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Abstract—This paper presents and evaluates a novel of-
fline mobile robot path planning algorithm based on the As-
sisted Counterexample-Guided Inductive Optimization (ACE-
GIO) technique. ACEGIO employs a technique to assist the
Counterexample-Guided Inductive Optimization (CEGIO) tech-
nique by requesting counterexamples from Boolean Satisfiability
(SAT) and Satisfiability Modulo Theories (SMT) solvers to
improve its efficiency and effectiveness. In particular, Gradient
Descent (GD) technique is implemented as an auxiliary tech-
nique to CEGIO. GD-Assisted Counterexample-Guided Inductive
optimization (ACEGIO-GD) has been successfully applied to
obtain two-dimensional paths for autonomous mobile robots
using off-the-shelf SAT and SMT solvers. Experimental results
demonstrate that the ACEGIO-based path planning algorithm
has substantial improvements in efficiency and effectiveness com-
pared to the traditional CEGIO-based path planning algorithm,
which allows generating the optimal paths for autonomous mobile
robots with much less execution time. If compared to other
traditional path planning optimization techniques (e.g., GA and
PSO), the execution time of the proposed algorithm is relatively
high, whereas its performance is stable, reliable and robust.

I. INTRODUCTION

The last several decades have seen a growing trend towards
automated services. Mobile robots are replacing humans in
repeated and monotonous work, such as transforming shelves
within warehouses [1]. The growing demand for autonomous
mobile robots is why autonomous navigation, especially path
planning, has a pivotal role in developing mobile robots [2].
Path planning is a computational problem to find a valid path
from an initial location to the desired destination that avoids
all possible obstacles in the motion space [3].

The existing literature provides a series of algorithms and
solutions to path planning problems [4, 5, 6, 7, 8]. Araujo et
al. [4] considered the path planning problem as an optimization
problem. Here, a decision variable represents a given path,
and the cost function appears as a specific criterion whose
value needs to be optimized. An optimal path is achieved
if the value of specific criteria such as distance and ex-
ecution time is optimal. In addition, the robot movement
must follow the optimal path, consisting of a sequence of
points. To solve this optimization problem, algorithms, such
as A* algorithm [9], genetic algorithm (GA) [5], particle
swarm optimization (PSO) [6], ant colony optimization [7],
gravitational search algorithm (GSA) [8], can be employed.
Due to the efficiency of these optimization methods, they
can be applied to online path planning mode, which allows
path planning to be performed during the robot movement.
However, these methods have an uncertain possibility that
global optimality of the robot path cannot be achieved [4].

Araujo et al. [10, 11] show that Counterexample Guided
Inductive Optimization Algorithm (CEGIO) ensures global

optimality of various non-trivial functions classes, with better
effectiveness than traditional optimization technique. In terms
of the established description about CEGIO [4, 11], the authors
employ Boolean Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT) [10]. The main idea of CEGIO is that it is
executed iteratively by SAT/SMT solvers to generate coun-
terexamples. These counterexamples are employed to update
both decision variables and the cost function and guide global
optimality. However, based on the experimental results pro-
vided in prior work [4], CEGIO is only applied to offline path
planning mode due to high time consumption on CEGIO-based
path planning applications which thus requires path planning
to be performed before robot movement [12]. To improve the
CEGIO efficiency, there exist two main approaches: develop
more efficient optimization algorithms on top of SAT or SMT
solvers [13] or employ a more efficient optimization algorithm
to assist CEGIO. The second method is applied to this paper.
Contributions. This paper describes and evaluates a novel
offline mobile robot path planning algorithm based on Assisted
Counterexample-Guided Inductive Optimization (ACEGIO)
technique. ACEGIO employs an auxiliary technique to assist
the Counterexample-Guided Inductive Optimization (CEGIO)
technique by reducing times of requesting counterexamples
from SAT and SMT solvers to improve the efficiency and
effectiveness of the CEGIO technique considerably. Therefore,
the main original contributions of this paper are as follows.
First, develop ACEGIO algorithm with Gradient Descent as
the auxiliary algorithm to generate optimal two-dimensional
paths for autonomous mobile robots in a predefined move-
ment environment. Second, evaluate the proposed ACEGIO-
based path planning algorithm and compare it with CEGIO-
based path planning algorithm, which demonstrates that the
efficiency and effectiveness of the CEGIO-based path planning
algorithm are substantially improved by employing GD tech-
nique. Lastly, identify the proposed algorithm is more stable,
reliable and robust, if compared to traditional path planning
algorithms based on GA and PSO.

II. BACKGROUND

A. Optimization Problems
Optimization problems and global optimal solutions can be

defined as follows:

Definition 1. An optimization problem consists of finding the
global optimal solution from all feasible solutions [14].

Optimization problems consist of minimizing the cost func-
tion. If optimization problems need to maximize the cost
function, then minimize the negation of the cost function [14].
General optimization problems can be written as [14]



minimize
x

f(x)

subject to gi(x) ≤ 0, i = 0, . . . ,m,
hj(x) = 0, j = 0, . . . ,p

(1)

where f(x) is the objective function known as cost function,
which needs to be minimized over a vector x composed
by n variables known as decision variables. gi(x) ≤ 0 and
hj(x) = 0 are inequality constraints and equality constraints,
respectively.

Definition 2. A vector x∗ such that gi (x∗) ≤ 0 and hj (x∗) =
0 is a global optimal solution of objective function f(x) iff for
∀x such that gi(x) ≤ 0 and hj(x) = 0, f (x∗) ≤ f(x).

B. Path Planning for Mobile Robots
As one step in mobile robot navigation, efficient path plan-

ning algorithms considerably contribute to safe and effective
mobile robot navigation. Depending on environment nature,
robot’s knowledge about the environment and completeness,
path planning can be classified as static or dynamic, global or
local, exact or heuristic, respectively [15]. The present work
focuses on static, global, exact path planning algorithms in a
bi-dimensional environment with the following properties: (1)
the environment is fixed, where the starting position, the target
position, obstacles and map information are unvarying; (2) the
mobile robot has a priori knowledge about the environment;
and (3) the algorithm finds an optimal path if one exists or
proves no feasible solution exists.

Definition 3. An optimal path consists of a sequence of points
consecutively and sequentially connected by straight segments.
The optimal path is valid for robots to move from a starting
to a target position; it minimizes the cost function related to
that path, such as energy consumption, distance [4].

According to Definition 3 and the above properties, the
proposed path planning algorithm is to find an optimal path,
consisting of a set of straight segments that formed by points,
from the source to the destination, which meets the path
specification (obstacle avoidance) and minimizes the distance
as the principal objective in the predefined environment.

C. Bounded Model Checking (BMC)
Prior work [11, 16] has provided definitions and descriptions

of BMC applied to path planning [4]. Given a finite-state
model of a system and a formal property, BMC systemati-
cally explores and checks a subset of states within a given
bound [17]. A counterexample describes the execution path
from the initial system state to property violation state [17].
The counterexample contains diagnostic information that plays
a vital role in debugging. BMC converts the system to a
verification condition (VC) and checks the negation of a given
property. The VC is satisfiable iff the property is violated in
a reachable state; in this case, a counterexample is generated.
If it is unsatisfiable, there is no error state within the bound.

D. Counterexample Guided Inductive Optimization (CEGIO)
CEGIO is a search-based optimization algorithm that exe-

cutes successive verifications to reduce the optimization do-
main and achieve global optimality. During the CEGIO opti-
mization process, counterexamples extracted from SAT/SMT

solvers are employed. They are used to update domain bound-
aries and the optimal candidates, thereby constraining the
state-space search and guiding it towards global optimality.
Additionally, Araujo et al. [18] demonstrate that CEGIO has
a solid ability to find the global minima of optimization
problems. The study also presents three variants of CEGIO,
which are the Generalized CEGIO (CEGIO-G), the Simpli-
fied CEGIO (CEGIO-S), and the Fast CEGIO (CEGIO-F),
respectively [11, 18]. CEGIO-F is the fastest among these three
variants, while it can only be applied to convex functions [19].

E. Assisted Counterexample Guided Inductive Optimization

Assisted Counterexample Guided Inductive Optimization
(ACEGIO) combines CEGIO with an auxiliary algorithm,
which significantly improves the optimization efficiency with-
out restricting the range of problems CEGIO can be applied to.
The selected auxiliary algorithm must have fast optimization
speed, while it probably cannot achieve global optimality. In
contrast, CEGIO can ensure global optimality while it requires
huge execution time and computational memory. ACEGIO
relies on the advantages of both auxiliary algorithm and
CEGIO to preserve the optimization ability and application
range of CEGIO and improve the efficiency by reducing times
of the most time-consuming process in CEGIO, which is
requesting counterexamples from SAT and SMT solvers. CE-
GIO only uses counterexamples to update domain boundaries
and optimal candidates, while both auxiliary algorithm and
counterexamples are employed in ACEGIO.

In particular, Gradient Descent (GD), an efficient opti-
mization technique for optimizing convex functions [20],
can be applied as an auxiliary algorithm to assist CEGIO.
Given a differentiable cost function, GD can find the local
minimum [21]. The basic idea of the general GD algorithm
is to iteratively move towards the opposite direction of the
function gradient at the current position, which is the direction
of steepest descent at the current point. Precisely, the GD
algorithm can be pictured as a hiker who wants to climb down
a mountain (cost function) into a valley (local minimum). The
direction of the steepest descent and the hiker’s leg length
determine each step at the current position. Each iteration of
GD Optimization computes the cost function’s gradient and
moves in the opposite direction with a step. Thus, the hiker
iteratively takes steps till reaching the valley (local minimum).

III. ACEGIO-BASED PATH PLANNING ALGORITHM

Here, ACEGIO-GD based path planning is applied to gen-
erate a series of points on a path in a predefined environment
with static obstacles. This method consists of two steps:
(1) formulate the path planning problem as an optimization
problem (i.e., model the environment, and static obstacles as
constraints, set the cost function) (2) apply ACEGIO-GD to
find the optimal path that satisfies the constraints.

A. Optimization problem formulation

In order to solve the path planning problem by the CEGIO
algorithm, it is necessary to formulate the path planning
problem as an optimization problem. Thus, its cost function
and constraints need to be defined. Previous research [4] has



proposed the following definitions (Definition 4, Definition 5)
about cost function and constraints for path planning problems.

Definition 4. Cost function: Define the starting position (S)
and target position (T) as S = P1 and T = Pn, respec-
tively. The objective is to find a decision variable matrix,
L = [P1, P2, . . . , Pn−1, Pn], which minimizes the cost function
J(L). J(L) is the distance function to calculate the total
distance of the path, also J(L) is the cost function of the path
planning problem in this project.

The cost function is defined as:

J( L) =

n−1∑
i=1

‖Pi+1 − Pi‖2 , (2)

where n is the number of points (including the starting position
and the target position) that form the path. A smooth trajectory
will be achieved if n is infinite [4].

Definition 5. Constraints: Each straight segment on the path
must not intercept any obstacle and must be within the
predefined environment.

According to Definition 1 and Eq. (2), the optimization
problem for path planning can be written as:

minL J(L),
piλ(L) /∈ O

s.t. piλ(L) ∈ E
i = 1, . . . ,n− 1,

(3)

where O and E represent obstacles and points within environ-
ment limits, resp.; n is the number of points that compose the
path; and piλ(L) is all points to the i-th path straight segment
defined by vector L. Each piλ(L) point is defined as [4]:

piλ(L) = (1− λ)Pi + λPi+1,∀λ ∈ [0, 1]. (4)

After defining the cost function and constraints, movement
environment (E) and static obstacles (O) need to be encoded.
In this paper, the environment of movement is modelled in
a two-dimensional Cartesian system as rectangle with lower
and upper boundaries. Each point on path must be within this
rectangle. As for obstacles (O), one circle is used to model one
obstacle, such that a centre of circle is the geometric centre
of a physical obstacle, radius of circle is the largest distance
from the centre to edge of the physical obstacle. This ensures
all the points formed physical obstacles are surrounded by the
corresponding circles. Therefore, for each obstacle, constraints
piλ(L) /∈ O such that i = 1, . . . ,n− 1 can be written as:

(xiλ − x0)
2

+ (yiλ − y0)
2 ≥ (r + σ)2, (5)

where piλ = (xiλ, yiλ), and σ is a safety margin, (x0, y0) is
the center of an obstacle, r is the radius of the obstacle.

B. ACEGIO-GD
Previous research has demonstrated that the path planning

cost function (Eq. (2)) is convex. Thus ACEGIO-GD, which
is applied to solve the path planning problem, is developed
based on CEGIO-F due to its efficiency.

Algorithm 1 presents steps of ACEGIO-GD. ACEGIO-GD
takes the cost function f(x), the space for constraint set Ω, a

desired precision ε and the Gradient Descent function G(x)as
input. The output includes the optimal decision variable vector
x∗ , and optimal cost function value f (x∗). In order to gener-
ate more optimised candidates and eventually achieve global
optimal solution, the core of ACEGIO-GD is to iteratively
verify if literal loptimal is satisfied for current optimal candidate
f
(
x(i−1)

)
. The literal loptimal is described as:

loptimal ⇔ f
(
x(i)
)
≥ f

(
x(i−1)

)
. (6)

The directives ASSUME sets the constraints and ASSERT
verifies the specific property. If the verification in line 9 of
Algorithm 1 fails, the new decision variables vectorx∗

(
x(i)
)

and new optimal candidate f (x∗)
(
f
(
x(i)
))

are generated
either by extracting from counterexamples or by applying
Gradient Descent. The new optimal candidate is smaller than
previous optimal candidate f

(
x(i−1)

)
and closer to global

optimality. Otherwise, if lontimal is satisfiable, x∗ and f (x∗)
would not be updated and would remain x(i−1) and f

(
x(i−1)

)
,

respectively. As a result, in each iteration, either a new optimal
candidate, which is closer to global optimality is found, or the
state-space is updated. After substantial times of iterations, the
optimal value and optimal solution are generated.

The space for constraint set is defined as Ωk, such that k =
log p, where k is the number of decimal places of the points
coordinate values (i.e., if p is 1, then k is 0 and coordinates
are considered as integers). Precision p is initialized with value
1 and is updated by multiplying p by 10. Finally, ACEGIO-
GD ends if precision p reaches the desired precision η or the
global optimal solution is found.

The difference between CEGIO-F and ACEGIO-GD is
that ACEGIO-GD additionally employs Gradient Descent to
calculate optimal candidates iteratively. For a given precision
in ACEGIO-GD, requesting counterexamples only happens
once when it reaches the inner do-while loop, resulting in an
optimal candidate. Then GD is iteratively used to achieve new
optimal candidates closer to the global optimal solution for
the given precision. Since the execution speed of employing
GD is much faster than extracting counterexamples from
SAT or SMT solvers, contrary to CEGIO-F, ACEGIO-GD
dramatically reduces the time consumption.

C. ACEGIO-based Path Planning Algorithm

Algorithm 2 summarised the process of applying ACEGIO-
GD to the path planning problem. Similar to ACEGIO-GD, if
the verification in line 11 fails, a new decision variable vector
L∗ and a new optimal candidate J (L∗) are generated either
by extracting from counterexamples or by applying GD. In
this case, a more optimized path can be generated. If Joptimal
is satisfiable, L∗ and J (L∗) would not be updated and would
remain L(i−1) and J

(
L(i−1)

)
, respectively. As a result, either

a new optimal candidate path closer to global optimality is
found in each iteration, or the state-space is updated.

For a given n and p, if it is not possible to find a new optimal
candidate, number of points n is updated by adding 1 to n. If
¬Joptimal is not consecutively satisfiable, then update precision
p by multiplying p by 10. And the number of decimal places
of the points coordinate values k is updated by adding 1 to



Algorithm 1: ACEGIO-GD
Input : Cost function f(x), the space for constraint set Ω, and a desired

precision η and a Gradient Descent function G(x)
Output: The optimal decision variable vector x∗ and the optimal cost

function value f (x∗)

1 Initialise f
(
x(0)

)
randomly and i = 1;

2 Initialise the precision variables with p = 1 and k = 0;
3 Declare the auxiliary variables x as non-deterministic integer variables;
4 while p ≤ η do
5 Define bounds for x with the ASSUME directive, such that x ∈ Ωk;
6 Describe a model for f(x);
7 do
8 Constrain f

(
x(i)

)
< f

(
x(i−1)

)
with the ASSUME directive;

9 Verify the satisfiability of loptimal given by Eq. (6). with the
ASSERT directive;

10 if ¬loptimal is satisfiable then
11 Update x∗ = x(i) and f (x∗) = f

(
x(i)

)
based on the

counterexample;
12 Do i = i+ 1;
13 Update xi = G

(
x(i−1)

)
and

f
(
xi

)
= f

(
G

(
x(i−1)

))
;

14 end
15 while ¬loptimal is satisfiable;
16 Do k = k + 1, p = p ∗ 10;
17 Update the set Ωk;
18 Update the precision variable, p;
19 Set xi as non-deterministic integer variables;
20 end
21 x∗ = x(i−1) and f

(
x(i−1)

)
;

22 return x∗ and f (x∗);

k, since k = log p. Therefore, the precision is increased by
adding one decimal place in the coordinate values.

Additionally, ACEGIO-GD takes Gradient Descent function
G(L) as input. Gradient Descent algorithm is an optimization
algorithm capable of finding local optimality of optimization
problems whose cost function is differentiable. The basic
idea is to move towards the direction of the steepest descent
iteratively. Gradient Descent is defined as follows.

Definition 6. For a multi-variable function F(x) which is
differentiable in its whole domain. For every point xn of the
function, F (xn) decreases fastest if one moves from xn against
the gradient of F at xn, which is −∇F (xn).

For every point xn of the function, if xn+1 = xn −
γn∇F (xn) ,n ≥ 0, then

F (xn) ≥ F (xn+1) , (7)

where γn is the value of step size, which is allowed to
change at every iteration, −∇F (xn) is the steepest direction
of function F(x) at current point xn. According to Eq. (3),
the path planning cost function can be written as:

J (x1, y1, x2, y2, . . . , xn, yn) =
n−1∑
i=1

√
(xi − xi+1)

2
+ (yi − yi+1)

2
,

(8)

where i is the index of points, (xi, yi) is point on path, n is
the number of points on the path. Assume every point on the
path (xi, yi) ∈ R2 thus the cost function of the path planning
problem can be considered as a differentiable function with
2n variables. Combining Definition 6 and following

L(j+1) = G
(
L(j)

)
. (9)

Algorithm 2: ACEGIO-based Path Planning Algo-
rithm

Input : Cost function J(L), a set of obstacles constraints O, a set of
environment constraints E, which define Ω and a desired precision η,
and a Gradient Descent function G(L)

Output: The optimal path L∗ and the optimal cost function value J (L∗)

1 Initialise J
(
L(0)

)
randomly;

2 Initialise precision variable with p = 1, k = 0 i = 1;
3 Initialise precision variable with n = 1;
4 Declare decision variables vector Li as non-deterministic integer variables;
5 while k ≤ η do
6 Define upper and lower limits of L with directive ASSUME, such as

L ∈ Ωk;
7 Describe the objective function model J(L);
8 do
9 do

10 Define the constraint J
(
L(i)

)
< J

(
L(i−1)

)
with

directive ASSUME;
11 Verify the satisfiability of Joptimal given by Eq. (6) with

directive ASSERT;
12 if ¬loptimal is satisfiable then
13 Update L∗ = L(i), J (L∗) = J

(
L(i)

)
based on the

counterexample;
14 Do i = i+ 1;
15 Update L(i) = G

(
L(i−1)

)
, and

J
(
L(i)

)
= J

(
G

(
L(i−1)

))
;

16 end
17 while ¬Joptimal is satisfiable;
18 if ¬Joptimal is not consecutively satisfiable then
19 break ;
20 else
21 Update the number of points, n;
22 end
23 while TRUE;
24 Do k = k + 1;
25 Update the set Ωk;
26 Update the precision variable, p;
27 Set Li as non-deterministic integer variables;
28 end
29 L∗ = L(i−1), J (L∗) = J

(
L(i−1)

)
;

30 return L∗J (L∗);

L(j + 1) can be written as:

L(j+1) = G
(
L(j)

)
= L(j) − γj∇J

(
L(j)

)
, (10)

where L = [x1, y1, x2, y2, . . . , xn, yn], j is the index of
iteration in Gradient Descent, L(j+1) is the new decision
variable vector generated by Gradient Descent.

For each variable x” or y”, the partial derivate can be written
as:

∇J (xi) =
xi − xi−1√

(xi − xi−1)
2

+ (yi − yi−1)
2

+

xi − xi+1√
(xi − xi+1)

2
+ (yi − yi+1)

2

∇J (yi) =
yi − yi−1√

(xi − xi−1)
2

+ (yi − yi−1)
2

+

yi − yi+1√
(xi − xi+1)

2
+ (yi − yi+1)

2

(11)

Gradient Descent G of the cost function J is defined as
above equations. A new decision variable vector L(j+1) can
be achieved by Eq. (10) and Eq. (11). Since every point (xi, yi)
on the path is assumed in the range of R2, it is necessary to



make the new calculated xi and yi keep k decimal places for a
given precision p. Then a new optimal candidate based on the
new decision variables can be generated by Gradient Descent.

The number of points on the path depends on the algo-
rithm’s efficiency and the number of obstacles that impact the
algorithm’s performance. As the number of points increases,
the time and space complexity substantially increase, resulting
in a significant execution time.

IV. EXPERIMENTAL EVALUATION

A. Experimental Objectives and Description

This section evaluates the ACEGIO-based path planning
(cf. Section III). There are two criteria for identifying the suc-
cess of ACEGIO-based path planning algorithm: effectiveness
and efficiency. Three experimental goals are presented:

EG1 (effectiveness) Does ACEGIO-based path plan-
ning algorithm generate the global optimal path
or a path close to the global optimal path?;

EG2 (efficiency) Dooes ACEGIO-based path plan-
ning algorithm generate paths closer to the
global optimality with less execution time com-
paring to CEGIO-based path planning?; and

EG3 (state-of-the-art) how does ACEGIO-based path
planning algorithm compare to other state-of-
the-art approaches?

To evaluate the effectiveness (EG1), all the experiments
with different environment settings aim to generate a set of
points that composed the global optimal path or a path close
to the global optimal path from starting position to target po-
sition by ACEGIO-based path planning algorithm. As for the
efficiency (EG2), the CEGIO-based path planning algorithm
and ACEGIO-GD-based path planning algorithm must be
evaluated via experiments with the same environment setting.
The experimental results (e.g., time consumption, points on the
path, distance) need to be evaluated and compared. Besides,
to answer EG3, ACEGIO-based path planning algorithms
need to be compared with various state-of-the-art path plan-
ning approaches in the same experimental setting. Therefore,
Genetic Algorithm based path planning and Particle Swarm
Optimization based path planning algorithm are selected and
evaluated in this section. In summary, the path planning
algorithms based on CEGIO, ACEGIO, Genetic Algorithm,
Particle Swarm Optimization are labeled as Algorithms A, B,
C, and D, respectively.

Figure 1 presents two environment settings that were de-
signed with a meter as the measurement unit. The shape of
both settings is square, whose side length is 10. The starting
point (labeled as S in Figure 1) and a target point (labeled as T
in Figure 1) in both settings are (1, 1) and (9, 9), respectively.
The only difference is the obstacles. In the first setting (setting
1 in Figure 1), one obstacle is applied whose center (labeled
as O in Figure 1) is (5,5) and radius is 2.5. In Setting 2, four
obstacles are applied, centered in (4,3), (8,7), (2,8), (8,3) with
1.5, 1, 1, 0.5 as their radius, respectively. Besides, the safety
margin in both settings is 0.5. Figure 1 shows the obstacles
with the blue line and safety margin with the dotted red line.

For Algorithm A, B, C, and D, each of them is applied
to both settings to answer EG1 and EG3. For each setting,
Algorithm A and B are applied to compare their efficiency
(EG2) and performance (EG1) in the same environment.

Fig. 1: Experimental environment settings.

B. Experimental Setup
The path planning experiments were conducted on a 2.3

GHz OCTA Intel Core i9 processor with 16GB of RAM,
running macOS Catalina 10.15.6 64-bits. For each experiment,
the execution time, which is the average of five executions,
is measured in seconds based on CPU time. The maximum
execution time for settings 1 and 2 is two days. Memory
consumption is not restricted. ESBMC 6.4.0 [22] is selected
as a verification tool since it was already applied to verify a
wide range of applications [23, 24], and Boolector 3.0 [25]
is chosen as an SMT solver for executing Algorithm A and
B. As for applying Algorithm C and D, Matlab R2021a is
employed.

C. Experimental Results
This section presents experimental results of applying Al-

gorithm A and Algorithm B to both Setting 1 and Setting
2, which aims to answer EG1 and EG2. Figure 2 presents
the paths composed by sequences of points in Setting 1 and
Setting 2, which are generated by Algorithm A and Algorithm
B. For both settings, red paths in Figure 2 were obtained
by Algorithm A, and the blue dotted paths were obtained by
Algorithm B. For Setting 1, a path composed of five points
(including starting point and target point) was generated by
Algorithm A, and a path with nine points was generated by
Algorithm B. As for Setting 2, a path with four points and
a path with six points was obtained by Algorithm A and
Algorithm B, respectively. Both algorithms in both settings
suffered the pre-set timeout.

Figure 3 shows the reduction trend (optimization level) of
cost function values which were obtained by Algorithm A
and Algorithm B during the pre-set execution time. The above
figure in Figure 3 presents the decrease of the cost function
value with execution time increasing in Setting 1, and the
below figure illustrates the trend in Setting 2. The execution
time on the horizontal axis represents the time of optimizing
the path planning problem, and the cost function value (total
distance of generated path) is shown in the vertical axis. The
dots on the lines (red line and blue line) represent new optimal



Fig. 2: Paths generated by Algorithm A and Algorithm B.

candidates generated by the path planning algorithm at that
time. The red line represents the decrease of cost function
values obtained by Algorithm A. The blue line shows the
changes of cost function values generated by Algorithm B
during the optimization process.

Fig. 3: Trend of cost function value during optimization.

According to the results achieved by Algorithm A and B, all
solutions in both scenarios are not the global optimal solutions
because of the pre-set timeout. However, they are close to
global optimality. The cost function value continuously de-
creases and converges to the global optimality.

For both settings, the red line is above the blue line. With
the assistance of Gradient Descent algorithm, the cost function
value generated by Algorithm B (blue line) decreases more
sharply and converges more quickly to the optimal solution.
Therefore, the ACEGIO-based path planning algorithm can get

solutions closer to the global optimal solution with much less
execution time than the paths generated by the CEGIO-based
path planning algorithm. Therefore, ACEGIO-based path plan-
ning algorithm does significantly improve the efficiency of
finding a more optimized solution, which answers EG2. In
addition, Algorithm B has successfully generated paths ex-
tremely close to global optimum within the timeout and the
blue line converges to the global optimality. Therefore, the
effectiveness of the ACEGIO-based path planning algorithm
has also been proved, which answers EG1.

EG1 (effectiveness) The experimental results have
identified that the ACEGIO-based path planning
algorithm can generate satisfactory paths (i.e.,
paths extremely close to the global optimal path)
and solve the optimal path planning problem.

EG2 (efficiency) These experiments have confirmed
that the ACEGIO-based path planning algo-
rithm has generated more optimized paths with
much less execution time, which considerably
improves the efficiency of obtaining optimal path
for the optimal path planning problem.

D. Comparison to other state-of-the-art methods
Comparison among ACEGIO-based path planning (Algo-

rithm B), GA-based path planning algorithm (Algorithm C)
and PSO-based path planning algorithm (Algorithm D) are
presented in this section, which aims to answer EG3.

The paths generated by the Algorithm C for Setting 1 and
Setting 2 are presented in Figure 4 and Figure 5, respectively.
In Figure 4 and Figure 5, the blue circles are the edges of
obstacles, and the red circles are the edges of the obstacle
safety margin. The achieved red paths starting from the yellow
square (starting position) to the green star (target position) are
composed of a series of blue points. Figure 4 and Figure 5
both contain three experimental results of three n=4 cases (four
points on the path including the starting point and target point),
three n=5 cases and three n=6 cases.

The execution speed of using GA for solving the path
planning problem is extremely fast. Setting the iteration times
to 100000, each experiment was completed in a few minutes.
However, a few problems occurred while applying GA to the
path planning problem. Firstly, according to the results in
Figure 4 and Figure 5, comparing to the path generated by
ACEGIO-based path planning algorithm, the paths generated
by GA-based path planning algorithm are farther from the
global optimality. Secondly, with more chromosomes (more
points on the path), the performance of GA is worse and
unstable. Besides, there is uncertain that the cost function
value converges differently and sometimes even fails to con-
verge to the global optimality. Overall, the GA-based path
planning algorithm is much faster, while the ACEGIO-based
path planning algorithm is more effective than GA, and its
performance is more stable than GA.

The PSO-based path planning algorithm generates paths for
Setting 1 and 2 as illustrated in Fig. 6. The half left of Fig. 6



Fig. 4: Paths generated by Algorithm C in Setting 1.

Fig. 5: Paths generated by Algorithm C in Setting 2.

contains two results of n = 4, two n = 6, and two n = 10
cases for Setting 1. The half right of Fig. 6 has the same
empirical points for Setting 2. In Fig. 6, subfigures in column
(a) and column (c) present the paths generated by PSO-based
path planning algorithm with appropriate parameters, while
subfigures in column (b) and column (d) show the paths
achieved with inappropriate parameters setting.

According to the experimental results, with appropriate
parameters, paths extremely close to the global optimality
could be achieved by PSO-based path planning algorithm.
Besides repeating the same experiments 100 times, the cost
function value always converged to the global optimality,

Fig. 6: Paths generated by Algorithm D.

which illustrates the performance of PSO-based path planning
is stable and reliable. However, with inappropriate parameters,
paths farther from the global optimal path were achieved.
This is because the parameters have more obvious impacts
while the number of points on the path increasing. In addition,
because parameters of PSO (such as the number of particles,
acceleration coefficients, inertia weight, neighborhood size)
can influence the performance, and these parameters differ
while problems change. Therefore, tuning these problem-
dependent parameters is an essential step while employing
PSO. Comparing to ACEGIO-based path planning, the only
parameter that needs to be tuned in ACEGIO-GD is the step
length of Gradient Descent, which is much easier to tune.

EG3 (state-of-the-art) Those comparisons between
ACEGIO-based path planning algorithm and
GA-based path planning algorithm have shown
that the performance of the ACEGIO-based path
planning algorithm is more stable and reliable.
If compared to PSO-based path planning al-
gorithm, the parameter of the proposed algo-
rithm has less impacts on its performance, which
makes it robust and easy to employ.

E. Threats to Validity

The proposed approach achieved satisfactory experimental
results. Nonetheless, we discovered three threats to the validity
of our assessment results: (1) memory consumption is not
considered while comparing ACEGIO-based path planning
algorithm with CEGIO-based path planning algorithm. Two
criteria assess the comparison between these two algorithms:
how close are the derived paths to the global optimality? How
much execution time does the algorithm spend? The compari-
son results demonstrate the effectiveness and efficiency of the
proposed algorithm. However, a lack of consideration of mem-
ory consumption may reduce the conclusion. (2) The proposed
algorithm is evaluated in two environments. Theoretically, the



proposed algorithm can be applied to all two-dimensional path
planning problems described in Sections II and III. However,
insufficient experimental settings could result in a lack of
evidence for demonstrating the robustness of the proposed
algorithm in practice. (3) Different tools are applied while
comparing the ACEGIO-based path planning algorithm with
other state-of-the-art approaches. This does not influence the
conclusion in this study, but uniting the tools operating speed
can make this study more accurate.

V. CONCLUSION

CEGIO-based path planning algorithm can provide optimal
paths, but the cumulative execution time is high compared
to other traditional optimization-based path planning algo-
rithms. To overcome the CEGIO shortcoming, we proposed
and evaluated a novel mobile robot path planning algorithm,
which relies on the ACEGIO-GD algorithm to solve the
optimal path planning problem. Experimental results show that
ACEGIO-GD takes advantage of Gradient Descent’s efficiency
and CEGIO’s optimization ability, allowing ACEGIO-GD to
generate optimal paths with significantly shorter execution
time than the original CEGIO-based algorithms. Compared
to GA and PSO, the execution time of ACEGIO-based path
planning algorithms is relatively slow. In particular, the given
cost function always converges towards the global optimality
while employing a GA-based path planning algorithm can
not ensure the convergence, which indicates ACEGIO-based
path planing is more stable and reliable than GA-based path
planning algorithm. Our focus for future work consists of
developing other auxiliary algorithms to assist CEGIO and
exploring the best auxiliary algorithm for CEGIO to solve
optimal path planning problems.
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