
Fault Localization in Multi-Threaded C Programs
using Bounded Model Checking

Erickson H. da S. Alves, Lucas C. Cordeiro, Eddie B. de Lima Filho
Federal University of Amazonas, Brazil

E-mails: erickson.alves@indt.org.br, lucascordeiro@ufam.edu.br, eddie@ctpim.org.br

Abstract—Software debugging is a very time-consuming pro-
cess, which is even worse for multi-threaded programs, due to
the non-deterministic behavior of thread-scheduling algorithms.
However, the debugging time may be greatly reduced, if automatic
methods are used for localizing faults. In this study, a new method
for fault localization, in multi-threaded C programs, is proposed.
It transforms a multi-threaded program into a corresponding
sequential one and then uses a fault-diagnosis method suitable
for this type of program, in order to localize faults. The code
transformation is implemented with rules and context switch
information from counterexamples, which are typically generated
by bounded model checkers. Experimental results show that the
proposed method is effective, in such a way that sequential fault-
localization methods can be extended to multi-threaded programs.

Keywords—Multi-threaded Software, Bounded Model Checking,
Fault Localization.

I. I NTRODUCTION

Recently, it has become more and more common for
technology to handle various tasks in everyday life, each one
with an associated complexity. Ensuring that systems work
properly imply in cost reduction and even, in some areas,
that lives are safe. This is what makes program debugging
so worthy of attention in computer-based systems. Program
debugging is a very important but time-consuming task, in
software development processes, which can be divided into
three steps: fault detection, fault localization, and fault correc-
tion. However, the associated debugging time can be largely
reduced, if automatic methods are used for localizing faults,
especially in multi-threaded programs, which are widely used
in embedded system products.

A number of different approaches have been introduced,
in order to provide automated methods for localizing faultsin
applications, based on the generation of a program model that
is extracted from its source code [1]. Those include slicing[2],
mutation testing [3], trace-based analysis [4], delta-debugging
[5], model-based debugging [6], and model checking [7]. In
this study, a fault localization method is proposed, which relies
entirely on model-checking techniques. In particular, Bounded
Model Checking (BMC) based on Satisfiability Modulo Theo-
ries (SMT) is used to automatically refute a safety property
and consequently produce a counterexample, if the (multi-
threaded) program does not satisfy a given specification. It
is worth noticing that the generated counterexamples may
be regarded as error traces, which contain useful information
about faults, so that one can localize and correct them.

The C Bounded Model Checker (CBMC) [8] and also the
Efficient SMT-Based Context-Bounded Model Checker (ES-
BMC) [9] are both well known BMC tools, which are suitable
for verifying multi-threaded C programs. Since the majority
of the initiatives, in multi-threaded software verification, have
focused on Java, as shown by Parket al. [10], this study
suggests an automated fault localization method for multi-
threaded C programs, using SMT-based BMC techniques.

In particular, in this present work, ESBMC [9] is adopted,
since it is one of the most efficient BMC tools, as reported
by Beyer [11], and it also supports both single- and multi-
threaded programs, using different SMT solvers to check for
the generated verification conditions (VCs) [12].

The two major contributions of this work are: the eval-
uation of the method proposed by Griesmeyeret al. [13]
and the improvement/extension of this same method, in order
to support multi-threaded applications. The basic conceptof
extending the mentioned work [13] consists in transforminga
multi-threaded program into a corresponding sequential one,
by carrying out evaluation and transformation steps, and then
using that work for localizing faults. As a consequence, the
found violations, in the sequential code, can show the location
of the initial faults, in the original multi-threaded program.

II. PRELIMINARIES

A. Bounded Model Checking to Multi-threaded Software

The basic idea of BMC applied to multi-threaded software
is to check for the negation of a given property, at a given
depth [16]. Given a reachability treeΥ = {ν1, . . . , νN}, which
represents the program unfolding for a context boundC and a
boundk, and a propertyφ, BMC derives a VCψπ

k for a given
interleaving (or computation path)π = {ν1, . . . , νk}, such that
ψπ
k is satisfiable if and only ifφ has a counterexample of

depthk, which is exhibited byπ. The VCψπ
k is a quantifier-

free formula in a decidable subset of first-order logic, which
is checked for satisfiability by an SMT solver [19]. The model
checking problem associated with SMT-based BMC, of a given
π, is formulated by constructing the logical formula [12]

ψπ
k =

constraints
︷ ︸︸ ︷

I(s0) ∧R(s0, s1) ∧ . . . ∧R(sk−1, sk)∧

property
︷︸︸︷

¬φk . (1)

Here, φk represents a safety propertyφ, in stepk, I is the
set of initial states, andR(si, si+1) is the transition relation at
time stepsi and i+ 1, as described by the states inπ nodes.
In order to check if (1) is satisfiable or unsatisfiable, the SMT
solver constrains some symbols, by a given background theory
(e.g., arithmetic restricts the interpretation of symbols such as
+, ≤, 0, and 1) [19]. If (1) is satisfiable, thenφ is violated
and the SMT solver provides a satisfying assignment, from
which one can extract values of program variables to construct
a counterexample,i.e., a sequence of statess0, s1, . . . , sk, with
s0 ∈ S0, and transition relationsR(si, si+1), for 0 ≤ i < k.
If (1) is unsatisfiable, one can conclude that no error state is
reachable, in lengthk alongπ.

B. Fault Localization using Model Checking

The most basic task regarding fault localization, in model
checking, is to generate a counterexample, which is provided
when a program does not satisfy a given specification. Ac-
cording to Clarkeet al. [20], [21], a counterexample does not
solely provide information about the cause-effect relation of

a given violation, but also about fault localization. However,
since an enormous amount of information is presented in a
counterexample, actual fault lines may not be easily identified.

Several methods have been proposed, in order to local-
ize possible fault causes, by means of counterexamples. An
approach proposed by Ballet al. [22] tries isolating possible
causes of counterexamples, which are generated by the SLAM
model checker [23]. In summary, potential fault lines can be
isolated by comparing transitions among obtained counterex-
amples and successful traces, since transitions not included
in correct traces are possible causes of errors. Groce and
Visser [24] state that if a counterexample exists, a similarbut
successful trace can also be found, using BMC techniques.
Program elements related to a given violation are impli-
cated by the minimal differences between that counterexample
and a successful trace, which can be detected by the Java
Pathfinder [25], thus providing execution paths that lead to
error states, with respect to multi-threaded programs (e.g., data
race). The essence of the approach described by Groceet
al. [26] is similar to the latter and uses alignment constraintsto
associate states, in a counterexample, with correspondingstates
in a successful trace, which was generated by a constraint
solver. The mentioned states are abstract states over predicates,
which represent concrete states in a trace. By using distance
metric properties, constraints can be employed for representing
program executions, and non-matching constraints that rep-
resent concrete states might lead to faults. Additionally,if a
distance metric property is not satisfied, a counterexampleis
generated by the BMC tool [26].

In contrast to the transition-based and difference-based
methods mentioned above, a method can directly identify
possible faults by combining instrumented programs and BMC,
as shown by Griesmeyeret al. [13], [27], [28], which will be
further demonstrated. The approach proposed in the present
paper is based on that method and consists in an extension to
multi-threaded programs, that is, it tries to identify fault lines
in multi-threaded programs, using BMC techniques.

C. Method demonstration

The method proposed by Griesmeyeret al. [13] is based
on the BMC technique, which can directly identify possible
faults in programs. In particular, this method adds additional
numerical variables (e.g., diag1, ...,diagn) to identify a
fault in a given program. Each line of a program, representing
a statementS, is changed to a logic version of that statement.
As a consequence, the value held byS will be either non-
deterministically chosen by the BMC tool, if the value ofdiag
is the same as the one representing the line related to statement
S, or the one originally specified.

If the BMC tool identifies adiag value, by correcting this
line in the original program, the fault can be avoided. In the
case of multiplediag values, correcting those lines lead to a
successful code execution. In order to find the full set of lines
that cause a faulty behavior in a program, a new line1 can be
added to its source code, which is then rerun in the BMC tool.
This process is repeatedly executed, until no more values of
diag are obtained (i.e., the run succeeds) [13].

As an example, a simple program slightly modified from
Griesmeyeret al. [13], is presented in Fig. 1. Its modified
version, using the mentioned method [13] and ready to be run
by a BMC tool, is shown in Fig. 2. The diagnosis informed by
a BMC tool isdiag == 4 anddiag == 3, which means
that changing line4 (to “a = 6”) or line 3 (to if(0)), in
the original program, can result in source code that is able to

1assume(diag != a) (a is the line number obtained in the last run)

successfully execute, therefore, one can note that the example
below contains a single fault.

1 vo id main () {
2 i n t a , b , c , d ;
3 i f (a) {
4 a = 5 ;
5 b = 2 ;
6 c = a + b ;
7 i f (a % 2 == 0) {
8 i n t d ;
9 a = d ;

10 }
11 a s s e r t (c == 8) ;
12 }
13 }

Fig. 1. A simple ANSI-C program with a single fault.

1 i n t nonde t () ;
2 vo id main () {
3 i n t a , b , c , d ;
4 i n t d iag ;
5 d iag = nonde t () ;
6 a = 5 ; b = 2 ; c = 7 ;
7 i f (d i ag == 3? nonde t () : a){
8 a = (d iag == 4? nonde t () : 5) ;
9 b = (d iag == 5? nonde t () : 2) ;

10 c = (d iag == 6? nonde t () : (a + b)) ;
11 i f (d i ag == 7? nonde t () : (a %2==0)){
12 i n t d ;
13 a = (d iag == 9? nonde t () : d) ;
14 }
15 assume (c == 8) ;
16 }
17 a s s e r t(f a l s e) ;
18 }

Fig. 2. The diagnosis model of the example shown in Fig. 1, wherenondet()
represents a non-deterministic function.

III. FAULT LOCALIZATION IN MULTI -THREADED C
PROGRAMS USINGBMC

The proposed method, which has the goal of localizing
faults in multi-threaded C programs, is based on Griesmeyer’s
method [13] and counterexamples generated by BMC tools,
such as ESBMC. Its key concept is to transform a multi-
threaded program into a corresponding sequential one and then
apply instrumentation for identifying faults [13].

A. Transformations from Multi- to Single-threaded Programs

The transformation from multi-threaded programs into se-
quential ones can be split into four distinct steps. First, coun-
terexamples are obtained from a BMC tool, which contain use-
ful pieces of information related to faults. Then, the framework
described below is applied, which consists in code used as
fixed structure for a new sequential version, together with the
use of some rules (defined later in section III-B2). Following
that, an original (multi-threaded) program is converted into its
sequential version and, finally, order control is included into
the latter, specifying the order in which threads are executed.
These steps are summarized in Fig. 3.

A framework provides the same execution sequence as
in the original program. It consists basically in writing each
thread code inside acase statement, and their execution
sequence is specified in theorder array. Such a framework

Safe

Multi-threaded software

No

Yes

Set of faults
No

Yes

- multi-threaded_code.c

- ESBMC

- use a sequential framework
- transform pthread statements

- no violation found

- at least one
violation found

- faulty lines

- add specification
to skip previous

found line

Counterexample?

Counterexample?

Step 2:
Define transformation

rules

Step 3:
Code transformation

Step 4:
Verify using a

BMC tool

- deadlock property violation

Step 1.A:
Check for deadlocks

- other properties
violations

Step 1.B:
Check for other errors

Fig. 3. Proposed method for fault localization in multi-threaded software.

1 i n t o r d e r [1] = {1} ;
2 i n t main (i n t argc , char ∗ argv []) {
3 i n t o r d e r i n d e x ;
4 f o r (o r d e r i n d e x = 0 ; o r d e r i n d e x < 1 ;
5 o r d e r i n d e x ++) {
6 sw i tch (o r d e r [o r d e r i n d e x]) {
7 case 1 :
8 case 11 : { . . . }
9 . . .

10 case 20 : { . . . }
11 break ;
12 case 2 :
13 case 21 : { . . . }
14 . . .
15 case 30 : { . . . }
16 break ;
17 case 3 :
18 case 31 : { . . . }
19 . . .
20 case 40 : { . . . }
21 break ;
22 . . .
23 d e f a u l t :
24 break ;
25 }
26 }
27 re turn 1 ;
28 }

Fig. 4. The standard framework to localize faults in sequential code.

is used as the basic structure for new sequential versions of
multi-threaded programs, and Fig. 4 shows how it is encoded.

As one can note, the mentioned framework provides new
fixed positions, for each part of the original code, and TableI
shows the relation between new positions and code-fragment
types, that is, it summarizes how the new sequential code
is structured. In particular, global elements, global variables,
header file declarations, and other types of global declarations
are placed before the sequential codemain function. The body
of its main function, in the original code, is placed between
the case 1 statement and its respectivebreak command, the
body of the first thread is placed betweencase 2 and its
respectivebreak command, and so on. This process is repeated
until there are no more threads to be inserted into the sequential
code version. Additionally, arguments passed to the original
programmain function are all passed to the sequential version
main one. In cases where threads are partially executed,

a context switch occurs, another thread is executed, or a
previous thread continues to execute from where it stopped,
the respective pieces of code are inserted into eachcase inside
theN th case (theN th case represents theN th thread), in such
a way that the execution order remains the same.

TABLE I. RELATION BETWEEN POSITIONS AND CODES

Code Fragment Type Position in the
in the Original Code New Sequential Code

global elements before line1
main function body between “case1” and “break”

thread bodyn between “casen + 1” and “break”

In order to maintain the same execution order found in the
original program, switch order control is required. A fixed con-
text switch order, from a counterexample of a multi-threaded
program, can be copied to a new sequential one by controlling
“case” and conditional statements2, in the frameworkswitch
statement. In general, adding context switch order controlto
the new sequential program can be divided into two steps.
In order to show a simple situation for illustrating that, it
is assumed that there are less than10 context switches in
each thread (∀Nti, Nti < 10), a counterexample, given by a
BMC tool, hasN context switches, and from thoseN context
switches,Nt0 occur in the main function,Nt1 occur in thread
1, Nt2 in thread2, and so on(Nt0 + ...+Ntn = N).

The first step is to get information from counterexamples
generated by a BMC tool,i.e., the total number of context
switches in the original program and in each thread, the order
of all context switches in the entire program and also in a single
thread, and the corresponding position where a context switch
occurred. With such data, it is possible to add conditional
statements2 for maintaining the same execution order of the
original program, so that when a line is executed, the sequential
code executes the nextcase statement, which represents the
next thread in the original code.

One can note that if there are iteration statements in the
original multi-threaded program, for every iteration statement,
a global variable named “loopcounter” is added. Besides, a
statement to increment the value ofloopcounter is also added
to the end of each loop body. This newly added global variable
is used as a condition to directly control the validity ofbreak
statements, so that when a context switch occurs, inside a loop,
then the value held byloopcounter must also be used in the

2if(order[order index]) == X) break;, where X represents the
number of the context switch

respectivebreak statement, in order to maintain the original
program execution sequence.

The second step consists in modifying values related to the
order array, in such a way that the execution order is kept,
in a new sequential program. By changing lines1 and 4, in
Fig. 4, according to the specific number of occurred context
switches and their execution order, it is possible to guarantee
the original execution order, since aswitch statement (line
6) selects which piece of code (representing threads from the
original program) is executed, based onorder[order index].
For instance, if the execution order of the original code is
thread0, thread2, and thread1 (note that this information
was previously extracted from the counterexample), theorder
array will hold11, 31, and21, meaning that the firstcase will
be executed, then the third and, finally, the second one.

B. Code Transformation

1) Grammar: Transformation rules, regarding code frag-
ments, are needed, when code fragments are added to corre-
sponding positions in the mentioned framework. Given that the
most common faults, in multi-threaded programs, are related
to data races and deadlocks [29], a simple grammar, for code
fragments, can be defined, w.r.t. these two faults types.

Threads in C are typically implemented through the POSIX
Pthreads [17] standard, which defines an application pro-
gramming interface for creating and handling threads. POSIX
threads are available in a library, calledpthread, which is used
in UNIX operating systems. Therefore, two groups are created:
one regardingpthread non-related code fragments, which is
group non − pthread, and another forpthread related code
fragments, called grouppthread.

2) Rules: The rules used to transform code fragments,
in the original multi-threaded program, are shown in Table
II. Note that such transformations rely on counterexamples
generated by a BMC tool. Additionally, different threads are
simulated by differentcase statements, since themain func-
tion is in the firstcase statement, the first executed thread is in
the secondcase statement, and so on, as already mentioned.

TABLE II. RULES TO TRANSFORM MULTI-THREADED PROGRAMS

Group Code fragment No deadlock Deadlock

1
Variable declaration No changes No changes

Expression Unwind Unwind
Statement No changes No changes

2

pthreadt ǫ ǫ

pthreadattr t ǫ ǫ

pthreadcond attr t ǫ ǫ

pthreadcreate ǫ ǫ

pthreadjoin ǫ ǫ

pthreadexit ǫ ǫ

pthreadmutex t ǫ Integer variable is declared
pthreadmutex lock ǫ 1 is assigned to variable

pthreadmutex unlock ǫ 0 is assigned to variable
pthreadcond t ǫ Integer variable is declared

pthreadcond init ǫ 0 is assigned to variable
pthreadcond wait ǫ 1 is assigned to variable

pthreadcond signal ǫ 0 is assigned to variable

In Table II, ǫ stands for the removal of the respective
statement in the new sequential version. When a deadlock is
returned, by the BMC tool, one needs to add an integer variable
for simulating the pthread mutex t and/or pthread cond t
variables. Finally, theunwind process for expressions, in
Table II, consists in removing the original function and directly
writing this piece of code,e.g., if the value returned by function
f is assigned to variablei, when it is called with argumenta

1 i n t f (i n t m) {
2 i n t b ;
3 b = m;
4 re turn m;
5 }
6 . . .
7 i n t i ;
8 i = f (a) ;

Fig. 5. Original code fragment.

1 i n t i ;
2 {
3 i n t m = a ;
4 i n t b ;
5 b = m;
6 i = m;
7 }

Fig. 6. Transformed code fragment from Fig. 5.

(i = f(a)), such call is removed and replaced by the actual
calculation. This process is described in Figures 5 and 6.

In addition, if an error detected by the chosen BMC tool is a
deadlock, then rules in groupsnon−pthread andpthread are
applied to create the sequential version of the original program;
otherwise, only rules in groupnon− pthread are used.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

In order to verify and validate the proposed method,
ESBMC v1.24.1 with SMT solver Boolector [30] was used.
All experiments were conducted on an otherwise idle Intel
Core i7 – 4500 1.8Ghz processor, with8 GB of RAM and
running Fedora21 64-bits operating system.

The benchmarks in Table III are the same used when
evaluating ESBMC for multi-threaded C programs [16].
account bad.c is a program that represents basic operations
in bank accounts: deposit, withdraw, and current balance, with
a mutex to control them.arithmetic prog bad.c is a basic
producer and consumer program, using mutex and conditional
variables for synchronizing operations.carter bad.c is a
program extracted from a database application, which uses
mutex to synchronize threads.circular buffer bad.c sim-
ulates a buffer, using shared variables to synchronize receive
and send operations.lazy01 bad.c uses a mutex to control
summation operations over a shared variable and then checks
its value.queue bad.c is a program simulating a data-queue
structure.sync01 bad.c and sync02 bad.c are producer and
consumer programs: the former never consumes data and the
latter initializes a shared variable with some (arbitrary)data.
token ring bad.c propagates values through shared variables
and checks whether they are equivalent, through different
threads.twostage bad.c simulates a great number of threads
running simultaneously and, finally,wronglock bad.c simu-
lates a large number of producer threads and the propagation
of their respective values, to other threads.

The experimental evaluation procedure can be split into
three different steps. First, it is necessary to identify which
group (see section III-B) a given benchmark belongs to and, in
order to have this information, one needs to execute a specific
command line3, in ESBMC. If the result given by ESBMC
is verification failed, then the benchmark belongs to group
pthread; otherwise, it belongs to groupnon − pthread. In

the second step, it is necessary to add context-switch numbers
through the method presented in III-A, which is achieved
by removing the--deadlock-check option in the issued
command line3. In the third step, the original program is trans-
formed into a sequential one, with the information obtained
from steps1 and 2, by applying the rules in section III-B2
and the method proposed by Griesmeyeret al. [13].

Finally, the sequential version of the program can be
verified in ESBMC, using a command line3 without the
--deadlock-check option, changing the specified file, and
applying the same strategy demonstrated in section II-C.

B. Experimental Results

Table III summarizes the experimental results.F describes
the name of the benchmark,L represents the number of lines in
the code,T is the number of threads in the code,D identifies
whether a deadlock occurred (if its value is1), FE is the
amount of errors found during the fault localization process,
that is, the number of differentdiag values retrieved by
ESBMC, AE is the number of actual errors,R stands for
the actual result (1 if the information retrieved by ESBMC
is helpful), and, finally,VT is the time that ESBMC took to
verify the benchmark. The question mark is used to identify
tests from which no information was retrieved, due to system
limitations.

TABLE III. E XPERIMENT RESULTS

F L T D FE/AE VT R
account bad.c 49 2 0 3/3 0.102 1

arithmetic prog bad.c 82 2 1 2/2 0.130 1

carter bad.c 43 4 ? ? ∞ ?

circular buffer bad.c 109 2 0 7/7 0.227 1

lazy01 bad.c 48 3 1 4/4 0.125 1

queuebad.c 153 2 0 4/4 0.934 1

sync01bad.c 64 2 1 1/0 0.451 0

sync02bad.c 39 2 1 2/2 0.116 1

token ring bad.c 56 4 0 1/0 0.101 0

twostagebad.c 128 9 ? ? ∞ ?

wronglock bad.c 111 7 ? ? ∞ ?

The verification of account bad.c presented3 different
diag values, which are in different parts of the code; however,
they ultimately identified the actual fault in the original code,
which was a bad assertion.

The7 diagnosed values regardingcircular buffer bad.cled
to a bad assertion in the program, which is related to a loop.
This way, thediag values indicate this loop.

When checking arithmetic prog bad.c, the proposed
methodology informed2 differentdiag values, which address
a loop in thread2 of this program, meaning that the fault is
in that specific loop.

The analysis of bothlazy01 bad.c and queuebad.c pre-
sented4 errors. In the former, ESBMC indicated that the faults
lie on the code part, where its shared variable is used, which
led to a bad assertion. In the latter, the identified faults are
related to flags providing access control to a shared variable
and a loop, where they are changed, that is, the problem lies
again on bad handling.

sync02bad.c presented2 different values, related to a
consumer thread in the original program, whose lines are
related to a deadlock present in this benchmark.

3 esbmc --no-bounds-check --no-pointer-check
--no-div-by-zero-check --no-slice --deadlock-check
--boolector <file>

Althoughsync01bad.candtoken ring bad.cpresented no
errors, both were diagnosed with one fault. Indeed, ESBMC
found adiag with value 0, which is particularly odd, since
there is no line0. Besides, even after adding an assert,
ESBMC still diagnoses0. Indeed, both have synchronization
problems and the proposed method was unable to provide
useful information.

The proposed methodology was not able to verify bench-
marks carter bad.c, twostagebad.c, and wronglock bad.c,
since there was not enough memory while ESBMC checked
for deadlocks. This probably occurred due to the great number
of threads (in case oftwostagebad.c, and wronglock bad.c)
or due to a very large set of data variables (carter01 bad.c).

According to the results shown in Table III, one can note
that the proposed methodology was able to find faults (useful
information) in 6 out of 11 benchmarks, which amounts to
54.55%. Note that benchmarks whose verification failed and,
consequently, from which no counterexample was extracted,
are also included into this evaluation. The methodology itself
showed to be useful in diagnosing data race violations, since
most of the used benchmarks presented a fault related to that
problem. However, the proposed method needs to be improved,
in order to verify deadlocks in a more efficient way, and loop
transformations also need a significant work, so that threads
interleaving inside loops can be better represented.

Regarding benchmarks in which no useful information
was obtained, that leads to the conclusion that improved
grammar and rules are needed, in order to localize faults. Apart
from that, the experimental results showed the feasibilityof
the proposed methodology for localizing violations, in multi-
threaded C programs, since ESBMC is able to provide helpful
diagnosis information regarding potential faults.

V. RELATED WORK

Joneset al. [14] show how test information visualization
can assist in fault localization. By coloring program statements
that participate in the outcome of a program execution, witha
test suite, it is possible to assist users to inspect code, evaluate
statements involved in failures, and identify possible faults.
Despite being useful, this approach is not fully automated,
since it still needs users to execute most of its steps.

Cleve et al. [5] show how cause transitions, which are
moments where a variable replaces another as failure cause,
can locate defects in programs. Such an approach is possible
due to a comparison regarding program states of failing and
passing runs; however, given that such state differences can
occur all over the program run, the focus ison space, with a
subset of variables that is relevant to the failure occurrence,
and alsoon time, wherecause transitionsoccur. Even though
this approach works, high code-coverage test cases and precise
choices in space and time are needed.

Birch et al. [15] describe a method for fast model-based
fault localization, which, given a test suite, automatically
identifies a small subset of program locations, where faults
exist, by using symbolic execution methods. In summary, the
mentioned algorithm tries to find counterexamples that are
capable of localizing faults, based on failing test cases from
a test suite. The key factor to its speed is that if an execution
takes longer than expected, it is pushed into a queue, for later
handling, and then another execution is chosen to be run. This
approach is indeed effective, but as a downside it relies entirely
on a test suite to be accurate.

Cordeiro et al. [16] describe three approaches (lazy,
schedule recording, andunderapproximation and widening) to
model check multi-threaded software using ESBMC [9]. By

modelling synchronization fundamentals of the POSIX thread
library [17], it creates an instrumented program, with respect
to the original one, and model checks this new version, trying
to find a defect or explore all possible interleavings. On one
hand, this work shows itself to be effective to verify multi-
threaded software; on the other hand, it can only state whether
a defect exists or not, and if so, it cannot directly point the
location of such.

Griesmeyeret al. [13] propose a method for localizing
faults, in ANSI-C programs, by instrumenting the original
code and running that new version on a model checker. Such
an approach is very helpful, given that model checkers are
able to identify the exact fault line; however, this work only
presented a method for sequential programs [13]. A good point
in this approach is that the counterexamples generated by a
model checker indeed indicate faulty lines; a drawback of this
approach is that it only works for standard ANSI-C programs,
i.e., procedural/sequential software.

Jose et al. [18] report a method to localize faults in
programs, using a reduction to the Maximal Satisfiability
Problem, which informs the maximum number of clauses, of
a Boolean formula, that can simultaneously be satisfied by an
assignment. The potential error is given by finding the maximal
set of clauses that can be satisfied, in a formula generated by
combining a failing program execution and a Boolean trace
formula, and outputting the complement set. Although this
approach is useful for locating faulty lines, it still depends
on a failing program execution and a correctness specification.

The closest related work is that of Parket al. [10], which
describe a dynamic fault localization method to localize the
root causes of concurrency bugs in Java programs, based on
dynamic pattern detection and statistical fault localization. In
contrast to Parket al., this present paper marks the first applica-
tion of a fault-localization method, based on BMC techniques,
to a broader range of multi-threaded C programs. Despite of
being effective to concurrent programs, the approach proposed
by Parket al. works only for Java programs.

To the best of our knowledge, this work presents a new
method to localize faults in multi-threaded C programs by in-
strumenting a sequential version of the original code. However,
to obtain this sequential version of the multi-threaded program,
some rules and grammar are needed in order to maintain its
original execution.

VI. CONCLUSION

A novel method for localizing faults in multi-threaded C
programs, using code transformation and BMC techniques,
was proposed. It is based on the approach introduced by Gries-
meyer et al. [13] and an extension specific to handle multi-
threaded programs, which is useful for embedded systems.

The experimental results revealed the performance of the
proposed methodology, when localizing faults in standard
multi-threaded C benchmarks. In particular, it was able to
identify potential faults in multi-threaded software, in54.55%
of the chosen benchmarks. Besides, this number may change
to 75%, if only the ones able to be verified are considered,
i.e., those where counterexamples are provided by the BMC
tool (see columnVT in Table III).

As future work, new rules for code transformation and also
an improved grammar will be developed, in order to increase
the methodology accuracy. Additionally, anEclipse plug-in
will be developed for automating the fault diagnosis process,
during development.

Acknowledgements.Part of the results presented in this paper were
obtained with the project for research and human resources qualifi-
cation, for under- and post-graduate levels, in the areas of industrial
automation, mobile devices software, and Digital TV, sponsored by
Samsung Eletr̂onica da Amaẑonia Ltda, under the terms of Brazilian
Federal Law number8.387/91. This research was also supported by
CNPq475647/2013-0 and FAPEAM062.01722/2014 grants.

REFERENCES

[1] W. Mayer and M. Stumptner.,Evaluating Models for Model-Based
Debugging. ASE, pp. 128–137, 2008.

[2] F. Tip, ”A Survey of Program Slicing Techniques”. In Journal of
Programming Languages, v. 3, no. 3, pp. 121–189, 1995.

[3] A. J. Offutt et al., An Experimental Determination of Sufficient Mutant
Operators. TOSEM, v. 5, no. 2, pp. 99–118, 1996.

[4] H. He and N. Gupta,Automated Debugging using Path-based Weakest
preconditions. FASE, LNCS2984, pp. 267–280, 2004.

[5] H. Cleve and A. Zeller,Locating Causes of Program Failures. ICSE, pp.
342–351, 2005.

[6] G. Friedrichet al., Model-based Diagnosis of Hardware Designs. ECAI,
pp.491–495, 1996.

[7] S. Chakiet al., Explaining Abstract Counterexamples. In SIGSOFT FSE,
pp.73–82, 2004.

[8] E. Clarkeet al., A Tool for Checking ANSI-C Programs. TACAS, LNCS
2988, pp. 168–176, 2004.

[9] L. Cordeiro et al., SMT-Based Bounded Model Checking for Embedded
ANSI-C Software. TSE, v. 38, n. 4, pp. 957–974, 2012.

[10] S. M. Park, Effective Fault Localization Techniques for Concurrent
Software. PhD dissertation, 2014.

[11] D. Beyer,Software Verification and Verifiable Witnesses (Report on SV-
COMP 2015). TACAS, LNCS9035, pp. 401-416, 2015.

[12] J. Morseet al., ESBMC 1.22 (Competition Contribution). TACAS, LNCS
8413, pp. 405-407, 2014.

[13] A. Griesmeyeret al., Automated Fault Localization for C Programs.
ENTCS, v. 174, pp. 95–111, 2007.

[14] J. A. Joneset al., Visualization of Test Information to Assist Fault
Localization. ICSE, pp. 467–477, 2002.

[15] G. Birch et al., Fast Model-Based Fault Localisation with Test Suites.
To appear inTAP, 2015.

[16] L. Cordeiro and B. Fischer.Verifying Multi-threaded Software using
SMT-based Context-Bounded Model Checking. ICSE, pp. 331-340, 2011.

[17] D. R. Butenhof,Programming with POSIX Threads. Addison-Wesley
Professional, 1997.

[18] M. Jose and R. Majumdar,Cause clue clauses: error localization using
maximum satisfiability. PLDI, pp. 437–446, 2011.

[19] L. M. de Moura and N. Bjørner.Z3: An efficient SMT solver. TACAS,
LNCS4963, pp. 337–340, 2008.

[20] E. Clarkeet al., Efficient Generation of Counterexamples and Witnesses
in Symbolic Model Checking. DAC, pp. 95–111, 1995.

[21] E. Clarke and H. Veith,Counterexamples Revisited: Principles, Al-
gorithms, Applications. In Verification: Theory and Practice, Essays
Dedicated to Zohar Manna on the Occasion of His 64th Birthday, pp.
208–224, 2003.

[22] T. Ball et al., From Symptom to Cause: Localizing Erros in Counterex-
ample Traces. POPL, pp. 97–105, 2003.

[23] T. Ball and S. Rajamani,Automatically Validating Temporal Safety
Properties of Interfaces. SPIN, LNCS2057, pp. 103–122, 2001.

[24] A. Groce and W. Visser,What Went Wrong: Explaining Counterexam-
ples. SPIN, LNCS2648, pp. 121–135, 2003.

[25] Java Pathfinder: framework for verification of Java programs.
http://babelfish.arc.nasa.gov/trac/jpf.

[26] A. Groceet al., Error Explanation with Distance Metrics. STTT, v. 8,
no. 3, pp. 229–247, 2006.

[27] A. Griesmeyer,Debugging Software: From Verification to Repair. PhD
dissertation, 2007.

[28] A. Griesmeyeret al., Fault Localization using a Model Checker. STVR,
v. 20, pp. 149–173, 2010.

[29] A. Mühlenfeld and F. Wotawa,Fault Detection in Multi-Threaded C++
Server Applications. ENTCS, v. 174, n. 9, pp. 5-22, 2007.

[30] R. Brummayer and A. Biere,Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays. TACAS, LNCS5505, 2009.

