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Abstract. Realm Management Monitor (RMM) is an essential firmware
component within the recent Arm Confidential Computing Architecture
(Arm CCA). Previous work applies formal techniques to verify the speci-
fication and prototype reference implementation of RMM. However, rely-
ing solely on a single verification tool may lead to the oversight of certain
bugs or vulnerabilities. This paper discusses the application of ESBMC,
a state-of-the-art Satisfiability Modulo Theories (SMT)-based software
model checker to further enhance RRM verification. We demonstrate
ESBMC’s ability to precisely parse the source code and identify speci-
fication failures within a reasonable time frame. Moreover, we propose
potential improvements for ESBMC to enhance its efficiency for industry
engineers. This work contributes to exploring the capabilities of formal
verification techniques in real-world scenarios and suggests avenues for
further improvements to better meet industrial verification needs.

Keywords: Formal verification · Software model checking · Software
testing · Firmware · Security.

1 Introduction

The rise of Confidential Computing is driven by the need to secure computa-
tions in Cloud Computing, where sensitive information is delegated to a third
party, posing potential security risks [22]. For example, hundreds of millions of
Facebook user records were exposed on Amazon cloud server [20].

Confidential Computing technologies, including Arm Confidential Comput-
ing Architecture (Arm CCA) [15], introduce protected execution environments,
for example Realms in Arm CCA, to ensure confidentiality and integrity of sen-
sitive information. In particular, Arm CCA allows multiple Realms to execute
in parallel; to manage all instances, Arm CCA then introduces a new privileged
firmware component called Realm Management Monitor (RMM). RMM also
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provides a necessary interface to the outside, non-secure world. Arm is commit-
ted to specifying the behavior of RMM [16] and providing an implementation in
C, and the code is already open-sourced to the community [17].

RMM is a critical component, and any end-user must trust it. Arm provides a
specification [16] for all the interfaces via pairs of pre/post conditions. To verify
the correctness of the RMM implementation concerning the RMM specification,
formal methods such as interactive theorem provers and symbolic model checking
can be applied to automate the verification workflow [14]. Arm engineers auto-
matically generate a verification harness from a machine-readable specification of
the RMM by evaluating the pre- and post-conditions to constrain the inputs and
outputs. This harness can be consumed by a software verification tool such as
C Bounded Model Checker (CBMC) [11, 13]. Arm researchers and engineers are
gradually deploying these auto-generated verification harnesses and CBMC in
the CI/CD system. Several violations in the implementations detected by CBMC
have been confirmed and fixed by Arm engineers, thus demonstrating the value of
software model checking techniques [7] in strengthening safety-critical systems.

Given the fact that there exist some violated properties in the current draft
implementation of the RMM [7], we are keen to explore the following questions:

• Is the existing verification enough to secure RMM?
• If not, can other state-of-the-art techniques find additional violations?

To explore these questions, we further apply ESBMC, an efficient model
checker based on SMT theories that can automatically detect or prove the ab-
sence of runtime errors in software written in C/C++, Kotlin, Python, and
Solidity [9, 18]. According to the recent Competitions on Software Verification
(SV-COMP) [2, 3], ESBMC consistently outperforms CBMC in proving more
safety properties while producing fewer incorrect results. However, there is little
evidence of whether this superior performance could uncover more vulnerabilities
in real-world low-level software systems. Through our exploration of ESBMC on
some RMM verification cases, we achieved the following contribution:

• We reproduced the same failures reported by CBMC, which were confirmed
by Arm engineers previously.

• We identified inconsistent results from CBMC and reported them to the
developers.

• We found 23 new violations in the RMM code that only ESBMC can detect.
• We showed that the verification performance could be significantly improved

by efficiently configuring the bounds for each loop in the program.
• We highlighted the challenge of checking multiple properties and contributed

to its development within ESBMC.

2 Background

2.1 Bounded Model Checking (BMC)

SAT/SMT-based BMC is a formal verification technique to falsify or prove the
correctness of finite-state systems [5]. This method explores a system’s state
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Fig. 1. An architecture of an Arm CCA [7]. The physical memory space is separated
into four worlds: Non-secure, Secure, Root and the Realm.

space up to a specified depth or bound k, searching for potential errors or viola-
tions within that limited scope. Then the program is encoded into an SAT/SMT
formula, and it is satisfiable iff there exists a counterexample that violates the
property [4].

As a BMC tool, ESBMC implements various algorithms for bounded and
incremental verification [1, 6, 8]: (1) incremental BMC, which unrolls the loops
and checks the property incrementally; (2) k -induction [10] proof-rule algorithm,
which aims to prove the safety based on induction; and (3) default BMC ap-
proach that bounds the program up to a given depth and call the SMT solver
once to solve the entire SMT formula.

Similar to CBMC, ESBMC takes an RMM test case as input and checks the
safety of the properties in the given program. In particular, ESBMC can check
for user-defined assertions, pointer safety, buffer overflow, data races, and so on
through configurations. The ESBMC documentation about the supported safe-
ty/security properties, underlying verification algorithms, and integrated SMT
solvers is available online.3

2.2 Realm Management Monitor

Fig. 1 illustrates the architecture of Arm CCA; more can be learned from [15].
Executions Arm’s Processing Element (PE) is associated with levels EL0 to EL3,
where user-space executes at EL0 and most privileged low-level firmware, or
monitor, executes at EL3. The physical memory space also separates into four
parts, or four worlds, namely, Non-secure World, Secure World, Root World,
and the newly-introduced Realm. In the Realm World, an end-user application,
referred to as a realm, is executed at the level of EL0 and EL1. To administer
Realms, Arm CCA introduces a new privileged firmware component called the
Realm Management Monitor (RMM), executing at EL2 in the Realm world,
which acts as a separation kernel isolating Realms from each other. Also, RMM

3 https://ssvlab.github.io/esbmc/documentation.html
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Fig. 2. RMI_GRANULE_DELEGATE command specification (draft) [7]

provides interfaces to the Non-secure World for managing and scheduling realms
indirectly.

Fig. 2 illustrates an example of RMM specification of the RMI_GRANULE_D
ELEGATE command.4 The specification takes a single granule address as input
from the Host (the addr parameter, in general purpose register X1, is the physi-
cal address location of the granule to be delegated). If the corresponding granule
metadata is UNDELEGATED, meaning that the granule is not in the REALM
PAS, and it is currently in the NS PAS, then the granule is moved to the REALM
PAS. The failure conditions consist of several pairs of pre/post conditions, each
of which is a possible error condition. When no failure occurs, the success con-
ditions describe the expected updates to the RMM machine state.

3 RMM Verification with ESBMC

Listing 1.1 illustrates a C example of a verification harness generated from the
RMM specification. It initializes a non-deterministic global state from line 1 to
7. In line 9, it executes the actual command of the specification. Line 8 and
line 10 evaluate the pre- and post-conditions using the Boolean variables fail-
ure_src_align_pre and failure_src_align_post, respectively. Lines 11-16 are the
boolean conditions of the pre- and post-conditions. Finally, the assertion in line
17 checks the post-condition if the pre-condition fails. From this verification
harness, we can use any off-the-shelf software model checker to automatically
check the assertion for the post-condition. Properly choosing the underlying ver-
ification strategy and parameters to configure ESBMC is essential to achieving
efficient verification of RMM. Here, we introduce two main verification tech-
niques available in ESBMC: bounded verification to unwind each loop occurring

4 This is an example from the drafted specification version accessed on early 2022 [17].
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in the program with a different upper bound and multi-property check to verify
all properties incrementally using the underlying SMT solver.

1 struct tb_regs __tb_regs = __tb_arb_regs ();
2 __tb_regs.X0 = SMC_RMM_DATA_CREATE;
3 __tb_regs.X1 = nondet_uint64_t (); // data
4 __tb_regs.X2 = nondet_uint64_t (); // rd
5 __tb_regs.X3 = nondet_uint64_t (); // map_addr
6 __tb_regs.X4 = nondet_uint64_t (); // src
7 __init_global_state(__tb_regs.X0); // Generate non -deterministic state
8 bool failure_src_align_pre = !AddrIsGranuleAligned(src); // Precondition
9 uint64_t result = tb_handle_smc (& __tb_regs); // Execute command

10 bool failure_src_align_post = ResultEqual(result , RMI_ERROR_INPUT); //
Postcondition

11 // Failure condition assertions (excerpt)
12 bool prop_failure_src_align_ante = failure_src_align_pre;
13 __COVER(prop_failure_src_align_ante);
14 if (prop_failure_src_align_ante) {
15 bool prop_failure_src_align_cons = failure_src_align_post;
16 __COVER(prop_failure_src_align_cons);
17 __ASSERT(prop_failure_src_align_cons , "prop_failure_src_align_cons"); }

Listing 1.1. Verification harness from the specification [7]

3.1 Bounded Verification

We can configure the loops’ unrolling depth for BMC tools to reduce the program
state space for refutation/verification. In particular, we must limit the unwind-
ing bound to avoid an unbounded loop being unrolled infinitely. However, we
must carefully configure the bounds for complex programs such as with nested
loops because the verification time could increase dramatically. Both ESBMC
and CBMC support setting different upper bounds for each loop in the program.
While this setup can be complicated compared to setting a unified bound for all
loops or unrolling them incrementally, it can result in smaller state spaces and
faster checking speeds, as shown in our experimental evaluation. This happens
because iteratively unrolling loops and calling a solver via incremental and in-
duction methods can be costly, especially for programs containing various nested
loops. We refer the reader to our previous work about handling loops in BMC for
a detailed discussion about this topic [1, 8], including comparisons to state-of-
the-art verification methods. To verify the components of the Arm Confidential
Computing Architecture, which is the focus of this paper, our preliminary ex-
periments on incremental BMC have shown a significant performance difference
when we set different upper bounds for each loop, which will be presented in
Section 4.

3.2 Multi-Property Check

Most real-world verification instances contain multiple assertions [21]. This is
because any non-trivial program must satisfy several invariants at once. How-
ever, multiple assertions create a crucial dilemma for software verification tools:
whether we encode them all in a single large formula or split them into separate
smaller ones. A single large formula is faster to solve than smaller ones because
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the latter have multiple (or incremental) queries to a solver [18]. However, it also
raises the problem that the counterexample in a single formula can only expose
one property violation in the program.

By default, ESBMC runs in single property check mode, which encodes all
verification conditions (VCs) into one single SMT formula and terminates once
if it finds a violation by the underlying SMT solver across the program path.
ESBMC uses Boolector as its default SMT solver [19]. Recently, ESBMC added
verification support for multi-property checks (see Listing 1.2) to report all prop-
erty violations for a single call. During the multi-property check, each property
assumes the other properties are unreachable by keeping the current encoded
property. In the example of Listing 1.2, none of the two assertions hold because
the value of a is non-deterministic and can reach both cases to trigger the as-
sertion. ESBMC, in single property check mode, will terminate once it finds a
violation, e.g., assert(a>1), while multi-property check mode aims at reporting
both of these violations.

#include <assert.h>
extern int nondet_int ();
int main() {

int a = nondet_int ();
switch (a) {
case 0: assert(a > 0); break;
case 1: assert(a > 1); break;
default: return 0;
}

}

Listing 1.2. A program with two property violations.

4 Experiment Results

In this section, we evaluate the capability of ESBMC single- and multi-property
checks on RMM.

Experimental Setup. We conduct the experiments on a Ubuntu OS with 16GB
memory and an Intel i7 processor, limiting the timeout to 5000 s. The bench-
marks are listed in Table 1 and are open-source [17]. We compare the results
between ESBMC v7.4 and CBMC v5.94. Unless we state otherwise, we run
ESBMC with the flag –unwindset. This flag ensures it uses the same default
approach of CBMC, i.e., unrolling each loop to the maximum number of loop
iterations occurring in the program without producing under-approximation.
ESBMC adds explicit assertions to check whether the loop is fully unrolled.

Number of Violations Found. Table 1 shows the total number of failures found
by ESBMC and CBMC. The main finding is that ESBMC reports more failures
than CBMC in three test cases.

Confirmed and Unconfirmed Violations. We are still working on confirming ev-
ery bug reported by ESBMC due to the complexity and readability of the output
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Fig. 3. Verification time for different k -steps during each loop rolling. The red node
at the bottom left represents unrolling the loops completely until the given bounds.

traces. In particular, ESBMC provides traces that describe hundreds or thou-
sands of states, where each state contains information about the program lo-
cation and the value of the local/global variables. Still, we confirmed a correct
positive in the test case RMI_REALM_DESTROY, which is caused by converting a
pointer to an integer and can affect the global verification conditions in that
test case. The actual RMM code was fixed, though waiting for code review,
before we conducted this experiment, as it involved undefined behavior due to
that conversion. We present a characterized example in Listing 1.3, and we have
reported the issue to the CBMC team so that they could improve their ver-
ifier. A CBMC developer has confirmed the bug in their memory model (see
https://github.com/diffblue/cbmc/issues/8161).
Impact of step k in incremental BMC. ESBMC provides an option to set the
k-step when incrementally unrolling the loops. For example, a k-step of 5 will
unfold a given loop incrementally as 5, 10, 15, and 20 (maximum k-step). We
conduct an extra experiment on a single but representative RMM test case to
check the impact of step k in incremental BMC. In Fig. 3, it can be seen that
although increasing the k -steps can reduce looping unrolling and solving time
since we can find a property violation faster, it is not as efficient as ESBMC non-
iterative mode, i.e., via unwindset that unrolls the loops directly to the upper
bound. These results explain our chosen methodology as described in Section 3.1.
#include <assert.h>
int arr[8] = {1,2,3,4,5,6,7,8};
int main() {

int *a = &arr [7];
if(( unsigned long)a >= (unsigned long)( -4095))

assert (( unsigned long)(-1*( long)a) < 6); //esbmc fails , cbmc success
}

Listing 1.3. Pointer to integer convertion example extracted from rmm, where the
assertion should fail if the address falls into a negative value, for example, -2048.

Performance Comparison. Fig. 4 illustrates the verification time of the test cases
for three runs: ESBMC single property check, CBMC multi-property check, and
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Table 1. Verification results of multi-property checks using ESBMC and CBMC.

Command Assert Fail VCCs/Solver Calls
ESBMC CBMC ESBMC CBMC

RMI_REC_DESTROY 20 20 113/113 142/19
RMI_GRANULE_DELEGATE safe safe 54/54 132/2
RMI_GRANULE_UNDELEGATE 1 1 45/45 132/1
RMI_REALM_ACTIVATE 3 safe 53/53 140/1
RMI_REALM_DESTROY 17 1 114/114 148/2
RMI_REC_AUX_COUNT 1 1 48/48 139/2
RMI_FEATURES safe safe 21/21 125/1
RMI_DATA_DESTROY >=26 22 82/82 151/18

ESBMC multi-property check. Note that the default option of CBMC always
checks all properties in one execution, which is relevant when verifying indus-
trial code. CBMC and ESBMC single property checks can finish most verification
tasks within a few seconds. However, the ESBMC multi-property check needs a
few minutes for each task and even longer for the last case in the figure, which
has exceeded the timeout of 5000 s. Table 1 provides an insight into the perfor-
mance difference. ESBMC naively calls an SMT solver when there is a generated
SMT formula (per property to check), and it takes time to solve them individ-
ually. Meanwhile, CBMC can exploit the power of incremental SAT solving by
MiniSAT to reuse solved instances for new problems [12]. Another important
factor is that CBMC implements a string solver to solve frequent string opera-
tions at RMM code, while ESBMC has not implemented one yet, which results
in a performance slowdown for strings.
Syntax Errors. In addition to the correctness and performance, there exists an
interesting aspect related to the deployed front-end parsers: CBMC uses a modi-
fied C parser, while ESBMC implements Clang API to transform the source code
into Clang AST [9], without having details of the input program compiled away.
The latter can do strict and elegant code syntax checks before starting model
checking. ESBMC can also provide compilation error messages as expected from
a compiler and leverage Clang’s static analyzer to provide meaningful warnings
when parsing the program. For example, consider Listing 1.4 that illustrates an
example from the RMM implementation, where a declaration of struct object
is in the switch case but without curly braces. ESBMC reports the error using
Clang, while the C parser in CBMC ignores it.
...
case SMC_RMM_RTT_READ_ENTRY:

struct smc_result rst;
smc_rtt_read_entry (*X1, *X2, *X3 , &rst);
result = rst.x[0]; *X1 = rst.x[1]; *X2 = rst.x[2];
*X3 = rst.x[3]; *X4 = rst.x[4];
break;

...

Listing 1.4. Code segement did not compile for Clang since it cannot declare variables
inside a case block without enclosing it in braces.
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Fig. 4. Experiment result, where x-axis represents the RMM testcases, and y-axis
represents the verification time in seconds. Different colors: blue on the left is for
ESBMC single-property check, red on the middle is for CBMC multi-property check,
and yellow on the right is for ESBMC multi-property check.

5 Conclusions

We present our application of ESBMC to verify newly introduced RMM compo-
nents in Arm CCA. On the one hand, we show that to ensure firmware correct-
ness, we can fully verify it by applying various techniques, each with its strengths
and weaknesses. In our experiment, we applied ESBMC and found more viola-
tion properties than CBMC. On the other hand, we show the community that we
have to write more scalable verifiers to check large and complex code bases for
multi-property checks. In addition, we recommend that software verifiers con-
nect their verification algorithms with industrial-strength compilers, as we find
that self-developed parsers may not be precise enough. Lastly, we should not
only focus on the verification algorithms but also try to produce more readable
verification results to promote the power of formal verification techniques in the
software industry. Future work for ESBMC includes more efficient algorithms
for faster SMT solving for multiple property verification and checking data races
in multi-threaded programs.

Acknowledgments

The work in this paper is partially funded by the Arm Center of Excellence at the
University of Manchester, UK, EPSRC grants EP/T026995/1, EP/V000497/1,
EU H2020 ELEGANT 957286, and Soteria project awarded by the UK Re-
search and Innovation for the Digital Security by Design (DSbD) Programme.



10 T. Wu et al.

We acknowledge Franz Brauße and Chenfeng Wei, who helped refine ESBMC
for RMM verification. We would also like to thank engineers from tf-rmm team
(https://www.trustedfirmware.org/projects/tf-rmm/).

A Appendix

This section lists the details from above results where ESBMC reports more
failures from RMM testcases than CBMC.

Table 2. Unique results from ESBMC

No. Location Description

1 tb_rmi_realm_activate.c line 107 prop_success_realm_state_cons
1 tb_rmi_realm_activate.c line 98 prop_result_cons
1 tb_rmi_realm_activate.c line 89 prop_failure_realm_state_cons
2 tb_rmi_realm_destroy.c line 123 prop_success_rd_state_cons
2 tb_rmi_realm_destroy.c line 115 prop_success_rtt_state_cons
2 tb_rmi_realm_destroy.c line 106 prop_result_cons
2 granule.h line 70 assertion false
2 granule.h line 66 assertion g->refcount == 0UL
2 granule.h line 63 assertion g->refcount <= GRANULE_SIZE / sizeof(uint64_t)
2 granule.h line 59 assertion g->refcount == 0UL
2 granule.h line 56 assertion granule_refcount_read_relaxed(g) <= 1UL
2 granule.h line 46 assertion g->refcount == 0UL
2 granule.h line 43 assertion granule_refcount_read_relaxed(g) == 0UL
2 tb_lock.c line 80 The granule must be locked.
2 granule.h line 120 assertion locked
2 tb_lock.c line 49 The granule lock must be free.
2 status.h line 90 assertion (unsigned int)(-1 * (long)ptr) < RMI_ERROR_COUNT
2 vmid.c line 63 assertion vmid < vmid_count
2 realm.c line 337 unwinding assertion loop
3 granule.h line 120 assertion locked
3 granule.c line 47 assertion idx < RMM_MAX_GRANULES
3 tb_lock.c line 49 The granule lock must be free.
3 s2tt.c line 358 assertion map_addr < (1UL « ipa_bits)
3 s2tt.c line 357 assertion level >= start_level
3 s2tt.c line 356 assertion start_level >= MIN_STARTING_LEVEL
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