
SMT-based Verification Applied to Non-convex
Optimization Problems

Rodrigo Araújo∗, Iury Bessa†, Lucas C. Cordeiro†‡, and João Edgar Chaves Filho†.
∗Federal Institute of Amazonas, Brazil
†Federal University of Amazonas, Brazil

‡University of Oxford, UK
Email: rodrigo.araujo@ifam.edu.br, {iurybessa,lucascordeiro,jedgarc}@ufam.edu.br

Abstract—This paper presents a novel, complete, and flexible
optimization algorithm, which relies on recursive executions that
re-constrains a model-checking procedure based on Satisfiability
Modulo Theories (SMT). This SMT-based optimization technique
is able to optimize a wide range of functions, including non-linear
and non-convex problems using fixed-point arithmetic. Although
SMT-based optimization is not a new technique, this work is the
pioneer in solving non-linear and non-convex problems based on
SMT; previous applications are only able to solve integer and
rational linear problems. The proposed SMT-based optimization
algorithm is compared to other traditional optimization tech-
niques. Experimental results show the efficiency and effectiveness
of the proposed algorithm, which finds the optimal solution in all
evaluated benchmarks, while traditional techniques are usually
trapped by local minima.

Keywords—satisfiability modulo theory (SMT), model checking,
optimization, global minima, non-convex problems.

I. INTRODUCTION

Optimization is an important research topic in many fields,
especially in computer science and engineering [1]. Scien-
tists and engineers have to find parameters (i.e., an optimal
solution), which optimize the behavior of a given system or
the value of a given function. There are various optimization
techniques (e.g., simplex [2], gradient descent [3], and genetic
algorithms [4]), which are suitable for different classes of
optimization problems (e.g., linear or non-linear, continuous or
discrete, convex or non-convex, and single- or multi-objective).

However, the widespread development of embedded sys-
tems demand continuous application and deployment of several
optimization methods. In particular, due to resource limitation,
embedded system design typically includes optimization of
cost functions related to power consumption, memory us-
age, and silicon area [5]. Since optimization problems are
commonly solved by computer-based systems, several embed-
ded system applications include optimization problem solving
during their execution (e.g., autonomous vehicles navigation
systems [6]). As a result, effective and efficient optimization
algorithms are needed for leveraging the proliferation on the
use and application of embedded systems.

Particularly, a continuous non-convex optimization problem
is one of the most complex problems; as a result, several
traditional methods (e.g., Newton-Raphson [1] and Gradient
Descent [3]) are inefficient to solve that particular class of
problems [1]. Therefore, various heuristics are developed for
obtaining approximate solutions to those problems. Heuristics
methods (e.g., ant colony [7] and genetic algorithms [4]) offer
faster solutions for complex problems, but they sacrifice the
system’s correctness and are easily trapped by local optimal
solutions. Thus, they are not suitable for applying to embedded

system applications, especially in safety-critical systems whose
failure or malfunction may result in serious injury to people
or environmental harm.

Recently, Propositional Satisfiability (SAT) and Satisfia-
bility Modulo Theories (SMT) solvers [8] have been ap-
plied to solve optimization problems; specialized theories
and tools were also developed and evaluated [9]–[11]. The
first SMT/SAT solvers applications to optimization problems
aim at optimizing cost functions based on Boolean variables
and Integer Linear Programming (ILP). Estrada [12] is an
example of that type of application, which uses a SAT solver
for minimizing the number of gates in digital circuits, thus
optimizing the FPGA design. Trindade and Cordeiro apply
the Efficient SMT-based Context-Bounded Model Checker
(ESBMC) to optimize the hardware/software partitioning in
embedded systems [13]–[15]. Recently, Eldib and Wang [16]
propose the use of SMT solvers for optimizing fixed-point
embedded C software, thus minimizing the minimum bit-width
required to run it on a micro-controller.

The potential of SMT-based optimization tools led to the
development of solutions for optimizing functions over ratio-
nals, which was initially proposed by Sebastiani et al. [17],
[18]; and the advent of SAT/SMT solvers (e.g., νZ [11] and
OptiMathSAT [10]) and theories specialized in optimization
problems (e.g., ILP Modulo Theories [9]). However, there is
still a lack of SMT tools suitable for non-linear and non-
convex optimization problems. To the best of our knowledge,
all current SAT/SMT-based optimization studies are limited to
linear cost functions, and they cannot be directly applied to
solve non-linear (non-convex) problems arising from embed-
ded system applications.

Contributions. This paper presents a novel optimization
technique based on SMT solvers, which is suitable for a
wide variety of functions, even for non-linear and non-convex
functions that are typically found in navigation systems. The
function evaluation and the search for optimal solution is
performed by means of a recursive execution of successive
verifications based on SMT queries. In contrast to other
heuristic methods (e.g., genetic algorithms) that are usually
employed for optimizing this class of function, the present
approach always finds the global optimal point.

Availability of Data and Tools. Our experiments are based
on a set of publicly available benchmarks. All tools, bench-
marks, and results of our evaluation are available on a supple-
mentary web page http://esbmc.org/benchmarks.

Outline. Section II describes fundamentals related to opti-
mization and model-checking techniques. Section III describes
our optimization algorithm in further details from a model-

checking perspective. Section IV reports the experimental
results for evaluating that optimization algorithm. Section V
discusses related studies, while Section VI concludes this work
and proposes future studies.

II. PRELIMINARIES

A. Optimization Problems

Let f : X → R be a cost function, such that X ⊂ Rn is the
decision variables vector x1, x2, ..., xn and f(x1, x2, ..., xn) ≡
f(x). Let Ω ⊂ X be a subset settled by a set of constraints.

Definition 1. A multi-variable optimization problem consists
in finding an optimal vector x, which minimizes f in Ω.

According to Definition 1, this type of optimization prob-
lem can be written as

min f(x),
s.t. x ∈ Ω.

(1)

This optimization problem can be classified in different
ways w.r.t. cost function f , e.g., it can be linear or non-linear;
convex or non-convex; continuous, discontinuous, discrete,
integer, rational, or real. Depending on that classification,
different optimization techniques can be more suitable to
solve that cost function, and some algorithms usually point
to suboptimal solutions, i.e., a solution that is not a global
minimum of f , but it only locally minimizes f . Global optimal
solutions of the function f , aforementioned, can be defined as

Definition 2. A vector x∗ ∈ Ω is a global optimal solution of
f in Ω iff f(x∗) ≤ f(x),∀x ∈ Ω.

Gradient Descent (GD) [3] and Genetic Algorithm (GA) [4]
are examples of popular optimization techniques. GD itera-
tively minimizes a function f by opposite direction of its
gradient by means of a step sized by a learning rate. GA
optimizes a function with a heuristic search method inspired
in natural selection, representing solutions with strings named
chromosomes, which are evaluated using a fitness function.
The solution is enhanced via computational selection process,
re-combinations, and mutations. Both techniques present sev-
eral limitations, e.g., GD cannot handle function with discon-
tinuities, and might be easily trapped by local minima.

B. Model Checking

Model checking is an automated verification procedure to
exhaustively check all (reachable) system’s states [19]. The
model checking procedure typically consists of three steps:
modeling, specification, and verification.

Modeling is the first step, where it converts the system to
a formalism that is accepted by a verifier. The modeling step
usually requires the use of an abstraction to eliminate irrelevant
(or less) important system details [20]. The second step is
the specification, which describes the system behavior and the
property to be checked. An important issue in the specification
is the correctness. Model checking provides ways to check
whether a given specification satisfies a system property, but it
is difficult to determine whether such specification covers all
properties, which the system should satisfy.

Finally, the verification step checks whether a given prop-
erty is satisfied w.r.t. a given model, i.e., all relevant system
states are checked to search for any state that violates the
verified property. In case of a property violation, the verifier

reports the system execution trace (counterexample), i.e., all
steps from the (initial) state to the (bad) state that violates such
property. Errors could occur due to incorrect system modeling
or inadequate specification, thus generating false results.

C. SMT-Based Bounded Model Checking

The International Competition on Software Verification
(SV-COMP) is an annual competition on software verification
tools, which evaluates and presents several software testing
and verification techniques [21]. One important verification
technique, which has presented attractive results over the last
years is Bounded Model Checking (BMC). BMC techniques
based on SAT [8] or SMT [22], have been successfully applied
to verify single- and multi-threaded programs, and also to find
subtle bugs in real programs [23], [24]. The idea behind BMC
is to check the negation of a given property at a given depth.

Definition 3. [8] – Given a transition system M , a property
φ, and a bound k; BMC unrolls the system k times and
translates it into a verification condition (VC) ψ, which is
satisfiable if and only if φ has a counterexample of depth less
than or equal to k.

In this study, the ESBMC tool [25] is used as the ver-
ification engine, as it represents one of the most efficient
BMC tools that participated in the last software verification
competitions [25]; in particular, ESBMC is one of the most
efficient tools to reason about programs that make use of bit-
vector arithmetic according to the SV-COMP 2016 edition.

ESBMC is an SMT-based bounded model checker for
C/C++ programs. ESBMC finds property violations such as
pointer safety, array bounds, atomicity, overflows, deadlocks,
data race, and memory leaks in single- and multi-threaded
software. It also verifies programs that make use of bit-level,
pointers, structures, unions, and fixed-point arithmetic. Inside
ESBMC, the associated problem is formulated by constructing
the following logical formula

ψk = I(S0) ∧
k∨

i=0

i−1∧
j=0

γ(sj , sj+1) ∧ φ(s1) (2)

where φ is a property and S0 is a set of initial states of M ,
and γ(sj , sj+1) is the transition relation of M between time
steps j and j+ 1. Hence, I(S0)∧

∧i−1
j=0 γ(sj , sj+1) represents

the executions of a transition system M of length i. The
above VC ψ can be satisfied if and only if, for some i ≤ k
there exists a reachable state at time step i in which φ is
violated. If the logical formula (2) is satisfiable (i.e., returns
true), then the SMT solver provides a satisfying assignment
(counterexample).

Definition 4. A counterexample for a property φ is a sequence
of states s0, s1, . . . , sk with s0 ∈ S0, sk ∈ Sk, and γ (si, si+1)
for 0 ≤ i < k that makes (2) satisfiable. If it is unsatisfiable
(i.e., returns false), then one can conclude that there is no
error state in k steps or less.

In addition to embedded software verification, ESBMC has
been applied to ensure correctness of discrete-time filters and
controllers [26]–[28]. Furthermore, recently ESBMC has been
applied to optimizing problems related to hardware/software
co-design [13]–[15].

III. SMT-BASED VERIFICATION APPLIED TO
NON-CONVEX OPTIMIZATION PROBLEMS

A. Modeling Optimization Problems using a Model Checker

There are two important directives in the C/C++ pro-
gramming language, which can be used for modeling and
controlling a verification process: ASSUME and ASSERT. The
ASSUME directive is able to define constraints over (non-
deterministic) variables, and the ASSERT directive is used to
check system’s correctness w.r.t. a given property. Using these
two statements, any off-the-shelf C/C++ model checker (e.g.,
ESBMC [25], CBMC [24], and CPAChecker [29]) could be
applied to check specific constraints in optimization problems,
as described in Eq. (1).

Here, the verification process is recursively repeated
to solve an optimization problem using intrinsic func-
tions available in ESBMC (e.g., ESBMC assume and

ESBMC assert). Although ESBMC implements BMC, a
front-end algorithm executes ESBMC recursively, modifying
all verification constraints to efficiently prune the state-space
search. Note that completeness is not an issue here (cf.
Definitions 1 and 2) since loops are not encoded into the VCs
(cf. Definition 2) that are passed to the SMT solver.

B. Illustrative Example

To illustrate the present SMT-based optimization method
for non-convex optimization problems, the Himmelblau’s func-
tion is employed. The Himmelblau’s function is represented by
a two-variables function with four global minimums (one on
each quadrant of x1x2 plane) in f(x1, x2) = 0. Himmelblau’s
function is defined by Eq. 3; Fig. 1 shows its respective
graph [30].

f(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 (3)

−5

0

5

−5

0

5
0

200

400

600

800

1000

x
1

x
2

f(
x

1
,x

2
)

Fig. 1: Himmelblau’s function

1) Modeling: The modeling process defines constraints,
i.e., Ω boundaries. This step is important for reducing the
state-space search and consequently avoiding the state-space
explosion by the underlying model-checking procedure. This
optimization algorithm is not efficient for unconstrained opti-
mization, and the verification time can be drastically reduced
by means of a suitable constraint choice. Note that boundaries
have to be chosen based on previous knowledge about the
problem over which the optimization is being applied.

Consider the optimization problem given by Eq. (4), which
is related to the Himmeblau’s function given in Eq. (3):

min f(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2,
s.t. x1 ≤ 0,

x2 ≥ 0.
(4)

Note that inequalities x1 ≤ 0 and x2 ≥ 0 are pruning the
state-space search to the second quadrant; however, even so it
produces a (huge) state-space to be explored since x1 and x2
can assume values with very high modules. The optimization
problem given by Eq. (4) can be properly rewritten as Eq. (5)
with new constraints; those new constraints are obtained based
on previous knowledge about the function, but an incorrect
constraint choice might exclude the global minimum.

min f(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2,
s.t. −7 ≤ x1 ≤ 0,

0 ≤ x2 ≤ 7.
(5)

From the optimization problem formal definition given by
Eq. (5), the modeling step can be encoded, where decision vari-
ables are declared as non-deterministic variables constrained
by the ASSUME. Fig. 2 shows the respective C code for Eq. (5).

1 f l o a t n o n d e t f l o a t () ;
2 i n t main () {
3 / / d e f i n e d e c i s i o n v a r i a b l e s
4 f l o a t x1 = n o n d e t f l o a t () ;
5 f l o a t x2 = n o n d e t f l o a t () ;
6 / / c o n s t r a i n t h e s t a t e−space s e a r c h
7 ESBMC assume ((x1>=−7) && (x1<=0)) ;
8 ESBMC assume ((x2>=0) && (x2<=7)) ;
9 / / comput ing Himmelblau ’ s f u n c t i o n

10 f l o a t f o b j = (x1 ˆ2+ x2−11)∗(x1 ˆ2+ x2−11)
11 +(x1+x2 ˆ2−7)∗(x1+x2 ˆ2−7) ;
12 re turn 0 ;
13 }

Fig. 2: C Code for the optimization problem given by Eq. (5).

2) Specification: The next step of the proposed methodol-
ogy is the specification, where the system behavior and the
property to be checked are described. For the Himmelblau’s
function, the result of the specification step is the C program
shown in Fig. 3, which is checked by the underlying verifier.

Indeed, the C program shown in Fig. 2 leads the verifier
to produce a considerably large state-space exploration, and
consequently it takes a longer verification time, if the decision
variables are declared as non-deterministic floating-point data-
type. In this study, decision variables are defined as non-
deterministic integers, thus discretizing and reducing the state-
space exploration. However, this also reduces the optimization
process precision.

To trade-off both precision and verification time, also to
maintain the convergence to an optimal solution, the underly-
ing model-checking procedure has to be recursively invoked,
in order to increase its precision for each successive execution.
An integer variable p = 10n is created and iteratively adjusted,
such that n is the amount of decimal places related to the
decision variables. Additionally, a new constraint is inserted;
in particular, the new value of the objective function f(x(i))

at the i-th must not be greater than the value obtained in the
previous iteration f(x(i−1)). Initially, all elements in the state-
space search Ω are candidates for optimal points, and this
constraint cutoffs several candidates on each iteration.

A property has to be specified to ensure the convergence to
the minimum point on each iteration. This property specifica-
tion is stated by means of an assertion, which checks whether
the literal loptimal given in Eq. (6) is satisfiable for every
optimal candidate fc remaining in the state-space search (i.e.,
traversed from lowest to highest).

loptimal ⇐⇒ f(x) > fc (6)

The verification procedure stops when the literal loptimal

is “false”, i.e., if there is any x(i) for which f(x(i)) ≤ fc;
a counterexample shows such xi, converging iteratively f(x)
from the optimal x∗. Fig. 3 shows the initial specification for
the optimization problem given by Eq. (5). The initial value
of the objective function can be randomly initialized. For the
example in Fig. 3, f(x(0)) is arbitrarily initialized to 100, but
the present optimization algorithm works for any initial state.
Note that a previous knowledge about the function allows the
reduction of candidate functions to perform the search for fc >
0, once the Himmelblau’s function is positive.

1 i n t n o n d e t i n t () ;
2 i n t main () {
3 i n t p = 1 ; / / p r e c i s i o n v a r i a b l e
4 / / p r e v i o u s o b j e c t i v e f u n c t i o n v a l u e
5 f l o a t f a n t = 100 ;
6 i n t v = (i n t) (f a n t ∗p + 1) ;
7 i n t l i m i n f x 1 = −7∗p ;
8 i n t l im sup x1 = 0∗p ;
9 i n t l i m i n f x 2 = 0∗p ;

10 i n t l im sup x2 = 7∗p ;
11 i n t X1 = n o n d e t i n t () ;
12 i n t X2 = n o n d e t i n t () ;
13 f l o a t x1 , x2 ;
14 ESBMC assume ((X1>=l i m i n f x 1) &&
15 (X1<=l im sup x1)) ;
16 ESBMC assume ((X2>=l i m i n f x 2) &&
17 (X2<=l im sup x2)) ;
18 x1 = (f l o a t) X1 / p ;
19 x2 = (f l o a t) X2 / p ;
20 f l o a t f o b j ;
21 f o b j = (x1∗x1+x2−11)∗(x1∗x1+x2−11)
22 +(x1+x2∗x2−7)∗(x1+x2∗x2−7);
23 / / c o n s t r a i n t o e x c l u d e f o b j>f a n t
24 ESBMC assume (f o b j < f a n t) ;
25 f l o a t f c ; / / f c : c a n d i d a t e f o r minimum
26 / / o b j e c t i v e f u n c t i o n t e s t
27 f o r (i n t i = 0 ; i <= v ; i ++){
28 f c = (f l o a t) i / p ;
29 a s s e r t (f o b j > f c) ;
30 }
31 re turn 0 ;
32 }

Fig. 3: C code after the specification of Eq. (5).

3) Verification: Finally in the verification step, the C
program shown in Fig. 3 is checked by the verifier and a
counterexample is returned with a set of decision variables
x, for which the objective function value is approximated
from the optimal value. A specified C program only returns
a successful verification result if the previous function value
is the optimal point for that specific precision (defined by p),

i.e., f(x(i−1)) = f(x∗). For that particular example shown in
Fig. 3, the verifier shows a counterexample with the following
decision variables: x1 = 0 and x2 = 2. Note that f(0, 2) = 90,
which is less than the initial value (100). Surely, the global
minimum is in [0, 90], and this verification can be repeated
with the new value of f(x(i−1)), in order to obtain an objective
function value close to the optimal point on each iteration.

C. SMT-based Optimization Method

Based on the methodology described in the previous
section, an SMT-based verification method for non-convex
optimization problems can be proposed, as shown in Alg. 1. In
particular, the specification and verification steps are repeated
until the optimal solution x∗ is found. The precision of optimal
solution defines the desired precision variable ε. An unitary
value of ε results in integer solutions. Solution with one
decimal place is obtained for ε = 10, two decimal places are
achieved for ε = 100, i.e., the number of decimal places D.P.
for the solution is calculated by means of the equation

D.P. = log ε. (7)

Note that Alg. 1 contains two nested loops after the variable
initialization and declaration (lines 1-3). In each execution of
the outer loop while (lines 4-16), a new verification proce-
dure is started for a respecified problem with updated bounds
and precision. The inner for loop (line 8-14) corresponds to
the verification phase, where the objective function interval
(constrained during the specification phase) is traversed in
f(x) and the candidate functions fc are analyzed through the
satisfiability check of ¬loptimal until a f(x) ≤ fc violates
the ASSERT and breaks the for-statement, returning to the
constraint specification phase (line 7). If the ASSERT is not
violated inside the for-statement, the last fc is the minimum
value with the precision variable p (initially equal to 1), p is
multiplied by 10, adding a decimal place to the optimization
solution, and the outer loop is repeated. Note that this algo-
rithm uses the manipulation of fixed-point number precision
in order to ensure the optimization convergence.

The execution time of this algorithm depends on how
the state-space search is restricted and on the number of the
solution decimal places. The algorithm presents a fixed-point
solution with adjustable precision, i.e. the number of decimal
places may be defined. Naturally, for integer optimal points,
Alg. 1 returns the correct solution quickly (typically in a
few seconds). However, in unconstrained problems with non-
integer solution, this algorithm might take longer for achieving
the optimal solution, depending on the required precision.
Although this algorithm frequently produces an execution time,
which is longer than other classical solutions, its error rate is
typically lower than other existing methods, once it is based
on a complete verification procedure.

D. Avoiding the local minima

An important feature of this proposed SMT-based opti-
mization method is the fail-proof global minimum reachability.
Many optimization algorithms might be trapped by local min-
ima and they might incorrectly solve optimization problems.
However, the present technique ensures the avoidance of
those local minima, through the reliable satisfiability checking,
which is performed by successive SMT queries. This property
is maintained for any class of function and for any initial state.

Figures 4 and 5 show the aforementioned property of this
algorithm, comparing its performance to other optimization

input : A cost function f(x), a constraint set Ω, and a
desired precision ε

output: The optimal decision variable vector x∗, and the
optimal value of function f(x∗)

1 Initialize f(x(0)) randomly
2 Initialize the precision variable with p = 1
3 Declare the decision variables (x) as non-deterministic integer

variables
4 while p ≤ ε do
5 Define upper and lower bounds for x with the ASSUME

directive
6 Describe a model for f(x)
7 Constraint f(x(i)) < f(x(i−1)) with the directive

ASSUME
8 for Every fc ≤ f(x(i−1)) in the constrained search

state-space do
9 Verify the satisfiability of loptimal given by Eq. (6)

10 if ¬loptimal is satisfiable then
11 Update x(i) and f(x(i−1)) based on the

counterexample
12 Go back to 7
13 end
14 end
15 Update the precision variable (p = p · 10)
16 end
17 x∗ = x(i) and f(x∗) = f (i−1)(x)
18 return x∗ and f(x∗)

Algorithm 1: SMT-based verification algorithm for non-
convex optimization.

algorithms: GA and GD. In those figures, the Himmelblau’s
function is adapted for a simple single-variable problem over
x1, i.e., the x2 is considered fixed and equals to 3.131, and the
function is reduced to a plane crossing the global optimum in
x1 = −2.805 and in a local minimum with positive x1. The
partial results after each iteration are illustrated by the various
marks in these graphs. Note that the SMT-based optimization
method does not present continuous trajectory from the initial
point to the optimal point; however, it always achieves the
correct solution. Fig. 4 shows that all techniques (GA, GD,
and SMT) achieve the global optimum if they are initialized
in points closer to the global minimum than local minimum.
However, Fig. 5 shows that both GA and GD might be
trapped by the local minimum for a different initial point, close
to the local minimum. In contrast, the proposed SMT-based
optimization method can be initialized further away from the
global minimum and as a result it can find the global minimum
after some iterations as shown in Figures 4 and 5.

IV. EXPERIMENTAL EVALUATION

A. Experimental Objectives and Setup

All conducted experiments evaluate the proposed SMT-
based optimization algorithm and compare its performance
to well-known optimization algorithms (GD and GA). The
following functions are used for evaluating the present ap-
proach: Himmelblau, Styblinski-Tang, and Goldstein-Price.
Note that these functions are typically employed for evalu-
ating optimization algorithms [30]. The GA was used with
a population of 10 individuals and 50 generations; the other
options were defined as default for the ga function in the
Matlab Optimization Toolbox. For GD method we used the
learning rate of 0.01 to Himmelblau’s and Styblinski-Tang’s
functions; for the Goldstein-Price’s function 0.00005 was used,
since there are function regions that grow too quickly and

Fig. 4: Optimization trajectory of GA, GD, and SMT for a
Himmelblau’s plane in x2 = 3.131. All methods obtain the
correct answer.

Fig. 5: Optimization trajectory of GA, GD, and SMT for a
Himmelblau’s plane in x2 = 3.131. GA and GD are trapped
by an local minimum, but SMT obtains the correct answer.

it has several local minima nearby, the GD algorithm could
not converge for greater learning rates. The GD algorithm is
stopped when 100 iterations are achieved or when the gradient
is less than 10−4.

ESBMC 3.0.0 64-bit [25] is used for this experimental
evaluation. Boolector v2.1.1 [31] is employed as a back-end
SMT solver for discharging the VCs (cf. Eq. (2)). All non-
convex optimization benchmarks1 are written as C programs.
Matlab Optimization Toolbox [32] is used to perform gradient
descent and genetic algorithm methods. A DELL Inspiron
5000 with Linux Fedora 21 64-bit Workstation, 16GB of
RAM, and i7 processor Intel i7-5500U 3.0GHz clock is used
throughout the experimental evaluation. The execution time is
measured for gradient descent and genetic methods using the
MATLAB time function, while for ESBMC all times given
are wall clock time in seconds as measured by UNIX time
command.

1Available at http://esbmc.org/benchmarks/sbesc2016 benchmarks.zip

B. Description of the Benchmarks

Table I shows equations, domains, and optimal points for
each representative function employed in the following exper-
iments. First, the proposed approach is applied to minimize
the Himmelblau’s function, as described in Section III. Two
tests are performed with Himmelblau’s function considering
different domains, one restricted to the second quadrant, as
given by Eq. (5) (named Himmelblau 1), and another one with
four quadrants (named Himmelblau 2).

Second, the present approach is applied to minimize the
Styblinski-Tang’s function, as given in Table I; Fig. 6 shows
its respective graph. The Styblinski-Tang’s function for d = 2
and for the given domain is a 3-dimensional function with only
one global minimum and three local minima.

−5

0

5

−5

0

5
−100

0

100

200

300

x
1

x
2

f(
x

1
,x

2
)

Fig. 6: Styblinski-Tang’s function

Finally, the SMT-based optimization method is used to
minimize the Goldstein-Price’s function. Both equation and
information domain are given in Table I; Fig. 7 shows its
respective graph. The Goldstein-Price’s function is also a 3-
dimensional function with only one global minimum, but this
function presents a region with several local minima.

−2

−1

0

1

2

−2

−1

0

1

2
0

2

4

6

8

10

12

x 10
5

x
1

x
2

f(
x

1
,x

2
)

Fig. 7: Goldstein-Price’s function

C. Experimental Results

Each function previously described is used 100 times in
the optimization experiments for each method (GA, GD, and
SMT), resulting in a total of 400 experiments. The execution
time for each method is obtained from the arithmetic mean
of 100 executions. The correct answers are considered only if

the respective algorithm returns an error less than or equal to
10−3 for the function optimal value.

Table II shows all experimental results. The first column
indicates the test function and the second column indicates the
optimization technique (GA, GD, or SMT). The accuracy rate
and execution time are presented in third and fourth columns,
respectively.

For Himmelblau 1, the genetic algorithm presents satis-
factory performance; however, the gradient descent method
produced the correct answer only in 55% of the benchmarks.
This happens due to the random initialization; additionally, the
function has saddle points next to the given domain limit. The
SMT-based optimization method finds the correct answer, but
its execution time takes longer than other approaches.

For Himmelblau 2, the SMT-based optimization method
produces satisfactory performance with much lower verifica-
tion time; this happens because one of the minimum is in the
integer domain. Since Alg. 1 begins its execution discretizing
the state-space and continues increasing its accuracy, the
solution is always the same, i.e., it is found with low precision
in the first loop and is only confirmed when the accuracy
is increased. Fig. 8a shows the trajectories of the solutions
absolute error (i.e., step-by-step optimization results) of the
three algorithms for the Himmelblau’s 2 function. Note that
three algorithms converge for the correct answer (error equals
to zero) after a few iterations.

For the Styblinski-Tang’s function, the genetic algorithm
presents the worst results, with only 9% accuracy and gradient
descent further decreasing its performance. This function has
a local minimum in each quadrant of the x1x2 plane and the
global minimum in the 4th quarter, thus it is expected that at
least 75% of the gradient descent attempts are trapped in a
local minimum, because it is highly dependent on the initial
point. As observed in the experimental evaluation, the SMT-
based optimization method properly ignores all local minima
as optima solution. Fig. 8b shows the trajectories of solutions
absolute error of the three algorithms for the Styblinski-Tang’s
function. Note that only the SMT-based optimization method
converges to the optimal result; GA and GD are trapped by the
local minimum and cannot achieve the error equals to zero.

Finally, for the Goldstein-Price’s function that has several
local minima, the gradient descent failed to achieve the optimal
value in all simulations, as the gradient tends to 0 rapidly
in the region of several minimum. However, the genetic
algorithm improved its performance. Although there are many
local minima, these are not separated by saddle points as
the Styblinski-Tang function is more suitable for GA. Again,
the SMT-based optimization method produced a satisfactory
performance. In addition to that function, the execution time
fell sharply, it occurs because the minimum values are integers,
as Himmelblau 2. Consequently, the solution is found in the
first loop and it is only confirmed when the accuracy is
increased. Fig. 8c shows the trajectories of solutions absolute
error of the three algorithms for the Goldstein-Price’s function.
Similarly to the previous function, only SMT shows a correct
convergence, GD and GA present similar absolute errors after
the convergence.

These experimental results show that the SMT-based opti-
mization algorithm is extremely useful since it is able to find
the optimal solution for any class of function. Its performance
does not depend on initial values or function shape, and
the correct answer is found in all benchmarks. However, the

TABLE I: Non-convex Optimization Benchmarks

Function Equation Domain Optimum Point

Himmelblau 1 f(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2
−7 ≤ x1 ≤ 0

0 ≤ x2 ≤ 7

x∗ = (−2.805, 3.131)

f(x∗) = 0

Himmelblau 2 f(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2
−7 ≤ x1 ≤ 7

−7 ≤ x2 ≤ 7

x∗ = (3, 2)

x∗ = (−2.805, 3.131)

x∗ = (−3.779,−3.283)

x∗ = (3.584,−1.848)

f(x∗) = 0

Styblinski-Tang f(x1, ..., xi) = 1
2

∑d
i=1 x4

i − 16x2
i + 5xi

−5 ≤ xi ≤ 5

i = 1, 2

d = 2

x∗ = (−2.903,−2.903)

f(x∗) = −78.332

Goldstein-Price
f(x1, x2) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

x[30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

−2 ≤ xi ≤ 2

i = 1, 2

x∗ = (0,−1)

f(x∗) = 3

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

Iterations

A
b

s
o
lu

te
 E

rr
o
r

GD

GA

SMT

(a) Himmelblau’s Function

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

Iterations

A
b

s
o
lu

te
 E

rr
o
r

GD

GA

SMT

(b) Styblinski-Tang’s Function

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Iterations

A
b

s
o
lu

te
 E

rr
o
r

GD

GA

SMT

(c) Goldstein-Price’s Function

Fig. 8: Absolute error of optimization process per iteration for (a) Himmelblau’s Function, (b) Styblinski-Tang’s Function, and
(c) Goldstein-Price’s Function.

TABLE II: Experimental results for Gradient Descent, Genetic
Algorithm, and SMT-based Optimization.

Function Method Correct Answer (%) Execution Time (s)

Himmelblau 1

Gradient
Descent

55 < 1

Genetic
Algorithm

100 < 1

SMT-based
Optimization

100 1622

Himmelblau 2

Gradient
Descent

100 < 1

Genetic
Algorithm

100 < 1

SMT-based
Optimization

100 4

Styblinski-Tang

Gradient
Descent

21 < 1

Genetic
Algorithm

9 < 1

SMT-based
Optimization

100 1045

Goldstein-Price

Gradient
Descent

0 1

Genetic
Algorithm

69 < 1

SMT-based
Optimization

100 14

execution time takes longer than other algorithms since the
present algorithm does an exhaustive search in the state space.
This effect is reduced by the previously reported discretization
of the state-space; otherwise, the number of iterations is less
than all other algorithms. Performance problems can be solved
with further abstraction of the state space (e.g., intervals
analysis) [33], or restricting it by imposing new restrictions
on the variables, changing the intervals at each iteration.

V. RELATED WORK

SAT/SMT solvers have been widely applied to solve dif-
ferent optimization problems, e.g., minimize errors in the
linear fixed-point arithmetic computations in embedded control
software [16], reduce the number of gates in FPGA digital
circuits [12], and partition hardware/software components in
embedded systems by means of a Boolean domain to decide
the most efficient system implementation given a set of de-
sign’s metrics [13]–[15].

Recently, νZ [11] extends the SMT solver Z3 [34] for lin-
ear optimization problems; Sebastiani and Trentin [10] present
OptiMathSat, which is an optimization tool that extends Math-
SAT5 SMT solver to allow one to solve linear functions in
the Boolean, rational, and integer domains or a combination
of them; in Sebastiani and Tomasi [18], the authors used a
combination of SMT and LP techniques to minimize rational
functions; the related study in [17] extends their work with
linear arithmetic on the mixed integer/rational domain, thus
combining SMT, LP, and ILP techniques.

As an application example, Pavlinovic et al. [35] pro-
pose an approach which considers all possible compiler error
sources for statically typed functional programming languages
and reports the most useful one subject to some usefulness cri-
terion. The authors formulate this approach as an optimization
problem related to SMT and use νZ to compute an optimal
error source in a given ill-typed program. The approach
described by Pavlinovic et al., which uses MaxSMT solver νZ,
shows a significant performance improvement if compared to
previous SMT encodings and localization algorithms.

All previous related studies with SMT-based optimization
can solve linear problems over integer, rational, or Boolean
domains. In contrast, this paper introduces a new SMT-based

optimization method to minimize functions, linear or non-
linear, convex or non-convex, continuous or discontinuous with
fixed-point solutions. As a result, the present method is able
to solve optimization problems directly on the rational domain
with adjustable precision, without using any other technique
to assist the manipulation of the state-space.

VI. CONCLUSIONS

This paper presented a novel method for optimizing func-
tions using SMT-based verification techniques. In particular,
the proposed optimization algorithm, which relies on recur-
sive executions that re-constrains a model-checking procedure
based on SMT, is described and evaluated using standard
non-convex optimization benchmarks. Experimental results
show that the proposed method ensures the optimal solution,
although it takes longer than other traditional mathematical
methods (e.g., decent gradient) or those based on heuristics
(e.g., genetic algorithms). The presented method is complete,
and provides an improved accuracy compared to other existing
techniques. Additionally, the present approach is suitable for
every class of function, differently from previous SMT/SAT-
based optimization techniques.

However, the verification time of the present approach
could be reduced with appropriate problem constraints and
with the use of state-of-art verification techniques, e.g., abstrac-
tion interpretation [33]. Thus, this paper represents an impor-
tant advance in SMT/SAT optimization techniques, paving the
way for several future improvements. Future studies include
the application of the present approach to autonomous vehicles
navigation systems and enhancements in the model-checking
procedure for reducing the verification time by means of multi-
core verification [13] and invariant generation [33], [36], in
addition to compare the present approach to other optimization
methods [37], [38].

ACKNOWLEDGMENT

The authors thank Nikolaj Bjorner for reviewing a draft
version of this paper.

REFERENCES

[1] K. Deb, Optimization for Engineering Design: Algorithms and Exam-
ples. Prentice-Hall of India, 2004.

[2] R. Garfinkel and G. Nemhauser, Integer programming, ser. Series in
decision and control. Wiley, 1972.

[3] M. Bartholomew-Biggs, The Steepest Descent Method. Boston, MA:
Springer US, 2008, pp. 1–8.

[4] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, ser. Artificial Intelligence. Addison-Wesley Publishing
Company, 1989.

[5] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and mem-
ory optimization techniques for embedded systems,” ACM TODAES,
vol. 6, no. 2, pp. 149–206, Apr. 2001.

[6] L. Adouane, Autonomous Vehicle Navigation: From Behavioral to
Hybrid Multi-Controller Architectures. CRC Press, 2016.

[7] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Computat. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov 2006.

[8] A. Biere, “Bounded model checking,” in Handbook of Satisfiability.
IOS Press, 2009, pp. 457–481.

[9] P. Manolios and V. Papavasileiou, “ILP modulo theories,” in CAV.
Springer Berlin Heidelberg, 2013, pp. 662–677.

[10] R. Sebastiani and P. Trentin, “OptiMathSAT: A tool for optimization
modulo theories,” in CAV. Springer International Publishing, 2015, pp.
447–454.

[11] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νZ - an optimizing SMT
solver,” in TACAS. Springer Berlin Heidelberg, 2015, pp. 194–199.

[12] G. G. Estrada, “A note on designing logical circuits using SAT,” in
ICES. Springer Berlin Heidelberg, 2003, pp. 410–421.

[13] A. Trindade, H. Ismail, and L. Cordeiro, “Applying multi-core model
checking to hardware-software partitioning in embedded systems,” in
SBESC, 2015, pp. 102–105.

[14] A. Trindade and L. Cordeiro, “Aplicando verificação de modelos
para o particionamento de hardware/software,” in SBESC, 2014, p. 6.
[Online]. Available: http://sbesc.lisha.ufsc.br/sbesc2014/dl185

[15] ——, “Applying SMT-based verification to hardware/software partition-
ing in embedded systems,” DES AUTOM EMBED SYST, vol. 20, no. 1,
pp. 1–19, 2016.

[16] H. Eldib and C. Wang, “An SMT based method for optimizing arith-
metic computations in embedded software code,” IEEE CAD, vol. 33,
no. 11, pp. 1611–1622, 2014.

[17] R. Sebastiani and P. Trentin, “Pushing the envelope of optimization
modulo theories with linear-arithmetic cost functions,” in TACAS.
Springer Berlin Heidelberg, 2015, pp. 335–349.

[18] R. Sebastiani and S. Tomasi, “Optimization modulo theories with linear
rational costs,” ACM TOCL, vol. 16, no. 2, pp. 12:1–12:43, Feb. 2015.

[19] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[20] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[21] D. Beyer, Reliable and Reproducible Competition Results with
BenchExec and Witnesses (Report on SV-COMP 2016). Springer Berlin
Heidelberg, 2016, pp. 887–904.

[22] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability. IOS Press, 2009, pp.
825–885.

[23] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded
model checking for embedded ANSI-C software,” IEEE TSE, vol. 38,
no. 4, pp. 957–974, 2012.

[24] D. Kroening and M. Tautschnig, “CBMC – c bounded model checker,”
pp. 389–391, 2014.

[25] J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer, “ESBMC
1.22 - (competition contribution),” in TACAS, 2014, pp. 405–407.

[26] B. R. Abreu, Y. M. R. Gadelha, C. L. Cordeiro, B. E. de Lima Filho,
and S. W. da Silva, “Bounded model checking for fixed-point digital
filters,” JBCS, vol. 22, no. 1, pp. 1–20, 2016.

[27] I. V. Bessa, H. I. Ismail, L. C. Cordeiro, and J. E. C. Filho, “Veri-
fication of fixed-point digital controllers using direct and delta forms
realizations,” DES AUTOM EMBED SYST, vol. 20, no. 2, pp. 95–126,
2016.

[28] I. Bessa, H. Ibrahim, L. Cordeiro, and J. E. Filho, “Verification of Delta
Form Realization in Fixed-Point Digital Controllers Using Bounded
Model Checking,” in SBESC, 2014.

[29] D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in CAV. Springer Berlin Heidelberg, 2011, pp.
184–190.

[30] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimisation problems,” IJMMNO, vol. 4, no. 2, pp. 150–194,
2013.

[31] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays,” in TACAS, 2009, pp. 174–177.

[32] Matlab Optimization Toolbox User’s Guide, The Mathworks, Inc., 2016.
[33] H. Rocha, H. Ismail, L. Cordeiro, and R. Barreto, “Model checking

embedded c software using k-induction and invariants,” in SBESC, Nov
2015, pp. 90–95.

[34] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.

[35] Z. Pavlinovic, T. King, and T. Wies, “Practical SMT-based type error
localization,” in ICFP, 2015, pp. 412–423.

[36] M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro, “Handling loops
in bounded model checking of c programs via k-induction,” STTT, pp.
1–18, 2015.

[37] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
1995, pp. 1942–1948.

[38] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents,” IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICS-PART B, vol. 26, no. 1, pp. 29–41,
1996.

