of false positives as well.



Continuing the narrative of the tests used for the experiment,
the accuracy rating can change if more or fewer tests are
included in the testing phase. It can be also be perceived that
the inclusion of more tests can drop the accuracy rating for all
analyzers. However, the rating will be more correct as more
cases would be included in the evaluation process. The reverse
action also has consequences - having fewer tests might distort
the accuracy rating, disproportionally inflating or reducing the
rating in question. The improvement here can be twofold: (1)
Include more tests with different vulnerabilities, especially if
the tests have code that deviates from the standards given
by the documentation of static analyzers. This will probably
reduce the overall accuracy rating, but better conclusions can
be derived on which tool is more versatile and can catch
different types of security bugs. (2) Reduce the number of
tests but make them more specialized. For example, suppose
one is particularly interested in re-entrancy vulnerabilities. In
that case, one can create ten different tests having re-entrancy
vulnerabilities with different code snippets and various code
obfuscation methods applied. Including canary tests (the tests
without vulnerabilities) with code snippets, which can look
like the ones having the re-entrancy bug, but there are no
vulnerabilities there that would improve the testing strategy.
The specialized tests would allow determining whether the tool
is truly capable of detecting the security bug in question and
checking for any false positives that might occur during the
code verification process.

The last issue is resource management monitoring. Even if
the experiment is replicated identically to the one presented
in this paper, there is a margin of varying running times or
CPU or memory consumption. However, this problem should
fall into the category of allowed deviations from the given
results. The real issue can arise if the experiment is done
on other computers with different technical parameters, OS
types and/or versions. It should be thought that having a
more powerful machine than the one used here will show
better results for static analysis tools in the benchmarks and
vice versa. However, the verdict given by a static analysis
tool (verified code contains vulnerabilities or not) should be
consistent regardless of the computer technical parameters.

G. Final remarks

First, let us get back to our research hypothesis established
in Section II-B. According to Section II-C, we can conclude
that while Slither is one of the most sophisticated tools tested.
With the level of complexity and the capabilities of the
analyzers, the only comparable ones are Oyente and Mythril,
Slither does not consume significantly more resources or runs
slower on average than others, e.g., more straightforward
static analysis tools such as the plug-in for Remix IDE.
The hypothesis, therefore, does not hold. However, it should
be noted that if one discards Slither from the analysis and
substitutes it with the other Solidity static analysis tool, the
hypothesis could hold because Oyente and Mythril were by
far the most resource-hungry and slowest static analysis tools.
Thus, the statement that more sophisticated and more extensive
tools are inefficient is incorrect because as the technology
moves forward, better static analysis methods are created,

achieving faster verification rates while retaining low resource
consumption rates. If this paper was conducted several years
ago, one could argue that the present day’s technology has
reached its limits. However, now, we can see that there are
static analyzers that are sophisticated yet powerful, accurate
and efficient. This moves to the paper’s main aim - what is
the best static analysis tool for Solidity smart contracts, which
can find the most with cybersecurity-related vulnerabilities?
The answer is pretty straightforward if we are looking at the
data presented here.

Slither is by far the best of five tested tools, as its accuracy
rating is the highest, and the resource management rating is
also one of the best. Also, it is quick and robust - even under
a comprehensive stress test, Slither managed not to exceed 4
seconds of verification time. The second place would go to
Remix IDE static analysis plug-in, which can be unexpected
since its implementation is relatively simple compared to
other tools. However, it detects various cybersecurity-related
vulnerabilities, which is a good sign for Solidity programmers
using Remix IDE. Also, the resource management is in good
standing, as well as the execution times. It is by far the fastest
static analysis tool available out of all tools tested here, but it
gets behind Slither only because it is less accurate.

The third place should go to Mythril, shared with Smart-
Check - although being very greedy for resources, its accuracy
rating is somewhat reasonable. However, it falls behind the
Remix plug-in by 20% points. Of course, resource manage-
ment can permanently be remedied by putting more resources
into a machine, but this is a Turing-completeness problem
- theoretically speaking, all programs will terminate if the
computer would have infinite amounts of memory, which
is physically impossible. Thus, while being bound to finite
amounts of computing power and memory, it is essential to
look at the resource management of a program, and Mythril,
unfortunately, is not the best in this field. However, if the
resources are abundant, the accuracy rating can be a reasonable
choice for finding security bugs in Solidity smart contracts.
Also, another drawback is timeouts – a property no one would
enjoy having.

SmartCheck receives third place, sharing with Mythril due
to its low accuracy rating – one of the main factors for a static
analyzer to be considered a “good” tool. However, SmartCheck
does not consume many resources and does not time out;
this is why SmartCheck is on par with Mythril. Had the
accuracy rating been better for SmartCheck, then it would have
a guaranteed third place, moving Mythril to the solid fourth
place. Overall, SmartCheck is a good choice for lightweight
smart contract checking, but it must be noted that it is not a
very strong tool and might need cross-verifying to catch all
possible vulnerabilities in code.

The last place goes to Oyente due to several factors. First
of all, the accuracy rating is one of the lowest, comparable to
SmartCheck. Secondly, it is prone to code explosion, meaning
that it is unsuitable for smart contracts, which have a large
codebase or contain many loops. Lastly, because it is af-
fected by the disadvantage mentioned previously, the resource
management suffers, thus distorting the overall performance
results. Suppose Oyente would be updated, and more efficient



methods of traversing CFGs were implemented, from which
logical statements are fed into Z3 SMT solver. In that case,
Oyente can once again become a powerful static analysis tool
for Solidity smart contracts as it was 5 or 6 years ago.

IV. CONCLUSION

One of the main contributions of this paper is the compil-
ation and evaluation of Solidity smart contract tests, which
fit into the cybersecurity properties. As there are not many
surveys or analyses carried out, at least to the authors’
knowledge, where smart contracts with security vulnerabilities
had risk assessments or comparisons to the CIA triad, this is
a significant achievement unique to this paper. Furthermore,
the experimental results we have obtained by running the
custom smart contracts developed here give some critical
insights about the capabilities of the static analyzer, including
their accuracy ratings and their performance under various
security conditions. From that data, we can derive which static
analysis tools are more competent in specific types of security
vulnerabilities and which ones are more universal. Also, the
data obtained is valuable in determining the user’s priorities
wanting to use the analyzer, e.g., whether the accuracy or
the speed is the primary requirement. As a result, we lay
the groundwork for performing analysis on Solidity smart
contracts in more specialized fields – cybersecurity. Some
surveys discuss the cybersecurity behind the attacks on smart
contract vulnerabilities [31], [32], [33], [34]. However, they are
either quite abstract in terms of the cybersecurity properties
provided, only the popular examples are given to the reader,
or the vulnerabilities are discussed in detail, but they lack
exact properties such as risk assessment or CIA triad property
evaluation. For future work, we are extending the ESBMC
tool [35] to perform in-depth security analysis for Solidity
smart contracts from the cybersecurity perspective.8
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