Fault Localization in Multi-Threaded C Programs
using Bounded Model Checking

Erickson H. da S. Alves, Lucas C. Cordeiro, Eddie B. de Lima Filho
Federal University of Amazonas, Brazil
E-mails: erickson.alves@indt.org.br, lucascordeirog@uédu.br, eddie@ctpim.org.br

Abstract—Software debugging is a very time-consuming pro- In particular, in this present work, ESBMC [9] is adopted,
cess, which is even worse for multi-threaded programs, due to since it is one of the most efficient BMC tools, as reported
the non-deterministic behavior of thread-scheduling algorithms. by Beyer [11], and it also supports both single- and multi-
However, the debugglng time may be greatly reduced, if automatic threaded programs, using different SMT solvers to check for

methods are used for localizing faults. In this study, a new method he generated verification conditions (VCs) [12]
for fault localization, in multi-threaded C programs, is proposed. ’

It transforms a multi-threaded program into a corresponding The two major contributions of this work are: the eval-
sequential one and then uses a fault-diagnosis method suitable yation of the method proposed by Griesmewgral. [13]

for this type of program, in order to localize faults. The code anq the improvement/extension of this same method, in order
transformation is implemented with rules and context switch support multi-threaded applications. The basic cdnoépt

information from counterexamples, which are typically generated - : : : :
by bounded model checkers. Experimental results show that the extending the mentioned work [13] consists in transformang

proposed method is effective, in such a way that sequential fault ~Multi-threaded program into a corresponding sequential on

localization methods can be extended to multi-threaded programs. by carrying out evaluation and transformation steps, aed th
using that work for localizing faults. As a consequence, the
found violations, in the sequential code, can show the iogat

Keywords—M ulti-threaded Software, Bounded Model Checking, initi i iqi i
Fault L ocalization. of the initial faults, in the original multi-threaded pragn.

[l. PRELIMINARIES
A. Bounded Model Checking to Multi-threaded Software

Recently, it has become more and more common for . . :
" ; : : The basic idea of BMC applied to multi-threaded software
technology to handle various tasks in everyday life, eadh on. to check for the negation of a given property, at a given

with an associated complexity. Ensuring that systems wor ; o Y :

properly imply in cost reduction and even, in some areasdePt [16t]' ﬁlven areachatfnl:;cjy tréf"* {Vlv't"vt’/é\’}dh"éhgh
that lives are” safe. This is what makes program debugginrgepredszn S q e progra{n ugl\c/’lclglg or ac?/n ext ; othand a
so worthy of attention in computer-based systems. Progra O“rl' » and a property, erives a VG, for a%“’ﬁ”
debugging is a very important but time-consuming task, in"'terleaving (or computation path) = {v1,..., v}, such that
software development processes, which can be divided intfx |ﬁksat|rs]f|er1]b!e if ﬁﬂd only if¢ r?as a cgqnterexam%!e of
three steps: fault detection, fault localization, andtiaotrec- ~ dePthk, which is exhibited byr. The VC i is a quantifier-

tion. However, the associated debugging time can be largel{f€€ formula in a decidable subset of first-order logic, whic
reduced, if automatic methods are ?Jgec? for localizing sﬁat?lt checked for satisfiability by an SMT solver [19]. The model

especially in multi-threaded programs, which are widelgcduis Checking problem associated with SMT-based BMC, of a given
in embedded system products. w, is formulated by constructing the logical formula [12]

I. INTRODUCTION

constraints property

A number of different approaches have been introduced, Py
in order to provide automated methods for localizing fairits 7 = I(sg) A R(sg,51) A... A R(sg_1,86) A —¢r . (1)
applications, based on the generation of a program model tha) _
is extracted from its source code [1]. Those include sligtjg ~ Here, ¢x_represents a safety propery in stepk, I is the
mutation testing [3], trace-based analysis [4], deltaugging ~ Set of initial states, and(s;, s;+1) is the transition relation at
[5], model-based debugging [6], and model checking [7]. Intime stepsi andi + 1, as described by the stateszinnodes.
this study, a fault localization method is proposed, whiglies ~ In order to check if (1) is satisfiable or unsatisfiable, theTSM
entirely on model-checking techniques. In particular, Bed Solver constrains some symbols, by a given backgroundyheor
Model Checking (BMC) based on Satisfiability Modulo Theo- (.9, arithmetic restricts the interpretation of symbols sush a
ries (SMT) is used to automatically refute a safety propertyt, <, 0, and1) [19]. If (1) is satisfiable, ther is violated
and consequently produce a counterexample, if the (multiand the SMT solver provides a satisfying assignment, from
threaded) program does not satisfy a given specification. Mvhich one can extract values of program variables to cocistru
is worth noticing that the generated counterexamples ma§ counterexample.e., a sequence of stateg, si, .. ., si, With
be regarded as error traces, which contain useful infoomati So € So, and transition relationse(s;, s;11), for 0 < <k.
about faults, so that one can localize and correct them. If (1) is unsatisfiable, one can conclude that no error state i
reachable, in length along .

ﬁ.T.he CSBMoTugdeddMgdel Ch%Ckerd(CdBmC()zi [?]Cahnd lz(also(ltzhse
Efficient -Based Context-Bounded Mode ecker - ot ; ;
BMC) [9] are both well known BMC tools, which are suitable B. Fault Localization using Model Checking
for verifying multi-threaded C programs. Since the majorit The most basic task regarding fault localization, in model
of the initiatives, in multi-threaded software verificatichave checking, is to generate a counterexample, which is pravide
focused on Java, as shown by Parkal. [10], this study when a program does not satisfy a given specification. Ac-
suggests an automated fault localization method for multicording to Clarkeet al. [20], [21], a counterexample does not
threaded C programs, using SMT-based BMC techniquesolely provide information about the cause-effect refatid

a given violation, but also about fault localization. Hoegv successfully execute, therefore, one can note that the ggam
since an enormous amount of information is presented in &elow contains a single fault.
counterexample, actual fault lines may not be easily ifienti

Several methods have been proposed, in order to locak void main (
ize possible fault causes, by means of counterexamples. An int a, b
approach proposed by Bagt al. [22] tries isolating possible 3| if (a) {
causes of counterexamples, which are generated by the SLAK
model checker [23]. In summary, potential fault lines can be’
isolated by comparing transitions among obtained couxtere j
amples and successful traces, since transitions not iedlud ,
in correct traces are possible causes of errors. Groce ang a
Visser [24] state that if a counterexample exists, a sinblar }
successful trace can also be found, using BMC techniques a
Program elements related to a given violation are impli.o| }
cated by the minimal differences between that counterel@mpas| }
andhfa gucc[es]sfulhtrace, ngch can be detecﬁed hby }hedJaVa
Pathfinder [25], thus providing execution paths that lead tq.) . .
error states, with respect to multi-threaded prograeng, data %ig. 1. A simple ANSI-C program with a single fault
race). The essence of the approach described by Gebce
al. [26] is similar to the latter and uses alignment constraimts int nondet();
associate states, in a counterexample, with correspostites i | qig main () {’

in a successful trace, which was generated by a constraint " “int a b c. d:
solver. The mentioned states are abstract states ovecatesli ,| int diag: =
which represent concrete states in a trace. By using distang| diag = nondet ();

ssert (¢ == 8);

metric properties, constraints can be employed forreptesg | a = 5; b = 2; ¢ = 7;

program executions, and non-matching constraints that rep| if (diag == 3? nondet(): a){

resent concrete states might lead to faults. Additionéfly 8 a = (diag == 4? nondet(): 5);

distance metric property is not satisfied, a counterexansple o b = (diag == 5? nondet(): 2);

generated by the BMC tool [26]. 10 ¢ = (diag ==_6? nondet(): (a + b));
1 if (diag == 7? nondet(): (a%2==0))

In contrast to the transition-based and difference-based int d;
methods mentioned above, a method can directly identify a = (diag == 9? nondet(): d),

possible faults by combining instrumented programs and BMC+

as shown by Griesmeyet al. [13], [27], [28], which will be 15

further demonstrated. The approach proposed in the presérF }
}

assume(c == 8);

paper is based on that method and consists in an extension'to, assert(false);

18

multi-threaded programs, that is, it tries to identify taliies
in multi-threaded programs, using BMC techniques.

Fig. 2. The diagnosis model of the example shown in Fig. 1, wherelet()

C. Method demonstration represents a non-deterministic function.

The method proposed by Griesmeyaral. [13] is based

on the BMC technique, which can directly identify possible Ill. FAULT LOCALIZATION IN MULTI-THREADED C
faults in programs. In particular, this method adds add#lo PROGRAMS USINGBMC
numerical variablesg(g, di ag,, ..., di ag,) to identify a

The proposed method, which has the goal of localizing
faults in multi-threaded C programs, is based on Griesn'eyer
method [13] and counterexamples generated by BMC tools,
such as ESBMC. Its key concept is to transform a multi-
threaded program into a corresponding sequential one &nd th
apply instrumentation for identifying faults [13].

fault in a given program. Each line of a program, representin
a statemens, is changed to a logic version of that statement.
As a consequence, the value held $ywill be either non-
deterministically chosen by the BMC tool, if the valuedifag

is the same as the one representing the line related to stlatem
S, or the one originally specified.

__If the BMC tool identifies ali ag value, by correcting this A Transformations from Multi- to Single-threaded Progsam
line in the original program, the fault can be avoided. In the

case of multipledi ag values, correcting those lines lead to a The transformation from multi-threaded programs into se-
successful code execution. In order to find the full set afdin quential ones can be split into four distinct steps. Firstjre
that cause a faulty behavior in a program, a new'licen be terexamples are obtained from a BMC tool, which contain use-
added to its source code, which is then rerun in the BMC toolful pieces of information related to faults. Then, the fravoek
This process is repeatedly executed, until no more values afescribed below is applied, which consists in code used as
di ag are obtainedi(e. the run succeeds) [13]. fixed structure for a new sequential version, together with t
. . . use of some rules (defined later in section 111-B2). Follogvin

/As an example, a simple program slightly modified fromna¢ “an original (multi-threaded) program is converteio iits

Griesmeyeret al. [13], is presented in Fig. 1. Its modified sequential version and, finally, order control is includatbi

version, using the mentioned method [13] and ready to be ru e) :
by a BMC toal, is shown in Fig. 2. The diagnosis informed by%]eelsaetttsatréSgez:rléy!snugmtr?%rci)zrggrirI]anivgh.l%f.l threads are exstut

a BMC tool isdi ag == 4 anddi ag == 3, which means

that changing linet (to “a = 6”) or line 3 (toi f(0)), in A framework provides the same execution sequence as
the original program, can result in source code that is able tin the original program. It consists basically in writingcea
thread code inside aase statement, and their execution
lassume(diag ! = a) (a is the line number obtained in the last run) sequence is specified in theder array. Such a framework

- deadlock property violation

Step 1.A:
Check for deadlocks

- no violation found

Safe

No

- use a sequential framework
- transform pthread statements

Step 2:
-4 Yes

/ Multi-threaded software Counterexample? Define transformation

- at least one rules
- multi-threaded_code.c violation found
Step 1.B: v
Check for other errors
- add specification Step 3:
- other properties to skip previous Code transformation
violations found line
Yes ~
- ESBMC
- faulty lines
Step 4:
Set of faults /e Counterexample? < Verify using a
No BMC tool

Fig. 3. Proposed method for fault localization in multi-thded software.

il int order[1] = {1}; a context switch occurs, another thread is executed, or a
2| int main(int argc, char xargv[]) { previous thread continues to execute from where it stopped,
3] int order_index;) the respective pieces of code are inserted into eaghinside
«f for(orderindex= 0; orderindex < 1; the N*" case (the N case represents thé!” thread), in such
5 order_index++) { a way that the execution order remains the same.
6 switch(order[orderindex]) {
7 case 1: . TABLE I. RELATION BETWEEN POSITIONS AND CODES
8 case 11: { ... }
9 C Code Fragment Type Position in the
10 case 20: { ... } in the Original Code New Sequential Code
11 break; global elements before linel
12 case 2: main function body between “casd” and “break”
13 case 21: { S } thread bodyn between “caser + 1” and “break”
14 P
12 brealg-ase 30: { ...} In order to maintain the same execution order found in the
17 case 3: original program, switch order control is required. A fixemhe
18 case 31: { } text switch order, from a counterexample of a multi-threhde
1 L. program, can be copied to a new sequential one by controlling
20 case 40: { } “case” and conditional statemerfisin the frameworkswitch
2 break ; statement. In general, adding context switch order corntrol
22 the new sequential program can be divided into two steps.
2 default: In order to show a simple situation for illustrating that, it
2 break; is assumed that there are less thi@h context switches in
N t each threadY(V;;, N;; < 10), a counterexample, given by a
zj 3; eturn 1- BMC tool, hasN context switches, and from thogé context
2| } ’ switches, Ny occur in the main function)V;; occur in thread

1, Ny in thread2, and so on(Ny + ... + Ny, = N).

The first step is to get information from counterexamples
generated by a BMC tooi,e. the total humber of context
switches in the original program and in each thread, therorde
[ﬁ{all context switches in the entire program and also in glsin

Fig. 4. The standard framework to localize faults in seqad¢mide.

is used as the basic structure for new sequential versions @hread, and the corresponding position where a contextlswit
multi-threaded programs, and Fig. 4 shows how it is encodetgceurred. With such data, it is possible to add conditional
V§tatement’sfor maintaining the same execution order of the
original program, so that when a line is executed, the se@ien
gpde executes the nextse statement, which represents the
gext thread in the original code.

One can note that if there are iteration statements in the

As one can note, the mentioned framework provides ne
fixed positions, for each part of the original code, and Tdble
shows the relation between new positions and code-fragme
types, that is, it summarizes how the new sequential cod
is structured. In particular, global elements, global akles,
header file declarations, and other types of global deatasit original multi-threaded program, for every iteration staent,
are placed before the sequential cedein function. The body 3 global variable namediéopcounter” is added. Besides, a
of its main function, in the original code, is placed between statement to increment the valuelobpcounter is also added
the case 1 statement and its respectibeeak command, the to the end of each loop body. This newly added global variable
body of the first thread is placed betweease 2 and its s used as a condition to directly control the validitytetak
respectivéreak command, and so on. This process is repeatedtatements, so that when a context switch occurs, insidepa lo
until there are no more threads to be inserted into the s¢iqlien then the value held bjpopcounter must also be used in the
code version. Additionally, arguments passed to the aigin
programmain function are all passed to the sequential version 2; ¢(orderorder_indez]) == X) break;, where X represents the
matn one. In cases where threads are partially executedwumber of the context switch

program execution sequence. 2 é)nt
3 =m,

The second step consists in modifying values related to the return m;
order array, in such a way that the execution order is keptgs| }
in a new sequential program. By changing linesnd 4, in | oo
Fig. 4, according to the specific number of occurred context| Int 1;
switches and their execution order, it is possible to guagan ¢ 1 = f(a);
the original execution order, since sitch statement (line
6) selects which piece of code (representing threads from theg. 5. original code fragment.
original program) is executed, based @niler|[order_index].
For instance, if the execution order of the original code is
thread 0, thread2, and threadl (note that this information
was previously extracted from the counterexample) othir
array will hold 11, 31, and21, meaning that the firstase will
be executed, then the third and, finally, the second one.

respectivebreak statement, in order to maintain the original :| int f(ént m) {

int i;

1
jo¥]

in
in
b
i

"o e
3303

N o s W N P

}

1) Grammar: Transformation rules, regarding code frag- riq 6 Transformed code fragment from Fig. 5.
ments, are needed, when code fragments are added to corre-
sponding positions in the mentioned framework. Given that t

most common faults, in multi-threaded programs, are rdlate, .

; = f(a)), such call is removed and replaced by the actual
]tc?agﬁqtgnrtascecséﬁ T)% %eeaf\idnlggkiv.[rzl t9]{haessémt\?vlg %agn&%é?r COO?:éalculation. This process is described in Figures 5 and 6.

B. Code Transformation

Threads in C are typically implemented through the POSIX In addition, if an error detected by the chosen BMC tool is a

: . P dlock, then rules in group®n — pthread andpthread are
Pthreads [17] standard, which defines an application pro¢cad ; . s .
gramming interface for creating and handling threads. KOs 2PPlied to create the sequential version of the originag gm;

threads are available in a library, callgthread, which is used Oterwise, only rules in groupon — pthread are used.
in UNIX operating systems. Therefore, two groups are coeate

one regardingpthread non-related code fragments, which is IV. EXPERIMENTAL EVALUATION
group non — pthread, and another fopthreadrelated code .
fragments, called groupthread. A. Experimental Setup

2) Rules: The rules used to transform code fragments,__In order to verify and validate the proposed method,
in th)e original multi-threaded program, are shown i% TableESBMC v1.24.1 with SMT solver Boolector [30] was used.
Il. Note that such transformations rely on counterexampled\l! experiments were conducted on an otherwise idle Intel
generated by a BMC tool. Additionally, different threade ar COré 7 — 4500 1.8Ghz processor, witts GB of RAM and
simulated by differentase statements, since theain func- 'unning Fedor&1 64-bits operating system.
tion is in the firstcase statement, the first executed thread isin The penchmarks in Table Il are the same used when
the secondase statement, and so on, as already mentioned.eygjuating ESBMC for multi-threaded C programs [16].

account_bad.c is a program that represents basic operations

TABLE Il. RULES TO TRANSFORM MULTFTHREADED PROGRAMS in bank accounts: deposit, withdraw, and current balanié, w
Group Code fragment No deadlock Deadlock a mutex to control themarithmetic_prog_bad.c is a basic
Variable declaration | No changes No changes producer and consumer program, using mutex and conditional
1 Expression Unwind Unwind variables for synchronizing operationsarter_bad.c is a
Statement No changes No changes program extracted from a database application, which uses
pthreadt € c mutex to synchronize threadsircular_buf fer_bad.c sim-
pthreadattr_t € e ulates a buffer, using shared variables to synchronizevece
pthread cond attr_t € e and send operationsazy01_bad.c uses a mutex to control
pthread create € € summation operations over a shared variable and then check
pthreadjoin € € its value.queue_bad.c is a program simulating a data-queue
2 pthreadexit € € structure.sync01_bad.c and sync02_bad.c are producer and
pthreadmutex t € Integer variable is declared consumer programs: the former never consumes data and thi
pthreadmutex lock € 1 s assigned to variable latter initializes a shared variable with some (arbitradg}a.
pthreadmutex unlock € 0'is assigned to variable token_ring_bad.c propagates values through shared variables
pthreadcond.t € Integer variable is declared gnq checks whether they are equivalent, through different
prreafconj-'““. € (1’!5 ass!gneg 0 "arfag:e threads twostage_bad.c simulates a great number of threads
pthreadcond walt ¢ 's assigned to variable running simultaneously and, finallyyronglock_bad.c simu-
pthread cond signal € 0 is assigned to variable

lates a large number of producer threads and the propagatior

. of their respective values, to other threads.
In Table Il, ¢ stands for the removal of the respective

statement in the new sequential version. When a deadlock is The experimental evaluation procedure can be split into
returned, by the BMC tool, one needs to add an integer variablthree different steps. First, it is necessary to identifyiohh
for simulating the pthread mutext and/or pthread cond t group (see section I1I-B) a given benchmark belongs to and, i
variables. Finally, theunwind process for expressions, in order to have this information, one needs to execute a specifi
Table Il, consists in removing the original function andedity command liné, in ESBMC. If the result given by ESBMC
writing this piece of codeg.qg, if the value returned by function is verification failed then the benchmark belongs to group
f is assigned to variablg when it is called with argument pthread; otherwise, it belongs to groupon — pthread. In

the second step, it is necessary to add context-switch msgmbe Althoughsync0lbad.candtoken ring_bad.cpresented no
through the method presented in IlI-A, which is achievederrors, both were diagnosed with one fault. Indeed, ESBMC
by removing the- - deadl ock- check option in the issued found adi ag with value 0, which is particularly odd, since
command liné. In the third step, the original program is trans- there is no line0. Besides, even after adding an assert,
formed into a sequential one, with the information obtainedESBMC still diagnose$). Indeed, both have synchronization
from stepsl and 2, by applying the rules in section I1I-B2 problems and the proposed method was unable to provide
and the method proposed by Griesmegeal. [13]. useful information.

Finally, the sequential version of the program can be The proposed methodology was not able to verify bench-
verified in ESBMC, using a command lihewithout the marks carter_bad.c twostagebad.c and wronglock bad.G

- - dead| ock- check option, changing the specified file, and Since there was not enough memory while ESBMC checked

applying the same strategy demonstrated in section II-C. for deadlocks. This probably occurred due to the great numbe
of threads (in case dfwostagebad.c andwronglock bad.q

B. Experimental Results or due to a very large set of data variablearfer01 bad.9.

According to the results shown in Table Ill, one can note
that the proposed methodology was able to find faults (useful
information) in 6 out of 11 benchmarks, which amounts to
54.55%. Note that benchmarks whose verification failed and,
consequently, from which no counterexample was extracted,
are also included into this evaluation. The methodologglfits
showe(?c tkc: be ugell;ul inhdiagl?osing datadracfe \/Iiola}ionz,esinﬁ
i ; . ! most of the used benchmarks presented a fault related to tha
;heh aIthU'T“ resgltf]_(|f”tr{(/e_r|nforrr1nat|_on r%t”e‘éesdBtl\’AyCESByC problem. However, the proposed method needs to be improved
is helpful), and, finally VT is the time that ook 0 in order to verify deadlocks in a more efficient way, and loop

verify the benchmark. The question mark is used to identify; ; PP
tests from which no information was retrieved, due to systenﬂﬁgﬁggwr%'?r?ssidaelﬁgogesegaﬁ ggg'g&gptrgé%ks’ez?eéhat thwead

Table Il summarizes the experimental resuksdescribes
the name of the benchmaitk,represents the number of lines in
the code,T is the number of threads in the cod2,identifies
whether a deadlock occurred (if its value 13, FE is the
amount of errors found during the fault localization prages
that is, the number of differentli ag values retrieved by
ESBMC, AE is the number of actual error&® stands for

limitations.
Regarding benchmarks in which no useful information
TABLE lll. EXPERIMENT RESULTS was obtained, that leads to the conclusion that improved
= T TT 1Dl FErE | vT TR grammar and rules are needed, in order to localize faultartAp
accountbad.c 2 (20 3/3 |o0102 1 from that, the experimental results showed the feasibdity
arthmeticprog bad.c | 82 | 2 | 1| 2/2 | 0130 | 1 the proposed methodology for localizing violations, in tiul
Carter bad.c 23 a7 2 o 7 threaded C programs, since ESBMC is able to provide helpful
Gircular_bufferbadc | 109 | 2 | 0 | 7/7 | 0227 | 1 diagnosis information regarding potential faults.
lazy01 bad.c 48 3 1 4/4 0.125 1
queuebad.c 153 2 | 0 4/4 0934 | 1 V. RELATED WORK
syncOlbad.c 64 2 1 1/0 0451 | O
syncozbad.c 30 [21 2/2 | 0116 1 Joneset al. [14] show how test information visualization
token ring_bad.c 56 | 4| 0] 1/0 | o010l] 0 can assist in fault localization. By coloring program stag@ts
twostagebad.c 281 9 1 = 2 - that participate in the outcome of a program execution, with
wronglock bad.c 72 2 - 2 test suite, it is possible to assist users to inspect codd@e

statements involved in failures, and identify possibleltiau

e . Despite being useful, this approach is not fully automated,
The verification ofaccountbad.c presented3 different sincg it still ngeeds users to eggcute most of its gteps.

di ag values, which are in different parts of the code; however,
they ultimately identified the actual fault in the originalde, Cleve et al. [5] show how cause transitionswhich are

which was a bad assertion. morr}ents Wdhere a variable replaceshanother as f%ilure caugle

. - can locate defects in programs. Such an approach is possibl

The7 diagnosed values regardingcular_buffer bad.cled §ye to a comparison Fr)eg(:':allrding program stg?es of failiﬁg and

to a bad assertion in the program, which is related to a l00gassing runs; however, given that such state differences ca
This way, thedi ag values indicate this loop. occur all over the program run, the focusos spacewith a

methodology informea differentdi ag values, which address @nd alsoon time wherecause transitionccur. Even though
a loop in thread? of this program, meaning that the fault is this approach works, high code-coverage test cases aniderec
in that specific loop. choices in space and time are needed.

The analysis of botHazy01 bad.c and queuebad.c pre- Birch et al. [15] describe a method for fast model-based
sentedt errors. In the former, ESBMC indicated that the faults fault localization, ‘which, given a test suite, automatical
lie on the code part, where its shared variable is used, whicigentifies a small subset of program locations, where faults
led to a bad assertion. In the latter, the identified faules ar €XiSt, by using symbolic execution methods. In summary, the
related to flags providing access control to a shared variablmentioned algorithm tries to find counterexamples that are

| h h h hat is. th lem liggapable of localizing faults, based on failing test casemfr
gggiﬁ O%Ogé(\jlv hg;%ﬁn‘a?’ are changed, that is, the problem Iéc';lsa'test suite. The key factor to its speed is that if an exesutio

takes longer than expected, it is pushed into a queue, fer lat

sync02bad.c presented2 different values, related to a handling, and then another execution is chosen to be rus. Thi
consumer thread in the original program, whose lines ar@pproach is indeed effective, but as a downside it relidsedyt
related to a deadlock present in this benchmark. on a test suite to be accurate.

3 esbnt - - no- bounds- check - - no- poi nt er - check Cordeiro et .al' [16] describe .thre.e approa_cheiaz(y,
--no-di v-by-zero-check --no-slice --deadl ock- check schedule recordingandunderapproximation and widenipgo
--bool ector <file> model check multi-threaded software using ESBMC [9]. By

modelling synchronization fundamentals of the POSIX trea Acknowledgements.Part of the results presented in this paper were
library [17], it creates an instrumented program, with ezgp obtained with the project for research and human resources qualifi-
to the original one, and model checks this new version, ¢ryin cation, for under- and post-graduate levels, in the areas of industrial
to find a defect or explore all possible interleavings. On ‘oneutomation, mobile devices software, and Digital TV, sponsored by
hand, this work shows itself to be effective to verify multi- Eg{%ﬁg?%aﬂemﬁ%e%aggw&m?h:—St‘ig‘sggfcehrw;stglrsrgsszfpgg?tze”éagy
threaded software; on the other hand, it can only state wheth : '

a defect exists or not, and if so, it cannot dire¥:tly point theCPA475647/2013-0 and FAPEAM062.01722/2014 grants.

location of such.
REFERENCES

G”e.smeyeret al. [13] propose a method for 'Oca“.z'.”g [1] W. Mayer and M. Stumptner.Evaluating Models for Model-Based
faults, in ANSI-C programs, by instrumenting the original Debugging ASE pp. 128-137, 2008.
code and running that new version on a model checker. Sugh) F Tip, "A Survey of Program Slicing Techniquesin Journal of
an approach is very helpful, given that model checkers are” Programming Languages, v. 3, no. 3, pp. 121-189, 1995.
able to identify the exact fault line; however, this work ynl [3] A. J. Offutt et al, An Experimental Determination of Sufficient Mutant
presented a method for sequential programs [13]. A goodpoin = Operators TOSEM v. 5, no. 2, pp. 99-118, 1996.
in this approach is that the counterexamples generated by[& H. He and N. GuptaAutomated Debugging using Path-based Weakest
model checker indeed indicate faulty lines; a drawback sf th preconditions FASE LNCS2984, pp. 267-280, 2004.
approach is that it only works for standard ANSI-C programs/[5] H. Cleve and A. Zeller| ocating Causes of Program FailurekCSE pp.

i.e., procedural/sequential software. 342-351, 2005.
] ~[6] G. Friedrichet al, Model-based Diagnosis of Hardware DesigECAI,
Jose et al. [18] report a method to localize faults in pp.491-495, 1996.

programs, u:sing_ a reduction to_ the Maximal Satisfiability[7] S. Chakiet al, Explaining Abstract Counterexampléa SIGSOFT FSE,

Problem, which informs the maximum number of clauses, of ~ Pp.73-82, 2004. _

a Bpo|ean formula, that can S|mu|taneous|y be satisfied by alg] E. Clarkeet al, A Tool for Checking ANSI-C Program$ACAS LNCS

assignment. The potential error is given by finding the makim 2988, pp. 168-176, 2004. _

set of clauses that can be satisfied, in a formula generated lﬁ%) L. Cordeiroet al, SMT-Based Bounded Model Checking for Embedded

combining a failing program execution and a Boolean trace, ANSI-C SoftwareTSE v. 38, n. 4, pp. 957-974, 2012.

formula, and outputting the complement set. Although thi 10] SSi(tvl\\l/l. PSLkbEdf'fecnvtet'Fauléolicical|zat|0n Techniques for Concurrent
e . ; - oftware issertation, .

approa_c_h is_useful for |OC<’_:1tIng faulty lines, it still de_p_isn_ [11] D. Beyer,Software Verification and Verifiable Witnesses (Report on SV

on a failing program execution and a correctness specdicati CO.MPy20‘15) TACAS LNCS9035, pp. 401-416, 2015, P

; ; [12] J. Morseet al, ESBMC 1.22 (Competition ContributiaJACAS LNCS
The closest related work is that of Pagkal. [10], which 8413, pp. 405.407. 2014,

describe a dynamic fault localization method to localize th : o
root causes of concurrency bugs in Java programs, based B! EﬁT%geiq%ﬂerg;_ag’g,/_\fiolm%%%_Fa““ Localization for C Programs

dynam|c pattern detec_:tlon and statistical fault Ioc_a](zatln_ J. A. Joneset al, Visualization of Test Information to Assist Fault
contrast to Parkt al,, this present paper marks the first applica- Localization ICSE pp. 467-477, 2002.

tion of a fault-localization method, based on BMC techng&jue (5] G, Birch et al, Fast Model-Based Fault Localisation with Test Suites
to a broader range of multi-threaded C programs. Despite of ~ To appear inTAP, 2015.

being effective to concurrent programs, the approach [@@go [16] L. Cordeiro and B. Fischeierifying Multi-threaded Software using
by Parket al. works only for Java programs. SMT-based Context-Bounded Model Checki@$E pp. 331-340, 2011.

. [17] D. R. Butenhof,Programming with POSIX Thread#\ddison-Wesley
To the best of our knowledge, this work presents a new ° professional, 1997.

method to localize faults in multi-threaded C programs By in [18] M. Jose and R. MajumdaGause clue clauses: error localization using
strumenting a sequential version of the original code. Hawre maximum satisfiabilityPLDI, pp. 437-446, 2011.

to obtain this sequential version of the multi-threadedypgn, [19] L. M. de Moura and N. Bjgrneiz3: An efficient SMT solver. TACAS
some rules and grammar are needed in order to maintain its LNCS4963, pp. 337-340, 2008.

original execution. [20] E. Clarkeet al, Efficient Generation of Counterexamples and Witnesses
in Symbolic Model CheckinddAC, pp. 95-111, 1995.

[21] E. Clarke and H. VeithCounterexamples Revisited: Principles, Al-
gorithms, Applications In Verification: Theory and Practice, Essays
VI. CONCLUSION Dedicated to Zohar Manna on the Occasion of His 64th Birthgay
208-224, 2003.

A novel method for localizing faults in multi-threaded C 422] T. Ball et al, From Symptom to Cause: Localizing Erros in Counterex-

programs, using code transformation and BMC technique ample TracesPOPL, pp. 97105, 2003.

was proposed. It is based on the approach introduced by'Gr.leﬁs] T. Ball and S. RajamaniAutomatically Validating Temporal Safety
meyer et al. [13] and an extension specific to handle muilti- Properties of InterfacesSPIN LNCS2057, pp. 103-122, 2001.
threaded programs, which is useful for embedded systems. [24] A. Groce and W. VisselWhat Went Wrong: Explaining Counterexam-

. ples SPIN LNCS2648, pp. 121-135, 2003.
The experlmental results revealed the performance of th 5] Java Pathfinder: framework for verification of Java peogs.

proposed methodology, when localizing faults in standar http://babelfish.arc.nasa.gov/trac/jpf

.mUIt'Tthreaded. c benc.hmarks.' In part'CUIar' it was able to[26] A. Groceet al, Error Explanation with Distance MetricsSTTT v. 8,
identify potential faults in multi-threaded software, 34.55% no. 3, pp. 229-247, 2006.

of the chosen benchmarks. Besides, this number may change) a. GriesmeyerDebugging Software: From Verification to RepafthD
to 75%, if only the ones able to be verified are considered, dissertation, 2007.

i.e, those where counterexamples are provided by the BM@sg] A. Griesmeyet al, Fault Localization using a Model Checke8TVR
tool (see columrvT in Table III). v. 20, pp. 149-173, 2010.

. [29] A. Muhlenfeld and F. Wotawdsault Detection in Multi-Threaded C++
As future work, new rules for code transformation and also = Server ApplicationsENTCS v. 174, n. 9, pp. 5-22, 2007.

an improved grammar will be developed, in order to increasgso] R. Brummayer and A. BiereBoolector: An Efficient SMT Solver for
the methodology accuracy. Additionally, dclipse plug-in Bit-Vectors and ArraysTACAS LNCS5505, 2009.

will be developed for automating the fault diagnosis prsces

during development.

