
Verifying Embedded C Software with Timing

Constraints using an Untimed Model Checker

Raimundo Barreto1, Lucas Cordeiro2, and Bernd Fischer3

1 rbarreto@dcc.ufam.edu.br

Dept. of Computer Science, Federal University of Amazonas, Manaus AM, Brazil
2 lucascordeiro@ufam.edu.br

Dept. of Elect.&Telecom., Federal University of Amazonas, Manaus AM, Brazil
3 b.fischer@ecs.soton.ac.uk

Electronics and Computer Science, University of Southampton, Southampton, UK

Abstract. Embedded systems are everywhere, from home appliances to
critical systems such as medical devices. They usually have associated
timing constraints that need to be verified for the implementation. Here,
we use an untimed bounded model checker to verify timing properties
of embedded C programs. We propose an approach to specify discrete
time timing constraints using code annotations. The annotated code is
then automatically translated to code that manipulates auxiliary timer
variables and is thus suitable as input to conventional, untimed software
model checker such as ESBMC. Thus, we can check timing constraints
in the same way and at the same time as untimed system requirements,
and even allow for interaction between them. We applied the proposed
method in a case study, and verified timing constraints of a pulse oxime-
ter, a noninvasive medical device that measures the oxygen saturation of
arterial blood.

1 Introduction

Model checking is an automatic technique for verifying finite state concurrent
systems [9]. The main problem in model checking is the well-known state space
explosion; adding real-time aspects to model checking only makes this problem
worse. Usually, real-time systems are modeled by timed automata, timed Petri
net, or a kind of labeled state graphs, and verified with specialized timed model
checking tools, such as TINA [1], HyTech [8], Kronos [16], or UPPAAL [11].
For example, UPPAAL uses timed automata as input and a fragment of the
TCTL temporal logic [15] to prove a safety property in an explicit-state model
checking style. Here, we propose a different approach. In our method, the safety
property is specified in an explicit-time style [10], using discrete-time timing
annotations in ANSI-C programs. We assume that timing annotations are given
externally, either be a WCET analysis of the code, or by a domain expert. We
then translate such annotated C code automatically to code that manipulates
auxiliary timer variables. This code is suitable as input for a conventional (i.e.,
untimed) software model checker; since we are working with a discrete-time
model, timing assertions can simply be interpreted as integer constraints.

In our implementation, we use ESBMC [5], a bounded symbolic model checker
for ANSI-C which is based on satisfiability modulo theories (SMT) techniques,
while specialized timed model checkers typically adopt an explicit-state style
(e.g., UPPAAL). Symbolic model checkers can typically explore more states than
explicit-state model checkers, despite some state-space reduction techniques.
Moreover, symbolic model checking can easily be combined with powerful sym-
bolic reasoning methods such as decision procedures and SMT solving. This
reduces not only the state space but also allows us to handle timing constraints
symbolically yet precisely. Note that the timing annotations need to be treated
separately from the other assertions during loop unrolling (which is a crucial
step in bounded model checking) in order to get correct results. We avoid this
problem by annotating only function definitions.

Many safety-critical software systems are written in low-level languages such
as ANSI-C. However, to the best of our knowledge, there is at present no tool
that translates C code with timing constraints to either timed automata or timed
Petri nets. The main aim of this paper is thus to propose a method to check
timing properties directly in the actual C code using a (conventional) software
model checker; however, we can check timing properties as well as safety and
liveness properties (see [5]). The proposed solution should not be considered as
an alternative to other methods, but rather as complementary. There are at least
two scenarios in which it can be used: (1) for legacy code that does not have a
model, or where there are no automated tools to extract a faithful model from
the code; and (2) when there is no guarantee that the final code is in strict
accordance with the model.

We focus on time-critical embedded systems software which, due to pre-
dictability issues, require guarantees that in all execution paths the timing con-
straints are met. We illustrate our approach through an industrial case study
involving a medical device called pulse oximeter. Our experiments show that our
technique can be used efficiently for verifying embedded real-time systems using
an existing untimed model checker.

The main contribution of this work is to check timing properties in the same
way as for untimed systems. Specifically: we use code annotation to express
timing properties; we describe our translation from the annotated code to a code
suitable for model checking; and we report experiments on a medical device.

The paper is organized as follows. The next section shows the background
to understand the proposed method. Section 3 describes the proposed method.
Section 4 analyzes the pulse oximeter case study. Section 5 reviews related work.
Finally, Section 6 summarizes the paper and explains future work.

2 Backgroud

2.1 Model Checking with ESBMC

ESBMC is a context-bounded model checker for embedded ANSI-C software
based on SMT solvers, which allows the verification of single- and multi-threaded

software with shared variables and locks [6, 5], although we have focused in
single-threaded software here. ESBMC supports full ANSI-C, and can verify
programs that make use of bit-level, arrays, pointers, structs, unions, memory
allocation and fixed-point arithmetic. It can efficiently reason about arithmetic
under- and overflows, pointer safety, memory leaks, array bounds violations,
atomicity and order violations, local and global deadlocks, data races, and user-
specified assertions.

In ESBMC, the program to be analyzed is modelled as a state transition
system M = (S,R, s0), which is extracted from the control-flow graph (CFG).
S represents the set of states, R ⊆ S × S represents the set of transitions (i.e.,
pairs of states specifying how the system can move from state to state) and
s0 ⊆ S represents the set of initial states. A state s ∈ S consists of the value
of the program counter pc and the values of all program variables. An initial
state s0 assigns the initial program location of the CFG to pc. We identify each
transition γ = (si, si+1) ∈ R between two states si and si+1 with a logical
formula γ(si, si+1) that captures the constraints on the corresponding values of
the program counter and the program variables.

Given the transition system M, a safety property φ, a context bound C and
a bound k, ESBMC builds a reachability tree (RT) that represents the program
unfolding for C, k and φ. We then derive a VC ψπ

k for each given interleaving
(or computation path) π = {ν1, . . . , νk} such that ψπ

k is satisfiable if and only
if φ has a counterexample of depth k that is exhibited by π. ψπ

k is given by the
following logical formula:

ψπ
k = I(s0) ∧

k
∨

i=0

i−1
∧

j=0

γ(sj , sj+1) ∧ ¬φ(si) (1)

Here, I characterizes the set of initial states ofM and γ(sj , sj+1) is the transi-

tion relation ofM between time steps j and j+1. Hence, I(s0)∧
∧i−1

j=0 γ(sj , sj+1)
represents executions of M of length i and ψπ

k can be satisfied if and only if for
some i ≤ k there exists a reachable state along π at time step i in which φ is
violated. ψπ

k is a quantifier-free formula in a decidable subset of first-order logic,
which is checked for satisfiability by an SMT solver. If ψπ

k is satisfiable, then φ
is violated along π and the SMT solver provides a satisfying assignment, from
which we can extract the values of the program variables to construct a counter-
example. A counter-example for a property φ is a sequence of states s0, s1, . . . , sk
with s0 ∈ S0, sk ∈ S, and γ (si, si+1) for 0 ≤ i < k. If ψπ

k is unsatisfiable, we
can conclude that no error state is reachable in k steps or less along π. Finally,
we can define ψk =

∧

π ψ
π
k and use this to check all paths.

2.2 Model Checking Real-Time Systems

Model checking is a verification technique that applies to systems that can be
modeled by a mathematical formalism (finite automata and Petri nets are exam-
ples). In practice, the size of the systems is really the main obstacle to overcome.

Therefore, model checker users usually simplify the model under analysis. Model
checking consists in three steps. (1) Mathematical representation (modeling).
Usually such models represents states and transitions, and may be composed
by and synchonized by several components. (2) Representation of a property by
a logical formula. Once the model is built, we formally state the properties to
be checked, usually in a temporal logic. (3) Model checking algorithm. Given a
model A and a property φ, a model checking algorithm answers the question:
“does the model A satisfy the property φ?”

There are several tools that model check real-time systems.

TSMV [12] is a symbolic model checker that verifies TCTL formulas on
Timed Kripke Structures (TKS), i.e. finite state graphs where transitions carry
a duration. The main feature of TKS’s is that the durations of transitions are
atomic, that is, when moving from state s to state s′ in a step that lasts 10
time units, there is no intermediary configuration between s at time t and s′ at
time t+10. The key motivation for this semantics is that it leads to simple and
efficient model checking algorithms.

UPPAAL [11] allows one to analyze networks of timed automata with bi-
nary synchronization. It contains three main parts: (i) a graphical editor where
timed process are described; (ii) a simulator where it is possible to choose a
sequence of transitions, and to see the behavior of the system; and (iii) a verifier
of reachability properties. The main drawbacks of UPPAAL are: (1) the binary
synchronization is a bit restrictive and requires one to use ad hoc mechanisms to
describe other kinds of synchronizations (e.g., broadcast); (2) the specification
language considers only reachability properties and not a full temporal logic.
This entails that it is necessary to include a observer automata to express com-
plex properties.

KRONOS [16] is a model checker that can decide whether some property,
expressed by a TCTL formula, holds for a timed automaton (also called timed
graph), given in textual form. It allows one to verify liveness properties, and
is not restricted to reachability properties. Even though KRONOS contains no
graphical nor simulation modes, it is a true timed model checker. However, under
its current form, it is mostly intended for advanced users with a good knowledge
of formal methods.

HYTECH [8] receives a set of linear hybrid automata, and synchronizes them
by some common transitions. From the automata in a textual form, HYTECH
can compute subsets of the global state space. HYTECH also handles parametric
analysis, that is, when a system (or a property) contains parameters, the analysis
can provide the parameter values for which the property holds. The drawbacks
of HYTECH is that it includes no simulation mode; model checking does not
apply to a temporal logic: the user has to build himself the subset of states to
be computed by combinations of basic constraints.

TINA [1] is a toolbox for the edition and analysis of Petri Nets and Time
Petri Nets. The Tina toolbox includes several tools such as: (i) an editor for
graphically or textually described Time Petri nets; (ii) construction of reacha-
bility graphs where it may build coverability graphs, persistent sets, state class

Fig. 1. Overview of the Proposed Method

graphs, and (iii) a state/event LTL model checker that checks reachability prop-
erties. However, it is difficult to check real-time quantitative properties.

3 Proposed Method

This section describes the method proposed to verify timing properties on single-
threaded C code using a bounded model model-checker. Figure 1 gives an overview
of the approach. It is divided into four phases. The first step is to add timing
constraints to the source code. Such annotations come from either a discrete tim-
ing model, a timing analyzer tool, or a domain expert. As usual, the annotations
are just comments that are processed by a specific tool. The second step is the
automatic translation from the annotated source code to new code that can be
verified by the untimed model-checker. Basically, this translation consists in (i)
adding declarations of the timer variables; (ii) gathering the annotated timing
constraints information and including assignment statments for the new added
variables; (iii) adding (user-defined) assert statements at specific points of the
program code. The third step is to check the translated code with the ESBMC
model checker. Finally, the last phase, evaluates ESBMC’s results. As shown,
the way to check timing properties is by using assertion.

3.1 Timed Programming Model

The proposed method aims to pragmatically assist developers in the specifica-
tion and analysis of timing constraints in C code. What we propose is (i) to
associate with each function fi a worst-case duration di ≥ 0; (ii) to define ex-
plicit timer variables (or clocks) (T), for expressing timing constraints; (iii) to
introduce timing assertions on timer variables to check timing properties; and

(iv) to introduce timer variable reset to restart the timer counting. Therefore,
when the program is executed, the timer variables are incremented by the re-
spective duration di of the called function fi, and assertions are used to ensure
that computations are within timing constraints.

Formally, let consider that the semantics of a sequential program P is repre-
sented by the 5-tuple 〈S, s0,V,F ,→〉, where:

– S is a finite set of states of P;
– s0 is the initial state;
– V = 〈v1, v2, · · · , vz〉 is a finite list of data variables (local and global);
– F = {f1, f2, · · · , fw} is a finite set of functions that may change variables in

V;
– →⊆ S×F×S is a finite set of labeled transitions, such that a state transition

in 〈si, fφ, sj〉, is represented by si
fφ
−→ sj , ∀si, sj ∈ S, i 6= j, fφ ∈ F and it is

supposed that each function fφ is executed to completion.

Let π[n . . .m] for 0 ≤ n < m ∈ N be an execution path denoted by a finite

sequence sn
fφ1−→ sn+1

fφ2−→ · · ·
fφq

−→ sm with m − n transitions and m − n + 1
states. As example, suppose we have F = {f1, f2, f3, f4, f5}; we may define the

following execution path π[0..5] = s0
f1
−→ s1

f3
−→ s2

f5
−→ s3

f2
−→ s4

f4
−→ s5.

In order to introduce timing constraints into the program, we change the
original program P to another program P ′ = 〈S, s0,V

′,F ′,→〉 where:

– V
′

= cat(V, T), where cat means list concatenation in this case used to
concatenate lists of variables;

– F
′

= F ∪A ∪R;
– T = 〈t1, t2, · · · , tp〉 is a finite list of timer variables;
– A = {a1(tk1

), a2(tk2
), · · · , an(tkx

) | ai is a special function that asserts on
timer variables, 1 ≤ i ≤ n, and tkd

∈ T , 1 ≤ d ≤ x, 1 ≤ kd ≤ p, p = |T |};
– R = {r1(t1), r2(t2), · · · , rp(tp) | rw is a special function that resets a timer

variable, 1 ≤ w ≤ p, p = |T |, and tw ∈ T }.

We define D : F
′

7→ N as the worst-case duration of a function, such that

D(fi), ∀fi ∈ F
′

=











di ∈ N, if(fi ∈ F)

0, if(fi ∈ A)

0, if(fi ∈ R)

Therefore, we may express the duration D(π[n..m]) =
∑m−n

i=1 D(fφi
) of such

a finite sequence π[n..m] representing the time elapsed from sn to sm. As exam-
ple, suppose we have F = {f1, f2, f3, f4, f5}; T = {t1, t2}; A = {a1(t1), a2(t1),

a3(t2)}; R = {r1(t1), r2(t2)}; and the execution path π[0..11] = s0
r1(t1)
−→ s1

r2(t2)
−→

s2
f1
−→ s3

f3
−→ s4

a1(t1)
−→ s5

r1(t1)
−→ s6

f5
−→ s7

f2
−→ s8

a2(t1)
−→ s9

f4
−→ s10

a3(t2)
−→ s11, where

fφ1
= r1(t1); fφ2

= r2(t21); fφ3
= f1; fφ4

= f3; fφ5
= a1(t1); fφ6

= r1(t1);
fφ7

= f5; fφ8
= f2; fφ9

= a2(t1); fφ10
= f4; fφ11

= a3(t1). We can conclude that

D(π[0..11]) =
∑11

i=1D(fφi
) = D(f1) + D(f3) + D(f5) + D(f2) + D(f4). As we

can see, in the execution path π[0..11] we have three timing verifications: a1(t1),
a2(t1), and a3(t2); and three timer resets: r1(t1), r2(t2), and r1(t1).

3.2 Annotation of Timing Constraints

The inclusion of timing constraints in the source code is particularly interesting
since it can automatically be checked as the program are being developed. To
annotate the timing constraints in the code we use a special kind of C comment
in such a way that this annotation does not change the code itself. In this way,
the same annotated code can be compiled by any C compiler without breaking
the compilation. The proposal is to have four kinds of annotations:

– //@ DEFINE-TIMER <timer-name>. Defines a new timer variable timer-name

which is automatically declared as an unsigned int variable. Using this an-
notation we can add the set T to the code.

– //@ RESET-TIMER <timer-name>. Resets the timer variable to zero. Using
this annotation we can add the set R to the code.

– //@ ASSERT-TIMER (<logic-expr>). Checks a user defined assert. This an-
notation specifically is useful to check timing properties, where the assertion
language consists in arithmetic operations with timer variables. Using this
annotation we can add the set A to the code.

– //@ WCET-FUNCTION [<int-expr>]. Defines the WCET of the next defined
function. Thus, we rely on a timing analyzer tool to predict worst-case timing
bounds, for instance [3]. Using this annotation we can add the function D

to the code.

Figure 2(a) shows an example of code annotation from the example shown on
Section 3.1. Even though all timer variables are incremented together, the fact
that we have defined more than one timer implies that we may verify several tim-
ing constraints. In the example of Figure 2, the TIMER1 is checking local timing
constraints. Firstly, this timer verifies timing constraint related to functions f1()
and f2(). Later, this same timer is then used to verify timing constraint over the
functions f3() and f4(). On the other hand, the timer variable TIMER2 is used
to verify the complete behavior of the sysem, i.e., the function calls from f1()
up to f5().

In this paper we are just showing a coarse-grained timing constraint reso-
lution in the level of functions. Therefore, we show only how to specifiy timing
constraints in the source code on functions. However, as ongoing work, we are
extending the proposed annotation method to consider fine-grained (in the level
of instructions) timing constraints.

3.3 Translation and Verification

The translation consists in looking for comments that start by //@ and treat
them appropriately. The translation of the code shown on Figure 2(a) can be
seen in Figure 2(b). This translation is carried out automatically by a specific
tool4. It is important to emphasize that the user has first to run the model
checker to find conventional errors (e.g., buffer overflow, arithmetic overflow,

4 This tool is available at http://esbmc.org

//@ DEFINE-TIMER TIMER1;

//@ DEFINE-TIMER TIMER2;

...
//@ WCET-function [d1]
void f1(void)...
//@ WCET-function [d2]
void f2(void)..
//@ WCET-function [d3]
void f3(void)...
//@ WCET-function [d4]
void f4(void)...
//@ WCET-function [d5]
void f5(void)...
...
int main(int argc, char *argv[])
...
//@ RESET-TIMER TIMER1=0;

//@ RESET-TIMER TIMER2=0;

f1(); f2();
//@ ASSERT-TIMER (TIMER1 <= alpha);

//@ RESET-TIMER TIMER1=0;

f3(); f4();
//@ ASSERT-TIMER (TIMER1 <= beta);

f5();
//@ ASSERT-TIMER (TIMER2 <= gamma);

...
(a)

// DEFINE-TIMER TIMER1;
unsigned int TIMER1;
// DEFINE-TIMER TIMER2;
unsigned int TIMER2;
...
// WCET-function [d1]
void f1(void) {TIMER1 += d1; TIMER2 += d1; ... }
// WCET-function [d2]
void f2(void) {TIMER1 += d2; TIMER2 += d2; ... }
// WCET-function [d3]
void f3(void) {TIMER1 += d3; TIMER2 += d3; ... }
// WCET-function [d4]
void f4(void) {TIMER1 += d4; TIMER2 += d4; ... }
// WCET-function [d5]
void f5(void) {TIMER1 += d5; TIMER2 += d5; ... }
...
int main(int argc, char *argv[])
...
// RESET-TIMER TIMER1=0;
TIMER1 = 0;
// RESET-TIMER TIMER2=0;
TIMER2 = 0;
f1(); f2();
// ASSERT-TIMER (TIMER1 <= alpha);
assert (TIMER1 <= alpha);
// RESET-TIMER TIMER1=0;
TIMER1 = 0;
f3(); f4();
// ASSERT-TIMER (TIMER1 <= beta);
assert (TIMER1 <= beta);
f5();
// ASSERT-TIMER (TIMER2 <= gamma);
assert (TIMER2 <= gamma);
...

(b)

Fig. 2. (a) Example of Annotated C Code; and (b) Translation Result

memory leaks, etc), and then run the model check to find for timing violations
in the modified code.

After translation, this new code is able to be run on ESBMC, which check
properties using user-specified assert statement. In the proposed method the
assert will be the way to check timing properties. In the code of Figure 2(b) we
may see three timing verification.

3.4 Verifying the Bridge Crossing Problem

The bridge-crossing problem is a mathematical puzzle with real-time aspects [14].
Four persons, P1 to P4, have to cross a narrow bridge. It is dark, so they can
cross only if they carry a light. Only one light is available and at most two
persons can cross at the same time. Therefore any solution requires that, after
two persons cross the bridge, one of them returns, bringing back the light for
any remaining person(s). The four persons have different maximal speeds: Pi

crosses in ti time units (t.u.), and we assume that t1 ≤ t2 ≤ t3 ≤ t4. When a
pair crosses the bridge, they move at the speed of the slowest person in the pair.
Consider that t1 = 5; t2 = 10; t3 = 20; and t4 = 25, the question is: how much
time is required before the whole group is on the other side? Rote [14] pointed

out that the most obvious solution is to let the fastest person (P1) accompany
each other person over the bridge and return alone with the lamp. In this case,
the total duration of this solution is t2+ t1+ t3+ t1+ t4 = 2t1+ t2+ t3+ t4 = 65
t.u. However, the obvious solution is not optimal. The correct solution in this
case is to let P3 and P4 cross in the middle. Hence, the new total duration is
t2 + t1 + t4 + t2 + t2 = t1 + 3t2 + t4 = 60 t.u.

We implemented this problem5 and submitted it the ESBMC model checker.
We first verified that 60 is indeed the optimal solution, i.e., that the elapsed
time cannot be less than 60. The timing assertion and the ESBMC’s output
can be seen in Figure 3. We can see that the verification failed, which means
that ESBMC find at least one execution path where the asserted condition is
false. The ESBMC spent 3m25s to give the result. The second attempt was
to check if the time duration could be greater or equal to 60. The result was
SUCCESSFULL, which means that the SMT solver found that in all execution
paths the assert condition is true. With this two results, we may conclude that
time = 60 is indeed the optimal solution. The ESBMC spent 16m28s to give the
result. These experiments were conducted on an Intel Pentium Dual CPU with
4 GB of RAM running Linux OS, and ESBMC v.1.15.1 (64bits).

//@ ASSERT-TIMER (__timing__ < 60);
assert (__timing__ < 60);
...
size of program expression: 37084 assignments
Generated 1 VCC(s), 1 remaining after simplification
Encoding remaining VCC(s) using bit-vector arithmetic
Solving with SMT Solver Z3 v2.16
Runtime decision procedure: 177.843s
Building error trace
Counterexample:
...
Violated property:

file __bridge__LT60.c line 151 function main
assertion
__timing__ < 60

VERIFICATION FAILED

Fig. 3. Verification failed as the result of the application of the ESBMC

4 Pulse Oximeter Case Study

This section describes the main characteristics of the pulse oximeter and shows
results on the application of the model checker ESBMC in the verification of
timing constraints. All experiments were conducted on an otherwise idle Intel
Pentium Dual CPU with 4 GB of RAM running Linux OS. We chose ESBMC
v.1.15.1-64bits as untimed bounded model checker.

5 The code, counterexample and explanation on the results may be downloaded at
http://esbmc.org

4.1 Problem Specification

The pulse oximeter is responsible for measuring the oxygen saturation (SpO2)
and heart rate (HR) in the blood system using a non-invasive method. This
device was used as case study in [6] to raise the coverage of tests in embedded
system combining hardware and software components. The implementation is
relatively complex, since the final version has approximately 3500 lines of ANSI-
C code and 80 functions. Considering that such paper does not checked timing
constraints explicitly, and the implementation is publicly available6, we used this
problem as a case study for our proposed method.

The architecture consists in four components: sensor, data acquisition module
(OEM-III)7, microcontroller, and LCD display. The sensor captures data on
oxygen saturation (SpO2) and heart rate (HR) of the patient. The OEM III
module has an interface for communication with sensor, an ASIC (Application-
Specific Integrated Circuit) component, and a serial communication interface
(RS-232). The ASIC component provides the values of SpO2 and HR data in
the serial port. The microcontroller receives this data, via serial port, treat them
and displays on the LCD.

The packet description of the data format is shown in Table 1. A frame
consists of 5 bytes; and a packet consists of 25 frames. Three packets (375 bytes)
are transmitted each second. In this table, Byte1 is always “01” (usually used for
synchroization); Byte2 is the status byte (if sensor is not connected, for instance);
Byte3 shows the 8-Bit Plethysmographic Pulse Amplitude; Byte4 presents HR
and SpO2 data; and Byte5 is the checksum.

Table 1. Packet Description

Byte1 Byte2 Byte3 Byte4 Byte5

1 01 STATUS PLETH HR MSB CHK

2 01 STATUS PLETH HR LSB CHK

3 01 STATUS PLETH SpO2 CHK

...

25 01 STATUS PLETH reserved CHK

In the context of timing constraints, the following functional requirements
are considered:

FR1. The system has to read all HR and SpO2 data in at most 1 second. In
this case, we have to take into account the maximum frequency of the serial
communication (9600bps), and the amount of bytes sent by the sensor device.

6 Availabe at: http://esbmc.org
7 For more information refer to www.nonin.com/OEMSolutions/OEM-III-Module

FR2. The software must check whether the frames sent by the sensor is correct,
and show in the LCD if found any problem. This implies in verification of
the checksum, and status bytes. Besides that, we have to show any problem
in the LCD display.

FR3. The user should be able to see, every second, the data of heart rate and
oxygen saturation in the patient’s blood. Therefore, we have to store patient’s
information and to show in the LCD display.

FR4. The system must allow users to store data on HR and SpO2 in the external
memory of the microcontroller. We have to consider the the amount of data
and the time to store in the external memory.

4.2 Code Annotation

The timing constraints for this project is shown in Table 2. These constraints
come from either the specification or a domain specialist. As presented before
(see Section 3.2), these timing constraints are annotated into the code. It is
worth noting that if one function calls another function, the timing constraint
may be specified on the caller function, or on the called function, or both.

Table 2. Timing Information

ID Function Description WCET(µs)

f1 receiveSensorData receives data from the sensor 1000

f2 checkStatus checks status 700

f3 printStatusError displays status error 10000

f4 checkSum calculates checksum 2000

f5 printCheckSumError displays checksum error 10000

f6 storeHRMSB stores HR data 200

f7 storeHRLSB stores HR data 200

f8 storeSpO2 stores SpO2 data 200

f9 averageHR calculates average of HR data 800

f10 averageSpO2 calculates average of SpO2 data 800

f11 getHR returns the stored HR value 200

f12 getSpO2 returns the stored SpO2 value 200

f13 printHR displays HR on the LCD 5000

f14 printSpO2 displays SpO2 on the LCD 5000

f15 insertLog inserts HR/SpO2 in RAM microcontroller 500

4.3 Verification Results

The pulse oximeter code is part of a real implementation. The code adopted,
and the verification results are publicly available at: http://esbmc.org. In or-
der to verify the timing constraints using ESBMC, we had to isolate hardware-
dependent code. With this aim we used #if, #else, and #endif preprocessor
directives. This experiment verifies if in all execution paths the timing constraints
are met when implementing the four functional requirements (FR1, FR2, FR3,
and FR4). This program behavior is explained as follows: The specification con-
siders that we should read three packets of data per second. Each packet has
twenty five frames. Each frame has five bytes. In this way we have to:

1. read data bytes calling function f1 (receiveSensorData);
2. for each byte read:

(a) to check status of the second byte of each frame by calling function f2
(checkStatus); if there is an error, it should be called the function f3
(printStatusError);

(b) to check the fifth byte of each frame by calling function f4 (checkSum); if
there is an error, it should be called the function f5 (printCheckSumError);

(c) to read the fourth byte of first frame and to call function f6 (storeHRMSB);
(d) to read the fourth byte of second frame and to call function f7 (storeHRLSB);
(e) to read the fourth byte of third frame and to call function f8 (storeSpO2);

3. call the functions f9 (average HR), f10 (average SpO2), f11 (getHR), f12
(getSpO2), f13 (printHR) with HR value as argument, f14 (printSpO2) with
SpO2 value as argument, f15 (insertLog) with HR value as argument, and
f15 (insertLog) with SpO2 value as argument.

Table 3. Experimental Results

ID % Checksum Error Time(s) Result

1 0% 28.9 successful

2 16.6% 20.3 successful

3 20% 20.2 successful

4 25% 19.9 successful

5 33.3% 19.9 successful

6 50% 21.1 failed

7 100% 30.2 failed

Figure 4 depicts part of the pulse oximeter code submitted to the ESBMC.
Table 3 shows the experimentl results. We experimented seven scenarios taking
into account the percentage of checksum errors. The percentage considered was
0%, 16.6%, 20%, 25%, 33.3%, 50%, and 100%. Excepting the best scenario (0%)

...
// DEFINE-TIMER TIMER;
unsigned int TIMER;
...
//@ WCET-FUNCTION [5000]
void printHR (unsigned int line, unsigned int valueHR)
{
TIMER += 5000;

char sHR[16];
sprintf(sHR, "HR:%d\n", valueHR);
printLCD(sHR, line, 1);

}
...
int main(void) {
...
// RESET-TIMER TIMER;
TIMER=0;
...
for (k=0; k<3; k++) {
for (j=0; j<25; j++) {
for (i=0; i<5; i++) {
Byte[i] = receiveSensorData();
if ((i==1) && (checkStatus(Byte[i])))
printStatusError(LINE1);

if ((i==4) && (checkSum(Byte)))
printCheckSumError(LINE2);

if (i==3) {
if (j==0) storeHRMSB (Byte[i], k);
if (j==1) storeHRLSB (Byte[i], k);
if (j==2) storeSpO2 (Byte[i], k);

}
}

}
}

averageHR();
averageSpO2();
HR = getHR();
SpO2 = getSpO2();
printHR(LINE1, HR);
printSpO2(LINE2, SpO2);
insertLog(HR);
insertLog(SpO2);

// ASSERT-TIMER (TIMER < 1000000) // one second;
assert (TIMER < 1000000);
...

}

Fig. 4. Code for running in the ESBMC model-checker

and worst scenario (100%), all timing performance was 20s in average. As pre-
sented in Table 3, if considered the worst-case scenario, in this case 100% of data
error, timing constraints are not met. However, if it is considered that it is not
practical to consider an extreme situation like this one, we may conclude that
up to 33.3% of checksum errors, the system will continue to reach the timing
constraints.

5 Related Work

Lamport [10] advocates that most real-time specifications can be verified using
existing languages and methods. He proposed to represent time as an ordinary
variable (now), which is incremented by an action (Tick), and express timing
requirements with a special timer variable in such a way that such specifications
can be verified with an conventional model checker. He call this method as
model checking explicit-time specifications. He proposes to specify the system
and timing constraints using TLA+ (Temporal Logic of Actions), which is a
high-level mathematical language. The problem is that the learning curve of the
TLA+ may be high.

Ostroff and Hg [13] presented a framework that allows specification, devel-
opment and verification of discrete real-time properties of reactive systems. This
framework considers a Timed Transition Model (TTM) as underlying compu-
tational model, and Real-Time Temporal Logic (RTTL) as the requirements
specification language. The authors provide a conversion procedure for mapping
the model and specification into a finite state fair transition systems, which may
be input to a (untimed) tool, in this case STeP model-checker [2], for state ex-
ploration for checking real-time systems properties. One problem of this method
is that the converted clocked formulas count the number of tick events that oc-
cur. Thus, the size of the formulas grow according to the bounds that must be
checked. Since the cost of checking a linear time formula is exponential in the
size of the formula, these procedures are only useful for small bounds.

Chun and Hung [4] propose a new class of Duration Calculus (DC) called
DC∗

≤1, whose formulas correspond to expressions over the set of state occurrence
for one time unit (or less), and using conventional variables to implement relative
time. They model the real-time system using DC and convert its components
into DC∗

≤1 specifications. Each DC
∗
≤1 specifications is translated to an automata

model. In this way, the whole system is modeled by the synchronisation of several
automatas. Later, the resulting automata is translated to the SPIN untimed
model checking language (in this case Promela). They applied their method
in the Biphase Mark Protocol. However, they do not show how translate from
automata model to Promela language. Additionaly, it is not clear what timing
constraint was verified in this case study.

Ganty and Majumdar [7] show that checking safety properties for real-time
event-driven programs is undecidable. The undecidability proof for the safety
checking problem uses an encoding of the execution of a 2-counter machine as a
real-time event-driven program. The result is undecidable because such programs
are not finite-state. In this case, the task buffer as well as the call stack can grow
unboundedly large in the course of the execution. They suggest to use higher-
level languages, such as Giotto, which statically restricts the ability to post tasks
arbitrarily, these higher-level languages ensure that for any program, at any point
of the execution, there is at most a bounded, statically determined, number of
pending calls. In this case, just by finiteness of the state space, all verification
problems are decidable.

The input of the related work analyzed are: Temporal Logic of Actions
(TLA) specifications, Timed Transition Model + Real-Time Temporal Logic
(TTM/RTTL), Duration Calculus (DC), and Giotto programs. To the best of
our present knowledge, there is no work that verify timing constraints using C
code as input language.

6 Conclusions and Future Work

Model checking is often used for finding errors rather than for proving that they
do not exist. However, model checkers are capable of finding errors that are
not likely to be found by simulation or test. The reason for this is that unlike
simulators/testers, which examine a relatively small set of test cases, model
checkers consider all possible behaviors of the system.

This paper described how to use an untimed software model checker to verify
timing constraints in C program language. In our proposed method we use the
C language because it is one of the most commom implementation language of
embedded systems. As far as we are aware, there are only few approaches that
deal with model-checking timing constraints using C code as input language. We
specified the timing behavior using an explicit-time code annotation technique
for verifying timing properties using ordinary model checkers. The main advan-
tage of an explicit-time approach is the ability to use languages and tools not
specially designed for real-time model checking. As pointed out by Lamport [10]
“the results reported that verifying explicit-time specifications with an ordinary
model checker is not very much worse than using a real-time model checker”.

Experimental results have shown that the proposed method is promissing,
mainly because now it is possible to verify timing constraints in the C code.
Therefore, we are just following a movement toward application of formal verifi-
cation techniques to the implementation level. In this case, we avoid construct-
ing models explicitly and go directly to code verification. As presented before,
this method is particularly interesting when taking into account legacy code.
However, we argue that our proposed method is not an alternative to methods
currently available in the literature, but complementary. We also show that using
our proposed method it is possible to investigate several scenarios.

This paper just considered single-threaded code. It is an ongoing work to
consider multi-threaded code, which is also supported by ESBMC. Therefore,
we need to consider interleavings and priorities.

This work proposed just a coarse-grained timing constraint resolution, in this
case, we considered just timing constraints in functions. Thus, one future work
is to extend both the code annotation method and the timing verification to
consider fine-grained timing constraints, maybe in critical sections, for instance
to add timing duration between two instructions representing a sequential block,
and timing bounds for loops.

Acknowledgements. The authors acknowledge the support granted by
FAPESP process 08/57870-9, CAPES process BEX-3586/10-3, and by CNPq
processes 575696/2008-7, and 573963/2008-8.

References

1. Bernard Berthomieu and Francois Vernadat. Time petri nets analysis with tina.
In Proceedings of the 3rd international conference on the Quantitative Evaluation
of Systems, pages 123–124, Washington, DC, USA, 2006. IEEE Computer Society.

2. Nikolaj S. Bjrner, Anca Browne, Michael A. Colon, Bernd Finkbeiner, Zohar
Manna, Henny B. Sipma, and Tomas E. Uribe. Verifying temporal properties of
reactive systems: A step tutorial. In FORMAL METHODS IN SYSTEM DESIGN,
page 2000. Springer, 2000.

3. Stefan Bygde, Andreas Ermedahl, and Björn Lisper. An efficient algorithm for
parametric wcet calculation. In Proceedings of the 2009 15th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA ’09, pages 13–21, Washington, DC, USA, 2009. IEEE Computer Society.

4. Kim Yong Chun and Dang Van Hung. Verifying real-time systems using untimed
model checking tools. Technical Report UNU-IIST Report 302, The United Nations
University. International Institute for Software Technology, June 2004.

5. Lucas Cordeiro and Bernd Fischer. Verifying Multi-threaded Software using SMT-
based Context-Bounded Model Checking. In International Conference on Soft-
ware Engineering (ICSE’2011), pages 331–340, Waikiki, Hawaii, May 21-28 2011.
ACM/IEEE.

6. Lucas Cordeiro, Bernd Fischer, Huan Chen, and Joao Marques-Silva. Semiformal
verification of embedded software in medical devices considering stringent hard-
ware constraints. In International Conference on Embedded Software and Systems
(ICESS’09), pages 396–403, Washington, DC, USA, 2009. IEEE Computer Society.

7. Pierre Ganty and Rupak Majumdar. Analyzing real-time event-driven programs.
In Proceedings of the 7th International Conference on Formal Modeling and Anal-
ysis of Timed Systems, FORMATS ’09, pages 164–178, Berlin, Heidelberg, 2009.
Springer-Verlag.

8. Thomas Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker
for hybrid systems. Software Tools for Technology Transfer, 1:460–463, 1997.

9. Edmund Clarke Jr, Orna Grumberg, and Doron Peled. Model Checking. The MIT
Press, January 2000.

10. Leslie Lamport. Real-time model checking is really simple. In Correct Hardware
Design and Verification Methods (CHARME’05), volume 3725 of Lecture Notes in
Computer Science, pages 162–175, Saarbrücken, Germany, October, 3-6 2005.

11. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

12. N. Markey and Ph. Schnoebelen. Symbolic Model Checking of Simply-Timed
Systems. Technical Report LSV-03-14, Lab. Spécification et Vérification. Ecole
Normale Supérieure de Cachan, October 2003.

13. Jonathan Ostroff and Hak Ng. Verifying real-time systems with standard theories.
In In AMAST Workshop on Real-Time Systems, 2000.

14. Günter Rote. Crossing the bridge at night. In EATCS Bulletin, volume 78, pages
241–246, October 2002.

15. Farn Wang, Geng-Dian Huang, and Fang Yu. TCTL inevitability analysis of dense-
time systems: From theory to engineering. IEEE Trans. Softw. Eng., 32:510–526,
July 2006.

16. Sergio Yovine. Kronos: A Verification Tool for Real-Time Systems. International
Journal on Software Tools for Technology Transfer, 1:123–133, 1997.

