
Applying Multi-Core Model Checking to Hardware-Software Partitioning in

Embedded Systems

Alessandro Trindade, Hussama Ismail, and Lucas Cordeiro

Federal University of Amazonas - Manaus, Amazonas, Brazil

{alessandro.b.trindade, hussamaismail}@gmail.com, lucascordeiro@ufam.edu.br

Abstract—We present an alternative approach to solve the

hardware and software partitioning problem, which uses

Bounded Model Checking (BMC) based on Satisfiability

Modulo Theories (SMT) in conjunction with a multi-core

support using Open Multi-Processing. The multi-core approach

allows initializing many verification instances based on

processors cores numbers available to the model checker. Each

instance checks for a different optimum value until the

optimization problem is satisfied. The goal is to show that multi-

core model-checking techniques can be effective, in particular

cases, to find the optimal solution of the hardware-software

partitioning problem. We compare the experimental results of

our proposed approach with conventional algorithms.

Keywords- hardware-software co-design; hardware-software

partitioning; optimization; model checking; multi-core; OpenMP

I. INTRODUCTION

With the strong development of embedded systems, the
design phase plays an important role nowadays. The
partitioning decision process, which deals with decisions upon
which parts of the application have to be designed in hardware
(HW) and which one in software (SW), must be supported by
any well-structured methodology. If not, this leads to a
number of issues that affects the overall development proces.
Starting at the 1990s, intensive research was performed, and
several approaches proposed, as shown in [1] and [2]. In [3]
was shown that it is possible to use Bounded Model Checking
(BMC) based on Satisfiability Modulo Theories (SMT) to
perform HW-SW partitioning in embedded systems. The
present work improves the SMT-based verification method.
Here, we exploit the availability of multi-core processors. In
particular, a multi-core SMT-based BMC method is applied
to the HW-SW partitioning and then is compared to the results
with classical integer linear programming (ILP) and genetic
algorithm (GA) using a multi-core tool as well. To the best of
our knowledge, this is the first work to use a multi-core SMT-
based verification to solve a HW-SW partitioning problem in
embedded systems. We implement our ideas with the Efficient
SMT-based Bounded Model Checker (ESBMC) [9].

II. BACKGROUND

A. Optimization

Optimization is the act of obtaining the optimal solution
under given circumstances [5]. In engineering system, the
ultimate goal is either to minimize the effort required or to
maximize the desired benefit. Eq. (1) shows a typical linear
programming problem, where 𝐴 and 𝑏 are vectors or matrixes
that describe the constraints.

 min 𝑓𝑇𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝐴. 𝑥 ≤ 𝑏,

𝐴𝑒𝑞. 𝑥 = 𝑏𝑒𝑞,
𝑥 ≥ 0.

If the optimization problem is complex, some heuristics
can be used to solve the same problem faster [5]. The
drawback is that the found solution may not be the exact.

B. Bounded Model Checking with ESBMC

Bounded model checking (BMC) combines model
checking with satisfiability solving. And for some types of
problems, it offers large performance improvements over
previous approaches, as shown in [6]. BMC checks the
negation of a given property at a given depth: given a
transition system 𝑀 , a property 𝜙 , and a bound 𝑘 , BMC
unrolls the system 𝑘 times and translates it into a verification
condition (VC) 𝜑 such that 𝜑 is satisfiable if and only if 𝜙 has
a counterexample of depth 𝑘 or less [6]. To cope with
increasing software complexity, SMT solvers can be used as
back-ends for solving the generated VCs, as shown in [7], and
[8]. Two directives in C/C++ that can guide a model checker
to solve an optimization problem: ASSUME ensures the
compliance of constraints (software costs); and ASSERT
controls the code violation (minimum hardware cost).

C. Multi-core ESBMC with OpenMP

Although recent CPUs have a modern multi-core
architecture, ESBMC verification runs are still performed
only in a single-core. Fig.1 shows the ESBMC architecture,
which consists of the C/C++ parser, GOTO Program, GOTO
Symex, and SMT solver [10]. ESBMC compiles the C/C++
code into equivalent GOTO-programs (i.e., control-flow
graphs) using a gcc-compliant style. The GOTO-programs
can be processed by the symbolic execution engine, called
GOTO Symex, where two recursive functions compute
constraints (𝐶) and properties (𝑃); finally it generates two sets
of equations (i.e., 𝐶 ∧ ¬𝑃) which are checked by an SMT
solver. The main factor for ESBMC to use only a single-core
relies on its back-end (i.e., SMT Solver).

Figure 1. ESBMC architecture

To optimize the CPU utilization without modifying the
underlying SMT Solver, the Open Multi-Processing
(OpenMP) library [15] is used as a front-end for ESBMC. In
OpenMP, the implementation is based on the fork-join model.
The main thread executes the sequential parts of the program;
if a parallel region is encountered, then it forks a team of
worker threads. After the parallel region finishes, then the
main procedure gets back to the single-threaded execution
mode [4]. Fig. 2 shows our approach called Multi-core
ESBMC (ESBMC-MC).

Figure 2. Multi-core ESBMC Approach

ESBMC-MC obtains the problem specification
represented by a C program, which is violated when the
correct optimum value (𝑇𝑖𝑝𝐻) parameter is reached; ESBMC-
MC starts a parallel region with 𝑁 different instances, based
on the number of available processing cores. All these
ESBMC instances run independently of each other, as shown
in Fig. 2; there is no shared-memory or message-passing. In
particular, different threads are managed by OpenMP using
different 𝑇𝑖𝑝𝐻 values as condition. After executing 𝑁
instances, if there is no code violation, then ESBMC-MC
starts 𝑁 new instances. During the parallel region execution,
if a violation is found, then it presents a counterexample. If all
threads of the batch processing are terminated, then ESBMC-
MC finishes its execution.

III. MATHEMATICAL MODELING

The mathematical modeling was taken from [1], [2].

A. Informal Model (or Assumptions)

First, there is only one software context, i.e., there is just
one general-purpose processor, and there is only one hardware
context. The components of the system must be mapped to
either one of these two contexts. Second, the software
implementation of a component is associated with a software
cost (running time). Third, the hardware implementation of a
component has a hardware cost (area, heat dissipation, or
energy consumption). Fourth, based on the premise that
hardware is significantly faster than software, the running
time of the components in hardware is considered as zero.
Finally, if two components are mapped to the same context,
then there is no overhead of communication between them.

The consequence of these assumptions is that scheduling does
not need to be addressed. The focus is only on the partitioning
problem. That configuration describes the first-generation co-
design, where the focus is on bipartitioning [11].

B. Formal Model

A directed simple graph 𝐺 = (𝑉, 𝐸), called the task graph
of the system, is necessary. The vertices 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}
represent the nodes that are the components of the system that
will be partitioned. The edges (𝐸) represent communication
between components. Each node 𝑣𝑖 has a cost ℎ(𝑣𝑖) (or ℎ𝑖)
of hardware (if implemented in hardware) and a cost 𝑠(𝑣𝑖) (or
𝑠𝑖) of software (if implemented in software). 𝑐(𝑣𝑖, 𝑣𝑗)

represents the communication cost between 𝑣𝑖 and 𝑣𝑗 if they

are implemented in different contexts (hardware or software).
Based on [1], 𝑃 is called a hardware-software partition if it is
a bipartition of 𝑉: 𝑃 = (𝑉𝐻 , 𝑉𝑆), where 𝑉𝐻 ∪ 𝑉𝑆 = 𝑉 and 𝑉𝐻 ∩
𝑉𝑆 = ∅. The crossing edges are 𝐸𝑃 = {(𝑣𝑖, 𝑣𝑗): 𝑣𝑖 ∈ 𝑉𝑆, 𝑣𝑗 ∈

𝑉𝐻 or 𝑣𝑖 ∈ 𝑉𝐻 , 𝑣𝑗 ∈ 𝑉𝑆}. The hardware cost of 𝑃 is given by

Eq. (2), and the software cost of 𝑃 is given by Eq. (3):

 𝐻𝑃 = ∑ ℎ𝑖𝑣𝑖∈𝑉𝐻

 𝑆𝑃 = ∑ 𝑠𝑖𝑣𝑖∈𝑉𝑆
+ ∑ 𝑐(𝑣𝑖, 𝑣𝑗)(𝑣𝑖,𝑣𝑗)∈𝐸𝑃

In this paper, the focus is on the case that 𝑆0 is given, i.e.,
to find a 𝑃 HW-SW partitioning so that 𝑆𝑃 ≤ 𝑆0 and 𝐻𝑃 is
minimal (system with hard real-time constraints). So, based
on Eq. (1) and Eq. (3) the optimization problem’s restrictions
can be reformulated as: 𝑠(1 − 𝑥) + 𝑐|𝐸𝑥| ≤ 𝑆0, where 𝑥 is the
decision variable. Concerning the complexity of this problem,
reference [1] demonstrates that it is NP-Hard.

IV. ANALYSIS OF THE PARTITIONING PROBLEM

A. Using ILP-based and Genetic Algorithms

The ILP and GA were taken from [3]. Both use slack

variables to represent constraints and to use commercial

tools. However, GA had improvements to increase the

solution accuracy without producing timeout. The tuning was

performed by empirical tests and resulted in changing of three

parameters of MATLAB function ga [12]: the population size

was set from 300 to 500, the Elite count changed from 2 to

50, and the number of Generations changed from 100*

NumberOfVariables (default) to 75.

B. Using ESBMC

ESBMC pseudocode shows the algorithm with the same
restrictions and conditions placed on ILP and GA. Two values
must be controlled to obtain the results and to perform the
optimization. One is the initial software cost, as defined in
Section III.B. The other is the halting condition (code
violation) that stops the algorithm. The ESBMC algorithm
starts with the declarations of hardware, software, and
communication costs. 𝑆0 must also be defined, as the
transposed incidence matrix and the identity matrix. Here, the
matrices A and b are generated. At that point, the ESBMC

algorithm starts to differ from ILP and GA presented in [3]. It
is possible to tell ESBMC with which type of values the
variables are tested. There is a declaration to populate all
decision variables 𝑥 with non-deterministic Boolean values.
Those values that change for each test will generate a possible
solution and obey the restrictions. If this is achieved, then a
feasible solution is found and the ASSUME directive ensures
the compliance of constrains (i.e., 𝐴. 𝑥 ≤ 𝑏).

A loop controls the cost of hardware hint, starting with
zero and reaching the maximum value considering the case
where all nodes are partitioned to hardware. To every test
performed, the hardware hint is compared to the feasible
solution. This is accomplished by an ASSERT statement at the
end of the algorithm (the halt condition or true-false
statement). The ASSERT statement tests the objective
function (hardware cost), and will stop if the hardware cost
found is lower than or equal to the optimal solution. However,
if ASSERT returns a TRUE condition (hardware cost is higher
than the optimal solution), then the model-checking algorithm
restarts and a new possible solution is generated and tested
until the ASSERT generates a FALSE condition. When the
FALSE condition happens, the execution code is aborted and
ESBMC presents the counterexample that caused the
condition to be broken. That is the point in which the solution
is presented (minimum HW cost). In the ESBMC algorithm,
it is not necessary to add slack variables because the modulus
operation is kept.

ESBMC Pseudocode

01 Initialize variables

02 Declare number of nodes and edges

03 Declare hardware cost of each node as array (ℎ)

04 Declare software cost of each node as array (𝑠)

05 Declare communication cost of each edge (𝑐)

06 Declare the initial software cost (𝑆0)

07 Declare transposed incidence matrix graph 𝐺 (𝐸)

08 Define the solutions variables (𝑥𝑖) as Boolean

09 For 𝑇𝑖𝑝𝐻 = 0 to 𝐻𝑚𝑎𝑥 do {

10 Populate 𝑥𝑖 with nondeterministic/test values

11 Calculate 𝑠(1 − 𝑥) + 𝑐 ∗ |𝐸𝑥| and store at 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

12 Requirement insured by 𝐴𝑆𝑆𝑈𝑀𝐸 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≤ 𝑆0)

13 Calculate 𝐻𝑃 cost based on value tested of 𝑥𝑖

14 Violation check with ASSERT (𝐻𝑃 > 𝑇𝑖𝑝𝐻)

15 }

In the multi-core ESBMC (ESBMC-MC) algorithm, the
only difference is the fact that the value of 𝑇𝑖𝑝𝐻 and its range
is not declared in the algorithm. The approach is invoked as
follows:

esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Where < 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐 > is the optimization problem
described in ANSI-C format, <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> is the minimum
(zero to HW-SW partitioning problem) and <𝐻𝑚𝑎𝑥> is the
maximum hardware cost for the specified problem. Therefore,

1 Available at: http://www.esbmc.org/benchmarks/

the algorithm starts 𝑁 different instances of ESBMC using the
different optimization values, in ascending order, for 𝐻𝑚𝑎𝑥
in order to find a violation. If all instances finish and no
violation is found, then multi-core ESBMC starts new 𝑁
instances. When a violation is found, it reports time and
hardware cost. If multi-core ESBMC tests all the possibilities
for the hardware cost and has not found a violation, then it
reports: “Violation not found”.

V. EXPERIMENTAL EVALUATION

Testing platform: desktop with 15GB of RAM and i7 (8-
cores) from Intel with clock of 3.40 GHz; ESBMC 1.24; 64-
bit Ubuntu 14.04.1 LTS; version 2.0.1 of Boolector SMT-
solver [16]; MATLAB R2013a from MathWorks with
Parallel Computing Toolbox was used [12] for the ILP and
GA formulations. The ESBMC algorithms were implemented
in C++ ¹. Each time was measured 3 times and average taken.
Statistical confidence reached 92%, based on standard
deviation, and confidence interval for every benchmark. A
time out condition (TO) is reached when the running time is
longer than 7,200 seconds. A memory out (MO) occurs when
the tool reaches 15GB of memory. TABLE I. lists the
benchmarks1. Those were the same used by related work [1],
[2], and [14].

TABLE I. DESCRIPTION OF BENCHMARKS

Name Nodes Edges Description

CRC32 25 32 32-bit cyclic redundancy check [13]

Patricia

Insert
21 48

Routine to insert values [13]

Dijkstra 26 69
Computer shortest paths in a graph

[13]

Clustering 150 331
Image segmentation algorithm in a

medical application

RC6 329 448 RC6 cryptography graph

Fuzzy 261 422
Clustering algorithm based on fuzzy

logic

Mars 417 600 MARS cipher from IBM

The nodes correspond to high-level language instructions.

SW and communication costs are time dimensional, and HW
costs represent the occupied area. The first three benchmarks
came from MiBench [13]. Clustering and Fuzzy benchmarks
were designed from [2]. From the same authors, very complex
benchmarks to test the limits of the applicability of techniques
were used (RC6 and Mars).

TABLE II. shows that ILP produces the best results, with
a limit of 329 nodes or less. GA was able to solve all
benchmarks, but the error from the exact solution varies from
-38% to 29%. ESBMC-MC had a better performance than that
of pure ESBMC. The relative speedup obtained ranged from
14 to 54. Until the number of 150 nodes is reached, the
ESBMC technique, mainly ESBMC-MC, has shown itself to
be a good choice to solve HW-SW partitioning. This is
because the exact solution was found and the execution time
was mostly closer to ILP. Pure ESBMC algorithm has the

drawback of creating more complex problems, because it
increases the states produced.

TABLE II. RESULTS OF THE BENCHMARKS

Legend: TO = Time out and MO = memory out

ESBMC-MC was unable to solve some benchmarks. Pure

ESBMC had even a worse performance. This is a clear
indication that the prune method adopted by ILP is more
efficient than the adopted by ESBMC solver.

VI. RELATED WORK

Since the 2000s, three paths have been tracked to solve the
optimization of HW-SW partitioning, i.e., to find the exact
solution [2], to use heuristics to speed up performance time
[1], and hybrid ones [14]. This paper belongs to the group that
founds the exact solution. In terms of SMT-based verification,
in [10] was presented a bounded model checker for C++
programs, which is an evolution of dealing with C programs
and [9] uses the ESBMC model checker for embedded ANSI-
C software. In [3] it was proven that it is possible to use
ESBMC to solve HW-SW partitioning. There are related
studies focused on decreasing the verification time of model
checkers [17], and modifications of internal search engines to
support parallelism [18], but there is the need for initiatives
related to parallel SMT solvers [19]. Recently, SMT solver Z3
was extended to solve optimization problems [20].

VII. CONCLUSIONS

None of tools is indicated to partition problems with more
than 400 nodes. If we consider less than 400 nodes, so ILP is
the best tool. If the problem to be solved has 150 nodes or less,
then ESBMC represents a feasible alternative. ESBMC has a
BSD-style license and can be downloaded and used free.

Concerning the two versions of ESBMC, it is possible to
conclude that Multi-core ESBMC had better performance
results than pure ESBMC (speedup reached 47 times).

ACKNOWLEDGEMENTS

Part of the results were sponsored by Samsung Eletrônica
da Amazônia Ltda ruled by Brazilian federal law 8.387/91.

REFERENCES

[1] Arató, P., Juhász, S., Mann, Z.A., Orbán, A., Papp, D.:
Hardware/software partitioning in embedded system design. In: WISP,
pp. 192-202, 2003

[2] Mann, Z.A., Orbán, A., Arató, P.: Finding optimal hardware/software
partitions. In: FMSD, vol. 31, pp. 241-263, 2007

[3] Trindade, A., Cordeiro. L.: Applying SMT-based verification to
hardware/software partitioning in embedded systems. In: DAES, 2015

[4] Wu, M., Wu, W., Tai, N., Zhao, H., Fan, J., Yuan, N.: Research on
OpenMP model of the parallel programming technology for
homogeneous multicore DSP. In: ICSESS, pp. 921,924, 2014

[5] Rao, S.: Engineering Optimization: Theory and Practice. 4th edition.
John Wiley & Sons, Hoboken, 2009

[6] Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van
Marren, H., Walsh, T. (org.) Handbook of Satisfiability, IOS Press, pp.
457–481, Amsterdam, 2009

[7] Armando, A., Mantovani, J., Platania, L.: Bounded model checking of
software using SMT solvers instead of SAT solvers. In: STTT, Vol. 11,
n. 1, pp. 69-83, 2009

[8] Ganai, M., Gupta, A.: Accelerating high-level bounded model
checking. In: ICCAD, pp. 794–801, 2006

[9] Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded
model checking for embedded ANSI-C software. In: IEEE TSE, vol.
38, ed. 4, pp. 957-974, 2012

[10] Ramalho, M., Freitas, M., Souza, F., Marques, H., Cordeiro, L.: SMT-
Based Bounded Model Checking of C++ Programs. In: ECBS, pp. 147-
156, IEEE, 2013

[11] Teich, J.: Hardware/Software Codesign: The Past, the Present, and
Predicting the Future. In: Proc. of the IEEE, vol. 100, pp. 1411-1430,
2012

[12] The MathWorks, Inc: MATLAB (version R2013a). Natick, MA, 2013

[13] Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown,
R.: MiBench: a free, commercially representative embedded
benchmark suite. In: WWC, pp. 3-14, 2001

[14] Arató, P., Mann, Z.A., Orbán, A.: Algorithmic aspects of
hardware/software partitioning. In: ACM TODAES, vol. 10, pp. 136–
156, 2005

[15] Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-
memory programming. In: Computational Science & Engineering, vol.
5, issue 1, pp. 46-55, 1998

[16] Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-
Vectors and Arrays. In: TACAS, LNCS 5505, pp. 174–177, 2009

[17] Holzmann, G.J., Joshi, R., Groce, A.: Swarm Verification Techniques.
In: IEEE TSE, vol. 37, issue 6, pp. 845, 857, 2011

[18] Holzmann, G.: Parallelizing the spin model checker. In: SPIN, LNCS
7385, pp. 155-171, 2012

[19] Wintersteiger, C., Hamadi, Y., De Moura, L.: A Concurrent Portfolio
Approach to SMT Solving. In: CAV, LNCS 5643, pp. 715-720, 2009

[20] Bjørner, N., Phan, A-D., Fleckenstein, L.: νZ - An Optimizing SMT
Solver. In: TACAS, LNCS 9035, pp. 194-199, 2015

C
R

C
3

2

P
at

ri
ci

a

D
ij

ks
tr

a

C
lu

st
e

ri
n

g

R
C

6

Fu
zz

y

M
ar

s

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

HP 15 47 31 241 692 13820 876

SP 19 4 19 46 533 4231 297

Time (s) 2 1 2 649 1806 TO 5429

HP 15 47 31 241 692 - 876

Time (s) 7 7 9 340 2050 1372 5000

Error % 13 0 29 2 -7 -38 -28

Time (s) 30 314 325 MO MO MO MO

HP 15 47 31 - - - -

Time (s) 2 6 7 1609 TO TO TO

HP 15 47 31 241 - - -

14 54 47 - - - -

ILP

GA

Exact

Solution

ESBMC

ESBMC-MC

ESBMC Relative

speedup

