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Abstract—We describe and evaluate the development
of mission planners in intralogistics for a commercial
unmanned aerial vehicle equipped with a robotic grip-
per in an industrial environment, which consists of
an input warehouse, production lines, and a product
depot. In this particular study, the planner produces
the needed commands for carrying out a given mission,
which includes the delivery of inputs picked up from
the warehouse to the production line until the final
product is delivered to the client (product depot). We
propose two different approaches for mission planning:
in the first approach, a simple heuristic is used to solve
the mission problem, where a UAV obtains the needed
inputs to produce a product from the warehouse, and
then it brings the product to the respective production
line and waits to finish its production; in the second
approach, a technique with task scheduling (production
process) is employed; both approaches follow a set
of production rules. In addition, a novel evaluation
methodology for mission planner algorithms is pro-
posed in order to verify the cost of both approaches,
measure the execution time, and compare those results
with the optimum cost obtained with the IBM ILOG
CPLEX optimizer.

I. Introduction

Logistics has become a competitive and fundamental fac-
tor for organizations, involving the management, conser-
vation, and supervision of freight transport. In addition,
excellent logistics means client satisfaction; so speed is still
an important factor in a successful logistics process [1].
Currently, one of the solutions to this type of problem is
the use of unmanned aerial vehicles (UAVs) or commonly
known as drones. Nowadays, UAVs are mostly remotely
piloted vehicles (RPV), since their operations are carried
out by ground operators. If the UAV could perform the
tasks autonomously, then it would relieve the work of
those operators, since they perform tedious and repetitive
tasks [2].

One possible improvement of these logistics systems is the
increase of the UAVs automation, which results in costs
minimization. Consequently, investments and studies re-
lated to stand-alone UAVs are important to the smart fac-
tories development [3]. However, one of the main problems
for using autonomous UAVs is the system reliability and
intelligence. Thus, increased employment of autonomous
UAVs requires the development of devices, which are able

to perform tasks and interact with the environment in an
intelligent and reliable way [2].

Autonomous UAVs need to know what will happen in a
future instant and what is the best decision to make at
the present time; therefore, they require strategies not
only to decompose their missions into meaningful sub-
tasks but also to track progress towards mission goals as
well as the evolution of those tasks with respect to the
autonomous UAVs capabilities [4]. As a consequence, in
order to successfully perform a mission, task planning is
usually employed [4]. Mission planning problems consist of
planning events to meet certain requirements and objec-
tives [5]. Therefore, the event planning is one of the main
challenges faced in solving this problem due to the mission
complexity in some particular UAV applications.

Both academy and industry have conducted studies re-
lated to the evaluation and optimization of mission plan-
ning in the last years. Schwarz and Sauer [6] employ the
ant colony algorithm to optimize UAV missions. Muller et
al. [7] investigate energy consumption for a factory and
evaluate the logistic planning processes using statistical
metrics of evaluation.

To evaluate mission planning strategies, evaluation metrics
must be employed. Evaluation metrics consist of a set
of measures that follow a common underlying evaluation
methodology. It is used to evaluate the efficacy of infor-
mation retrieval systems and to justify theoretical and/or
pragmatical development of those systems [8]. In this
particular study, we use an optimal measure to compare
with a pre-computed value of a mission cost.

Specifically, this paper presents a methodology that eval-
uates the cost of mission planners for a commercial UAV.
We have developed an evaluation metric that checks the
relative cost of a planning strategy related to the optimal
cost generated by the CPLEX optimizer [9]. In summary,
the main original contributions of this paper are:

• a novel evaluation methodology for UAV intralogistics
mission planners algorithms, which allows predicting
the planner’s performance and also obtaining optimal
algorithms and missions;

• development of an intralogistics mission planner
framework that provides mission commands for a
UAV system;

• use of a commercial UAV system in intralogistics



missions to demonstrate the evaluation methodology
efficiency in both simulated and real environment.

Outline. Section II describes previous studies related to
mission planning, optimization, and evaluation. Section III
provides the fundamentals of mission planning and opti-
mization problems. Section IV describes the UAV move-
ment system used in this study. Section V explains the
proposed evaluation methodology in further details. Sec-
tion VI describes the experimental procedures and results
in order to explore and demonstrate the methodology
benefits, and, finally, Section VII concludes this study and
describes future work.

II. Related Work

In the associated UAV literature, there are attempts to
implement UAV guidance systems that perform mission
planning. Doherty et al. [10] present a framework ar-
chitecture for mission planning and execution tracking
applied to an unmanned helicopter. During the mission
execution, knowledge is acquired through sensors, which
are used to create state structures. These structures allow
constructing a logical model, representing a real system
development and environment over time. The planning
and monitoring modules use temporal action logic (TAL)
to reason about actions and changes.
The NASA/U.S. Army autonomous helicopter project
has developed a guidance system for the autonomous
surveillance planning problem for multiple and different
targets [11], which generates mission plans using a theoret-
ical approach for decision making. A high-level standalone
control is provided by the framework Apex [12], a reac-
tive procedure-based scheduler/planner used to perform
mission-level tasks. Apex synthesizes a course of action pri-
marily by linking elemental procedures expressed in pro-
cedural definition language (PDL), a notation developed
specifically for the Apex reactive planner. This guidance
system is integrated into a robotic helicopter and tested
in more than 240 scenarios.
A similar project, called Research and Rescue by Cooper-
ative Autonomous System (Ressac for short), is conducted
by the French Aerospace Laboratory (ONERA) for a
search and rescue scenario [13]. This architecture (targeted
at an exploration mission) is developed based on the
idea of decomposing the mission into a sequence of tasks
or macro-actions associated with rewards. The problem
is modeled using a Markov decision process framework
(MDP) and dynamic programming algorithms for mission
planning. Konigsbuch and Fabiani [14] extend this guid-
ance system and integrate that with a robotic helicopter.
The German Aerospace Center (DLR) has also developed
a mission management system based on the behavior
paradigm [15], which has been integrated with the ARTIS
helicopter and validated in different scenarios, including
waypoints follower, search and tracking mission.
Rodŕıguez-Fernández et al. [16] investigate the perfor-
mance analysis of UAV operators, with respect to agility,

consumption, aggressiveness, precision and reflexes; each
of those aspects has evaluation metrics, in order to discover
the behavioral pattern of the operators.
Recently, some works indicated the potential of the ap-
plications of drones for logistics operation, since these
vehicles produce efficient and flexible routes [3] and reduce
carbon dioxide emissions compared to emissions from
truck-based logistics [17].
Tavana et al. [18] propose a bi-objective multi-product
combined cross-docking truck-scheduling model with di-
rect drone shipping and multiple fleets. The problem in-
volved in that work is modeled using multi-objective mixed
integer mathematical programming (MIP). Two opposite
objective functions, i.e., the total cost of allocation and
scheduling and the scheduling time, are optimized concur-
rently.
Bae et al. [19] introduce an approach to investigate open
storage yard using UAV and radio-frequency identification
(RFID). The approach reduces the mismatch between
information stored in inventory system and real-world
data, the labor cost of investigating stock and equipment
cost for the system.
Existing approaches for evaluation of mission planners for
intralogistics problems are either empirical or theoretical.
In contrast to previous studies, this paper describes and
evaluates a novel approach by combining both aspects.
In addition, we test the evaluation metrics in a real
environment, i.e., using a real UAV system to perform a
mission and we then measure the cost (mission execution
time) of that specific mission.

III. Preliminaries

A. Terminology

In this section, we describe the key definitions related to
the case study which will be used throughout the paper.
Definition 1: (Mission Command) Mission Command
is a command created to execute a task such as to go
from one location to another, get a package using a robot
gripper, and land a UAV.
Definition 2: (Mission) Mission is the set of steps and
mission commands that the UAV executes to produce the
client order.
Definition 3: (Warehouse) Warehouse is the set of stored
raw material available until the moment of entering the
production process. The raw materials, i.e., the inputs
available in this work are inputs A, B, and C.
Definition 4: (Order) Order is the product requirements
placed by the client. In this study, the products are of type
X and Y .
Definition 5: (Production Time) Production time is the
time required to produce a product X or Y , after making
available all the needed inputs for the production, given
by the pre-defined production rule.
Definition 6: (Production Rule) Production rule de-
scribes what and how many inputs are needed to produce
a particular product.



Definition 7: (Mission Planner) Mission planner is the
agent who performs the planning of a mission, that is,
produces all steps and commands needed to carry out a
given mission.
Definition 8: (Mission File) The mission file is a file that
is created for the context of this work, with the extension
.mission containing the mission itself.
Definition 9: (Movement Function) The movement
function represents a set of functions created in the Python
programming language using the Drokekit Application
Programming Interface (API) to send commands to the
UAV by MAVLink protocol.
Definition 10: (Production Mission) The production
mission is the set of steps needed to produce the product
placed by the client.

B. Mission Planning

Firstly, a mission can be defined as a goal that needs to be
completed (cf. Definition 2). In the context of this study,
the UAV mission is the package’s delivery, according to a
set of well-defined rules. A definition of mission planning
for UAV is the process of planning the locations to visit
(waypoints) and the actions that the vehicles can perform
(e.g., loading/dropping a load and taking videos/pictures),
typically over a time period [20]. Functionally, mission
planning lies above the trajectory planning process, where
the mission planner (cf. Definition 7) generates the desired
mission plan, and then the trajectory planner generates
the flight plan (trajectories) between the waypoints.

C. Optimization Problems

Optimization problem is related to finding the best so-
lution (relative to a certain criterion) among a set of
available alternatives. For instance, the popular bin pack-
aging problem that aims to find the number of boxes of
a certain size to store a set of objects of indicated sizes;
optimization involves, for example, finding the smallest
amount of boxes. An optimization problem is usually
represented as follows [21].

min f(x),
s.t. x ∈ Ω.

(1)

where Ω is a set of the problem constraints and f(x) is the
function to optimize [21].
An optimization problem can be defined as a finite set of
variables, where the correct values for the variables specify
the optimal solution. If the variables are from the set of
real numbers (IR), the problem is called continuous, and
if they can only have a finite set of distinct values, the
problem is called combinatorial [22], [23], [24].
To solve the optimization problems, it is necessary to
develop a method that solves them, which are the algo-
rithms. An important category of problems are the NP-
hard problems, where they can only be solved by certain
algorithms that try to arrive at the optimal solution of
that determined problem.

When the optimal solution of a NP-hard problem is not
guaranteed, this type of method is called a heuristic.
A heuristic is an intuitive way of solving a particular
problem, where the best possible solution is not guaran-
teed [25].
Every optimization problem is basically characterized by
having an objective function, which can be called cost
function when it is desired to minimize it or utility function
when it is desired to maximize it, and a set of constraints
that delimit the space of viable solutions, or it is the
region where the solutions are that can be accepted. The
objective function contains a set of variables to which
values must be assigned in a systematic way so as to walk
through the search space and find the one that optimizes
the result to be searched, in case a maximization problem
finds the highest possible value while in a minimize the
value. In both cases, the solution must meet the set of
constraints imposed to be accepted
1) Scheduling Theory: Scheduling problems can be defined
as the designation or allocation of certain resources to
certain activities as a function of time [26]. Such allocation
over time involves a decision-making process that aims to
optimize one or more performance measurement criteria.
Due to the fact that one of the first problems modeled
as scheduling involves the optimization of the production
of a factory, it became a consensus to define in a general
way a scheduling problem as the allocation of tasks to
machines or processors in such a way to optimize some
criterion of production. These criteria are modeled as a
mathematical function of maximization or minimization
called the objective function.
There are many scheduling problems, varying according
to the processing time, types and amount of constraints
of the elements to be scaled, execution conditions and op-
timization criteria, e.g., the number of machines can vary
and they can be the same or different, the elements may
or may not have a well-defined start and finish time, there
may or may not be interruption in tasks (preemption) [27].

IV. UAV Movement System

In this section, we first investigate the UAV platform
used (3DR IRIS+) in this study, describing the hardware
characteristics and the control framework developed for
intralogistics missions.
The core hardware of the UAV IRIS+ is the Pixhawk
which is an independent, open-hardware project aiming
at providing high-end autopilot hardware to the academic,
hobby and industrial communities at low costs and high
availability; it provides hardware for the Linux Foundation
DroneCode Project; and we can control it using a Python
library [28], which uses Micro Air Vehicle Link (MAVLink)
protocol [29]. MAVLink is a protocol for communicating
with a small unmanned vehicle, which is designed as a
header-only message marshaling library.
The IRIS+ UAV is integrated into a robot gripper to
obtain and release packages during the missions (cf. Defini-
tion 2). We have connected a servo motor to the Pixhawk



Command Description
TakeOff takes off the UAV
GoTo moves the UAV to a certain location
TakePackage takes an input/product (gripper)
LeavePackage leaves an input/product (gripper)
Wait makes the UAV to hover (wait)
Land lands the UAV

TABLE I: Description of movement functions

by one of the pulse width modulation (PWM) outputs.
Figure 1 shows the system hardware architecture and the
interconnections between each component module. In the
hardware architecture illustrated in Figure 1, we can see
the UAV hardware component connections, where there is
the Pixhawk (flight controller) and its connections between
other components such as the compass, GPS, PWM out-
put, and battery. Moreover, it shows the connection with
a robot gripper using a PWM output as a signal control
for the servo motor in the robot gripper. Finally, it shows
the communication between a personal computer (PC) and
the UAV via radio control (RC) signal.
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Fig. 1: System Hardware Architecture.

In the software architecture, the Mission Planner (cf. Def-
inition 7) reads the warehouse inputs and client order and
produces a .mission file (cf. Definition 8), which contains
the list of mission commands needed for producing the
required client order. This .mission file is used by a UAV
control program to guide the UAV and to produce the
low-level movement commands using MAVLink protocol
(cf. Definition 1). Figure 2 shows the mission planning
framework software components.

In order to control the UAV from a PC, we have used the
Dronekit API that translates MAVLink commands to a
Python function. In the ground station, the PC is running
the UAV control program that controls the UAV using
a radio module connected to the PC via USB. We have
created several functions in the control program for the
most common UAV actions. The movement functions (cf.
Definition 9) are described in Table I.

Warehouse
Inputs

Client
Order

Mission
Planner

Mission
Commands UAV

Control
Program

MAVLink
Commands UAV

System
.mission

Mission

Fig. 2: System Architecture.

V. Methodology of Time Cost Evaluation, UAV
Usage and Mission Planning

In this section, we have developed an optimization problem
model of the problem of this work, evaluate two algorithm
mission cost and describe a case study to a UAV and
contents about mission planning.

A. Case Study: UAV Intralogistics Mission

In order to model the mission planning problem as an
optimization problem, we used the case study illustrated
in Figure 3.

Warehouse

Production Lines

Client
A, B, C

X=2A+C

Y=2B+C

S =4 p.u.X

S =6 p.u.Y

Fig. 3: Case Study Representation.

Figure 3 shows that there are three types of inputs in the
warehouse (i.e., A, B, and C) and two production lines
that produce two different products (i.e., X and Y ). Each
production line produces only one type of product and has
a characteristic production time (cf. Definition 5). Figure 3
shows that, in order to produce a product of type X, two
inputs of type A and one input of type C are required, and
to produce a product of type Y , two inputs of type B and
one input of type C are required. The production time of
a X product is 4p.u. and the production time of product
Y is 6p.u.. A production unit (1p.u.) is considered to be a
GoTo command performed by the UAV.
The task to be performed is the production of the client or-
der (cf. Definition 4), where a given UAV collects supplies
from the warehouse, takes that to the production line, and
once the production of a certain product is concluded, the
UAV delivers it to the client.



B. Modeling a UAV Intralogistics Mission as an Optimiza-
tion Problem

In this subsection, the aforementioned intralogistics mis-
sion planning problem is written as an optimization prob-
lem, by creating a mathematical model for the problem, in
order to find, afterwards, the shortest execution time of all
tasks (minimization), based on the case study described in
Section V-A. The notation used here is given below:

• T = {Tj |j ∈ N∗, j ≤ N} is the set of N tasks;
• M = {mi|i ∈ N∗, i ≤ M} is the set of M production

lines (machines);
• P = {pj |j ∈ N∗, j ≤ N} is the set of processing times

pj of each j-th task;
• S = {si|s ∈ N∗, i ≤ M} is the set of setup (produc-

tion) times si of each i-th production line;

a) Decision variable: The variable xij is a binary decision
variable that takes the value 1 if the task j is running on
the machine i and 0 otherwise. The variable Cmission is
the variable that we want to optimize.

xij =


1, if the task j is running in

the machine (production line) i

0, otherwise

(2)

b) Objective function: The objective function is the total
mission cost Cmission (total process execution time) that
can be modeled as follows.

Cmission =

M∑
i=1

N∑
j=1

(pj + si)xij , (3)

Eq. (3) represents the sum of the duration time pj of
each travel from one place to another in the case study
explained in Section V-A, considering the production time
(cf. Definition 5) sj in each production line.
c) Constraints:

• Each task must be executed/processed in a unique
machine:

M∑
i=1

N∑
j=1

xij = 1 (4)

• Execution time of each machine:

Cmission ≤ Cmax (5)

Eq. (5) indicates that the mission cost is always less
or equal than a maximum cost denoted by Cmax,
obtained empirically.

d) Resulting optimization problem: The resulting opti-
mization problem consists in minimizing Cmax with re-
spect to the decision variable (2) constrained to the con-
dition in (4) and (5). Thus, the optimization problem is
represented as follows:

min Cmission,

s.t.
∑M

i=1

∑N
j=1 xij = 1,

Cmission ≤ Cmax

(6)

C. Planner Evaluation Methodology

The main contribution of this study is a methodology to
evaluate UAV mission planner algorithms and to find a
minimum planner cost. With this goal in mind, a general-
ized evaluation metrics must be developed. The objective
(cost) function modeled in subsection V-B is related to the
total time spent for the mission execution. Our evaluation
metrics compares the cost of a planner algorithm with the
best cost computed by the CPLEX solver [9]. Here, we
proposed a novel metrics scheme called Mission Planner
Cost Index (MPCI).
Firstly, the optimal cost of the problem is obtained by
means of the CPLEX solver, which returns the optimum
value (minimum mission execution time). The model pro-
posed in subsection V-B is implemented using the CPLEX
solver library available for C++.
The cost of each planner strategy (Algorithms 1 and 2)
cX is obtained by counting the number of GoTo commands
which represents a process (task).
Finally, the evaluation of each mission planner is computed
with respect to the optimal cost, therefore, the MPCIX
of a planner X is computed as follows:

MPCIX =
co
cX

, (7)

where co is the optimal cost obtained by a C++ program
that converts a given instance to a file in a format known
by CPLEX, such as the LP format, i.e. the developed
algorithm generates the model to be solved by CPLEX
with the help of the mathematical programming tool
UFFLP [30]. cX is the cost of the solution generated by
planner X, and 0 ≤MPCIX ≤ 1. Note that as close to 1
the MPCIX is, the solution cost becomes smaller.

D. Mission Planners

In this study, we considered that mission planner is a
software that generates a production mission (cf. Def-
inition 10) given the warehouse and client order. This
program generates a .mission extension file containing a
set of mission commands (cf. Definition 1), as described in
Section IV. Two examples of planners are presented in this
work and are employed to demonstrate the cost evaluation
methodology.
1) Planner 1: In Algorithm 1, we show a strategy to
solve the mission planning problem and we denoted it as
Planner 1. In this particular algorithm, the production of
X products has a higher priority over Y, i.e., the inputs
are firstly allocated to the production of X orders, and the
production of Y products begins if there is no other X to
be produced. The general steps of planner 1 are described
in Algorithm 1.
As we can see in Algorithm 1, the method first check
the order of the client to start planning the mission. The
second step is to start the production firstly by bringing
all the necessary inputs of the first product to the product
line of that product. After that, the UAV will wait the
product be produced (in p.u.) and then take the ready



product to the client. The planner does that for all the
product until it finishes the production process.

Algorithm 1 Planner 1
Input: warehouse

Input: order

Output: mission file .mission

begin
check the order;
repeat

go to the warehouse;
repeat

get input A;
bring to the production line X;

until bring 2 A elements;
go to the warehouse;
get the input C;
bring to the production line X;
wait X to be produced;
bring X to the client;

until production of all X elements finish;
repeat

go to the warehouse;
repeat

get input B;
bring to the production line Y;

until bring 2 B elements;
go to the warehouse;
get the input C;
bring to the production line Y;
wait Y to be produced;
bring Y to the client;

until production of all Y elements finish;

end

2) Planner 2: The strategy for Planner 2 is a bit more
complex than Planner 1. In the Planner 2 strategy, the
UAV starts to bring all the necessary inputs to make
the first X product, taking all the A, B and C inputs,
respectively, to the production line X. After bring all the
necessary inputs to produce the first X product, the pro-
duction line X starts to produce the X product and while
the production line X is producing, the UAV goes to the
warehouse to get the necessary inputs to produce the next
product (either Planner 1 and Planner 2 produce firstly the
X products e then all the Y products). However, when the
X product finishes producing, the UAV knows the instant
and goes to the production line to get the X product to
bring to the client place; and after that, the UAV goes
back to bring the rest of the inputs. The UAV keeps work
in the same way until it brings all the products to the
client place. Differently, to the Planner 1, the Planner 2
does not wait for the production in the production line.
The UAV works as a scheduler and executes the mission
faster than Planner 1 strategy because it does not enter
into a busy wait state. The general steps of planner 2 are
shown in the Algorithm 2.
Where tX and tY are the production time (cf. Definition 5)
of the production lines X and Y, respectively.

E. Correctness of the Optimization Model

In the direction of explaining the correctness of the model
developed in subsection V-B, we describe the reasons

Algorithm 2 Planner 2
Input: warehouse

Input: order

Output: mission file .mission

begin
initialize tx;
initialize ty ;
check the order;
repeat

if the counter of that X is not tX then
go to the warehouse;
repeat

get the input A;
bring to the production line X;

until until bring 2 A elements;
go to the warehouse;
get the input C;
bring to the production line X;
start the counter of this X (production time);
keep producing;

else
go back to the production line X;
bring X to the client;
go back to producing;

end
until production of all X elements finish;
repeat

if the counter of that Y is not tY then
go to the warehouse;
repeat

get the input B;
bring to the production line Y;

until until bring 2 B elements;
go to the warehouse;
get the input C;
bring to the production line Y;
start the counter of this Y (production time);
keep producing;

else
go back to the production line Y;
bring Y to the client;
go back to producing;

end
until production of all Y elements finish;

end

below:

• we used a binary linear programming problem to build
the model because of its characteristics (Eq. 4);

• only one product will be produced at time in a
production line, this is a requirement in our problem
and it is modeled in Eq. 4;

• the coefficients for the constraints are considered in
Eq. 3;

• we considered that the execution time of a mission
must be less or equal to a measured time obtained
experientially (Eq. 5).

VI. Experimental Evaluation

This section describes the experimental results obtained
in this project, as well as the cost evaluation of two
techniques used, which is compared to the optimum cost



implemented with the CPLEX solver1.

A. Experimental Environment and Objectives

In order to verify the efficiency of the metrics shown in
Section V, our experimental evaluation aims to answer the
following research questions:

RQ1 Does the framework for mission planning, command
and control for intralogistics mission using a UAV
produce the expected results?

RQ2 Is the metrics of mission evaluation efficient?

The mission planning algorithms are executed on a com-
puter running Linux Mint OS, core i7 processor and 8 GB
of RAM. In order to control the UAV, we run the control
program, which uses the Dronekit API as an interface
between a high level program language (Python) and the
protocol that the UAV understands (MAVLink), on the
same computer where there is a radio module connected
via USB communicating with the UAV radio module.

B. Cost Evaluation

The results of each mission planner are compared to
the optimal solution obtained with the branch-and-cut
algorithm of the IBM/ILOG CPLEX 12.4 tool developed
in C++ [9]. In order to obtain better results to perform
the comparison, it is considered only the time in which the
UAV takes to finish the production of a product.

Planner 1 Planner 2 CPLEX
Time (s) 420 404 134

TABLE II: Planners and optimal (CPLEX) times

The Table II shows the mission execution times obtained
using the planner algorithms 1 and 2, and the minimum
value provided by CPLEX. Using the metrics shown in the
section V, then:

MPCI1 =
134

420
= 0.319 (8)

MPCI2 =
134

408
= 0.328 (9)

The MPCI indicates (cf. Eqs. (1) and (2)) that planner 2
performs the mission more quickly and has a lower cost
than planner 1.

C. Practical Results

To verify the practical results, as well as a cost compari-
son between the different approaches of mission planners
developed in this work, the flight time is measured for
two mission planning algorithms developed, using the case
study shown in V-A.
The experiments are performed in both, simulator and
real UAV system. The flight time is measured by using
DroneKit-SITL [28], that is a feature of Dronekit Python
API that allows simulating the behavior and movement of

1The code implemented in C++ using CPLEX library
can be found on GitHub at https://github.com/thiago-
cavalcante/optUAVCplex.git

a plane, a copter, or a rover, without the hardware, i.e.,
a real UAV. Additional experiments are performed with
the real UAV system (3DR IRIS+). Figure 4 shows the
map of the experimental environment (Faculty of Physical
Education and Physiotherapy of Federal University of
Amazonas).

Warehouse

Production Line X

Production Line Y

Client

Fig. 4: Warehouse, Production Line X, Production Line Y
and Costumer in the Map.

Table III presents the performance (total flight time) of
both planners algorithms for simulations and tests with
the (real) 3DR Iris+ UAV.

Test
#

Flight Time of Planners
Simulator 3DR Iris+
1 2 1 2

1 460.41 436.08 455.12 441.72
2 460.69 436.89 456.93 440.18
3 460.08 441.68 457.19 447.51
4 460.72 441.03 460.25 438.19
5 460.23 451.87 459.47 445.85

TABLE III: Mission Planners Flight Times.

Table III indicates that the mission time of planner 2 is
lower than the time of planner 1 in all five tests with
the simulator and 3DR Iris+, ensuring the results of the
evaluation methodology.
The aforementioned results confirmed the prediction pro-
vided by the planner evaluation methodology, and the
planner 2 is faster than planner 1 in all the tests with
simulations and IRIS+ tests.

D. Threats to Validity

In order to perform our experiments, a suitable environ-
ment is assembled to apply our evaluation metrics. In this
way, we consider the case study described in Section V.
Nevertheless, this case study is limited within the scope
of this paper and the performance of our proposed ap-
proaches needs to be assessed on a larger benchmark set in
future work. Additionally, in case we change the scenario,
where the number of UAVs increases, our algorithms will
not work as expected since we did not adapt those algo-
rithms for cooperative work and consequently our metrics
will not produce the expected results. In future work,
we should also expand the evaluation metrics to work in
a cooperative scheme environment, where the number of
UAVs is greater than two.



VII. Conclusion

We have described an evaluation methodology for UAV
mission planner in an industrial production scenario. In
particular, we have used that evaluation methodology to
evaluate the performance of two different algorithms. Our
proposed approach uses an optimization tool to generate
an optimal cost for a mission (with respect to the flight
time) and then compares those algorithms using the Mis-
sion Planner Cost Index.

In addition, we have developed a framework for mission
planning and control for intralogistics mission using a
commercial UAV. We used this UAV to solve intralogistics
problems using the Dronekit API for control purposes via
a high-level programming language.

Our experiments were performed in both simulated and
real environment using a commercial UAV to evaluate
the mission planner algorithms for intralogistics problems.
Moreover, our framework can solve the need for controlling
a commercial UAV and thus contributes to a new approach
to verify specific intralogistics problems.

Future work includes the use of computational vision
for the recognition of inputs and improvements of the
optimization problem modeling for better results in cost
evaluation. Additionally, we will perform experiments in a
cooperative work environment, where the number of UAVs
is greater than two. In order to improve our results, we will
develop more planner strategies such as an algorithm that
produces different types of products simultaneously.
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