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Abstract—We present an alternative approach to solve the 

hardware and software partitioning problem, which uses 

Bounded Model Checking (BMC) based on Satisfiability 

Modulo Theories (SMT) in conjunction with a multi-core 

support using Open Multi-Processing. The multi-core approach 

allows initializing many verification instances based on 

processors cores numbers available to the model checker. Each 

instance checks for a different optimum value until the 

optimization problem is satisfied. The goal is to show that multi-

core model-checking techniques can be effective, in particular 

cases, to find the optimal solution of the hardware-software 

partitioning problem. We compare the experimental results of 

our proposed approach with conventional algorithms. 
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I.  INTRODUCTION  

With the strong development of embedded systems, the 
design phase plays an important role nowadays. The 
partitioning decision process, which deals with decisions upon 
which parts of the application have to be designed in hardware 
(HW) and which one in software (SW), must be supported by 
any well-structured methodology. If not, this leads to a 
number of issues that affects the overall development proces. 
Starting at the 1990s, intensive research was performed, and 
several approaches proposed, as shown in [1] and [2]. In [3] 
was shown that it is possible to use Bounded Model Checking 
(BMC) based on Satisfiability Modulo Theories (SMT) to 
perform HW-SW partitioning in embedded systems. The 
present work improves the SMT-based verification method. 
Here, we exploit the availability of multi-core processors. In 
particular, a multi-core SMT-based BMC method is applied 
to the HW-SW partitioning and then is compared to the results 
with classical integer linear programming (ILP) and genetic 
algorithm (GA) using a multi-core tool as well. To the best of 
our knowledge, this is the first work to use a multi-core SMT-
based verification to solve a HW-SW partitioning problem in 
embedded systems. We implement our ideas with the Efficient 
SMT-based Bounded Model Checker (ESBMC) [9].  

II. BACKGROUND 

A. Optimization 

Optimization is the act of obtaining the optimal solution 
under given circumstances [5]. In engineering system, the 
ultimate goal is either to minimize the effort required or to 
maximize the desired benefit. Eq. (1) shows a typical linear 
programming problem, where 𝐴 and 𝑏 are vectors or matrixes 
that describe the constraints.  

 min 𝑓𝑇𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝐴. 𝑥 ≤ 𝑏,

𝐴𝑒𝑞. 𝑥 = 𝑏𝑒𝑞,
𝑥 ≥ 0.

 

If the optimization problem is complex, some heuristics 
can be used to solve the same problem faster [5]. The 
drawback is that the found solution may not be the exact. 

B. Bounded Model Checking with ESBMC 

Bounded model checking (BMC) combines model 
checking with satisfiability solving. And for some types of 
problems, it offers large performance improvements over 
previous approaches, as shown in [6]. BMC checks the 
negation of a given property at a given depth: given a 
transition system 𝑀 , a property 𝜙 , and a bound 𝑘 , BMC 
unrolls the system 𝑘 times and translates it into a verification 
condition (VC) 𝜑 such that 𝜑 is satisfiable if and only if 𝜙 has 
a counterexample of depth 𝑘  or less [6]. To cope with 
increasing software complexity, SMT solvers can be used as 
back-ends for solving the generated VCs, as shown in [7], and 
[8]. Two directives in C/C++ that can guide a model checker 
to solve an optimization problem: ASSUME ensures the 
compliance of constraints (software costs); and ASSERT 
controls the code violation (minimum hardware cost).  

C. Multi-core ESBMC with OpenMP 

Although recent CPUs have a modern multi-core 
architecture, ESBMC verification runs are still performed 
only in a single-core. Fig.1 shows the ESBMC architecture, 
which consists of the C/C++ parser, GOTO Program, GOTO 
Symex, and SMT solver [10]. ESBMC compiles the C/C++ 
code into equivalent GOTO-programs (i.e., control-flow 
graphs) using a gcc-compliant style. The GOTO-programs 
can be processed by the symbolic execution engine, called 
GOTO Symex, where two recursive functions compute 
constraints (𝐶) and properties (𝑃); finally it generates two sets 
of equations (i.e., 𝐶 ∧ ¬𝑃) which are checked by an SMT 
solver. The main factor for ESBMC to use only a single-core 
relies on its back-end (i.e., SMT Solver).  

 
Figure 1.  ESBMC architecture 



To optimize the CPU utilization without modifying the 
underlying SMT Solver, the Open Multi-Processing 
(OpenMP) library [15] is used as a front-end for ESBMC. In 
OpenMP, the implementation is based on the fork-join model. 
The main thread executes the sequential parts of the program; 
if a parallel region is encountered, then it forks a team of 
worker threads. After the parallel region finishes, then the 
main procedure gets back to the single-threaded execution 
mode [4]. Fig. 2 shows our approach called Multi-core 
ESBMC (ESBMC-MC). 

 
Figure 2.  Multi-core ESBMC Approach 

ESBMC-MC obtains the problem specification 
represented by a C program, which is violated when the 
correct optimum value (𝑇𝑖𝑝𝐻) parameter is reached; ESBMC-
MC starts a parallel region with 𝑁 different instances, based 
on the number of available processing cores. All these 
ESBMC instances run independently of each other, as shown 
in Fig. 2; there is no shared-memory or message-passing. In 
particular, different threads are managed by OpenMP using 
different 𝑇𝑖𝑝𝐻  values as condition. After executing 𝑁 
instances, if there is no code violation, then ESBMC-MC 
starts 𝑁 new instances. During the parallel region execution, 
if a violation is found, then it presents a counterexample. If all 
threads of the batch processing are terminated, then ESBMC-
MC finishes its execution. 

III. MATHEMATICAL MODELING 

The mathematical modeling was taken from [1], [2]. 

A. Informal Model (or Assumptions) 

First, there is only one software context, i.e., there is just 
one general-purpose processor, and there is only one hardware 
context. The components of the system must be mapped to 
either one of these two contexts. Second, the software 
implementation of a component is associated with a software 
cost (running time). Third, the hardware implementation of a 
component has a hardware cost (area, heat dissipation, or 
energy consumption). Fourth, based on the premise that 
hardware is significantly faster than software, the running 
time of the components in hardware is considered as zero. 
Finally, if two components are mapped to the same context, 
then there is no overhead of communication between them. 

The consequence of these assumptions is that scheduling does 
not need to be addressed. The focus is only on the partitioning 
problem. That configuration describes the first-generation co-
design, where the focus is on bipartitioning [11]. 

B. Formal Model 

A directed simple graph 𝐺 = (𝑉, 𝐸), called the task graph 
of the system, is necessary. The vertices 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} 
represent the nodes that are the components of the system that 
will be partitioned. The edges (𝐸) represent communication 
between components. Each node 𝑣𝑖  has a cost ℎ(𝑣𝑖) (or ℎ𝑖) 
of hardware (if implemented in hardware) and a cost 𝑠(𝑣𝑖) (or 
𝑠𝑖)  of software (if implemented in software). 𝑐(𝑣𝑖, 𝑣𝑗) 

represents the communication cost between 𝑣𝑖 and 𝑣𝑗 if they 

are implemented in different contexts (hardware or software). 
Based on [1], 𝑃 is called a hardware-software partition if it is 
a bipartition of 𝑉: 𝑃 = (𝑉𝐻 , 𝑉𝑆), where 𝑉𝐻 ∪ 𝑉𝑆 = 𝑉 and 𝑉𝐻 ∩
𝑉𝑆 = ∅. The crossing edges are 𝐸𝑃 = {(𝑣𝑖, 𝑣𝑗): 𝑣𝑖 ∈ 𝑉𝑆, 𝑣𝑗 ∈

𝑉𝐻  or 𝑣𝑖 ∈ 𝑉𝐻 , 𝑣𝑗 ∈ 𝑉𝑆}. The hardware cost of 𝑃 is given by 

Eq. (2), and the software cost of 𝑃 is given by Eq. (3): 

 𝐻𝑃 = ∑ ℎ𝑖𝑣𝑖∈𝑉𝐻
 

 𝑆𝑃 = ∑ 𝑠𝑖𝑣𝑖∈𝑉𝑆
+ ∑ 𝑐(𝑣𝑖, 𝑣𝑗)(𝑣𝑖,𝑣𝑗)∈𝐸𝑃

 

In this paper, the focus is on the case that 𝑆0 is given, i.e., 
to find a 𝑃  HW-SW partitioning so that 𝑆𝑃 ≤ 𝑆0  and 𝐻𝑃  is 
minimal (system with hard real-time constraints). So, based 
on Eq. (1) and Eq. (3) the optimization problem’s restrictions 
can be reformulated as: 𝑠(1 − 𝑥) + 𝑐|𝐸𝑥| ≤ 𝑆0, where 𝑥 is the 
decision variable. Concerning the complexity of this problem, 
reference [1] demonstrates that it is NP-Hard. 

IV. ANALYSIS OF THE PARTITIONING PROBLEM  

A. Using ILP-based and Genetic Algorithms 

The ILP and GA were taken from [3]. Both use slack 

variables to represent constraints and to use commercial 

tools. However, GA had improvements to increase the 

solution accuracy without producing timeout. The tuning was 

performed by empirical tests and resulted in changing of three 

parameters of MATLAB function ga [12]: the population size 

was set from 300 to 500, the Elite count changed from 2 to 

50, and the number of Generations changed from 100* 

NumberOfVariables (default) to 75. 

B. Using ESBMC 

ESBMC pseudocode shows the algorithm with the same 
restrictions and conditions placed on ILP and GA. Two values 
must be controlled to obtain the results and to perform the 
optimization. One is the initial software cost, as defined in 
Section III.B. The other is the halting condition (code 
violation) that stops the algorithm. The ESBMC algorithm 
starts with the declarations of hardware, software, and 
communication costs. 𝑆0  must also be defined, as the 
transposed incidence matrix and the identity matrix. Here, the 
matrices A and b are generated. At that point, the ESBMC 



algorithm starts to differ from ILP and GA presented in [3]. It 
is possible to tell ESBMC with which type of values the 
variables are tested. There is a declaration to populate all 
decision variables 𝑥 with non-deterministic Boolean values. 
Those values that change for each test will generate a possible 
solution and obey the restrictions. If this is achieved, then a 
feasible solution is found and the ASSUME directive ensures 
the compliance of constrains (i.e., 𝐴. 𝑥 ≤ 𝑏). 

A loop controls the cost of hardware hint, starting with 
zero and reaching the maximum value considering the case 
where all nodes are partitioned to hardware. To every test 
performed, the hardware hint is compared to the feasible 
solution. This is accomplished by an ASSERT statement at the 
end of the algorithm  (the halt condition or true-false 
statement). The ASSERT statement tests the objective 
function (hardware cost), and will stop if the hardware cost 
found is lower than or equal to the optimal solution. However, 
if ASSERT returns a TRUE condition (hardware cost is higher 
than the optimal solution), then the model-checking algorithm 
restarts and a new possible solution is generated and tested 
until the ASSERT generates a FALSE condition. When the 
FALSE condition happens, the execution code is aborted and 
ESBMC presents the counterexample that caused the 
condition to be broken. That is the point in which the solution 
is presented (minimum HW cost). In the ESBMC algorithm, 
it is not necessary to add slack variables because the modulus 
operation is kept.  

ESBMC Pseudocode 

01   Initialize variables 

02   Declare number of nodes and edges 

03   Declare hardware cost of each node as array (ℎ) 

04   Declare software cost of each node as array (𝑠) 

05   Declare communication cost of each edge (𝑐) 

06   Declare the initial software cost (𝑆0) 

07   Declare transposed incidence matrix graph 𝐺 (𝐸) 

08   Define the solutions variables (𝑥𝑖) as Boolean 

09   For 𝑇𝑖𝑝𝐻 = 0 to 𝐻𝑚𝑎𝑥 do { 

10       Populate 𝑥𝑖  with nondeterministic/test values 

11       Calculate 𝑠(1 − 𝑥) + 𝑐 ∗ |𝐸𝑥| and store at 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

12       Requirement insured by 𝐴𝑆𝑆𝑈𝑀𝐸 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≤  𝑆0)  

13       Calculate 𝐻𝑃 cost based on value tested of 𝑥𝑖 

14       Violation check with ASSERT (𝐻𝑃  >  𝑇𝑖𝑝𝐻) 

15     } 

In the multi-core ESBMC (ESBMC-MC) algorithm, the 
only difference is the fact that the value of 𝑇𝑖𝑝𝐻 and its range 
is not declared in the algorithm. The approach is invoked as 
follows: 

esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥> 

Where < 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐 > is the optimization problem 
described in ANSI-C format, <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> is the minimum 
(zero to HW-SW partitioning problem) and <𝐻𝑚𝑎𝑥> is the 
maximum hardware cost for the specified problem. Therefore, 

                                                         
1 Available at: http://www.esbmc.org/benchmarks/ 

the algorithm starts 𝑁 different instances of ESBMC using the 
different optimization values, in ascending order, for 𝐻𝑚𝑎𝑥 
in order to find a violation. If all instances finish and no 
violation is found, then multi-core ESBMC starts new 𝑁 
instances. When a violation is found, it reports time and 
hardware cost. If multi-core ESBMC tests all the possibilities 
for the hardware cost and has not found a violation, then it 
reports: “Violation not found”. 

V. EXPERIMENTAL EVALUATION 

Testing platform: desktop with 15GB of RAM and i7 (8-
cores) from Intel with clock of 3.40 GHz; ESBMC 1.24; 64-
bit Ubuntu 14.04.1 LTS; version 2.0.1 of Boolector SMT-
solver [16]; MATLAB R2013a from MathWorks with 
Parallel Computing Toolbox was used [12] for the ILP and 
GA formulations. The ESBMC algorithms were implemented 
in C++ ¹. Each time was measured 3 times and average taken. 
Statistical confidence reached 92%, based on standard 
deviation, and confidence interval for every benchmark. A 
time out condition (TO) is reached when the running time is 
longer than 7,200 seconds. A memory out (MO) occurs when 
the tool reaches 15GB of memory. TABLE I. lists the 
benchmarks1. Those were the same used by related work [1], 
[2], and [14]. 

TABLE I.  DESCRIPTION OF BENCHMARKS 

Name Nodes Edges Description 

CRC32 25 32 32-bit cyclic redundancy check [13] 

Patricia 

Insert 
21 48 

Routine to insert values [13] 

Dijkstra 26 69 
Computer shortest paths in a graph 

[13] 

Clustering 150 331 
Image segmentation algorithm in a 

medical application 

RC6 329 448 RC6 cryptography graph 

Fuzzy 261 422 
Clustering algorithm based on fuzzy 

logic 

Mars 417 600 MARS cipher from IBM 

 
The nodes correspond to high-level language instructions. 

SW and communication costs are time dimensional, and HW 
costs represent the occupied area.  The first three benchmarks 
came from MiBench [13]. Clustering and Fuzzy benchmarks 
were designed from [2]. From the same authors, very complex 
benchmarks to test the limits of the applicability of techniques 
were used (RC6 and Mars). 

TABLE II. shows that ILP produces the best results, with 
a limit of 329 nodes or less. GA was able to solve all 
benchmarks, but the error from the exact solution varies from 
-38% to 29%. ESBMC-MC had a better performance than that 
of pure ESBMC. The relative speedup obtained ranged from 
14 to 54. Until the number of 150 nodes is reached, the 
ESBMC technique, mainly ESBMC-MC, has shown itself to 
be a good choice to solve HW-SW partitioning. This is 
because the exact solution was found and the execution time 
was mostly closer to ILP. Pure ESBMC algorithm has the 



drawback of creating more complex problems, because it 
increases the states produced. 

TABLE II.  RESULTS OF THE BENCHMARKS 

 
Legend: TO = Time out and MO = memory out 

 
ESBMC-MC was unable to solve some benchmarks. Pure 

ESBMC had even a worse performance. This is a clear 
indication that the prune method adopted by ILP is more 
efficient than the adopted by ESBMC solver. 

VI. RELATED WORK 

Since the 2000s, three paths have been tracked to solve the 
optimization of HW-SW partitioning, i.e., to find the exact 
solution [2], to use heuristics to speed up performance time 
[1], and hybrid ones [14]. This paper belongs to the group that 
founds the exact solution. In terms of SMT-based verification, 
in [10] was presented a bounded model checker for C++ 
programs, which is an evolution of dealing with C programs 
and [9] uses the ESBMC model checker for embedded ANSI-
C software. In [3] it was proven that it is possible to use 
ESBMC to solve HW-SW partitioning. There are related 
studies focused on decreasing the verification time of model 
checkers [17], and modifications of internal search engines to 
support parallelism [18], but there is the need for initiatives 
related to parallel SMT solvers [19]. Recently, SMT solver Z3 
was extended to solve optimization problems [20]. 

VII. CONCLUSIONS 

None of tools is indicated to partition problems with more 
than 400 nodes. If we consider less than 400 nodes, so ILP is 
the best tool. If the problem to be solved has 150 nodes or less, 
then ESBMC represents a feasible alternative. ESBMC has a 
BSD-style license and can be downloaded and used free. 

Concerning the two versions of ESBMC, it is possible to 
conclude that Multi-core ESBMC had better performance 
results than pure ESBMC (speedup reached 47 times). 
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