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Abstract—Software Requirements Specification (SRS) is one of
the most important documents in software projects, but writing
it manually is time-consuming and often leads to ambiguity.
Existing automated methods rely heavily on manual analysis,
while recent Large Language Model (LLM)-based approaches
suffer from hallucinations and limited controllability. In this
paper, we propose REQINONE, an LLM-based agent that follows
the common steps taken by human requirements engineers when
writing an SRS to convert natural language into a structured
SRS. REQINONE adopts a modular architecture by decomposing
SRS generation into three tasks: summary, requirement extrac-
tion, and requirement classification, each supported by tailored
prompt templates to improve the quality and consistency of LLM
outputs.

We evaluate REQINONE using GPT-4o, LLaMA 3, and
DeepSeek-R1, and compare the generated SRSs against those
produced by the holistic GPT-4-based method from prior work
as well as by entry-level requirements engineers. Expert eval-
uations show that REQINONE produces more accurate and
well-structured SRS documents. The performance advantage of
REQINONE benefits from its modular design, and experimental
results further demonstrate that its requirement classification
component achieves comparable or even better results than the
state-of-the-art requirement classification model.

Index Terms—Requirements Engineering, Software Require-
ments Specification, Large Language Models

I. INTRODUCTION

Requirements engineering is a critical phase in software
development, ensuring stakeholder needs are accurately cap-
tured and translated into implementable specifications. The
Software Requirements Specification (SRS) is the primary
outcome of requirements engineering, which defines the ex-
pected functionality, constraints, and operational environment
of a software system [1]. A high-quality SRS must be unam-
biguous, complete, consistent, and traceable to guide design,
implementation, and testing [2]. However, producing such
specifications is challenging due to the reliance on natural
language, which often leads to vagueness, contradictions, and
increased communication overhead between stakeholders [3].
Tools like Visual Paradigm [4], ReqView [5], and Elementool
[6] offer templates and diagrams but still require extensive
manual input. NLSSRE [7] automates requirement extraction
but does not support generating complete SRS content such
as use cases and glossaries.

Recent advances in Large Language Models (LLMs) offer
opportunities to automate and enhance requirements engineer-
ing tasks. Trained on vast real-world data, LLMs can generate
human-like text with billions of parameters [8]–[10]. With the
emergence of models such as LLaMA [11], GPT [12], and
DeepSeek [13], techniques like zero-shot [14], few-shot [15],
and chain-of-thought [16] prompting have significantly im-
proved model performance across diverse tasks. In the context
of requirements engineering, LLMs have been applied to clas-
sify requirements [17], [18], evaluate user story quality [19],
assess completeness [20], and support information extraction
and architectural design [21]–[24]. In [25], LLMs are em-
ployed to translate informal code comments into formal post-
condition assertions. The framework in [26] leverages Chat-
GPT and counterexample-guided refinement to automatically
extract and verify formal postconditions for Ethereum smart
contract functions based on natural language descriptions. [27]
designed a prompt to enable LLMs to directly generate a full
SRS from natural language text. However, an SRS includes
multiple sections, the task involves not only converting natural
language into well-structured requirements but also correctly
placing each one into the appropriate section. This makes SRS
generation task more complex. Directly prompting an LLM to
generate the full SRS can lead to hallucinations, underscoring
the need for a suitable transformation strategy and well-crafted
prompts [28], [29].

This paper introduces REQINONE, an LLM-based agent
designed to automatically convert natural language texts, such
as stakeholder requirements, meeting transcripts, and con-
versational records, into a structured SRS. REQINONE con-
sists of three core components: Summary Task, Requirement
Extraction Task, and Requirement Classification Task, each
guided by a tailored prompt template to perform its specific
role in the SRS generation process. By coordinating these
components, REQINONE efficiently produces well-structured
SRS documents from unstructured text.

Furthermore, we construct ReqFromSRS, a dataset consist-
ing of 100 functional requirements and 100 non-functional
requirements, manually extracted from 22 real-world SRS
documents in the PURE dataset [30]. We release all prompt
templates, code, datasets, generated SRSs, and experimental
results in Github [31] to support future research.



Fig. 1. Overview of the REQINONE

II. METHODOLOGY

A. Overview of REQINONE

Prior studies have shown that LLMs may struggle to effec-
tively handle complex tasks when prompted to complete them
in a single step. However, when guided by a chain-of-thought
approach [16], such tasks can often be decomposed into a
series of simpler sub-tasks, enabling more reliable and accurate
performance. For instance, Tian et al. demonstrated that LLMs
are less effective at directly repairing buggy code compared
to scenarios where the error location is first identified by
either human annotators or external tools, and the LLM is
then responsible solely for repairing the localized snippet
[32]. Inspired by this finding, we hypothesize that the task of
converting natural language into a structured SRS, rather than
being executed as a single-step transformation as in the work
of Krishna et al. [27], can similarly benefit from decomposition
into a set of simpler, more focused sub-tasks. By adopting this
multi-step strategy, we aim to improve LLM performance and
generate higher-quality SRS outputs.

Building on this hypothesis, we design REQINONE to
follow the common steps taken by human requirements engi-
neers when converting natural language text into a structured
SRS. Rather than treating the conversion as a single-step
process, REQINONE decomposes the task into three sub-tasks:
Summary, Requirement Extraction, and Requirement Classi-
fication. To efficiently handle these sub-tasks, REQINONE
consists of three specialized components, each responsible
for executing a specific task. Through task scheduling and
coordination among these components, REQINONE processes
natural language input and generates a well-structured SRS.

The overall workflow of REQINONE is illustrated in Figure
1. It begins with an input of verbose natural language text,
typically reflecting stakeholder needs and high-level system
requirements. REQINONE first invokes the Summary Task
component, which processes the input text for summarization.

The Summary Task component prompts the LLM based on
the natural language text and utilizes the output of the LLM
to populate the SRS template. The generated content is used to
populate specific sections of the SRS template. As an example
of the SRS template shown in Figure 1, the Summary Task
component is responsible for filling in summary-type sections
of the SRS template, including the Introduction, Stakehold-
ers/Users, Use Cases, and Glossary sections. Additionally, the
SRS template illustrated in Figure 1 is merely an example,
adapted from the template used in [27], which in turn is based
on IEEE specifications [33]. Users are free to adopt any other
SRS template that suits their specific needs. To do so, they
simply need to identify the summary-type sections within their
chosen template and accordingly modify the prompt template
used in the Summary Task component (details in II-B).

Following this, REQINONE proceeds to the Requirement
Extraction Task component, which extracts structured re-
quirements from the natural language text. The Requirement
Extraction Task component prompts the LLM based on the
natural language text, and the output of the LLM constructs a
list of structured requirements extracted from natural language
text. This list of extracted requirements is then passed as input
to the Requirement Classification Task component for further
processing.

Once the list of extracted requirements is generated, it is
passed to the Requirement Classification Task component for
categorization. This component is responsible for classifying
the requirements into Functional Requirements (FRs) and
Non-Functional Requirements (NFRs). Moreover, the Require-
ment Classification Task component further refines the classi-
fication of NFRs by assigning them to specific subtypes such
as availability, performance, security, and other relevant NFR
subtypes. The Requirement Classification Task component
prompts the LLM to classify requirements and determines their
category based on the output of the LLM.



The classified requirements are then populated into the
corresponding sections of the SRS template. FRs are placed in
the FRs section, while NFRs are categorized into subsections
under NFRs section. Once all three components complete
their respective tasks, the conversion of natural language input
into a structured SRS is finalized. Through this coordinated
execution of its three core components, REQINONE provides
an efficient and automated solution for generating SRS docu-
ments.

B. Summary Task Component

To ensure that the Summary Task Component can generate
the required summary-type sections accurately after prompting
the LLM, we designed a prompt template specifically for the
Summary Task. As shown in Figure 2, this prompt template
consists of two main parts.

Fig. 2. Prompt Template for Summary Task

The first part involves Role Specification (Figure 2 a ),
which instructs the LLM to assume the role of a require-
ment assistant responsible for generating content for various
summary-type sections based on the provided natural language
text.

The second part of the prompt template explicitly lists the
sections for which content needs to be generated, along with
detailed descriptions or definitions of the expected content
for each section (Figure 2 b ). For example, we provide the
description for the Stakeholders/Users Section: “Write who
the product is intended to serve”. Additionally, to mitigate
hallucinations in the output of LLM, we specify that each
stakeholder or user mentioned must be accompanied by an
annotation indicating the text source from the provided natural
language input. Similarly, the Glossary of Terms Section de-
fines its content as: “The glossary provides specific definitions

of important terms used throughout the software requirements
document”.

Furthermore, for the second part of the prompt template,
in addition to providing explicit definitions for each section,
researchers have found that including guiding questions can
further help guide the LLM to produce more relevant and
structured content—for example, as illustrated in Figure 2 b
for the Introduction section. If users find that providing only
definitions does not yield satisfactory outputs, they may in-
stead design guiding questions based on the expected content,
enabling the LLM to generate results that better align with
their intentions.

The Summary Task Component also includes a command
list containing entries such as “Write Introduction Section”
and “Write Stakeholders/Users Section.” The Summary Task
Component iterates through this command list, sequentially
extracting commands and combining them with the prompt
template before prompting the LLM. This process allows
the LLM to focus on generating one section at a time, and
the component populates each section into the SRS template
accordingly.

Both the prompt template and the command list are designed
to be extensible. If a required summary-type section is not
initially included in the prompt template, users can extend
the second part of the prompt template by adding relevant
instructions in the same format. Likewise, by adding a cor-
responding command to the command list. This flexibility
ensures that REQINONE remains adaptable to different SRS
template structures and evolving requirements engineering
needs.

C. Requirement Extraction Task Component

Similar to the Summary Task Component, we designed a
specialized prompt template for the Requirement Extraction
Task Component to facilitate prompting the LLM. The struc-
ture of this prompt template is illustrated in Figure 3 and
consists of four main parts.

The first part is still Role Specification (Figure 3 a ), where
the LLM is instructed to analyze the provided natural language
text and extract relevant requirements.

The second part is Requirement Definition (Figure 3 b ),
which provides the LLM with a clear definition of what a
requirement is. By explicitly defining requirements within the
prompt, the LLM gains a precise understanding of the target
content it needs to extract from the natural language text,
thereby improving extraction accuracy.

The third part is Requirements Pattern (Figure 3 c ). In this
part, the LLM is directed to extract requirements that conform
to the following standardized format: “The <subject clause>
shall <action verb clause> <object clause> <optional qual-
ifying clause>, when <condition clause>.” This format is
derived from INCOSE documentation [34] and serves as a
guideline for the LLM, ensuring that all extracted requirements
are expressed in a consistent and well-structured format. The
purpose of enforcing this structured format is to promote
clarity, consistency, and testability in requirement expressions.



Fig. 3. Prompt Template for Requirement Extraction Task

Additionally, structured format phrasing helps reduce ambigu-
ity, making the requirements easier to understand, validate,
and trace throughout the software development lifecycle [35].

The fourth part includes Trace to Source (Figure 3 d ),
where we instruct the LLM to append the source of each
extracted requirement along with the reason for its extraction.
This step is crucial in preventing hallucinations by compelling
the LLM to justify the rationality of each requirement extrac-
tion based on trace to source before generating it. By linking
each requirement to its original text source, we establish
traceability within the SRS, ensuring that every requirement
can be verified and traced back to its origin.

Once the Requirement Extraction Task Component provides
the natural language text and the structured prompt template to
the LLM, the LLM processes the input, analyzes the content,
and returns a structured list of extracted requirements. The
Requirement Extraction Task Component then organizes these
extracted requirements into a requirements list, which is passed
to the Requirement Classification Task Component for further
classification and refinement.

D. Requirement Classification Task Component

In line with the design of the other components, we designed
a specialized prompt template for the Requirement Classifi-
cation Task Component. Upon receiving the requirement list
from the Requirement Extraction Task Component, the Re-
quirement Classification Task Component utilizes this prompt
template to prompt the LLM. This prompt template transforms
the LLM into a reasoning model specialized in classifying
requirements into functional and non-functional categories.

As illustrated in Figure 4, the prompt template consists of
four main parts. The first part is Task Specification (Figure
4 a ), which explicitly instructs the LLM to classify each
requirement into either functional or non-functional categories.
The second part is Definition of FRs and NFRs (Figure 4 b ),
providing a clear classification standard by defining FRs and
NFRs to help the LLM distinguish between these categories.

Fig. 4. Prompt Template for Requirement Classification Task

The third part, Detailed Classification of NFRs, explains
various subtypes within NFRs (Figure 4 c ). This part defines
11 different subtypes of NFRs, such as Availability Require-
ment, Legal Requirement, and Maintainability Requirement,
each accompanied by a corresponding definition. Additionally,
Cleland-Huang et al. [36] proposed that different NFR types
are often associated with specific keywords, which we refer to
as indicator terms. These indicator terms are incorporated into
the prompt template following the corresponding requirement
definitions, helping guide the LLM toward more accurate
classification.

In the fourth part (Figure 4 d ), we adopt the few-shot
learning approach [15], where a set of labeled requirement



examples is provided to enhance classification accuracy. These
examples cover all 11 NFR subtypes and also include repre-
sentative samples of FRs, ensuring that the LLM learns from
diverse cases to improve its classification ability.

Considering that there is still no consensus in the software
engineering community on the concept of NFRs [37], [38],
the categorization of NFRs may vary across different projects.
NFRs in some cases may extend beyond the 11 NFR subtypes
in the third part of the prompt template. To address this chal-
lenge, the prompt template is designed to be extensible. Users
can customize the template by adding, modifying, or removing
requirement category definitions based on their specific project
needs or the adopted SRS template. Additionally, users can
expand the few-shot learning examples by introducing new
labeled requirements that align with the format used in the
prompt template.

Once the LLM classifies all requirements in the list, an
appropriate category label will be appended to each require-
ment. If a requirement is classified as NF, the label specifies
which subtype of NFR it belongs to. The labeled requirements
are then returned to the Requirement Classification Task
Component, which organizes and populates them into the FRs
Section or NFRs Section of the SRS template accordingly.

E. Summary and Insights

Unlike previous studies that typically instruct LLMs to
generate the entire SRS in a single step, we introduces a
novel strategy that decomposes the SRS generation task into
three comparatively simpler sub-tasks: the Summary Task, the
Requirement Extraction Task, and the Requirement Classifica-
tion Task. Based on this strategy, we developed REQINONE,
which composed of three corresponding components—each
responsible for one sub-tasks. Every component is guided by
a designed prompt template, tailored specifically for its corre-
sponding task, and we adopt a zero-shot prompting approach
to design these prompt templates [14].

A key advantage of our approach lies in its high degree of
customizability. Users can freely adapt REQINONE to their
preferred SRS format by modifying the contents of each
prompt template. For instance, if a chosen SRS template
includes a summary-type section not originally present in
the Summary Task prompt template, the user can easily
add the necessary description in the appropriate part of the
prompt template. Conversely, if certain sections included in
the original prompt template are irrelevant to the chosen SRS
template, they can simply be removed.

Moreover, the use of prompt templates brings sustainabil-
ity and extensibility to REQINONE. Users can continuously
improve the output quality by adjusting the content of the
prompt templates—for example, by modifying the definition
of requirements in the requirement extraction prompt template,
or by inserting more representative examples into the example
part of the requirement classification prompt template. These
kinds of adjustments allow REQINONE to be iteratively opti-
mized over time, making its performance increasingly aligned
with user expectations and domain-specific needs.

III. EVALUATION

Given that our approach decomposes the process of gener-
ating an SRS into multiple subtasks, we focus on several key
aspects when evaluating REQINONE: the overall quality of
the generated SRS, the quality of the requirements within the
SRS, and whether the requirements are correctly categorized
into their appropriate sections. To this end, we propose the
following three research questions:

RQ1: How does the overall quality of SRSs generated by
REQINONE using different LLMs compare to SRSs produced
by existing automated SRS generation methods and those
written by entry-level requirements engineers?

RQ2: How does the quality of requirements generated
by REQINONE compare to those from existing automated
methods and entry-level engineers?

RQ3: How well does REQINONE perform in the require-
ment classification?

A. Evaluation Design: User Study and Classification Task

RQ1 and RQ2 were addressed through a survey-based
evaluation using a questionnaire, while RQ3 was addressed
via a classification task using benchmark datasets.

The questionnaire consisted of two parts. Part 1, address-
ing RQ1, included five evaluation parameters drawn from
prior literature [27], [39], [40]: Internal Consistency, Non-
redundancy, Completeness, Conciseness, and Traceability. Par-
ticipants read both the source text and the corresponding SRS
before rating each parameter on a 1–5 Likert scale, where 1
indicates strong disagreement and 5 indicates strong agreement
that the SRS meets the parameter. The aggregated scores were
used to assess the overall quality of each SRS.

Part 2, for RQ2, followed a similar structure. Five require-
ments were randomly sampled from each SRS (ensuring one
per category when possible). Each requirement was rated on
five parameters: Unambiguous, Understandable, Correctness,
Verifiable, and Conforming—also using a 1–5 Likert scale.
As in RQ1, aggregated scores provided a quality assessment
for each requirement.

Three software engineering experts participated in the study.
Each evaluated five different SRSs: (1) SRS generated by
REQINONE using ChatGPT-4o; (2) SRS generated by RE-
QINONE using Llama3 (Version: Meta Llama3.1-8B); (3)
SRS generated by REQINONE using DeepSeek-R1 (Version:
DeepSeek-R1-0528-Qwen3-8B); (4) SRS generated by base-
line, which directly uses GPT-4 to generate the SRS [27]; (5)
SRS written by an entry-level requirements engineer [27]. To
ensure unbiased evaluations, all participants were unaware of
how each SRS was generated and had no prior involvement
in this research.

To address RQ3, we evaluated REQINONE’s classifica-
tion component using the PROMISE dataset [41], where
the task involved classifying requirements as functional or
non-functional and further categorizing NFRs into specific
subtypes. To test generalizability, we constructed a new
dataset—ReqFromSRS—by manually extracting requirements
from the PURE dataset [30]. We compared performance



against the NoRBERT baseline [17], using precision, recall,
and F1 score as evaluation metrics.

ReqFromSRS Dataset: The PURE dataset is a collection
of 79 SRS documents gathered from the web [30]. To evaluate
the performance of REQINONE’s requirement classification
and its generalizability, we manually extracted 100 FRs and
100 NFRs from the SRSs in the PURE dataset.

• Among the 100 NFRs, there were 10 Usability Require-
ments (US), 21 Performance Requirements (PE), 24 Se-
curity Requirements (SE), 12 Availability Requirements
(A), 12 Maintainability Requirements (MN), 7 Portability
Requirements (PO), 4 Scalability Requirements (SC), 8
Look & Feel Requirements (LF), and 2 Legal Require-
ments (L).

• During the manual extraction process, we only selected
FRs explicitly stated under the FRs section of the SRS
and labeled them with F. Similarly, for NFRs, we only
extracted those explicitly assigned a NFR subtype within
the SRS and labeled them accordingly.

Fig. 5. Overall evaluation of the five SRSs across five quality parameters.
Each score represents the average rating from experts.

B. RQ1: Overall Quality of SRSs

As illustrated in Figure 5, the SRS generated by REQINONE
using GPT-4o, despite receiving a relatively low score in
Non-redundancy, achieved the highest scores in Internal Con-
sistency, Completeness, Conciseness, and Traceability. This
indicates that REQINONE (GPT-4o) delivers the best overall
SRS quality among all evaluated methods.

Compared with the human-written SRS, REQINONE (GPT-
4o) consistently outperformed across all five evaluation pa-
rameters. In terms of Internal Consistency and Completeness,
the human-written SRS scored 3.8 and 3.0, whereas REQI-
NONE (GPT-4o) achieved 4.2 and 3.2 respectively indicating

that REQINONE (GPT-4o) can now generate more logically
coherent and coverage-complete specifications than entry-level
requirements engineer in many cases.

When compared to the baseline, which used GPT-4, REQI-
NONE (GPT-4o) also showed superior performance in four out
of five parameters, especially Traceability, where REQINONE
achieved a significantly higher score. This is particularly
notable given that GPT-4—the model behind the baseline—is
approximately 12 times more expensive to use than GPT-4o.
This comparison not only confirms the strong performance of
REQINONE, but also highlights its cost-effectiveness, offering
better results at a low computational cost. This suggests that
our proposed strategy of decomposing the SRS generation into
subtasks can effectively enhance the performance of LLMs in
SRS generation.

Regarding traceability, both the baseline and human-written
SRS did not clearly show traceability, receiving the lowest
scores in this parameter. In contrast, all three SRSs generated
by REQINONE clearly maintained traceability, with Deepseek-
R1 performing best.

Although the REQINONE powered by LLaMA3 and
Deepseek-R1 did not achieve the highest overall scores, they
did exhibit strengths in specific areas. Both outperformed the
GPT-4o regarding Non-redundancy, suggesting that they may
demonstrate stronger capability in extracting requirements.

Answer to RQ1: REQINONE (GPT-4o), delivers the
highest overall SRS quality among all evaluated pa-
rameters, outperforming both the human-written SRS
and the baseline, while maintaining low computational
cost. Additionally, LLLaMA3 and Deepseek-R1 also
showed strengths in Non-redundancy, suggesting po-
tential in requirement extraction.

C. RQ2: Quality of Generated Requirements

Figure 6 presents the evaluation of requirement quality
in the generated SRSs. Overall, REQINONE using LLaMA3
produced the highest-quality requirements, while ReqInOne
with Deepseek-R1 performed the worst.

Although REQINONE with LLaMA3 scored slightly lower
than the baseline in the Unambiguous parameter, the difference
was minimal. Both REQINONE (GPT-4o) and REQINONE
(LLaMA3) achieved high scores in the Conforming parameter,
outperforming the baseline. This improvement comes from
using a requirement pattern in the requirement extraction
prompt template, which guided LLMs to follow a consistent
structure when generating requirements.

Although LLaMA3 performed better than GPT-4o in avoid-
ing ambiguous phrasing and generating more easily under-
standable requirements, ambiguity remains a common chal-
lenge across all LLMs. These models often introduce unneces-
sary modifiers or redundant sentences, which can lead to vague
or overly verbose requirements. Among the models evaluated,
GPT-4o appeared to struggle with this issue the most. For
instance, some requirements generated by GPT-4o included



Fig. 6. Evaluation of requirement quality within the generated SRS docu-
ments. Each parameter score represents the average rating by experts on five
selected requirements from each SRS.

subjective terms such as “appropriate” and “user-friendly”,
which are highly subjective and can introduce ambiguity.
This observation is further supported by the evaluation results
shown in Figure 5 (parameter: Non-redundancy) and Figure
6 (parameter: Unambiguous), both of which reflect lower
scores for GPT-4o in these aspects. Therefore, future research
could explore fine-tuning LLMs to reduce the use of highly
subjective terms, which may lead to improved requirement
quality.

Regarding Correctness, the baseline fell clearly behind
REQINONE (LLaMA3) and REQINONE (GPT-4o), generating
more requirements that were not grounded in the source text.
This highlights the effectiveness of the Trace to Source part
in the requirement extraction prompt template, which helps
reduce hallucinations and ensures better alignment with the
source content.

Answer to RQ2: REQINONE, particularly with
LLaMA3, generated higher-quality and more consis-
tent requirements than both the baseline and human-
written SRSs, benefiting from well-designed structured
prompt templates that improved clarity, correctness,
and conformity.

D. RQ3: Requirement Classification Performance

a) Performance on PROMISE Dataset for FR/NFR Clas-
sification: To evaluate the performance of REQINONE ’s
Requirement Classification Component, we first assess its
ability to classify requirements as either functional or non-
functional on the PROMISE dataset. As illustrated in Table I,
REQINONE using GPT-4o achieves competitive results when

TABLE I
F/NFR CLASSIFICATION RESULTS ON PROMISE DATASET ACROSS

DIFFERENT TOOLS

FR NFR

Tool P R F1 P R F1

NoRBERT (Baseline) .92 .88 .90 .92 .95 .93
REQINONE (GPT-4o) .87 .95 .90 .96 .90 .93
REQINONE (LlaMa3) .75 .83 .78 .87 .81 .84
REQINONE (Deepseek-R1) .76 .86 .80 .89 .81 .85

compared to the NoRBERT baseline. For FR, GPT-4o achieves
an F1 score of 0.90, equal to NoRBERT, with a slightly lower
precision (0.87 vs. 0.92) but notably higher recall (0.95 vs.
0.88). For NFR, GPT-4o outperforms the baseline in precision
(0.96 vs. 0.92) while achieving the same F1 score of 0.93.

Meanwhile, REQINONE powered by Llama3 and
DeepSeek-R1 also performs reasonably well. Llama3
achieves F1 scores of 0.78 (FR) and 0.84 (NFR), while
DeepSeek-R1 yields 0.80 (FR) and 0.85 (NFR). Though they
do not reach the level of GPT-4o or NoRBERT, their results
suggest the potential of using local LLMs for future research
in requirement classification tasks.

b) Performance on PROMISE Dataset for NFR Subtype
Classification: To further evaluate the classification capabil-
ities of REQINONE, we focus on the Classification of NFR
Subtypes using the PROMISE dataset. This dataset includes
11 NFR subtypes: Availability (A), Fault Tolerance (FT), Legal
(L), Look & Feel (LF), Maintainability (MN), Operational (O),
Performance (PE), Portability (PO), Scalability (SC), Security
(SE), and Usability (US). As shown in Table II, REQINONE
using GPT-4o achieves a weighted F1 score of 0.81, which is
nearly on par with the NoRBERT baseline score of 0.82. More
importantly, GPT-4o surpasses NoRBERT in several individual
subtypes, including Availability, Fault Tolerance, Look & Feel,
and Maintainability in terms of precision, recall, and F1 score.
This demonstrates that REQINONE understands certain non-
functional subtypes more than NoRBERT.

The results of LLaMa3 and DeepSeek-R1 also indicate solid
performance. Although their weighted F1 scores are lower than
GPT-4o and NoRBERT, their results align with the earlier FR
and NFR classification task and suggest local models remain
viable options for requirement classification.

c) Performance on ReqFromSRS Dataset for FR/NFR
Classification: Since our baseline NoRBERT is trained specif-
ically on the PROMISE dataset, we constructed a new
dataset—ReqFromSRS—to provide a more fair comparison
and to evaluate the generalizability of REQINONE in clas-
sifying requirements. We performed the same FR/NFR classi-
fication task on this new dataset.

As shown in Table III, REQINONE using GPT-4o signifi-
cantly outperforms NoRBERT across all evaluation metrics.
It achieves the highest precision, recall, and F1 score for
both FRs and NFRs, indicating its strong generalization ca-
pability to previously unseen data. Even when powered by
local models such as LLaMa3 and DeepSeek-R1, REQINONE



TABLE II
CLASSIFICATION OF NFR SUBTYPES ON PROMISE DATASET.

Tool NoRBERT REQINONE (GPT-4o) REQINONE (LLaMa3) REQINONE (Deepseek-R1)

P / R / F1 P / R / F1 P / R / F1 P / R / F1

A .80 / .76 / .78 .84 / 1 / .91 .30 / .90 / .45 .77 / .95 / .85
FT .60 / .60 / .60 .67 / .80 / .73 .62 / .50 / .56 .78 / .70 / .74
L .91 / .77 / .83 .55 / .85 / .67 .52 / .85 / .65 .60 / .69 /.64
LF .81 / .79 / .80 .91 / .84 / .88 .78 / .76 / .77 .83 / .63 / .72
MN .62 / .47 / .53 .69 / .65 / .67 .69 / .65 / .67 .58 / .65 / .61
O .78 / .84 / .81 .79 / .53 / .63 .79 / .44 / .56 .54 / .48 / .51
PE .92 / .87 / .90 .87 / .83 / .85 .79 / .83 / .81 .81 / .81 / .81
SC .76 / .76 / .76 .71 / .71 / .71 .73 / .52 / .61 .79 / .52 / .63
SE .90 / .92 / .91 .98 / .88 / .93 .98 / .74 / .84 .98 / .89 / .94
US .83 / .88 / .86 .92 / .82 / .87 .90 / .66 / .76 .79 / .79 / .79

Weighted F1 0.82 0.81 0.71 0.74

TABLE III
F/NFR CLASSIFICATION RESULTS ON REQFROMSRS DATASET ACROSS

DIFFERENT TOOLS

FR NFR

Tool P R F1 P R F1

NoRBERT (Baseline) .84 .45 .59 .63 .92 .74
REQINONE (GPT-4o) .85 .87 .86 .87 .85 .86
REQINONE (LlaMa3) .80 .79 .79 .79 .80 .80
REQINONE (Deepseek-R1) .82 .71 .76 .74 .84 .79

still outperforms NoRBERT. Both local models maintain a
balanced performance with F1 scores of 0.76–0.80, surpassing
NoRBERT, especially in FR recall, where NoRBERT performs
poorly (0.45). Although NoRBERT achieves a relatively high
recall (0.92) for NFRs, its NFR precision (0.63) and FR recall
(0.45) are substantially lower, indicating that NoRBERT tends
to classify most requirements as NFR.

Answer to RQ3: REQINONE demonstrates strong
performance comparable to the NoRBERT baseline on
the PROMISE dataset and exhibits significantly better
generalization on the ReqFromSRS dataset. Even when
using local models like LLaMA3 and DeepSeek-R1,
REQINONE still offers promising classification perfor-
mance.

IV. THREATS TO VALIDITY

a) Internal Validity: To minimize randomness in LLM
outputs and obtain stable results, we set the temperature of all
LLMs to 0. We also specify the exact versions of the LLMs
used in the evaluation. These settings reduce the diversity
of possible outputs and also enhance the reproducibility of
our study. Additionally, when using local models such as
LLaMa3 and DeepSeek-R1, we opted for their 8B parameter
versions instead of larger alternatives. This decision was made

to balance computational feasibility and evaluation time, but
it may have limited the performance of these models.

b) Construct Validity: To answer RQ1 and RQ2, all
three participants involved in the survey are experts in the
field of software engineering. The meaning of each evaluation
parameter in the questionnaire was clearly explained to en-
sure consistency. Nonetheless, human judgment is inherently
subjective, and differences in individual understanding may
have introduced scoring bias. We attempted to mitigate this
by selecting the most representative parameters reported in
existing literature to assess SRS and requirement quality.

c) Conclusion Validity: Instead of evaluating every re-
quirement in the SRS, which would have imposed a heavy
workload on the participants and possibly affected their judg-
ment, we selected a sample of requirements that were as
diverse as possible across different requirement types. This
sampling strategy helps ensure coverage while maintaining
evaluation quality, but it may still limit the comprehensiveness
of our assessment.

V. CONCLUSION

In this paper, we proposed REQINONE, an LLM-based
agent designed to automatically SRS by scheduling three tasks:
summarization, requirement extraction, and requirement clas-
sification. Our evaluation shows that the SRS and individual
requirements generated by REQINONE are of higher quality
and more compliant with standard SRS guidelines than those
produced by baseline methods or entry-level requirements
engineers. Additionally, REQINONE achieves high accuracy
and strong generalizability in the requirement classification
task. These results demonstrate the potential of REQINONE
to improve the efficiency of requirements engineering.

As part of future work, we aim to extend REQINONE by
incorporating automated requirement validation mechanisms,
enabling a more robust generation–validation–update work-
flow to further improve the quality and reliability of generated
SRSs.
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