
Incremental Bounded Model Checking of
Artificial Neural Networks in CUDA

Luiz H. Sena1, Iury V. Bessa1, Mikhail R. Gadelha2, Lucas C. Cordeiro3, and Edjard Mota1
1Federal University of Amazonas, Manaus, Brazil

2SIDIA Instituto de Ciência e Tecnologia, Manaus, Brazil
3University of Manchester, Manchester, United Kingdom

Abstract—Artificial Neural networks (ANNs) are powerful
computing systems employed for various applications due to
their versatility to generalize and to respond to unexpected
inputs/patterns. However, implementations of ANNs for safety-
critical systems might lead to failures, which are scarcely pre-
dicted in the design phase as ANNs are highly parallel and
their parameters are hardly interpretable. Here we develop and
evaluate a novel symbolic software verification framework based
on incremental bounded model checking (BMC) to check for
adversarial cases and coverage methods in multi-layer perceptron
(MLP). We developed and evaluated a novel symbolic software
verification framework based on incremental bounded model
checking (BMC) to check for adversarial cases and coverage
methods in a multi-layer perceptron(MLP). Besides, we devel-
oped an efficient SMT-based Context-Bounded Model Checker
for Graphical Processing Units (ESBMC-GPU), to ensure the
reliability of specific safety properties in which safety-critical
systems can fail and make incorrect decisions at the cost of
material damage or even put lives in danger. This paper marks
the first symbolic verification framework to reason over ANNs
implemented in CUDA. Our experimental results show that our
approach implemented in ESBMC-GPU can successfully verify
safety properties and covering methods in ANNs and correctly
generate 28 adversarial cases in MLPs.

Index Terms—Artificial neural networks, Model checking,
Artificial intelligence.

I. INTRODUCTION

Artificial Neural Networks (ANNs) have been used to
perform various tasks in a safety-critical domain (e.g., medical
diagnosis [1] and self-driving autonomous cars [2]), where
failures such as misclassifications can put lives in danger.
In particular, small noises and adversarial perturbations can
lead ANNs to misclassify simple patterns. They can also
cause severe damage in safety-critical systems, e.g., a red
traffic light misclassified as green. If we formally verify these
systems considering safety properties, then guarantees could
be provided to ensure reliability and avoid errors in safety-
critical ANNs. Given the current literature, there exists a gap
between implementations of ANNs and safety guarantees.
The application of formal methods, to ensure such safety
properties, are not consolidated yet, e.g., the application of
symbolic (software) model checking is still its infancy to solve
this problem [3].

There exist various attempts to apply verification and valida-
tion techniques to ensure safety in ANNs. Recently, testing [4],
training [5], and validation [6] have achieved impressive
results. Sun et al. [4] show that concolic testing provides
reasonable results for generating adversarial cases; the authors

describe how unsafe can ANNs be, but do not address actual
implementations of ANN to provide formal safety guarantees.
Zheng et al. [5] show how training techniques can bring noise
robustness to the trained ANN, but no formal guarantees from
a safety perspective are provided. Krogh and Vedelsby [6]
describe validations techniques during the training phase, and
how such a phase can be optimized by exploring the dataset
and improving generalization capability. However, such works
do not provide safety guarantees for the implementation of
ANNs. Despite positive recent results obtained from them,
symbolic software model checking can be seen as an alter-
native to ensure the safety of actual implementations of ANN.

In recent years, researchers proposed the verification of
ANNs using formal methods [4], [7], [8]. Huang et al. [7]
describe a formal verification framework based on Satisfiabil-
ity Modulo Theories (SMT); they focus on verifying the safety
classification of images with real cases perturbations such as
scratches, changes in camera angle, or lighting conditions.
Sun et al. [4] describe and evaluate concolic testing for
ANNs; their test criteria measure how adversarial an input
is concerning other images. An algorithm uses these test
criteria based on linear programming, which generates test
cases by perturbing a given system until adversarial cases
are obtained. Katz et al. [8] describe a formal verification
technique for checking properties of deep neural networks
(DNNs). Their technique extended the simplex method to han-
dle ReLU (Rectified Linear Unit) activation function, which
is evaluated on the airborne collision avoidance system for
unmanned aircraft (ACAS Xu). However, ANNs for image
classification is problematic to verification approaches as the
number of layers and neurons requires a considerable amount
of mathematical computations.

Here we describe and evaluate a novel symbolic software
verification framework based on incremental bounded model
checking (BMC) to check covering methods and adversar-
ial cases in ANNs using the efficient SMT-based Context-
Bounded Model Checker for Graphical Processing Units
(ESBMC-GPU) [9], [10]. Our approach, implemented on top
of ESBMC-GPU, verifies the actual implementation of ANNs
using CUDA and its deep learning primitives cuDNN [11] and
cuBLAS [12]. Our work makes two significant contributions.
First, we formally verify covering methods, as described by
Sun et al. [4], to measure how adversarial two images can
be to the ANN neurons using incremental BMC. Second, we
formally check adversarial cases using instances of ANNs,



where only weights and bias descriptions are needed for
our verification process. In both checks, we use incremental
BMC to iteratively verify the implementation of ANNs for
each unwind bound indefinitely (i.e., until it exhausts the
time or memory limits). Intuitively, we aim to either find
a counterexample with up to k loop unwinding or to fully
unwind all loops in the actual implementations of ANNs so
we can provide a correct result. Our incremental verification
algorithm relies on a symbolic execution engine to increasingly
unwind the loop after each iteration of the algorithm.

II. PRELIMINARIES

A. Artificial Neural Networks (ANNs)
Artificial Neural Networks (ANNs) are efficient models for

statistical pattern recognition, which makes them a suitable
paradigm for learning tasks [13]. Learning in ANNs is based
on modifying the synaptic weights of their interconnected
units, which will fit their values according to a given set
of labeled examples or tasks, during the training phase. A
training algorithm uses each input example to converge these
weights to specific results. In most applications areas of ANNs,
this may solve classification problems and some specific
generalization for adversarial situations [14].

There exist various algorithms to train ANNs; backpropaga-
tion is a commonly used algorithm [14]. ANNs architectures
vary in the type of layers, activation functions, number of
layers, and neurons. Perceptron multi-layer [15] is a classic
and commonly used ANN. In the safety verification of ANNs,
some notations are important to logically represent opera-
tions. Hagan et al. [14] describe how Multi-layer Perceptrons
(MLPs) calculate a neuron output. The neuron activation
potential of an input i = {i0, i1, i2..., in} will be denoted as u,
which is obtained from

u =

n∑
j=0

wj × ij + b. (1)

N (i) or Y represents neuron output, that is, N is the
activation function of the activation potential u. Suppose that
the activation function is sigmoid, N would be described by

N (u) =
1

1 + e−u
. (2)

ReLU [16], Sigmoid [17], and Gaussian [17] are activation
functions commonly used in MLP. All our experimental results
are obtained from MLPs with sigmoid activation function.

However, adversarial perturbation or small noises may lead
to misclassification. In some cases, this may happen because
the network tends to not recognize the data entered due to
convergence problems, e.g., the vanishing gradient in back-
propagation [13]. Although some techniques can be used to
avoid such problems (e.g., gradient regularization [18]), safety-
critical systems usually deal with a huge volume of complex
data, which may be coded into big numbers and functions
such as sigmoid squish. Thus, a large change in the input of
the sigmoid function will cause a small change in the output;
therefore, the derivative becomes small. For safety-critical
applications, detecting where such problems may happen in

a complex network is a task that the formal verification
community has been seeking to solve (e.g., [7]); our work
aims to contribute to the solution of this research problem.

B. Incremental Bounded Model Checking (BMC)
We have used the ESBMC-GPU tool [9], [10], which is an

extension of the Efficient SMT-Based Context-Bounded Model
Checker (ESBMC) [19], aimed at verifying Graphics Process-
ing Unit (GPU) programs written for the Compute Unified
Device Architecture (CUDA) platform. ESBMC-GPU uses an
operational model (OM), i.e., an abstract representation of the
standard CUDA libraries, which conservatively approximates
their semantics, to verify CUDA-based programs.

Our incremental BMC approach in ESMBC-GPU uses an
iterative technique and verifies the implementation of ANNs
for each unwind bound indefinitely or until it exhausts the time
or memory limits. We aim to either find a counterexample
with up to k loop unwinding or to fully unwind all loops. The
algorithm relies on ESBMC’s symbolic execution engine to
increasingly unwind the loop after each algorithm iteration.

The approach is divided into two steps: one that tries to
find property violations and one that checks if all the loops
were fully unwound. When searching for property violation,
ESBMC-GPU replaces all unwinding assertions (i.e., asser-
tions to check if a loop was completely unrolled) by unwinding
assumptions. Normally, this would lead to unsound behavior,
however, the first step can only find property violations, thus
reporting that an unwinding assertion failure is not a real bug.
The next step is to check if all loops in the program were fully
unrolled. This is done by checking whether all the unwinding
assertions are unsatisfiable. No assertion is checked in the
second step because they were already checked in the first
step for the current k loop unwinding.

The algorithm also offers the option to change the granular-
ity of the increment; the default value is 1. Note that changing
the value of the increment can lead to slower verification time
and might not present the shortest counterexample possible for
the property violation. ESBMC-GPU also explicitly explores
the possible interleavings of CUDA programs (up to the
given context bound), while treats each interleaving itself
symbolically. Additionally, ESBMC-GPU employs monotonic
partial order reduction [20] and the two-thread analysis [21]
to efficiently prune the state-space exploration. ESBMC-GPU
verifies properties such as user-specified assertions, dead-
locks, memory leaks, invalid pointer dereference, array out-
of-bounds, and division by zero in CUDA programs.

III. INCREMENTAL BMC OF ANNS IN CUDA
Our goal is to detect adversarial cases that lead ANNs to

wrong results. We have developed two verification strategies
for ANNs described using weights and bias vectors. First, we
check the coverage criteria of ANNs w.r.t. a set of images.
Second, we verify safety aspects by checking adversarial cases
of a given image known by an ANN.

A. SMT-based Safety Verification for ANNs
Our incremental verification method is based on two phases:

(1) obtain the required models from real ANN programs



written in CUDA and (2) design safety properties that ensure
the reliability of ANN implementations. Due to the benefits
that parallel programming provides to train ANN algorithms,
some tools such as TensorFLow [?] convert the ANN models
written in Python to CUDA code, which thus exploits par-
allel and low-level C/C++ programming. All our verification
models are collected from actual implementations of ANNs
written in CUDA. There exist two APIs in CUDA to support
neural networks and mathematical operations: cuBLAS [12]
and cuDNN [11]. cuBLAS provides mathematical operations
such as matrix multiplication and sums; these operations
are typically used on the feed-forward process of neural
networks [14]. cuDNN provides deep neural networks (DNN)
primitives such as tensors operations, convolution functions,
activation functions, and backward operations [14].

Here we have developed operational models (cf. Sec-
tion II-B) for the cuBLAS and cuDNN libraries and integrated
them into ESBMC-GPU.1 Any ANN written in CUDA using
these APIs can be verified by our method. Additionally, any
user-specified assertion can be provided and then verified by
ESBMC-GPU. Our operational models aim at performing the
same steps that the execution of the original library does
but ignoring irrelevant calls (e.g., screen-printing methods),
where there exists no safety property to be checked. For the
cuBLAS and cuDNN libraries, we ensure that their operational
models return the same results as the original APIs. All
developed modules were manually verified and exhaustively
compared with the original ones to ensure the same behavior
via conformance testing [22]. As an example, we can see a
pseudo-code of the cublasSgem operational model illustrated
in Algorithm 1, which consists of multiplying matrices A and
B and store its result in matrix C.

Algorithm 1 cublasSgemm
1: sum← 0
2: x← 0
3: y← 0
4: z← 0
5: for x < k do
6: for y < i do
7: for z < j do
8: sum← A[x][z] ∗ B[y][x] + sum
9: x + +

10: C[y][z] = sum
11: y + +

12: z + +

B. Verification of Covering Methods

Covering methods [4] are based on Modified Condi-
tion/Decision Coverage (MC/DC) [23], which is a method
applied to ensure adequate testing for safety-critical software;
in our symbolic verification framework, MC/DC represents
conditions and decisions of ANNs. Conditions are neurons in
the previously layer and decisions are neurons of the following
layer. Covering methods are used to measure how adversarial
are two images w.r.t. the ANN neurons. There exist four
covering methods available in the literature [4]: Sign-Sign

1The full implementation of our OMs are available at https://github.com/
LuizHenriqueSena/ESBMC-GPU/tree/master/cpp/library

Cover (SS Cover), Distance-Sign Cover (DS Cover), Sign-
Value Cover (SV Cover), Distance-Value Cover (DV Cover).
Each covering method is represented as a property (assertion)
within our verification framework. In particular, each property
specifies that an image set must cause that all the neurons
present in the ANN are covered by the covering method. Our
algorithm uses each covering method to evaluate whether the
adversarial behavior of a set of pair of images reaches a certain
percentage of all containing neurons on the ANN.

In covering methods, neurons are indexed as nkl, where k
represents its sort on the layer l, inputs are defined as x1 and
x2. A signal-change denoted as sc occurs when the activation
potential of a certain neuron has its sign function changed by
two different inputs. Sign function can be described as:

sign(i) =

{
1, if i ≥ 0,

0, otherwise.

Covering methods consist of some logical expressions:
sc(nk,l, x1, x2) is denoted if the activation potential u of
neuron nk,l has its signals changed, this is, sign(u(x1)) 6=
sign(u(x2)). A value-change or vc occurs when the activation
potential of a determined neuron represents a certain value
change w.r.t. some metric h and no signal change has occurred,
i.e., h(u(x1), u(x2)) = true and ¬sc(nk,l, x1, x2), where h
can be a rate function, e.g., h(a, b)= a

b ≥ d, (d represents a
real number that limits the change value by h); a distance-
change or dc occurs when all containing neurons in a certain
layer have no signal-change and its values represent some
value change. We denote dc(h,k,x1,x2) if ¬sc(nk,l, x1, x2)
for all neurons in layer k and h(k,x1, x2) ≥ d. As defined
in value-change, function h can be instantiated as any norm-
based distance function and d can be any real number that
limits the distance function. A neuron pair is denoted as α
=(nk,i, nk+1,j) and two inputs are denoted as x1 and x2. The
covering methods are formally described as follows:

Sign Sign Cover (SS-Cover):
sc(nk,i, x1, x2);
¬sc(nk,l, x1, x2)∀nk,l ∈ Lk\{i};
sc(nk+1,j , x1, x2);

Distance Sign Cover (DS-Cover):
dc(h, k, x1, x2);
sc(nk+1,l, x1, x2);

Sign Value Cover (SV-Cover):
sc(nk,i, x1, x2);
¬sc(nk,l, x1, x2)∀nk,l ∈ Lk\{i};
vc(g, nk+1,j , x1, x2);

Distance Value Cover (DV-Cover):
dc(h, k, x1, x2);

vc(g, nk+1,j , x1, x2);

Some examples of covering methods can be seen in Ta-
ble I. A multilayer perceptron that uses sigmoid function is
illustrated in Fig. 1.

https://github.com/LuizHenriqueSena/ESBMC-GPU/tree/master/cpp/library
https://github.com/LuizHenriqueSena/ESBMC-GPU/tree/master/cpp/library


Fig. 1: ANN instantiated.

Ex Input n1,1 n1,2 n1,3 n2,1 n2,2 n3,1

Ex1 (1, -3) -1,3 -1,80 -0,50 -0,79 -1,370 -1,417
Ex2 (1, -1) -0,3 -0,40 0,10 0,51 0,090 0,353
Ex3 (1, -1.2) -0,4 -0,54 0,04 0,38 -0,056 0,176
Ex4 (1, -7) -3,3 -4,60 -1,70s -3,39 -4,290 -4,957

TABLE I: ANN instantiated examples and covering methods.

In Table I, Ex1 and Ex2 instances have the pair α =
{n3,1, n1,2} covered by SS-Cover. Here only neuron n3,1 has
its signal changed in layer 1. This means that sc(n3,1, x1, x2)
and ¬sc(n1,l, x1, x2)∀pk,l ∈ Pk\ {3} are true. Since only one
neuron has its signal changed in layer 1, any neuron in layer 2
with its signal changed will make a pair covered by SS-Cover.
In this case, if the first neuron of layer 2 (n1,2) has its value
changed, then the pair α = {n3,1, n1,2} is SS-Covered.

Ex2 and Ex3 are examples of DS-Cover. In Table I, there
exist no change values in layer 1; it means that for some metric
h (euclidian distance, gaussian), the two instances of layer 1
have a distance change and it makes dc(h, 1, x1, x2) true. The
distance change in layer 1 implies a signal change of neuron
n2,2; it makes the neuron pair α = {n1,i, n2,1} formed by any
neuron in layer 1 covered by DS-Cover.

Ex2 and Ex3 contain a pair covered by SV-Cover. Similar to
SS-Cover, there exists only one neuron with signal change in
layer 2; it implies a value change on neuron n3,1, which means
that the neuron pair α = {n2,2, n3,1} is SV-Covered. Finally,
Ex1 and Ex 4 are examples of DV-Cover. In this case, there
exists no signal change in any layer of the ANN instances.
However, if there exists a metric that makes a distance change
true in layer 1 or 2 and if there exists another metric, which
makes a value change true in any neuron of layer 2 or 3, then
we have a DV-Covered pair.

The ANN properties to be checked by ESBMC-GPU gener-
ate the same literal to all four covering methods. The neuron
covered by one of all four covering methods must be equal or
greater or equal than a percentage P of all containing neurons
in the ANN. In particular, these properties generate literals
lcovered neuron with the goal of representing the validity of the
covering method for the ANN, according to four constraints:

For SS-Cover:

lcovered neuron ⇔


∑
i,j

ss(nl,k, x1, x2)

N
≥ P

 . (3)

The other three constraints: DS-Cover, SV-Cover and DV-
Cover follow almost the same literal expression described
in (3). The only difference will be the summation of
ds(nl,k, x1, x2, h), sv(nl,k, x1, x2, g) and ss(nl,k, x1, x2, g, h)
instead of ss(nl,k, x1, x2), respectively.

C. Verification of Adversarial Case
Our verification algorithm to check adversarial cases is

called checkNN, which is implemented in CUDA; this ver-
ification algorithm checks the ANN code by focusing on the
instance of the ANN. In particular, our verification algorithm
requires only weights and bias descriptions . Let us assume an
image input is represented by I , and m and n represent its size.
The dataset will be denoted as D; M is the universe of all
possible images with size m×n. Let δ :Mm×n×Mm×n → R
be an euclidian distance operator defined as follows:

δ(P,Q) =

√√√√ n∑
i=0

(pi − qi)2. (4)

Suppose that any image can be casted to a vector and
its values are normalized. P = (p1, p2, p3, . . . , pn) and Q =
(q1, q2, q3, . . . , qn) ∈ RN . Suppose that P and Q are 5×5 im-
ages, i.e., both vectors length are 25 and they are represented
by the images “A” and “O”, the euclidian distance equation
described by Eq. (4), δ will return 2.449.

Denoting Id as an image that belongs to the dataset, all sets
can be represented as follows:

Id ∈ Dm×n, I ∈ Mm×n, Dm×n ⊆ Mm×n.
(5)

Our verification algorithm checkNN requires three inputs:
the first input is an ANN with its weights and bias descriptions;
the second one is the image to be checked; and the third one is
a parameter that limits the proximity of the adversarial cases.
Our safety property is specified using two intrinsic operators
supported by ESBMC-GPU: assume and assert. ESBMC-
GPU assumes that a function call assume(expression)
has the following meaning: if “expression” is evaluated to “0”,
then the function loops forever; otherwise the function returns
(no side effects). In particular, the desired image to be checked
can be represented by an assume, which is formally described
as the restriction R:

R = {I ∈Mmn | δ(Id, I) ≤ b}. (6)

Eq. (6) denotes that Id ∈Mm×n, which will be compared
with a non-deterministic image I until the euclidian distance
δ(Id, I) described by Eq. (4) is less than or equal to the
parameter b. After a non-deterministic image I is obtained,
a safety property is checked by ESBMC-GPU, which is
represented by an assert statement formally described as

Yd = {N(I) , ∀ I ∈ R}.
(7)

In Eq. (7), Yd represents any ANN’s output mapped by
the input Id on the given dataset. The function N represents



the ANN function Rm → Rn. The property is taken as the
negative of Eq. (7). If the output obtained by function N
and the non-deterministic image is different from the mapped
output, then the property is violated and a counterexample
is produced. The property described by Eq. (7) generates the
literal limage misclassified. A classification is obtained from
the output values represented by the neurons of the last layer. A
reference value is denoted by the variable V , a desired classifi-
cation is denoted by variable D, which represents the neuron
position of the output layer and i represents any other neu-
ron position different than D. The literal limage misclassified

represents the validity of the original image classification,
according to the constraint:

limage misclassified ⇔ (n3,D < V ) ∧ (n3,i > V ). (8)

IV. EXPERIMENTAL EVALUATION

A. Description of the Benchmarks

Our evaluation employs a new character pattern recognition
benchmark, which was developed by our research group with
the goal of performing conformance testing [22] over our
cuBLAS and cuDNN operational models (cf. Section III-A)2

In particular, each experiment uses an ANN that solves the
problem of vocalic pattern recognition in 5×5 images as input.
The ANN was trained by the back-propagation algorithm [13].
Our dataset is composed by 100 correct vocalics with noise
images and 100 non vocalic images. All vocalics are illustrated
in Fig. 2.

Fig. 2: Vocalic images in benchmarks.

We conducted the experimental evaluation on a 8-core 3.40
GHz Intel Core i7 with 24 GB of RAM and Linux OS. We use
CUDA v9.0, cuDNN v5.0, cuBLAS v10.1, and ESBMC-GPU
v2.0.3 All presented execution times are actually CPU times,
i.e., only the elapsed time periods spent in the allocated CPUs,
which was measured with the times system call (POSIX
system). All adversarial cases were obtained by executing the
following command, which is wrapped in a shell script to
iteratively unwind the program: esbmc-gpu verifynn.c
-I <path-to-OM> --force-malloc-success
--no-div-by-zero-check --no-pointer-check
--no-bounds-check --incremental-bmc.

1) Availability of Data and Tools: All benchmarks, tools,
and results associated with the current evaluation, are available
for downloading at https://github.com/ssvlab/ssvlab.github.io/
tree/master/gpu/benchmarks.

2Available at https://github.com/LuizHenriqueSena/ESBMC-GPU/tree/
master/cpp/library

3Available at http://gpu.esbmc.org/

B. Objectives

Using the benchmarks given in Section IV-A, our evaluation
has the following two experimental goals:
EG1 (Covering Methods) Evaluate the performance and

correctness of our symbolic verification algorithms to
check all four covering methods (cf. Section III-B).

EG2 (Adversarial Cases) Evaluate the performance and cor-
rectness of our verification algorithm checkNN (cf.
Section III-C) to verify adversarial cases obtained from
changing input images and parameter proximity.

C. Results

1) Covering Methods: in covering methods experiments,
ESBMC-GPU was able to correctly verify all four methods:
SS-Cover, DS-Cover, SV-Cover, and DV-Cover. The verifica-
tion time did not take longer than a few seconds for checking
how adversarial are two images for the ANN neurons. The fast
verification was expected since all covering methods have only
deterministic inputs. These results successfully answer EG1:
ESBMC-GPU achieves reasonable performance to correctly
verify all covering methods. The verified properties imply that
80% of all neurons on the ANN must be covered by the set
of images. In particular, the set of images employed was the
dataset used during the training phase; the tool output of all
benchmarks correctly returned that covered neurons were not
greater than 80%. As a result, the dataset was unable to provide
80% of neuron coverage by any covering method. Concerning
this property, the average execution time of all four covering
methods, when applied to a set of 200 images, is around 20
minutes; additionally, ESBMC-GPU does not generate test
cases based on covering methods yet, which we leave for
future work. The two generated ANN instances of the two
inputs “U” and noise “U” illustrated in Fig. 3 can be seen in
Table II.

Neuron Image ”U” Noise ”U”
n1,1 -1.885322 4.619613
n1,2 8.775419 9.796190
n1,3 2.959348 5.743809
n1,4 10.424796 4.046428
n1,5 8.172012 14.466885
n2,1 -3.863095 -9.308636
n2,2 5.328067 5.263461
n2,3 -3.770385 -5.705760
n2,4 0.574238 -2.029373
n3,1 -6.707186 -7.149290
n3,2 -15.815082 -17.246468
n3,3 -10.060704 -13.074245
n3,4 -9.688183 -4.868999
n3,5 -0.555885 3.355738

TABLE II: ANN instances of two inputs.

According to the SS-Cover equation described in Section III
and the literal described by Eq. (3), we have two pairs of
neuron: α1 = {n1,1, n2,4} and α2 = {n2,4, n3,5} SS-Covered
by the two images. Only 3 of 14 neurons are SS-Covered,
that is, only 21% of the neurons are covered by the covering
method. The literal described by Eq. (3) specifies that the
neuron coverage must be greater than a percentage P . All

https://github.com/ssvlab/ssvlab.github.io/tree/master/gpu/benchmarks
https://github.com/ssvlab/ssvlab.github.io/tree/master/gpu/benchmarks
https://github.com/LuizHenriqueSena/ESBMC-GPU/tree/master/cpp/library
https://github.com/LuizHenriqueSena/ESBMC-GPU/tree/master/cpp/library
http://gpu.esbmc.org/


benchmarks were run with the value of P set to 80%, which
means that for these two inputs the property fails.

Fig. 3: Vocalics U and U with some noise.

2) Adversarial Cases: in adversarial cases, we executed 14
experiments, where the average verification time was approx.
19 hours. Table III shows the verification time and parameter
values of our experiments. Here, benchmark is the experiment
identifier, image represents the desired image, where we intend
to have the classification verified, γ represents a limit of
proximity for each benchmark, and verification time is the
execution time taken by ESBMC-GPU measured in hours
using times system call (POSIX system).

Benchmark Image γ Verification Time (hours)
Ex1 Vocalic O 0.5 1
Ex2 Vocalic O 1.5 4
Ex3 Vocalic O 2.5 8
Ex4 Vocalic O 3.5 6
Ex5 Vocalic E 0.5 25
Ex6 Vocalic E 0.7 25
Ex7 Vocalic E 1.5 14
Ex8 Vocalic E 3.0 12
Ex9 Vocalic U 0.3 6

Ex10 Vocalic U 0.5 5
Ex11 Vocalic U 1.0 20
Ex12 Vocalic U 1.5 19
Ex13 Vocalic A 1.0 63
Ex14 Vocalic A 1.5 63

TABLE III: Verification time and proximity parameter relation.

Incremental BMC approach has not been so efficient w.r.t.
verification time since we verify the actual implementation of
ANNs in CUDA using the logics QF AUFBV from the SMT
standard [24], The QF AUFBV logic represents quantifier-free
formulae that are built over bit-vectors and arrays with free
sort and function symbols, but with the restriction that all array
terms have the following structure (array (bit-vector i[w1])
(bit-vector v[w2])), where i is the index with bit-width w1

and v is the value with bit-width w2.
Although our ANN benchmarks contain 3 layers, ESBMC-

GPU took longer than other existing tools, which have previ-
ously reported experimental results with larger ANNs [7]. In
particular, DLV (Deep Learning Verification) [7] has obtained
adversarial cases of ANNs with 12 layers, ranging from a few
seconds to 20 minutes. To check refinement by layer, DLV
uses the theory of linear real arithmetic with existential and
universal quantifiers, and for verification within a layer (0-
variation), DLV uses the same theory but without universal
quantification.

In prior work, Cordeiro et al. [25] reported that, although
verification conditions are solved faster using the theory of
linear real arithmetic (since the result of the analysis is
independent from the actual binary representation), the theory
of bit-vector allows the encoding of bit-level operators more
accurately, which is inherently present in the implementation

of ANNs. These results partially answer EG2: ESBMC-GPU
can correctly produce adversarial cases, which are confirmed
by graphical inspection in MATLAB, but our verification time
is high due to the bit-accurate precision of our verification
model. Some of the adversarial cases produced by ESBMC-
GPU are shown in Fig. 4.

Unfortunately, a direct performance comparison using the
same ANN with DLV was not possible due to some compati-
bility issues. Note that DeepConcolic [4] and DLV [7] perform
verification and testing only on ANNs trained by classics
dataset as MNIST; both tools do not support the verification
and testing on general ANNs. For future work, we will adapt
our tool to support the same models as the ones handled by
DeepConcolic and DLV.

D. Threats to validity

Although all adversarial cases obtained from the bench-
marks are real, which we confirmed by executing our vali-
dation scripts in MATLAB, our algorithm uses a lookup table
to compute the sigmoid activation function; even with a good
resolution, a lookup table will always contain more value
errors than a computed function, which could potentially pro-
duce a false adversarial case. Additionally, our new character
pattern recognition benchmark is probably an easy ANN to
find adversarial cases, since the ANN training was performed
by a small dataset, which contains only 200 images. This kind
of training probably generates ANN with a low-level of safety
classification. Another identified threat is that our verification
framework is not flexible enough; any change to ANN layer
number might not be an easy task since our verification
algorithms based on incremental BMC were developed using
cuBLAS and cuDNN primitives; these primitives are not so
flexible to perform such changes.

V. RELATED WORK

Our ultimate goal is to formally ensure safety for applica-
tions that are based on Artificial Intelligence (AI), as described
by Amodei et al. [26]. In particular, the potential impact of
intelligent systems performing tasks in society and how safety
guarantees are necessary to prevent damages are the main
problem of safety in ANNs.

Sun et al. [4] and Huang et al. [7] have shown how weak
ANNs can be if small noises are present in their inputs. They
described and evaluated testing and verification approaches
based on covering methods and image proximity [4] and how
adversarial cases are obtained [7]. In particular, our study
resembles that of Huang et al. and Su et al. [4], [7] to obtain
adversarial cases. Here, if any property is violated, then a
counterexample is provided; in cases of safety properties,
adversarial examples will be generated via counterexample
using ESBMC-GPU. In contrast to Huang et al. [7], we do
not focus on generating noise in specific regions, but in every
image pixel. Our approach in image proximity is influenced by
Sun et al. [4] but we use incremental BMC instead of concolic
testing as our verification engine. Our symbolic verification
method checks safety properties on non-deterministic images
with a certain distance of a given image; both image and



(a) Vocalic ”O” misclassified
as ”U”.γ=0.5

(b) Vocalic ”O” misclassified
as ”U”.γ=0.7

(c) Vocalic ”O” misclassified
as ”U”.γ=1.5

(d)Vocalic ”O” misclassified as
”U”.γ=3.0

(e) Vocalic ”E” misclassified as
”O”.γ=0.5

(f) Vocalic ”E” misclassified as
”O”.γ=0.7

(g) Vocalic ”E” misclassified as
”O”.γ=1.5

(h)Vocalic ”E” misclassified as
”O”.γ=3.0

(i)Vocalic ”U” misclassified as
”O”.γ=0.3

(j)Vocalic ”U” misclassified as
”O”.γ=0.5

(l)Vocalic ”U” misclassified as
”O”.γ=1.0

(k)Vocalic ”U” misclassified as
”O”.γ=1.5

Fig. 4: Generated adversarial cases.

distance are determined by the user. Gopinath et al. [3]
also describe an approach to validate ANNs using symbolic
execution by translating a neural network into an imperative
program. By contrast, we consider the actual implementation
of ANN in CUDA and apply incremental BMC using off-the-
shelf SMT solvers.

Gopinath et al. [27] presented formal techniques to extract
invariants from the decision logic of ANNs. These invariants
represent pre- and post-conditions, which hold when transfor-
mations of a certain type are applied to ANNs. The authors
have proposed two techniques. The first one is called iterative

relaxation of decision patterns, which uses Reluplex as the
decision procedures [8]. The second one is called decision-
tree based invariant generation, which resembles covering
methods [4]. Robustness and explainability are the core prop-
erties of this study. Applying those properties to ANNs have
shown impressive experimental results. Explainability showed
an important property to evaluate safety in ANNs; the core idea
is to obtain explanations of why the adversarial case happened
by observing the pattern activation behavior of a subset of
neurons described by the given invariant.

Gopinath et al. [28] also proposed a novel approach for
automatically identifying safe regions of labeled inputs. The
core idea is to identify safe regions of labeled targets, i.e.,
providing a specific safety guarantee that a robust region is
robust enough against adversarial perturbations concerning a
target label. As the notion of safety robustness in ANNs
is a strong term for many ANNs, the target robustness is
the leading property. The technique works with clustering
and verification. The clustering technique is used to split the
dataset into a subset of inputs with the same labels; then, each
cluster is verified by Reluplex [8] to provide the safety region
of the target label. The tool proposed is called DeepSafe,
which is evaluated on trained ANNs by the dataset MNIST
and ACAS XU.

In addition to ESBMC-GPU, there exist other tools able
to verify CUDA programs and each one of them uses its
approach and targets specific property violations. However,
given the current knowledge in software verification, ESBMC-
GPU is the first verifier to check for adversarial cases and
coverage methods in ANNs implemented in CUDA. For
instance, GPUVerify [21] is based on synchronous, delayed
visibility semantics, which focuses on detecting data race and
barrier divergence, while reducing kernel verification proce-
dures for the analysis of sequential programs. GPU+KLEE
(GKLEE) [29], in turn, is a concrete and symbolic execu-
tion tool, which considers both kernels and main functions,
while checking deadlocks, memory coalescing, data race, warp
divergence, and compilation level issues. Also, Concurrency
Intermediate Verification Language (CIVL) [30], a framework
for static analysis and concurrent program verification, uses
abstract syntax tree and partial order reduction to detect user-
specified assertions, deadlocks, memory leaks, invalid pointer
dereference, array out-of-bounds, and division by zero.

Our approach implemented on top of ESBMC-GPU has
some similarities with other techniques described here, e.g.,
covering methods proposed by Sun et al. [4], model checking
to solve adversarial cases proposed by Huang et al. [7].
However, the main contribution is our requirements and how
we handle the actual implementations of ANNs. To run our
proposed safety verification, only the ANNs with weights and
bias descriptors and the desired input of the dataset is required.
For tools such as DeepConcolic [4] and DLV [7], obtaining
adversarial cases or safety guarantees for different ANNs is not
an easy task due to the focus given to the famous datasets as
MNIST [31] or CIFAR-10 [32] during the tool development.
In our proposed approach, there exists no need for providing
specific datasets, but only the desired dataset sample to be



verified. Besides these requirements, the user must know how
cuDNN [11] deals with ANNs.

VI. CONCLUSIONS

We have described and evaluated two approaches for veri-
fying ANNs: one to check for adversarial cases and another
one to check for coverage methods in MLP. In particular,
our verification method was able to find adversarial cases for
different input images and proximity parameter values. Despite
a high verification time in some benchmarks due to bit-
accurate verification, the average time is reasonable since our
approach exhaustively verifies all possible adversarial cases. In
other approaches, obtaining adversarial cases of even bigger
ANNs tends to be faster, but noises are not fully explored.

Our verification of covering methods was able to verify
our dataset correctly and has shown to be effective during
our experiments. All OMs developed here are integrated into
ESBMC-GPU. They can be used to verify other programs that
use the cuBLAS and cuDNN APIs. Other existing approaches
(e.g., DeepConcolic and DLV) perform verification and testing
only on ANNs trained by the classics dataset as MNIST, i.e.,
they do not offer much flexibility to perform verification and
testing on general ANNs.

Future work aims to implement further techniques (e.g.,
invariant inference [33]) to prune the state space exploration,
by taking into account design aspects of ANNs. We will also
investigate fault localization and repair techniques [34] to iden-
tify and fix the root cause of incorrect ANN implementations,
to make them robust against small noises in the ANN inputs.
Acknowledgement. This research, according to Article 48 of
Decree n. 6.008/2006, was funded by Samsung Electronics of
Amazonia Ltda, under the terms of Federal Law n. 8.387/1991,
through agreement n. 004, signed with CETELI/UFAM.

REFERENCES

[1] F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl, and
J. Havel, “Artificial neural networks in medical diagnosis,” 2013.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[3] D. Gopinath, K. Wang, M. Zhang, C. S. Pasareanu,
and S. Khurshid, “Symbolic execution for deep neural
networks,” CoRR, vol. abs/1807.10439, 2018. [Online]. Available:
http://arxiv.org/abs/1807.10439

[4] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural networks,”
arXiv preprint arXiv:1803.04792, 2018.

[5] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” in Proceedings
of the ieee conference on computer vision and pattern recognition, 2016,
pp. 4480–4488.

[6] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Advances in neural information processing
systems, 1995, pp. 231–238.

[7] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 3–29.

[8] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[9] P. A. Pereira, H. F. Albuquerque, I. da Silva, H. Marques, F. R. Monteiro,
R. Ferreira, and L. C. Cordeiro, “Smt-based context-bounded model
checking for CUDA programs,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 22, 2017.

[10] F. R. Monteiro, E. H. d. S. Alves, I. S. Silva, H. I. Ismail, L. C.
Cordeiro, and E. B. de Lima Filho, “ESBMC-GPU a context-bounded
model checking tool to verify cuda programs,” Science of Computer
Programming, vol. 152, pp. 63–69, 2018.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[12] C. Nvidia, “Cublas library,” NVIDIA Corporation, Santa Clara, Califor-
nia, vol. 15, no. 27, p. 31, 2008.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[14] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural
network design. Pws Pub. Boston, 1996, vol. 20.

[15] S. S. Haykin et al., Neural networks and learning machines/Simon
Haykin. New York: Prentice Hall,, 2009.

[16] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with relu activation,” in Advances in Neural Information Processing
Systems, 2017, pp. 597–607.

[17] P. Sibi, S. A. Jones, and P. Siddarth, “Analysis of different activation
functions using back propagation neural networks,” Journal of Theoreti-
cal and Applied Information Technology, vol. 47, no. 3, pp. 1264–1268,
2013.

[18] A. S. Ros and F. Doshi-Veleza, “Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input
gradients,” in AAAI18 - Humans and AI. AAAI, 2018, pp. 1660–1669.

[19] M. Y. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer,
and D. A. Nicole, “ESBMC 5.0: an industrial-strength C model checker,”
in ASE. ACM, 2018, pp. 888–891.

[20] V. Kahlon, C. Wang, and A. Gupta, “Monotonic partial order reduction:
An optimal symbolic partial order reduction technique,” in CAV, ser.
LNCS, vol. 5643, 2009, pp. 398–413.

[21] A. Betts, N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson,
“Gpuverify: a verifier for GPU kernels,” in OOPSLA, 2012, pp. 113–132.

[22] M. Krichen and S. Tripakis, “Conformance testing for real-time sys-
tems,” Formal Methods in System Design, vol. 34, no. 3, pp. 238–304,
2009.

[23] K. J. Hayhurst, A practical tutorial on modified condition/decision
coverage. DIANE Publishing, 2001, vol. 210876.

[24] C. Barrett, A. Stump, C. Tinelli, S. Boehme, D. Cok, D. Deharbe,
B. Dutertre, P. Fontaine, V. Ganesh, A. Griggio, J. Grundy, P. Jackson,
A. Oliveras, S. Krsti?, M. Moskal, L. De Moura, R. Sebastiani, T. D.
Cok, and J. Hoenicke, “The SMT-LIB Standard: Version 2.0,” Tech.
Rep., 2010.

[25] L. C. Cordeiro, B. Fischer, and J. Marques-Silva, “Smt-based bounded
model checking for embedded ANSI-C software,” IEEE Trans. Software
Eng., vol. 38, no. 4, pp. 957–974, 2012.

[26] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[27] D. Gopinath, A. Taly, H. Converse, and C. S. Pasareanu, “Finding
invariants in deep neural networks,” CoRR, vol. abs/1904.13215, 2019.
[Online]. Available: http://arxiv.org/abs/1904.13215

[28] D. Gopinath, G. Katz, C. S. Pasareanu, and C. W. Barrett, “Deepsafe:
A data-driven approach for checking adversarial robustness in neural
networks,” CoRR, vol. abs/1710.00486, 2017. [Online]. Available:
http://arxiv.org/abs/1710.00486

[29] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P. Rajan,
“GKLEE: concolic verification and test generation for gpus,” in PPOPP,
2012, pp. 215–224.

[30] M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel, “CIVL:
formal verification of parallel programs,” in ASE, 2015, pp. 830–835.

[31] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” CoRR, vol.
abs/1708.07747, 2017. [Online]. Available: http://arxiv.org/abs/1708.
07747

[32] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, vol. 55, 2014.

[33] M. Y. R. Gadelha, F. R. Monteiro, L. C. Cordeiro, and D. A. Nicole,
“ESBMC v6.0: Verifying C programs using k-induction and invariant
inference - (competition contribution),” in TACAS, ser. LNCS, vol.
11429, 2019, pp. 209–213.

[34] E. H. da S. Alves, L. C. Cordeiro, and E. B. de Lima Filho, “A method
to localize faults in concurrent C programs,” Journal of Systems and
Software, vol. 132, pp. 336–352, 2017.

http://arxiv.org/abs/1807.10439
http://arxiv.org/abs/1904.13215
http://arxiv.org/abs/1710.00486
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	Introduction
	Preliminaries
	Artificial Neural Networks (ANNs)
	Incremental Bounded Model Checking (BMC)

	Incremental BMC of ANNs in CUDA
	SMT-based Safety Verification for ANNs
	Verification of Covering Methods
	Verification of Adversarial Case

	Experimental Evaluation
	Description of the Benchmarks
	Availability of Data and Tools

	Objectives
	Results
	Covering Methods
	Adversarial Cases

	Threats to validity

	Related work
	Conclusions
	References

