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Abstract

EnnCore addresses the fundamental security problem of
guaranteeing safety, transparency, and robustness in neural-
based architectures. Specifically, EnnCore aims at enabling
system designers to specify essential conceptual/behavioral
properties of neural-based systems, verify them, and thus
safeguard the system against unpredictable behavior and at-
tacks. In this respect, EnnCore will pioneer the dialogue be-
tween contemporary explainable neural models and full-stack
neural software verification. This paper describes existing
studies’ limitations, our research objectives, current achieve-
ments, and future trends towards this goal. In particular, we
describe the development and evaluation of new methods, al-
gorithms, and tools to achieve fully-verifiable intelligent sys-
tems, which are explainable, whose correct behavior is guar-
anteed, and robust against attacks. We also describe how En-
nCore will be validated on two diverse and high-impact ap-
plication scenarios: securing an AI system for (i) cancer di-
agnosis and (ii) energy demand response.

1 Introduction
Deep neural networks (DNNs) are computing models typi-
cally deployed for classification, decision-making, and pat-
tern recognition problems (Bishop 2006). Recently, various
safety-critical tasks deployed DNNs, e.g., Covid-19 diagno-
sis (Nour, Cömert, and Polat 2020) and steering control in
self-driving cars (Wu et al. 2021). In these contexts, how-
ever, incorrect classifications can cause severe damages. It
is well-known in the literature that adversarial disturbances
can make DNNs misclassify objects, thus causing severe
damage to users of safety-critical systems. For example,
Eykholt et al. (Eykholt et al. 2018) described that noise and
disturbances, such as graffiti on traffic signals, could result
in target misclassification during operation. Moreover, as
DNNs are difficult to interpret and debug, the whole scenario
becomes even more problematic (Lundberg and Lee 2017).
Hence, there is a need for techniques to assess their struc-
tures and verify their results and behavior. Consequently,
there is a growing interest in verification and interpretability
methods for ensuring and explaining safety, accuracy, and
robustness for DNNs.
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According to a recent survey on the state-of-the-art of
verification and synthesis methods for cyber-physical sys-
tems (Cordeiro, de Lima Filho, and Bessa 2020), most pa-
pers published in the area in the past ten years only study the
verification of safety properties over mathematical represen-
tations of DNNs. However, a top-to-bottom verification pro-
cess of DNNs will need to cover various aspects, including,
for example, the external phenomena with which the DNN
models interact and evolve. Thus, there is a considerable gap
between low- and high-level models and between engineer-
ing and theoretical research efforts.

The EnnCore project1, which stands for “End-to-End
Conceptual Guarding of Neural Architectures”, aims to fill
this gap. It has ambitious cross-cutting and far-reaching
goals to provide a coherent and self-containing framework
for specifying a conceptual safeguard core to neural-based
(NB) Artificial Intelligence (AI) systems and verifying their
actual implementations considering security aspects. Our
setting draws on all of the above aspects: it covers the full
range, from engineering details to abstraction and verifica-
tion, and reasoning and explainability about model evolution
and learning.

As a result, EnnCore addresses a fundamental research
problem to ensure the security of neural-enabled compo-
nents by taking into account their entire lifecycle from de-
velopment to deployment. Solving this problem has a far-
reaching impact on areas such as health and energy, which
heavily depend on secure and trusted software components
to meet safety-critical requirements. Hence, our overall re-
search objective is to have a long-term impact on writ-
ing secure and trusted AI-based software components, thus
contributing to a shared vision of fully-verifiable software,
where underlying neural-based architectures are built with
strong symbolic and mathematical guarantees.

To achieve this objective, EnnCore will design and vali-
date a full-stack symbolic safeguarding system for NB ar-
chitectures. It will advance the state-of-the-art in the devel-
opment of secure DNN models by mapping, using, and ex-
tending explainability properties of existing neuro-symbolic
DNN architectures (e.g., Graph Networks, Differentiable In-
ductive Logic Programming), thus safeguarding them with
symbolic verification, abstract interpretation, and program

1https://enncore.github.io/



Figure 1: EnnCore methodology.

synthesis methods. EnnCore will pioneer the interdisci-
plinary dialogue between explainable AI and formal veri-
fication. In particular, it will deliver safeguarding for NB ar-
chitectures with the following properties:
1. Full-stack symbolic software verification: EnnCore will

develop the first bit-precise and scalable symbolic ver-
ification framework to reason over implementations of
DNNs, thereby providing additional guarantees of secu-
rity properties concerning the underlying hardware. We
will exploit state-of-the-art abstract interpretation and
synthesis techniques to synthesize invariants to prune the
state-space exploration and thus verify intricate security
properties to ensure confidentiality, integrity, and avail-
ability.

2. Explainability/Interpretability: EnnCore will pioneer the
integration of knowledge-based and neural explainabil-
ity methods to support end-users specifying security con-
straints and diagnosing security risks in order to provide
security assurances as NB models evolve. Attention will
be given to the quantitative and qualitative characteriza-
tion of semantic-drift phenomena in security scenarios.

3. Scalable: EnnCore will systematically combine contem-
porary symbolic methods for explaining, interpreting and
verifying neural representations. In particular, we will
develop a neuro-symbolic safeguard framework by link-
ing the structural knowledge-based representation ele-
ments to the attentional architecture elements to achieve
scalability and precision in an unprecedented manner.

EnnCore will systematically validate the system using two
different case studies from different domains: healthcare and
energy, in order to achieve fully-verifiable intelligent sys-
tems that are explainable, ensure behavior correctness and
are robust against unanticipated behaviors and attacks.

The remainder of the paper is organized as follows. In
Section 2, we discuss the related work, including the limi-
tation of existing studies. Section 3 describes a logical basis
for proposing our approach as part of the EnnCore project,
while Section 4 outlines our research objectives. Section 5
describe our current achievements broken down into four

research areas to tackle the safety and security of NB ar-
chitectures. Finally, we conclude and describe future work
in Section 6.

2 Limitations of Existing Work
Explainable/Interpretable ML models. Doshi-Velez and
Kim (Doshi-Velez and Kim 2017) define interpretability
as “the ability to explain or to present in understandable
terms to a human”. Interpretability is an active area of ma-
chine learning. The recent Neuro-Symbolic (NS) architec-
tures (Garcez et al. 2019) inherit the strengths of deep learn-
ing models, while extending it with explainability and fine-
grained/abstractive reasoning capabilities. NS models such
as Graph Networks (GNs) (Alshahrani et al. 2017) and Dif-
ferentiable ILP (Manhaeve et al. 2018) operate over and de-
pend upon knowledge bases and focus on addressing infer-
ence problems which require relational reasoning and com-
binatorial generalization. No prior work has exploited: (i)
the use of knowledge-based neuro-symbolic architectures
for supporting end-users communicating their security con-
straints and (ii) the combination of explainability with sym-
bolic verification to assure security properties.
Verification of DNN Models. Verification of DNN models
has attracted lots of attention recently, including unique ap-
proaches from formal verification (Huang et al. 2017; Katz
et al. 2017; Lomuscio and Maganti 2017; Wu et al. 2020),
which deals with the problem through exhaustive search,
SMT constraint solving, MILP constraint solving, and re-
duction to two-player game, respectively. A key problem re-
mains on the scalability – the theoretical complexity of the
verification problem is NP-complete either on the number of
hidden neurons (Katz et al. 2017) or the input dimensions
(Ruan, Huang, and Kwiatkowska 2018). This pessimistic
result has led to the consideration of approximation meth-
ods, such as abstract interpretation (Gehr et al. 2018), inter-
val analysis (Li et al. 2019), and polynomial approximation
(Huang et al. 2019). These methods provide soundness guar-
antees to the result but cannot ensure completeness. Such a
relaxation on the guarantees can improve the scale of the net-
work models that the methods can work with but still cannot
reach the industrial-scale network models, even when GPU-
based Parallelisation is applied (Ruan et al. 2019). Besides,
they are often restricted by the types of layers or activation
functions they can work with.

The above observation has led to the development of the
other thread of works called testing methods, which gener-
ate a large number of test cases to intensively test the exis-
tence of errors, such as (Wicker, Huang, and Kwiatkowska
2018; Sun et al. 2018). Furthermore, the generation of test
cases may often be guided by the coverage metrics such
as neuron coverage (Pei et al. 2017) or MC/DC (Sun et al.
2019). While it is arguable whether the generated test cases
are representative for the property to be verified, the test-
ing results can be utilized to either understand the internal
working mechanism (Huang et al. 2021b) of neural network
models or support safety argument (Zhao et al. 2020a) to-
gether with the verification results. Please refer to a recent
survey (Huang et al. 2020), or tutorial (Ruan, Yi, and Huang



2021) for more discussions on the verification and testing
techniques for neural network models.
Verification of Actual Implementations of DNNs. While
existing verification methods work with DNN models
and adversarial examples (i.e., a small perturbation on a
correctly-labeled input leads to a different classification), it
has been pointed out in (Odena et al. 2019) that there are
errors in the Tensorflow graph representation of DNNs, a
lower-level implementation of DNNs, such as numerical er-
rors and disagreements between DNN implementations and
their quantized versions. It is reasonable to believe that,
when working with code-level implementations, e.g., on the
Compute Unified Device Architecture (CUDA) and GPU
hardware, there will be other errors, including security loop-
holes, that are more difficult to detect and mitigate than on
CPU implementations (Miele 2016; Di et al. 2020).

Prior work focused on the verification of the robust-
ness of the neural net with respect to its models (Huang
et al. 2017; Katz et al. 2017; Sun et al. 2018; Zheng et al.
2016). In these approaches, off-the-shelf Satisfiability Mod-
ulo Theories (SMT) solvers are used to find robustness vio-
lations. However, this verification scheme cannot precisely
capture issues that can be introduced in the implementa-
tions of DNNs. There exist four reasons: (i) one cannot
model bit-level operations using the theory of integers and
reals (Cordeiro, Fischer, and Marques-Silva 2011); (ii) li-
braries, such as TensorFlow, often take advantage of avail-
able Graphical Processing Units (GPUs) to explore the in-
herent parallelism of DNNs, so the translation to GPUs can
be problematic; (iii) some security vulnerabilities cannot be
detected in high-level models since they depend on imple-
mentation aspects (e.g., finite word-length); lastly (iv) there
exists no connection between automated verification and ex-
plainability approaches, making it difficult to interrogate a
system if something goes wrong.

Towards this, Pereira et al. (Pereira et al. 2017) propose to
verify CUDA programs written for GPU platforms with an
SMT-based context-bounded checking technique. They de-
veloped ESBMC-GPU, which is the first verifier to discover
adversarial cases and validate coverage methods in DNNs
using the cuBLAS and cuDNN libraries (Sena et al. 2019).
However, Pereira et al. (Pereira et al. 2017) do not exploit
invariant inference to prune the state-space exploration for
greater scalability. Also, their approach cannot explain the
parameters of the DNN implementation to understand the
root cause of errors.

3 Rationale and Approach
We believe that a holistic approach is necessary to overcome
the challenges and limitations listed in Section 2. To this
end, EnnCore will pioneer the dialogue between all the very
different components of the contemporary AI safety stack
(see Figure 2).

On the one hand, we will draw inspiration and sup-
port from the diverse industrial experiences of our partners.
For healthcare, digital Experimental Cancer Medicine Team
(dECMT)2 requires a provably correct, trusted, explainable

2dECMT is a clinical digital research group based in the Cancer

Figure 2: EnnCore holistic approach.

decision making for medical diagnosis. For energy, Urban-
chain3 requires a fair, explainable, and trusted decision mak-
ing system to ensure the security and privacy of clients’ data.

On the other hand, EnnCore will bridge the gap between
the user’s need to communicate their security constraints,
and the technical challenges involved in formalising these
constraints and checking whether neural-based system sat-
isfy them. In this respect, we consider explainability/inter-
pretability techniques as a fertile common ground for trans-
lating the user’s requirements to rigorous mathematical con-
straints. Furthermore, we believe that exploiting the struc-
ture of such constraints, and the neural-based architecture
that is required to satisfy them, is the key towards a truly
scalable full-stack verification approach.

4 Research Objectives
EnnCore aims to fundamentally shift the state-of-the-art of
what is achievable in formal verification of AI-based soft-
ware systems to make them secure and trusted against unan-
ticipated behavior and attacks. We are convinced that this
cannot be achieved by a “proof-of-concept implementation”
with an artificial case study. This particular approach will
not have much credibility – and thus impact – with systems
and software engineers. We will work in close collaboration
with industrial partners to tackle real-world case studies in
healthcare and energy domains. We will also use real data
and work with domain experts to develop and validate our al-
gorithms, methods and tools. In a multidisciplinary fashion,
EnnCore will link two areas, which include neuro-symbolic
and explainable machine learning and software verification,
to deliver a full-stack security mechanism for DNNs operat-
ing in safety-critical scenarios. Our core objectives are:
O1: Develop a novel conceptual/symbolic safeguard mech-
anism for neuro-symbolic platforms

Research UK Manchester Institute (https://digitalecmt.org/).
3Urbanchain develops a world-leading platform for energy gen-

erators in the wholesale market (https://www.urbanchain.co.uk/).



EnnCore will pioneer the use of neuro-symbolic architec-
tures and explainability/interpretability mechanisms to sup-
port end-users specifying a conceptual safeguard core to
neural-based AI systems. The project will also contribute to
a broad and in-depth systematic analysis of the impact of ex-
isting explainability/interpretability mechanisms in security
scenarios. These mechanisms include the interpretation of
high-dimensional embeddings, attentional mechanisms, de-
coding from intermediate representations and black-box de-
bugging methods using artificially generated datasets.
O2: Develop scalable SMT theories and invariant infer-
ence methods for DNNs
EnnCore will develop new SMT theories to reason about the
safety and security of actual implementations of DNNs. Our
ultimate goal is to mitigate security vulnerabilities and in-
correct predictions, which make AI-based applications sus-
ceptible to errors and mischance. Additionally, EnnCore will
develop a new invariant inference method based on the struc-
ture of the DNNs. We aim to simplify the DNN output com-
putation for some input intervals using abstract interpreta-
tion and program synthesis. In particular, we will exploit in-
variant inference to prune the state-space exploration for ver-
ifying security properties in real implementations of DNNs.
O3: Grounding, deploying and evaluating high-impact
real-world use cases
EnnCore will be co-designed with industrial and clinical
partners around exemplary use-case scenarios. The selected
use cases reflect standard security requirements for DNNs,
which are transferable to other sectors such as automotive
and consumer electronics. Additionally, usability is at the
center of the unique value proposition of EnnCore, where
the model can interface with end-users (system designers
and security experts). We will allow users to state areas
within the model that should be safeguarded.

5 Current Achievements and Future Trends
The proposed research is broken down into four research ar-
eas: Real Case-Studies & Integrated Evaluation, Explain-
able Neuro-Symbolic Safeguard Framework, Symbolic Ver-
ification Framework for AI, and Verifying Security in Em-
bedded Software running in GPUs. In the following, we de-
scribe the research contents of each area. In particular, we
provide details of what has been achieved to date and what
we intend to tackle as future work.

5.1 Real Case-Studies & Integrated Evaluation
EnnCore aims to tackle two real-world use cases in two
distinct domains: health and energy. In the health domain,
the use case is cancer diagnoses (Lee et al. 2021), where a
medical institution (e.g., hospital) aims to determine if sus-
pect patients have cancer or not based on analyzing a set of
biomarkers. To achieve this, the medical institution deploys
an AI model that uses the patients’ biomarkers to predict the
likelihood of a patient having (or developing) cancer. In the
energy domain, the use case is demand response (Albadi and
El-Saadany 2008), where an energy supplier company aims
to match their customers’ energy consumption with the en-
ergy supply available, in order to facilitate peer-to-peer en-
ergy trading (Capper et al. 2021) without violations of the

grid constraints (Dudjak et al. 2021). To complete this effi-
ciently and effectively, the supplier needs to predict the half-
hourly electricity consumption of each of their customers.
To achieve this, the energy supplier deploys an AI model that
uses their customers’ historical consumption data to predict
their consumption data for the next half-hourly time slot.
Unfortunately, this approach allows the supplier to have ac-
cess to households’ fine-grained consumption data, which
poses a high risk to users’ privacy (Mustafa, Cleemput, and
Abidin 2016) as well as hinders the adoption of smart me-
ters (Briggs, Fan, and Andras 2020).

Up to now, we have performed security analyses of both
use cases to identify potential threats to the AI models, hence
specifying concrete security requirements/properties that
these AI models should satisfy. Apart from the ‘standard’
confidentiality, integrity, and availability requirements, we
have identified the following properties relevant to AI mod-
els: robustness, transparency, auditability (traceability), ac-
countability, and privacy.

Robustness ensures that AI models are resilient against
malicious input and corner cases (a.k.a adversarial exam-
ples). Transparency ensures that all phases of an AI model
processing chain (including the technical details of the mod-
els and the training data used) are well documented. Au-
ditability (traceability) ensures that all the processing steps
of the AI models (i.e., cause-effect) can be traced by third
parties if needed. Finally, accountability ensures evidence
of who has developed/managed/maintained every compo-
nent/step of the AI model. These four properties are closely
related to each other and contribute to the explainability of
AI models. On the other hand, privacy ensures that sensitive
user data and sensitive AI models are protected from unau-
thorized entities, sometimes even from the companies that
have developed and managed the AI models.

To ensure AI models’ robustness against malfunction and
attacks, one promising approach is to adopt robust training
for AI models (Gehr et al. 2018). This ensures that the AI
models are already fed with data representing potential cor-
ner cases in the training phases. To achieve this, the train-
ing data is usually augmented by adding a certain degree
of randomness. The DiffAI framework (Mirman, Gehr, and
Vechev 2018) has successfully applied this approach to de-
velop AI models that are provably robust. This is achieved
by deploying abstract interpretation techniques by overap-
proximating the AI system’s behavior. However, the DiffAI
framework has been designed to process images. As a next
step, we plan to adapt the DiffAI framework to process other
types of input data, e.g., biomarkers.

To ensure that AI systems protect user-sensitive data, de-
ploying Federated Learning (FL) (Bonawitz et al. 2019) is
a promising approach. FL, by design, allows end-users to
train their models locally, never share their sensitive raw
data, yet benefit from the data of others. This is achieved
by sharing only the gradients of the locally trained and de-
ployed AI models, which are then aggregated to build a
global model, distributed to the end-users. Although it al-
ready provides a good level of user privacy protection, this
approach has some limitations. For example, the gradients of
the locally trained AI models can reveal information about



the model itself and/or the data used for the local training
of the models (Melis et al. 2019; De Cristofaro 2021). In
addition, a single global AI model does not always provide
the best possible outcome for all the end-users. To address
these limitations, we plan to deploy advanced cryptographic
techniques for secure computation (homomorphic encryp-
tion and multiparty computation) to perform the gradient ag-
gregation and devise the global model in a secure way such
that no entity has access to the gradients provided by the
individual end-users. In addition, to improve performance,
we plan to adopt a clustering method (Sattler, Müller, and
Samek 2021), which would classify the end-users based on
their data into several clusters, creating variants of the global
model, which will contribute differently to the final model
used by each of the individual end-users. Our approach will
be tested on the energy use case to predict individual users’
household electricity consumption data.

5.2 Safeguards for Explainable Neuro-Symbolic
Inference

EnnCore sets the vision of delivering neural representa-
tion models that are highly controlled regarding their in-
ference properties. The key concept is to allow model de-
velopers and domain experts to encode complex symbolic
and geometric constraints within the models (safeguards),
allowing for more controlled inference and better disentan-
glement. Additionally, the project expands emerging prob-
ing and metamorphic testing methodologies to measure and
qualify the internal properties of the latent representation.
For this work-stream, we focus on designing controlled em-
beddings for complex tasks in Natural Language Process-
ing (NLP), emphasizing textual entailment and question an-
swering. These tasks allow for the design of models which
require the encoding of complex (i.e., requiring multiple se-
mantic operations) and multi-hop natural language inference
in an explainable manner.

The inference control methods are represented as explicit
linguistic and inference constraints, which elicit abductive
inference biases that are integrated into the latent model.
The intuition is that universal patterns of abstract inference,
such as abstraction and fact unification (Valentino, Thaya-
paran, and Freitas 2021; Valentino, Pratt-Hartman, and Fre-
itas 2021) can be programmed into the model, prescribing
an expected inference pattern, which can facilitate general-
ization but also enforce more consistent inferences. Follow-
ing the results achieved by encoding these constraints using
Integer Linear Programming (ILP) (Thayaparan, Valentino,
and Freitas 2020), which demonstrate its positive impact
on inference control and explainability, we proposed ∂-
Explainer (Thayaparan et al. 2021), an end-to-end differen-
tiable architecture that integrates Convex Optimization such
as Linear Programming with neural representations for ab-
ductive natural language inference. Specifically, we demon-
strated that these models could integrate explicit inference
constraints with Transformers-based sentence representa-
tions and train the architecture end-to-end to improve expla-
nation generation and accuracy in multi-hop and abstractive
reasoning tasks.

Part of the inference control mechanisms is expressed in

the design of generative models for natural language infer-
ence with better disentanglement of latent factors. While
representing the meaning of a sentence or an inference
step in a continuous latent sentence space, models will aim
for specializing latent dimensions to capture consistent lin-
guistic and inference phenomena (e.g., tense variations for
verbs), allowing for both interpretability and control. In
(Mercatali and Freitas 2021), we proposed a variational au-
toencoder (VAE) model which better disentangles sentence
discrete generative language factors. Recent work is expand-
ing the same level of linguistic control via disentanglement
for abstract sentences and multi-hop inference.

The level of additional control needs to be accompanied
by methodologies that can measure and qualify the internal
properties of these embedding spaces. For example, prob-
ing or diagnostic classification (Hewitt and Liang 2019; Fer-
reira et al. 2021) is a method for investigating whether a set
of intermediate (e.g., semantic) features are present in la-
tent spaces. In EnnCore, we extend emerging methodolo-
gies such as metamorphic testing, geometric probing, and
abstract inference to systematize the internal properties and
consistency of controlled embedding spaces. Examples in-
clude the verification of abstract properties highly relevant to
controlled inference such as monotonicity (Rozanova et al.
2021a,b) or variable substitution (Ferreira et al. 2021).

We also mention BayLIME (Zhao et al. 2020b), which is a
novel explainable AI tool enhancing the well-known LIME
tool with Bayesian reasoning to achieve better consistency
in repeated explanations of a single prediction and better ro-
bustness to the hyper-parameters.

5.3 Symbolic Verification Framework for AI
Verification refers to algorithms that determine whether or
not a model satisfies some pre-specified property. Symbolic
verification algorithms compute the intermediate results us-
ing a symbolic representation – such as BDD, SAT, and
SMT. Usually, symbolic verification scales better than ex-
plicit verification, thanks to its memory efficiency and ef-
ficient computation. In the first year of EnnCore, we have
explored a few directions on the symbolic verification tech-
niques for AI, including working directly with the machine
learning models. The other two directions aim to deal with
the scalability issues through abstract models and acceptable
solutions safety, respectively.

We considered two classes of machine learning mod-
els when working directly with the models. For convolu-
tional neural networks (CNNs), a symbolic verification algo-
rithm based on interval analysis and symbolic layer-by-layer
propagation was developed in (Yang et al. 2021; Li et al.
2020), together with a global optimisation based method
(Xu, Ruan, and Huang 2021). Second, for the random for-
est, an SMT-based method was considered to determine
whether a model has been data poisoned by a backdoor at-
tack (Huang, Zhao, and Huang 2020).

We also develop methods when scalability is an obstacle
to the verification algorithms. For example, for deep rein-
forcement learning, we abstract its interactive behavior with
the environment into a discrete-time Markov chain and then
apply an off-the-shelf probabilistic model checker to do ver-



ification (Dong, Zhao, and Huang 2021). For CNNs, we
abstracted a model into a Bayesian network and then con-
ducted probabilistic inference as the verification algorithm
(Berthier et al. 2021a,b).

We also deal with scalability from the perspective of ac-
ceptable safety. In (Huang et al. 2021a), we developed a sta-
tistical certification algorithm for the robustness of CNNs,
and in (Zhao et al. 2021a,b), we considered an acceptable
level of reliability of CNNs. Moreover, coverage-guided
testing is proven an effective way to quantify the quality of
a recurrent neural network (Huang et al. 2021b).

In addition to the above directions, we also developed our
views in (Ruan, Yi, and Huang 2021; Huang 2021), which
includes potential directions for exploration.

5.4 Verifying Security in Embedded Software
running in GPUs

We have developed and evaluated various verification strate-
gies to detect errors in learning and classifications performed
by DNNs. In particular, we analyzed potential failures of
DNNs due to bugs in the implementation of the embedded
software of the DNNs. Here, we distinguish two classes of
bugs: 1) generic implementation errors, for instance, mem-
ory safety, arithmetic overflow, and division-by-zero; they
can cause the implementation of the DNN to crash; 2) failure
of the implementation to behave according to the high-level
rules, which may cause miss-classifications.

In (Sena et al. 2019, 2021), we develop and evaluate
a novel symbolic verification framework using software
model checking (SMC) and satisfiability modulo theories
(SMT) to check for safety properties in quantized neural
networks (QNNs). More specifically, we propose several
QNN-related optimizations for SMC, including invariant in-
ference via interval analysis, slicing, expression simplifica-
tions, and discretization of non-linear activation functions.
We also quantified each technique’s impact using different
SMT solvers. We observed a significant performance im-
provement if we enabled slicing, interval analysis, and ex-
pression simplifications with the SMT solver Yices (Sena
et al. 2021).

With this verification framework, we also provide formal
guarantees on the safe behavior of QNNs implemented both
in floating- and fixed-point arithmetic. In particular, we have
observed that the verification time correlates with the num-
ber of bits used for ANN quantization. Interestingly, this
correlation disappears for the number of bits above 14 due
to the increasing state-space exploration. In this regard, our
verification approach was able to verify and produce ad-
versarial examples for 52 test cases spanning image clas-
sification and general machine learning applications. Fur-
thermore, for small- to medium-sized QNNs, our approach
completes most of its verification runs in minutes. In con-
trast to most state-of-the-art methods, our approach is not
restricted to specific choices regarding activation functions
and non-quantized representations. Finally, our experiments
show that our approach can analyze larger ANN implemen-
tations and substantially reduce the verification time com-
pared to state-of-the-art techniques that use SMT solving,
e.g., Marabou (Kim et al. 2016). It is also competitive to

verification approaches that employ symbolic interval, e.g.,
Neurify (Wang et al. 2018).

As future work, we plan to work in two directions. First,
we aim to evaluate security properties in various real case
studies. Second, we will lead extensive experiments to val-
idate the implementations of DNNs for a set of case stud-
ies from our industrial partners. This procedure requires us
to set an environment for running the implementations of
DNNs in typical GPUs, which will rely on our prior work on
the verification of GPU programs (Pereira et al. 2017). Ad-
ditionally, creating the benchmarks for the experiments is a
continuous and iterative task, consisting of two main steps:
(i) creating benchmarks using real applications of DNNs;
and (ii) using industry-standard benchmarks in close collab-
oration with our partners. Lastly, we will interpret and vali-
date the results obtained during these experiments and then
compare our approach using other state-of-the-art verifica-
tion tools, similar to our recent work (Sena et al. 2021).

6 Conclusions
EnnCore contributes to the development of trustworthy
neural-based systems, which are highly applicable to ar-
eas of high societal impact, such as reliable infrastructure
management, defense, medical diagnosis and treatment, and
fair/unbiased decision making. In particular, EnnCore em-
phasizes safety for medical diagnosis and treatment, with
a use case targeting cancer. Personalized medicine requires
the increasing use of automated data-driven methods. The
EnnCore project can directly impact the reduction of the
barriers to adopting AI-based methods in clinical settings,
thereby democratizing personalized cancer diagnosis and
treatment. Additionally, one of our industrial partners is cur-
rently acting as a blockchain-based supplier in the energy
market. EnnCore tools will ensure the privacy and security
of the clients’ data in the energy sector. In particular, En-
nCore will assist this industrial partner by providing inno-
vative methods to protect their customers’ data and applied
algorithms. As a result, we expect the EnnCore tools to push
the state-of-the-art on formal verification and explainability
techniques to provide assurances about AI applications’ se-
curity and explain their security properties.
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