
Exploiting Safety Properties in Bounded Model Checking for
Test Cases Generation of C Programs

Herbert Rocha, Lucas Cordeiro, Raimundo Barreto and Jośe Netto

1Universidade Federal do Amazonas
Av. Rodrigo Octávio, 3000, Coroado, Manaus/Amazonas

{herberthb12, lucasccordeiro}@gmail.com,{rbarreto, jnetto}@dcc.ufam.edu.br

Abstract. The use of computer-based systems in several domains has increased
significantly over the last years so that software verification now plays an impor-
tant role in ensuring the overall product quality. The valueof the counterexam-
ple and safety properties generated by Bounded Model Checkers to create test
case and to debug these systems is highly recognized. In thispaper, we describe
a method to integrate the bounded model checker ESBMC with the CUnit frame-
work. This method aims to extract the safety properties generated by ESBMC
to generate automatically testcases using the rich set of assertions provided by
the CUnit framework. We show the effectiveness of our proposed method over
publicly available benchmarks.

Resumo. O uso de sistemas computacionais em diversos domı́nios t̂em crescido
significativamente nośultimos anos, desta forma a verificação de software de-
sempenha um papel importante para garantir a qualidade geral do produto. O
valor dos contra exemplos e propriedades de segurança gerados pelos Bounded
Model Checkers para a geração dos casos de teste e depuração destes sistemas
são altamente reconhecidos. Neste artigo, descrevemos um método para in-
tegrar o ESBMC com o framework CUnit. Este método visa extrair as pro-
priedades de segurança geradas pelo ESBMC e gerar automaticamente casos
de testes usando um rico conjunto de assertivas providas pelo CUnit. Demon-
stramos a efićacia do ḿetodo, aplicando-o sobre benchmarks públicos.

1. Introduction

Nowadays, software applications need to be developed quickly and meet a high-level
of quality. Formal verification plays an important role to ensure predictability and de-
pendability in the design of critical applications. Consequently, the application of ver-
ification and testing are indispensable techniques to the development of high-quality
software. However, there is usually a high cost involved in the preparation, execution
and management of tests. One way to deal with such problems isto integrate for-
mal verification techniques with test environments. Model checking has been an in-
teresting area of research in formal verification for many years. In the last decades,
the use of models has been adopted in different software categories, promoted by
software technologies such as UML [Borges and Mota 2007] andModel-Driven Test-
ing [Petrenko and Alexandre 2001]. This scenario has also motivated software engineers
to apply model checking [Beyer et al. 2007]. Model checking is defined as a strategy for
verifying the systems’ correctness by checking whether thesystem meets desired proper-
ties based on its representation in a formal model [Baier andKatoen 2008].

The main challenge in model checking is how to deal with both the state space ex-
plosion problem and the lacking of integration with other test environments more familiar
to designers. In order to tackle these problems, one possible solution is to explore features
already provided by the model checking (for instance, identification of safety properties)
for test case generation. According to [Baier and Katoen 2008] safety properties are often
characterized as “nothing bad should happen”. As example, the mutual exclusion prop-
erty is a typical safety property. In this way, the violationof a safety property can be
detected by monitoring the runtime system execution. Such monitoring is usually done in
a controlled manner, taking into account both system inputs, and several execution paths.

In this paper, we describe a method to integrate the model checker ESBMC (Effi-
cient SMT-Based Bounded Model Checker)[Cordeiro et al. 2009b] with the CUnit frame-
work1. The integration of these two environments aims to ensure software quality by ex-
ploiting formal verification and tests without obtaining a memory explosion. In particular,
this method extracts the safety properties generated by theESBMC to generate automat-
ically test cases using the rich set of assertions provided by the CUnit. We show the
effectiveness of our proposed method over publicly available benchmarks. We advocate
that exploiting the integration between a testing framework and a model checker allows
us to go deeper into the program verification.

2. Background

This section presents the ESBMC and discuss about safety properties and software testing
technique.

2.1. Model Checking with ESBMC

Model Checking is one of the most used formal method for the verification of systems,
which generates an exhaustive search in the state space model to determine whether a
given “property” is valid or not [Baier and Katoen 2008]. There is a special kind of model
checking algorithm calledbounded model checking(BMC) based on Boolean Satisfiabil-
ity (SAT), which has been introduced as a complementary technique to Binary Decision
Diagrams for alleviating the state explosion problem. The basic idea of BMC is to check
(the negation of) a given property at a given depth: given a transition systemM, a prop-
ertyφ, and a boundk, BMC unrolls the systemk times and translates it into a verification
condition (VC)ψ such thatψ is satisfiable if and only ifφ has a counterexample of depth
less than or equal tok. Standard SAT checkers can be used to check ifψ is satisfiable. In
order to cope with increasing system complexity, SMT (Satisfiability Modulo Theories)
solvers can be used as back-ends for solving the VCs generated from the BMC instances.
ESBMC2 is a bounded model checker for embedded ANSI-C software based on SMT
solvers, which allows: (i) to verify single- and multi-threaded software (with shared vari-
ables and locks); (ii) to reason about arithmetic under- andoverflow, pointer safety, array
bounds, atomicity and order violations, deadlock, data race, and user-specified assertions;
(iii) to verify programs that make use of bit-level, pointers, structs, unions and fixed-point
arithmetic. ESBMC uses a modified version of the CBMC3 front-end to parse the ANSI-C
code and to generate the VCs via symbolic execution. ESBMC provides three approaches

1Available at: http://cunit.sourceforge.net/
2Available at http://users.ecs.soton.ac.uk/lcc08r/esbmc/
3Available at http://www.cprover.org/cbmc/

lazy, schedule recording, and underapproximation and widening (UW) to model check
multi-threaded software. This paper aims to exploit features provided by ESBMC in
order to propose an alternative approach to test-based design, since BMC alone has lim-
itations, such as the state space explosion to check the satisfiability of the VCs by using
off-the-shelf SMT-solvers.

2.2. Exploiting Safety Properties in Software Testing Strategies

Software testing is the process of executing a program with the goal of finding
faults [Myers and Sandler 2004]. A successful test is the onethat can determine the test
cases for which the program under test fails. A test case consists of an analysis of test data
associated with an expected result of processing accordingto the software specification.
Unit tests are typically written based on a set of test cases to ensure that the code meets
its design and behaves as expected. There are lots of tools for developing unit tests. Such
tools allow software engineers to create unit tests in a moreefficient and simplified way
by favouring better organization and code reuse. CUnit is anunit testing framework for
C programs that provides a set of assertions for testing logical conditions. The success
or failure of these assertions is tracked by the framework, and can be viewed when a test
run is complete. Each assertion tests a single logical condition, and fails if the condi-
tion evaluates toFALSE. The problem that we address in this paper ishow to create test
cases aimed at checking safety properties?We thus propose an approach to create test
cases guided by the safety properties that are generated automatically by ESBMC. ES-
BMC generates verification conditions for the following setof safety properties: (1) VCs
to check for arithmetic overflow and underflow; (2) VCs to check for out-of-bounds array
indexing; (3) VCs to check for pointers safety; and (4) VCs tocheck for dynamic memory
allocation. The proposed method aims to transform each property identified by ESBMC
in an assertive in CUnit in order to obtain, as a final result, anew instance of the analyzed
code, containing test cases directly linked to the safety properties of the code.

3. Related Work
There are several tools and methods for generating test cases. GA-
teL [Marre and Arnould 2000] requires the SUT (System Under Test) or a complete
specification of the SUT, an environment description, and a test objective (safety or
liveness property) in order to generate the test cases. AsmL[Barnett et al. 2003],
TestComposer, and AutoLink [Schmitt et al. 2000] are strongly linked to a specific
domain or language. In [Cadar and Engler 2005] is presented atechnique that uses
code to automatically generate its own test cases at run-time by using a combination of
symbolic and concrete (i.e., regular) execution. The first contribution is the observation
that code can be used to automatically generate its own potentially highly complex test
cases. Instead of running the code on manually-constructedconcrete input, this technique
runs it on symbolic input. These observations say what legalvalues (or ranges of values)
the input could be, and thus generate test cases by solving these constraints for concrete
values. These tests are calledexecution generated testing(EGT). However, this work
does not take into account BMC and how to solve the memory and solver limitations.

4. Proposed Method
This section describes the main steps of our proposed methodthat aims to explore safety
properties generated by ESBMC in order to generate test cases of C programs. The pro-

posed method consists in the following steps:(i) Identification of safety properties;(ii)
Safety Properties Information Collection;(iii) Asserts Inclusion;(iv) Implementing Unit
Test in CUnit Framework; and(v) Running CUnit tool. Figure 1 shows an overview of
our proposed method. It is worth saying that all such steps are automatically performed
by specific tools. In order to explain the main steps of the proposed method we adopt the
code shown in Figure 2.

Figure 1. Flow structure of the proposed method.

1 # inc lude <s t d i o . h>
2 i n t a [5] , b [6] ;
3 i n t main (){
4 i n t i , j , temp ; a [0] = 1 ;
5 f o r (i =1; i <5; i ++) {
6 a [i]= a [i −1] + i ; b [0] = 1 ;
7 temp = a [i]∗ (i + 1) ;
8 f o r (j =1; j <temp ; j ++) { b [j] = b [i −1]+(temp∗2) ; }
9 }

10 }

Figure 2. C code for describing the proposed method steps.

4.1. First step: Identification of Safety Properties

We adopt ESBMC for identification of safety properties that receives a C program as
input parameter and option--show-claims, which shows all found safety properties
that ESBMC think it can be violated. In the bounded model checking context, aclaim is
the same as a property. Examples of safety claims are: bufferoverflow, division by zero,
arithmetic overflow, and so on. Therefore, a claim may be violated in some execution
path. It is worth noting that automatically generated claims not necessarily correspond
to bugs, but they are just potential flaws. Whether one of these claims corresponds to
a bug needs to be determined by further analysis. Each safetyproperty (or claim) gen-
erated by ESBMC contains the following information: property identification, location,

and theassert to be checked. Figure 3 shows an example of a claim automatically
generated. In this example, claim 1 states a potential lowerbound of array “a” in file
sumarray.cat line 9 of the functionmain. All claims are stored in a special text file called
“result ESBMC.txt” so that important information can be extracted in the next step.

Figure 3. Proposed method first step.

4.2. Second step: Safety Properties Information Collection

The second step analyzes the text file produced in the step 1 tocollect several important
information needed in the next steps, such as:(i) claims, (ii) comments on the claim,
(iii) the line of code where the claim occurred, and(iv) the property identified by that
claim. The text file “result ESBMC.txt” is given as input of this step where there
may be several claims but the file organization follows the same pattern. We adopt regular
expression to find all information. As result of this step is produced a new text file called
“result claims.txt” that stores several information as depicted in Figure 4.

Figure 4. Applying the second step.

4.3. Third step: Asserts Inclusion

The information collected in the second step will serve as a basis for creating test cases
in the C source code. This step includes assertions in the code with the respective safety
property generated by ESBMC. This step is divided in two phases: (i) to include each
claim in the C source code as comments; (ii) Add an assertive containing the (maybe
violated) safety property to each claim comment added in phase (i). The first phase uses
the file “result claims.txt” to get the line where the claim has ocurred, and enter

in the C source code a comment about all claims. Therefore, this step adds at the end
of the line a comment “//<-” and, for each claim, “<Claim X>”, where X is the
claim number. Figure 5 shows the results of claims identification. The second phase
consists in finding each claim previously added as a comment,and adding an assertive
containing their corresponding safety property in a line before the line code identified
with the respectiveclaim. Each line of the C code that has this kind of comment is
analyzed in order to find what is the claim number. This claim number is checked in
the file “result claims.txt” to obtain their respective safety property, and other
relevant information, to be included in the C source code as an assertion. Figure 6 shows
an example based on the code of Figure 2.

1 f o r (i =1; i <5; i ++){
2 a [i]= a [i −1] + i ; / /<− <Claim 1> <Claim 2> <Claim 3> <Claim 4>
3 b [0] = 1 ;
4 temp = a [i]∗ (i + 1) ; / /<− <Claim 5> <Claim 6>
5 f o r (j =1; j <temp ; j ++){
6 b [j]= b [i −1]+(temp∗2) ; / /<− <Claim 7> <Claim 8> <Claim 9>
7 }
8 }

Figure 5. C code with added comments in the third step.

1 / / Claim 1: f i l e sum array . c l i n e 6 / / a r ray ‘ a ’ lower bound
2 CU ASSERT(i >= 0) ;
3 / / Claim 2: f i l e sum array . c l i n e 6 / / a r ray ‘ a ’ upper bound
4 CU ASSERT(i < 5) ;
5 a [i]= a [i −1] + i ; b [0] = 1 ; / /<− <Claim 1> <Claim 2>

Figure 6. C code with assertions of third step.

4.4. Fourth step: Implementing Unit Test in CUnit Framework

This step changes the C code output file of the third step to a new file suitable to be applied
in the CUnit framework. This new file is built by a template andcontains: (i) include files
specific for CUnit and C source code; (ii) CUnit configurationfunctions; (iii) functions to
be tested; and (iv) new main function that runs CUnit. Figure7 shows the template phases
and the respective test code for running unit tests using CUnit. The CUnit include files are
directly obtained by the template file. The C source code include files are directly copied
from the C source code. The CUnit configuration functions aredirectly obtained by the
template file. The functions to be tested are filled by the mainfunction of the C source
code changing the function name from “main” to “testClaims”. The new main function
area is directly obtained by the template file. The result is anew file that is ready to be
tested by CUnit framework.

4.5. Fifth step: Running CUnit Tool

In the last step, the new C code is submitted for execution with the CUnit. In this case,
CUnit performs tests on the code that contains the test casesthat was generated during the

Figure 7. Test code for running unit tests using Cunit framew ork.

method application, by abstraction of safety properties. Initially, test cases are analyzed
and each one can be approved or failed. Each failed test is reported by the testing frame-
work. Figure 8 shows the result of applying the proposed method in the C code shown in
Figure 2. As we can see, there is 1 test with 404 asserts where 77 have failed.

Figure 8. Output of Cunit.

5. Experimental Results

This section shows and analyzes results obtained with the proposed method when ap-
plied to the verification of standard ANSI-C benchmarks. Ourexperiments were con-
ducted on an Intel Core 2 Duo CPU, 2Ghz, 3GB RAM with Linux OS. The steps of
the proposed method have been implemented using the ESBMC v1.11, and the frame-
work CUnit v2.1. Table 1 details the ANSI-C benchmarks used in our experiments. The
first column contains the application number; the second columns describes the mod-
ule name composed by the respective benchmark, C program, and the input (e.g., de-
terministic or non-deterministic); the third column showsthe number of lines of code
(LOC); the fourth column provides the total number of properties identified, which
is equivalent to the number of test cases that are created; and finally, the fifth col-
umn shows the number of properties violated. The adopted benchmarks were EU-
REKA4, SNU5, WCET6, and a fragment of code extracted from the pulse oximeter de-
vice [Cordeiro et al. 2009a]. The results of the applicationof the proposed method are
available at https://sites.google.com/site/fortesmethod/.

4www.ai-lab.it/eureka/bmc.html
5http://archi.snu.ac.kr/realtime/benchmark
6http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Table 1. Details related to the benchmarks of C code used.
Number Module LOC Identified Violated

1 EUREKA bf20 det.c 49 33 0
2 EUREKA Prim 4 det.c 78 30 0
3 SNU bs nondet.c 120 7 0
4 SNU crc det.c 125 15 0
5 SNU insertsortnondet.c 94 14 6
6 SNU qurt det.c 164 6 0
7 SNU qsort-examdet.c 134 49 -
8 SNU selectdet.c 122 39 6
9 WCET cnt nondet.c 139 16 0
10 Oximeterlog det.c 177 4 2

As presented before, the proposed method adopts ESBMC just for finding prop-
erties (in this context calledclaims), that may be violated, where such properties are then
verified by the CUnit. Note that in this method, ESBMC is not used for properties verifi-
cation. However, for validation purposes, ESBMC has been choosen to be also adopted as
a validator, i.e. the proposed method should be compared with properties verification of
ESBMC and, if all is well, to find the same violated propertiesthat ESBMC alone (that is,
without CUnit) can find. In Table 1, in lines from 1 to 4, 6 and 9 the respective codes have
not violated any property in both the proposed method and ESBMC alone; in lines 8 and
10 were identified violation of 6 and 2 properties, respectively identified by the method
and confirmed by ESBMC alone. However, there were two specialcases, (i) in line 7, the
method does not identify any errors, but ESBMC alone generated eithertime out or
out of memory, in this case we cannot say anything about the verification; (ii) in line
5, the proposed method does not find any errors, however ESBMCidentified violation of
6 properties. These issues will be addressed in future works.

The proposed method for identifying and verifying errors considering safety
properties has demonstrated that this task is not trivial tobe implemented without the
adoption of a systematic methodology mainly because properties identification alone
is not sufficient to guarantee that such property is violated. In order to detail further
this point we adopted the code “Oximeterlog det.c” of the pulse oximeter implemen-
tation [Cordeiro et al. 2009a] depicted in line 10 of Table 1.We can see that the ES-
BMC identified four properties. However, we will focus on a specific code fragment as
shown in Figure 9, where ESBMC identified the following two properties: “next <

6400” in line 2, and “(unsigned int)buffer size != 0” in line 3. We found
out that this code fragment has properties that may be violated, resulting in problems
of buffer overflow and division by zero. These problems can occur, because the vari-
ables “buffer size” and “next” are set by another function, in this case “void
initLog(Data8 max)”. Hence, if someone does not set (or constrain) the value of
“buffer size” and “next”, then the SMT solver can assign a non-deterministic value
to the variables “buffer size” and “next”, for example, zero for “buffer size”
(which would cause a division by zero) or a value greater than“BUFFER MAX”, where
this constant sets the size of the array, for “next” (which would cause a buffer overflow).
Thus, the identification of possible errors sometimes need to explore other parts of the

code which, depending on the analyzed code, may become a verydifficult task.

1 void i n s e r t L ogE l e m e n t (Data8 b){
2 b u f f e r [nex t] = b ;
3 nex t = (nex t +1)% b u f f e rs i z e ;
4 }

Figure 9. A fragment of the Oximeter log det.c code.

The assignment of values was made based on the possible problems
identified above, that is: function “initLog()” is not called and function
“insertElementLog” runs several times until variable “next” becomes greater than
“BUFFER MAX”. The result of this verification is shown in Figure 10, wherewe note for
the first situation, theassertstatement is executed 2 times, while for the second situation,
theassertstatement is executed 12801 times before the property (orassert) is violated.

Figure 10. Result of verification performed with the method i n the log.c code.

Abstraction of data and safety properties usually does not require a big effort.
However, if the number of LOCs is high or properties identified is large, then this task
may become very difficult. The implementation of the proposed method not only serve as
a basis for the abstraction of the safety properties generated by model checkers, but also
for the basic model for test engineers who are already familiar with the testing framework
tools. The automation of this method can thus be of great advantage.

6. Conclusions and Future Work

In this work we presented a new method to integrate the model checker ESBMC with the
CUnit framework in order to create and execute the test casesof sequential C programs.
In particular, this method aims to extract the safety properties generated by ESBMC to
automatically create test cases using the rich set of assertions provided by the CUnit test
framework. The experimental results, although preliminary, have shown to be very effec-
tive over several publicly available benchmarks if compared to software model checking
alone. Note also that with the set of tests performed, we wereable to identify some
improvements that will be implemented in the proposed method w.r.t. treatment and ab-
straction of information generated by the model checker (and safety properties resp.), such

as the code structure and block delimiters, and analysis of properties related to pointer
and dynamic memory allocation. For future work, we intend toinvestigate the applica-
tion of verification techniques with instrumented code [Nethercote and Seward 2007] and
other approaches, such as the running code on symbolic inputs [Cadar and Engler 2005]
and mutation testing [Jia and Harman 2010] that will allow usto improve the proposed
method by enabling the generation of test cases in a wider range of properties.

Acknowledgement The authors acknowledge the support granted by FAPESP process
08/57870-9, and by CNPq processes 554071/2006-1, 575696/2008-7, and 573963/2008-8.

References
Baier, C. and Katoen, J.-P. (2008).Principles of Model Checking. MIT Press.

Barnett, M., Grieskamp, W., Gurevich, Y., Schulte, W., Tillmann, N., and Veanes, M. (2003).
Scenario-oriented modeling in asml and its instrumentation for testing. InTesting, 2nd Inter-
national Workshop on Scenarios and State Machines: Models,Algorithms, and Tools.

Beyer, D., Henzinger, T., Jhala, R., and Majumdar, R. (2007). The software model checker BLAST:
Applications to software engineering. InInternational Journal on Software Tools for Technol-
ogy Transfer (STTT), pages 505–525.

Borges, Rafael Magalh a. and Mota, A. C. (2007). Integratinguml and formal methods. In
Electron. Notes Theor. Comput. Sci., pages 97–112.

Cadar, C. and Engler, D. (2005). Execution generated test cases: How to make systems code crash
itself. In 12th International SPIN Workshop on Model Checking of Software.

Cordeiro, L., Fischer, B., Chen, H., and Marques-Silva, J. (2009a). Semiformal verification of
embedded software in medical devices considering stringent hardware constraints. InInterna-
tional Conference on Embedded Software and Systems, pages 396–403.

Cordeiro, L., Fischer, B., and Marques-Silva, J. (2009b). SMT-based bounded model checking
for embedded ANSI-C software. InAutomated Software Engineering, pages 137–148.

Jia, Y. and Harman, M. (2010). An analysis and survey of the development of mutation testing. In
IEEE Transactions on Software Engineering.

Marre, B. and Arnould, A. (2000). Test sequences generationfrom lustre descriptions: Gatel. In
15th IEEE international conference on Automated Software Engineering, page 229.

Myers, G. J. and Sandler, C. (2004).The Art of Software Testing. John Wiley & Sons.

Nethercote, N. and Seward, J. (2007). Valgrind: a frameworkfor heavyweight dynamic binary
instrumentation. InACM on Programming Language Design and Implementation, pages 89–
100.

Petrenko and Alexandre (2001). Fault model-driven test derivation from finite state models: An-
notated bibliography. InModeling and Verification of Parallel Processes, pages 196–205.

Schmitt, M., Ebner, M., , and Grabowski, J. (2000). Test generation with autolink and testcom-
poser. In2nd Workshop of the SDL Forum Society on SDL and MSC, pages 26–28.

