Exploiting Safety Properties in Bounded Model Checking for
Test Cases Generation of C Programs

Herbert Rocha, Lucas Cordeiro, Raimundo Barreto and Jo& Netto

'Universidade Federal do Amazonas
Av. Rodrigo Octavio, 3000, Coroado, Manaus/Amazonas

{herberthb12, lucasccordeiro}@mail.com {rbarreto, jnetto}@lcc.ufam edu.br

Abstract. The use of computer-based systems in several domains measaed

significantly over the last years so that software verifimatiow plays an impor-
tant role in ensuring the overall product quality. The vahfdhe counterexam-
ple and safety properties generated by Bounded Model Chetkereate test
case and to debug these systems is highly recognized. Ipapés, we describe
a method to integrate the bounded model checker ESBMC veit@Gltnit frame-

work. This method aims to extract the safety properties ige¢ee by ESBMC
to generate automatically testcases using the rich setsdréisns provided by
the CUnit framework. We show the effectiveness of our pexposethod over
publicly available benchmarks.

Resumo. O uso de sistemas computacionais em diversosrmdosi®m crescido
significativamente no@ltimos anos, desta forma a verifié&gde software de-
sempenha um papel importante para garantir a qualidade Igwgproduto. O
valor dos contra exemplos e propriedades de segurancalgsrpelos Bounded
Model Checkers para a gerag dos casos de teste e depw@ragiestes sistemas
sao altamente reconhecidos. Neste artigo, descrevemos @modompara in-
tegrar o ESBMC com o framework CUnit. Esté&todo visa extrair as pro-
priedades de seguranca geradas pelo ESBMC e gerar autoamaéinte casos
de testes usando um rico conjunto de assertivas providas@éhit. Demon-
stramos a efigcia do nétodo, aplicando-o sobre benchmarksbpcos.

1. Introduction

Nowadays, software applications need to be developed lguéstid meet a high-level
of quality. Formal verification plays an important role tosare predictability and de-
pendability in the design of critical applications. Consently, the application of ver-
ification and testing are indispensable techniques to tiveldement of high-quality
software. However, there is usually a high cost involvedhi@ preparation, execution
and management of tests. One way to deal with such problertes irtegrate for-
mal verification techniques with test environments. Mod&taking has been an in-
teresting area of research in formal verification for mangrge In the last decades,
the use of models has been adopted in different softwarggaa¢s, promoted by
software technologies such as UML [Borges and Mota 2007] Model-Driven Test-
ing [Petrenko and Alexandre 2001]. This scenario has alsovated software engineers
to apply model checking [Beyer et al. 2007]. Model checkimdefined as a strategy for
verifying the systems’ correctness by checking whethesjiséem meets desired proper-
ties based on its representation in a formal model [Baierkatden 2008].

The main challenge in model checking is how to deal with boéstate space ex-
plosion problem and the lacking of integration with othest &nvironments more familiar
to designers. In order to tackle these problems, one pessafiition is to explore features
already provided by the model checking (for instance, ifieation of safety properties)
for test case generation. According to [Baier and Katoer8P6éfety properties are often
characterized asnbthing bad should happ&nAs example, the mutual exclusion prop-
erty is a typical safety property. In this way, the violatioha safety property can be
detected by monitoring the runtime system execution. Sushitoring is usually done in
a controlled manner, taking into account both system in@uid several execution paths.

In this paper, we describe a method to integrate the modekehn&SBMC (Effi-
cient SMT-Based Bounded Model Checker)[Cordeiro et al. 9B)@ith the CUnit frame-
work!. The integration of these two environments aims to ensute/ae quality by ex-
ploiting formal verification and tests without obtaining @mory explosion. In particular,
this method extracts the safety properties generated by 3BMC to generate automat-
ically test cases using the rich set of assertions providethé CUnit. We show the
effectiveness of our proposed method over publicly avildlenchmarks. We advocate
that exploiting the integration between a testing framéward a model checker allows
us to go deeper into the program verification.

2. Background

This section presents the ESBMC and discuss about safgienies and software testing
technique.

2.1. Model Checking with ESBMC

Model Checking is one of the most used formal method for thdigation of systems,
which generates an exhaustive search in the state spacd toatitermine whether a
given “property” is valid or not [Baier and Katoen 2008]. Taés a special kind of model
checking algorithm calledounded model checkifMC) based on Boolean Satisfiabil-
ity (SAT), which has been introduced as a complementarynigcie to Binary Decision
Diagrams for alleviating the state explosion problem. Tasibidea of BMC is to check
(the negation of) a given property at a given depth: giveraadition systenM, a prop-
erty ¢, and a boundt, BMC unrolls the systerk times and translates it into a verification
condition (VC)v such that) is satisfiable if and only i) has a counterexample of depth
less than or equal te Standard SAT checkers can be used to chegki#f satisfiable. In
order to cope with increasing system complexity, SMT (Siatiflity Modulo Theories)
solvers can be used as back-ends for solving the VCs geddrate the BMC instances.
ESBMC is a bounded model checker for embedded ANSI-C softwaredbaseSMT
solvers, which allows: (i) to verify single- and multi-ttaged software (with shared vari-
ables and locks); (ii) to reason about arithmetic under-auflow, pointer safety, array
bounds, atomicity and order violations, deadlock, data,rand user-specified assertions;
(i) to verify programs that make use of bit-level, poirgestructs, unions and fixed-point
arithmetic. ESBMC uses a modified version of the CBMi©nt-end to parse the ANSI-C
code and to generate the VCs via symbolic execution. ESBM@ges three approaches

LAvailable at: http:/cunit.sourceforge.net/
2Available at http://users.ecs.soton.ac.uk/IccO8r/agbm
3Available at http://www.cprover.org/cbhmc/

lazy, schedule recording, and underapproximation and ninde(UW) to model check
multi-threaded software. This paper aims to exploit feaduyprovided by ESBMC in
order to propose an alternative approach to test-basedrjessnce BMC alone has lim-
itations, such as the state space explosion to check tlegighility of the VCs by using
off-the-shelf SMT-solvers.

2.2. Exploiting Safety Properties in Software Testing Stréegies

Software testing is the process of executing a program wht goal of finding
faults [Myers and Sandler 2004]. A successful test is thetbaecan determine the test
cases for which the program under test fails. A test casasisrig an analysis of test data
associated with an expected result of processing accotditige software specification.
Unit tests are typically written based on a set of test casensure that the code meets
its design and behaves as expected. There are lots of to@s\eloping unit tests. Such
tools allow software engineers to create unit tests in a raffrgent and simplified way
by favouring better organization and code reuse. CUnit igrahtesting framework for
C programs that provides a set of assertions for testingdgonditions. The success
or failure of these assertions is tracked by the framewar#,Gan be viewed when a test
run is complete. Each assertion tests a single logical tiongiand fails if the condi-
tion evaluates t&-ALSE The problem that we address in this papdnasv to create test
cases aimed at checking safety propertiéd@ thus propose an approach to create test
cases guided by the safety properties that are generatechatitally by ESBMC. ES-
BMC generates verification conditions for the following eésafety properties: (1) VCs
to check for arithmetic overflow and underflow; (2) VCs to dhéar out-of-bounds array
indexing; (3) VCs to check for pointers safety; and (4) VCsheck for dynamic memory
allocation. The proposed method aims to transform eacheptppentified by ESBMC
in an assertive in CUnit in order to obtain, as a final resuliew instance of the analyzed
code, containing test cases directly linked to the safetpgnties of the code.

3. Related Work

There are several tools and methods for generating tests.case GA-
teL [Marre and Arnould 2000] requires the SUT (System Undest)l or a complete
specification of the SUT, an environment description, an@si dbjective (safety or
liveness property) in order to generate the test cases. AlBatnett et al. 2003],
TestComposer, and AutoLink [Schmitt et al. 2000] are sthprimked to a specific
domain or language. In [Cadar and Engler 2005] is presenteztlaique that uses
code to automatically generate its own test cases at rumbyrusing a combination of
symbolic and concrete (i.e., regular) execution. The fiosttigbution is the observation
that code can be used to automatically generate its own fpaltgrnighly complex test
cases. Instead of running the code on manually-constrgctectete input, this technique
runs it on symbolic input. These observations say what egjales (or ranges of values)
the input could be, and thus generate test cases by solasg ttonstraints for concrete
values. These tests are callexecution generated testi{§GT). However, this work
does not take into account BMC and how to solve the memory alvérdimitations.

4. Proposed Method

This section describes the main steps of our proposed méthbdims to explore safety
properties generated by ESBMC in order to generate tess cdse programs. The pro-

posed method consists in the following stefi¥:Identification of safety propertiesii)
Safety Properties Information Collectiofiij) Asserts Inclusion(iv) Implementing Unit
Test in CUnit Framework; anl/) Running CUnit tool. Figure 1 shows an overview of
our proposed method. It is worth saying that all such stepsaatomatically performed
by specific tools. In order to explain the main steps of thgppsed method we adopt the
code shown in Figure 2.

2 - Comments (Location) on the "Claim";

ESBMC
Model Checker
-I\ 3 - Property.
A
L/ - - — - - -
Identification R f— . —a— e — e — e e
| //<- <Claim X> 4 H :
i

First Step Second Step

Output of Claims
with properties identified

I 1 - "Claim" Number;

I
v y
I
I

TEST CASE I '

|| ccode "

] ASSERT *(Property) | :

| =/ .\l
Third Step V Fourth Step

CUnit Framework

Test Report

Test Report

Figure 1. Flow structure of the proposed method.

i|#include <stdio .h>

ol int a[5], b[6];

sfint main (){

s int i, j, temp; a[0]=1;

s| for (i=1; i<b5; i++) {

6 al[i]= a[i—1] + i; b[0] = 1;

7 temp = afi]«(i+1);

8 for (j=1;j<temp;j++) { b[j] = b[i —1]+(tempx2); }
!

10| }

Figure 2. C code for describing the proposed method steps.

4.1. First step: Identification of Safety Properties

We adopt ESBMC for identification of safety properties theteives a C program as
input parameter and opticn show- cl ai ns, which shows all found safety properties
that ESBMC think it can be violated. In the bounded model klmeccontext, acl ai mis
the same as a property. Examples of safety claims are: bmféflow, division by zero,
arithmetic overflow, and so on. Therefore, a claim may beaten in some execution
path. It is worth noting that automatically generated ckimot necessarily correspond
to bugs, but they are just potential flaws. Whether one ofetfdsims corresponds to
a bug needs to be determined by further analysis. Each safeperty (or claim) gen-
erated by ESBMC contains the following information: prdgedentification, location,

and theassert to be checked. Figure 3 shows an example of a claim autortigtica
generated. In this example, claim 1 states a potential Ideend of array “a” in file
sumarray.cat line 9 of the functiomain All claims are stored in a special text file called
“resul t _[ESBMC. t xt ” so that important information can be extracted in the negp s

media/$ esbmc sum array.c --show-claims
file sum array.c: Parsing
Converting
Type-checking sum array
Generating GOTO Program
Pointer Analysis
Adding Pointer Checks
Claim 1:
file sum array.c line 9 function main
array ‘a' lower bound
i>=0

Figure 3. Proposed method first step.

4.2. Second step: Safety Properties Information Collection

The second step analyzes the text file produced in the stepdllézt several important
information needed in the next steps, such @sclaims, (i) comments on the claim,
(i) the line of code where the claim occurred, gng the property identified by that
claim. The text file ¥ esul t _[ESBMC. t xt ” is given as input of this step where there
may be several claims but the file organization follows theespattern. We adopt regular
expression to find all information. As result of this steplisguced a new text file called
“resul t cl ai ms. t xt ” that stores several information as depicted in Figure 4.

Output of ESBMC Claims C Line in the Code Property

file sum_array.cline 9 function main

Claim 1 array ‘a' lower bound 9 i>=0
file sum_array.cline 9 function main

file sum_array.c: Parsing
Converting

. Claim 2 array ‘a' upper bound 9 i<5
Type-checkmg sum_aray file sum_array.cline 9 function main
Generating GOTO Progr;) - o
Poi Analvsi |~ Claim3 array ‘a' lower bound 9 -1+i>=0
Olr!ter n,a ysis file sum_array.cline 9 function main
Addmg Poin |~ Claim4 array ‘a' upper bound 9 -1+i<5

Cla?m 1: file sum_array.cline 11 function
Claim 2: | claims main 1 i>20
Claim 3: file sum_array.cline 11 function
Claim 4: | Claim 6 main 1 i<5
Claim 5: / file sum_array.cline 13 function
Claim 6: [[Claim7 main 13 j>=0

Claim 7/ file sum_array.cline 13 function

Claim 8:«— | Claim8 main 13 j<6
Claim 9: file sum_array.cline 13 function
: . [Claim9 main 13 -1+i>=0
Claim 10: \ file sum_array.cTine 13 function
Claim 10 main 13 -1+i<6

Figure 4. Applying the second step.

4.3. Third step: Asserts Inclusion

The information collected in the second step will serve aasidfor creating test cases
in the C source code. This step includes assertions in thewdt the respective safety
property generated by ESBMC. This step is divided in two phagi) to include each
claim in the C source code as comments; (i) Add an assertwéaming the (maybe
violated) safety property to each claim comment added is@liid. The first phase uses
the file “r esul t _cl ai ns. t xt " to get the line where the claim has ocurred, and enter

] ~ o O S w N =

1 S w N =

in the C source code a comment about all claims. Therefoig stap adds at the end
of the line a comment/*/ <-” and, for each claim, £Cl ai m X>", where X is the
claim number. Figure 5 shows the results of claims identibca The second phase
consists in finding each claim previously added as a comnagwct,adding an assertive
containing their corresponding safety property in a linbolethe line code identified
with the respectiveelaim. Each line of the C code that has this kind of comment is
analyzed in order to find what is the claim number. This clasmber is checked in
the file “resul t _cl ai ns. t Xt ” to obtain their respective safety property, and other
relevant information, to be included in the C source codenaasaertion. Figure 6 shows
an example based on the code of Figure 2.

for (i=1; i<5; i++){
ali]= a[i—1] + i;//<— <Claim 1> <Claim 2> <Claim 3> <Claim 4>
b[0] = 1;
temp = al[i]x(i+1);//<— <Claim 5> <Claim 6>
for (j=1;j<temp;j++)
b[j]=b[i —1]+(tempx2);//<— <Claim 7> <Claim 8> <Claim 9>
}

}

Figure 5. C code with added comments in the third step.

//Claim 1: file sumarray.c line 6 //array ‘a’ lower bound
CUASSERT(i >= 0);
//Claim 2: file sumarray.c line 6 //array ‘a’ upper bound
CUASSERT(i < 5);

al[i]= a[i—-1] + i ; b[0] =1 ;//<— <Claim 1> <Claim 2>

Figure 6. C code with assertions of third step.

4.4. Fourth step: Implementing Unit Test in CUnit Framework

This step changes the C code output file of the third step tavdileesuitable to be applied
in the CUnit framework. This new file is built by a template ahtains: (i) include files
specific for CUnit and C source code; (i) CUnit configuratianctions; (iii) functions to
be tested; and (iv) new main function that runs CUnit. Figushows the template phases
and the respective test code for running unit tests usingtCUhne CUnit include files are
directly obtained by the template file. The C source codautheffiles are directly copied
from the C source code. The CUnit configuration functionsdarectly obtained by the
template file. The functions to be tested are filled by the rhamation of the C source
code changing the function name from “main” to “testClaim$he new main function
area is directly obtained by the template file. The resultnew file that is ready to be
tested by CUnit framework.

4.5. Fifth step: Running CUnit Tool

In the last step, the new C code is submitted for executioh thi¢ CUnit. In this case,
CUnit performs tests on the code that contains the test tasewsas generated during the

.| #include <string.h>
.| intinit_suite1(void) { ... }

1.| #include "CUnit/Basic.h”
.| #include <stdio.h>

3

4

5. int clean_suite1(void) { ... }
=

6. | int a[5];
7. | int b[6];
‘ Include files specific for Cunit 8. void[te]stCIaims(void) {
[Include files specific for the C source 9 inti, j, temp; a[0] = 1;
= = = = 10 for (i=1;i<5;i++){
\ CUnit configuration functions F 11. /IClaim 1:
Functions to be tested 12 /ffile sum_array.c line 9 function main
. 13. /larray "a' lower bound
Global Variables 14, CU_ASSERT(i >= 0);
Function of C Code 15. afi] = afi - 1] +i; //<- Claim 1
L) 16.
Main = testClaims 17 3
New main function that runs Cunit 1s. })
Execution Functions of Tests N 19.{ int main() { .
Options Execution of Tests 20.| CU_pSuite pSuite = NULL;
21.| pSuite = CU_add_suite("sum_Array", init_suite1, clean_suite1);
22| if (NULL == pSuite) { ... }
23.| if (CUE_SUCCESS != CU_initialize_registry()) return CU_get_error();
24.| if (NULL == CU_add_test(pSuite, "testClaims", testClaims))) {...}
25.] CU_basic_set_mode(CU_BRM_VERBOSE);
26.| CU_basic_run_tests(); CU_cleanup_registry();
27.| return CU_get_error();
28.| }

Figure 7. Test code for running unit tests using Cunit framew ork.

method application, by abstraction of safety propertiedially, test cases are analyzed
and each one can be approved or failed. Each failed testastegpby the testing frame-
work. Figure 8 shows the result of applying the proposed oteth the C code shown in
Figure 2. As we can see, there is 1 test with 404 asserts wiidravé failed.

Suite: sum_Array

Test: testClaims ... FAILED
sum_Array.c:86 - j < 6
—-—Run Summary: Type Total Ran Passed Failed
suites 1 1 n/a 0
tests 1 1 0 1
agserts 404 404 327 77

Figure 8. Output of Cunit.

5. Experimental Results

This section shows and analyzes results obtained with tbpogsed method when ap-
plied to the verification of standard ANSI-C benchmarks. @xperiments were con-
ducted on an Intel Core 2 Duo CPU, 2Ghz, 3GB RAM with Linux O%eTsteps of
the proposed method have been implemented using the ESBMQ vdnd the frame-
work CUnit v2.1. Table 1 details the ANSI-C benchmarks usedur experiments. The
first column contains the application number; the secondrmonk describes the mod-
ule name composed by the respective benchmark, C prograimthannput (e.g., de-
terministic or non-deterministic); the third column shotke number of lines of code
(LOC); the fourth column provides the total number of prajesr identified, which
is equivalent to the number of test cases that are createt!;fiaally, the fifth col-
umn shows the number of properties violated. The adoptedhmearks were EU-
REKA* SNUP, WCET®, and a fragment of code extracted from the pulse oximeter de-
vice [Cordeiro et al. 2009a]. The results of the applicatwdrihe proposed method are
available at https://sites.google.com/site/fortesimeth

4“www.ai-lab.it/eureka/bme.html
Shttp://archi.snu.ac.kr/realtime/benchmark
Shttp://www.mrtc.mdh.se/projects/wcet/benchmarkslhtm

Table 1. Details related to the benchmarks of C code used.
Number| Module LOC | Identified | Violated
1 EUREKA_bf20.det.c 49 33 0
2 EUREKA_Prim4_det.c | 78 30 0
3 SNU_bs nondet.c 120 7 0
4 SNU_crc_det.c 125 15 0
5 SNU.insertsortnondet.c| 94 14 6
6 SNU_qurtdet.c 164 6 0
7 SNU_gsort-examdet.c | 134 49 -
8 SNU_selectdet.c 122 39 6
9 WCET_cnt.nondet.c 139 16 0
10 Oximeterlog_det.c 177 4 2

As presented before, the proposed method adopts ESBMCopuBhdling prop-
erties (in this context calledaimg, that may be violated, where such properties are then
verified by the CUnit. Note that in this method, ESBMC is na¢di$or properties verifi-
cation. However, for validation purposes, ESBMC has be@osén to be also adopted as
a validator, i.e. the proposed method should be comparddpkatperties verification of
ESBMC and, if all is well, to find the same violated propertiest ESBMC alone (that s,
without CUnit) can find. In Table 1, in lines from 1 to 4, 6 anch@ tespective codes have
not violated any property in both the proposed method and\NESRIone; in lines 8 and
10 were identified violation of 6 and 2 properties, respetyivdentified by the method
and confirmed by ESBMC alone. However, there were two spea##s, (i) in line 7, the
method does not identify any errors, but ESBMC alone geedraithert i me out or
out of nenory, inthis case we cannot say anything about the verificatignn(ine
5, the proposed method does not find any errors, however ESbtaified violation of
6 properties. These issues will be addressed in future works

The proposed method for identifying and verifying errorsmsidering safety
properties has demonstrated that this task is not trividdeamplemented without the
adoption of a systematic methodology mainly because ptiegeidentification alone
is not sufficient to guarantee that such property is violateéd order to detail further
this point we adopted the code “Oximeleg_det.c” of the pulse oximeter implemen-
tation [Cordeiro et al. 2009a] depicted in line 10 of Table\We can see that the ES-
BMC identified four properties. However, we will focus on asiiic code fragment as
shown in Figure 9, where ESBMC identified the following twmperties: hext <
6400” in line 2, and (unsi gned i nt) buffer _size !'= 0"inline 3. We found
out that this code fragment has properties that may be eid)akesulting in problems
of buffer overflow and division by zero. These problems caouacbecause the vari-
ables ‘buf f er _si ze” and “next ” are set by another function, in this casedi d
i ni t Log(Dat a8 nmax)”. Hence, if someone does not set (or constrain) the value of
“buf f er si ze”and “next ”, then the SMT solver can assign a non-deterministic value
to the variablesbBuf f er _si ze” and “next ”, for example, zero forbuf f er _si ze”
(which would cause a division by zero) or a value greater tfalFFER MAX”, where
this constant sets the size of the array, foext ” (which would cause a buffer overflow).
Thus, the identification of possible errors sometimes neeskplore other parts of the

S w N =

code which, depending on the analyzed code, may become aiicylt task.

void insertLogElement (Data8 HK)
buffer[next] = b;
next (next+l)% buffersize;

Figure 9. A fragment of the Oximeter _log _det.c code.

The assignment of values was made based on the possibleem®bl
identified above, that is: functionihitLog()” is not called and function
“i nsert El enent Log” runs several times until variableneéxt ” becomes greater than
“BUFFER_MAX". The result of this verification is shown in Figure 10, where note for
the first situation, thassertstatement is executed 2 times, while for the second situatio
theassertstatement is executed 12801 times before the propertysger} is violated.

(i) first situation

Suite: log
Test: testClaims ... FAILED
1. log CUnit.c:118 - (unsigned int)buffer size =0
--Run Summary: Type Total Ran Passed Failed
suites 1 1 n/a]
tests 1 1 0 1
asserts 2 2 1 1
(ii) second situation
Suite: log
Test: testClaims ... FAILED
1. log CUnit.c:113 - next < 6400

--Run Summary: Type
suites
tests
asserts

Total
1
1
12801

Ran Passed Failed

x
1
12801

n/a
0
12800

]
1
1

Figure 10. Result of verification performed with the method i n the log.c code.

Abstraction of data and safety properties usually does emqtire a big effort.
However, if the number of LOCs is high or properties idenifie large, then this task
may become very difficult. The implementation of the proghsethod not only serve as
a basis for the abstraction of the safety properties gezebtat model checkers, but also
for the basic model for test engineers who are already familith the testing framework
tools. The automation of this method can thus be of greatradya.

6. Conclusions and Future Work

In this work we presented a new method to integrate the mduokslker ESBMC with the
CUnit framework in order to create and execute the test aaflsesquential C programs.
In particular, this method aims to extract the safety progemgenerated by ESBMC to
automatically create test cases using the rich set of amsegirovided by the CUnit test
framework. The experimental results, although prelimynaave shown to be very effec-
tive over several publicly available benchmarks if compacesoftware model checking
alone. Note also that with the set of tests performed, we \able to identify some
improvements that will be implemented in the proposed nektho.t. treatment and ab-
straction of information generated by the model checked &afiety properties resp.), such

as the code structure and block delimiters, and analysisaifepties related to pointer

and dynamic memory allocation. For future work, we intendnigestigate the applica-

tion of verification techniques with instrumented code [idgtote and Seward 2007] and
other approaches, such as the running code on symbolicsip@atar and Engler 2005]

and mutation testing [Jia and Harman 2010] that will allonta$mprove the proposed

method by enabling the generation of test cases in a widgerahproperties.

Acknowledgement The authors acknowledge the support granted by FAPESP swoce
08/57870-9, and by CNPq processes 554071/2006-1, 5758856/2, and 573963/2008-8.

References
Baier, C. and Katoen, J.-P. (2008)rinciples of Model CheckingVlIT Press.

Barnett, M., Grieskamp, W., Gurevich, Y., Schulte, W., midinn, N., and Veanes, M. (2003).
Scenario-oriented modeling in asml and its instrumematio testing. InTesting, 2nd Inter-
national Workshop on Scenarios and State Machines: Modd@erithms, and Tools

Beyer, D., Henzinger, T., Jhala, R., and Majumdar, R. (200§ software model checkelLBST:
Applications to software engineering. International Journal on Software Tools for Technol-
ogy Transfer (STTTpages 505-525.

Borges, Rafael Magalh a. and Mota, A. C. (2007). Integrating and formal methods. In
Electron. Notes Theor. Comput. Sgages 97-112.

Cadar, C. and Engler, D. (2005). Execution generated tesscdéiow to make systems code crash
itself. In 12th International SPIN Workshop on Model Checking of Softw

Cordeiro, L., Fischer, B., Chen, H., and Marques-Silva2000a). Semiformal verification of
embedded software in medical devices considering stringgnaware constraints. lImterna-
tional Conference on Embedded Software and Systeages 396—-403.

Cordeiro, L., Fischer, B., and Marques-Silva, J. (2009byTSased bounded model checking
for embedded ANSI-C software. Butomated Software Engineerinmages 137-148.

Jia, Y. and Harman, M. (2010). An analysis and survey of theld@ment of mutation testing. In
IEEE Transactions on Software Engineering

Marre, B. and Arnould, A. (2000). Test sequences generdition lustre descriptions: Gatel. In
15th IEEE international conference on Automated Softwangifieering page 229.

Myers, G. J. and Sandler, C. (2004)he Art of Software Testinglohn Wiley & Sons.

Nethercote, N. and Seward, J. (2007). Valgrind: a framevorlheavyweight dynamic binary
instrumentation. IMACM on Programming Language Design and Implementatiayes 89—
100.

Petrenko and Alexandre (2001). Fault model-driven testalion from finite state models: An-
notated bibliography. IModeling and Verification of Parallel Processgmges 196—205.

Schmitt, M., Ebner, M., , and Grabowski, J. (2000). Test gati@n with autolink and testcom-
poser. In2nd Workshop of the SDL Forum Society on SDL and MBGes 26-28.

