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ABSTRACT

This paper presents the FormAI dataset, a large collection of 112, 000

AI-generated compilable and independent C programs with vulner-

ability classification. We introduce a dynamic zero-shot prompting

technique constructed to spawn diverse programs utilizing Large

Language Models (LLMs). The dataset is generated by GPT-3.5-

turbo and comprises programs with varying levels of complexity.

Some programs handle complicated tasks like network manage-

ment, table games, or encryption, while others deal with simpler

tasks like string manipulation. Every program is labeled with the

vulnerabilities found within the source code, indicating the type,

line number, and vulnerable function name. This is accomplished

by employing a formal verification method using the Efficient SMT-

based Bounded Model Checker (ESBMC), which uses model check-

ing, abstract interpretation, constraint programming, and satisfi-

ability modulo theories to reason over safety/security properties

in programs. This approach definitively detects vulnerabilities and

offers a formal model known as a counterexample, thus eliminat-

ing the possibility of generating false positive reports. We have

associated the identified vulnerabilities with Common Weakness

Enumeration (CWE) numbers. We make the source code available

for the 112, 000 programs, accompanied by a separate file containing

the vulnerabilities detected in each program, making the dataset

ideal for training LLMs and machine learning algorithms. Our study

unveiled that according to ESBMC, 51.24% of the programs gen-

erated by GPT-3.5 contained vulnerabilities, thereby presenting

considerable risks to software safety and security.

CCS CONCEPTS

• Security and privacy→ Formal security models; Software

security engineering.
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1 INTRODUCTION

The advent of Large Language Models (LLMs) is revolutionizing the

field of computer science, heavily impacting software development

and programming as developers and computer scientists enthusi-

astically use AI tools for code completion, generation, translation,

and documentation [4, 29]. Research related to program synthesis

using Generative Pre-trained Transformers (GPT) [7] is gaining sig-

nificant traction, where initial studies indicate that the GPT models

can generate syntactically correct yet vulnerable code [6]. A re-

cent study conducted at Stanford University suggests that software

engineers assisted by OpenAI’s codex-davinci-002 model during de-

velopment were at a higher risk of introducing security flaws into

their code [27]. As the usage of AI-based tools for code generation

continues to expand, understanding their potential to introduce

software vulnerabilities becomes increasingly important. Consider-

ing that GPT models are trained on freely available data from the

internet, which can include vulnerable code, AI tools can potentially

recreate the same patterns that facilitated those vulnerabilities.

Our primary objective is to explore how proficiently LLMs can

produce secure code for different coding objectives without requir-

ing subsequent adjustments or human intervention. Additionally,

we aim to uncover the most frequent vulnerabilities that LLMs

tend to introduce in the code they generate, identifying common

patterns in realistic examples to comprehend their behavior better.

This brings forward the following research questions:

• RQ1: How likely is purely LLM-generated code to contain

vulnerabilities on the first output when using simple zero-

shot text-based prompts?

• RQ2: What are the most typical vulnerabilities LLMs intro-

duce when generating code?

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: AI-driven Dataset Generation and Vulnerability Labeling with Program Classification by the BMC Module

In particular, we explore these research questions in the context

of GPT-3.5 generating C programs. GPT-3.5 is the most widely used

LLM available to software developers with a free web interface.

Moreover, C is one of the most popular programming languages for

embedded systems, critical security systems, and Internet of Things

(IoT) applications. For our purposes, simply showing through a

handful of empirical examples that LLMs can produce vulnerable

code is not gratifying and has been demonstrated before for various

programming languages [6, 27].

Two things are required to address the outlined research ques-

tions accurately. First, a large database containing a diverse set of

C programs. Second, we need to gain insight into the variety and

distribution of different vulnerabilities. At the same time, we must

definitively determine whether a vulnerability is present in the code.

If we label the code as vulnerable, it should not be a false positive.

The latter is essential when creating datasets for machine learning

purposes [28]. On that note, deep learning applications also need

large datasets of vulnerable source code for training purposes [8].

Here, we developed a simple yet effective prompting method to

obtain a diverse dataset, prodding the LLM to tackle a mixed bag

of tasks. This resulted in 112, 000 C programs addressing various

programming scenarios. Manually labeling the entire dataset is

unfeasible for such a large corpus of data. Therefore, we use the

Efficient SMT-based Bounded Model Checker (ESBMC) [13], which

can formally falsify the existence of certain vulnerabilities. This

state-of-the-art tool showcased exceptional performance in the SV-

COMP 2023 [2] competition by efficiently solving many verification

tasks within a limited timeframe [13]. Although it can only detect

formally verifiable errors through symbolic execution, it does not

produce false positives.

One limitation of this method is that it can only detect vulnera-

bilities within a predefined search depth bounded by the available

computational capacity due to its resource-intensive nature. Sup-

pose the complexity of the code does not allow the module to check

all the nodes in the control-flow graph (CFG) [1] exhaustively under

a reasonable time. In that case, we can only know the presence or

absence of vulnerabilities within the predefined bound. If we do

not find any vulnerabilities up to that depth, the code might still

contain some. On the upside, which is why we use this method,

we can definitively confirm the presence of the detected vulnera-

bilities up to a bound, as we can provide a “counterexample” as a

formal model. Such databases can be useful for various research

activities, especially in machine learning, which we remark on in

our discussion.

Figure 1 illustrates the methodology employed in this paper. Ini-

tially, we provide instructions to GPT-3.5 to construct a C program

for various tasks. This step will be elaborated thoroughly in Section

5. Next, each output is fed to the GNU C1 compiler to check if the

program is compilable. The compilable source code constitutes the

FormAI dataset. These programs are input for the ESMBC module,

which performs the labeling process. The labeled data is saved in a

.csv file, which includes details such as the name of the vulnerable

file, the specific line of code containing the vulnerability, the func-

tion name, and the type of vulnerability. To summarize, this paper

holds the following original contributions:

• We present FormAI, the first AI-generated large-scale dataset

consisting of 112, 000 independent compilable C programs

that perform various computing tasks. Each of these pro-

grams is labeled based on the vulnerabilities identified by

formal verification, namely, the ESBMC module;

• A comprehensive analysis on the identification and preva-

lence of vulnerabilities affecting the safety and security

properties of C programs generated by GTP-3.5-turbo. The

ESBMC module provides the detection and categorization

of vulnerabilities. We connect the identified vulnerability

classes with corresponding Common Weakness Enumera-

tion (CWE) numbers.

The remaining sections are structured as follows: Section 2 dis-

cusses the inspiration for our work. Section 3 overviews the related

literature. Section 4 presents a short introduction to formal verifi-

cation and the ESBMC module. Section 5 outlines the approach we

employed to create and categorize our dataset, where Section 6 pro-

vides an in-depth evaluation of our findings. Section 7 overviews

limitations related to our work. Finally, Section 8 concludes the

paper with an outlook on possible future research directions.

1https://gcc.gnu.org
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2 MOTIVATION

Throughout software development, it is paramount to guarantee

the created programs’ correctness, safety, and security. Functionally

correct code produces the expected output for each given input.

Safety aims to produce failure tolerant and fail-safe code, resistant

against accidental or unexpected inputs that result in correct but

undesired outputs, which may cause system failure or erroneous

human decisions [10]. Finally, software security embodies robust-

ness against external hazards and deliberate attacks. Our objective

in this paper is to examine AI-generated source code’s safety and

security properties.

The term “generated code” signifies computer code created by

an LLM, capable of using multiple forms of data as input. Textual

prompts are segmented into individual units known as tokens. LLMs

generate their response one token at a time, where a pre-defined

token cap limits the output length. Due to this, as of today, LLMs

cannot be used to spawn large applications on a single prompt. The

main way developers utilize AI tools is by creating small programs

or code snippets and include it into their projects. The Stanford

study mentioned earlier [27] captured this important aspect. Some

assignments given to students were, for example, creating:

• two functions in Python where one encrypts and the other

decrypts a given string using a given symmetric key;

• a function in Python that signs a given message using a given

ECDSA signing key.

We aim to prompt the LLM to produce code for tasks with similar

complexity levels. Furthermore, for the ESBMC module, it is benefi-

cial to have smaller independent programs. These allow the module

to execute the verification process piece by piece, adhering to a set

boundary, thus making the process manageable and more efficient.

If the programs were heavily interdependent, accurately estimating

the time required for the module to finish the verification process

would be hardly feasible. The main area of interest in LLM-based

code generation has been related to correctness. Datasets such as

HumanEval provide programming challenges to assess the perfor-

mance of models. For example, GPT-4 achieves a 67% success rate

in solving tasks compared to 48.1% for GPT-3.5 [24]. Measuring

correctness is not our goal with the FormAI dataset. For example,

if the prompt says “Create a board game using the C programming

language in an artistic style”, correctness would be difficult to ver-

ify, especially for a large dataset. The only requirements are the

syntactical correctness of the program, and it must be compilable.

To restate our research objective, we aim to uncover the propor-

tion and type of frequent coding errors in C source code generated

by GPT-3.5 when prompted to perform simple tasks using natu-

ral language. The following real-life example demonstrates and

underscores the necessity of this research question.

Imagine a situation where a programmer submits the follow-

ing prompt to GPT-3.5: “Provide a small C program that adds two

numbers together”. The code presented in Listing 1 is susceptible

to vulnerabilities. It exhibits an integer overflow both during the

addition of the variables num1 and num2, as well as in the scanf()

functions that retrieve input numbers from the user. In 32-bit com-

puting architectures, integers are commonly stored as 4 bytes (32

bits), which results in a maximum integer value of 2147483647,

C++ program generated by GPT-3.5-turbo

#include <stdio.h>

int main() {

int num1, num2, sum;

printf("First number: ");

scanf("%d", &num1);

printf("Second number: ");

scanf("%d", &num2);

sum = num1 + num2;

printf("The sum is: %d\n", sum);

return 0;

}

Listing 1: Insecure code generated by GPT-3.5-turbo.

equivalent to 2
31 − 1. If one attempts to add 2147483647 + 1 us-

ing this small program, the result will be incorrect due to integer

overflow. The incorrect result will be -2147483648 instead of the

expected 2147483648. The addition exceeds the maximum repre-

sentable value for a signed 32-bit integer 231−1, causing the integer

to wrap around and become negative due to the two’s complement

representation.

Even when GPT-3.5 is requested to write a secure version of

this code –without specifying the vulnerability– it only attempts to

verify against entering non-integer inputs by adding the following

code snippet: if (scanf("%d", &num1) != 1) {...}. Clearly,

the issue of integer overflow persists after sanitizing the input.

When prompted to create a C program that adds two numbers,

it appears that both GPT-3.5 and GPT-4 generate code with this

insecure pattern. Both models implement input sanitization when

seeking a more secure version, although they do not explicitly

address the integer overflow issue. Applying the ESBMC module

leads to the quick discovery of the integer overflow vulnerability

as demonstrated in Listing 2.

ESBMC 7.2.0 module verification output (excerpt)

----------------------------------------------------

Violated property:

file test.c line 8 column 1 function main

arithmetic overflow on add

!overflow("+", num1, num2)

VERIFICATION FAILED

Listing 2: Property violation identified by ESBMC 7.2.0 in the

source code presented in Listing 1.

In [6], the authors demonstrated that GPT-3.5 could efficiently

fix errors if the output of the ESBMC module is provided. Given

only general instruction as “write secure code”, or asked to find vul-

nerabilities, GPT-3.5 struggles to pinpoint the specific vulnerability

accurately, let alone if multiple are present. While advanced models

might perform better for certain vulnerabilities, this provides no

guarantee that all coding mistakes will be found [26]. The main
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challenge is the initial detection without any prior hint or indicator.

Doing this efficiently for a large corpus of C code while avoiding

false positives and false negatives is still challenging for LLMs [26].

Based on this observation, we want to create an extensive and di-

verse dataset of properly labeled LLM-generated C programs. Such

a dataset can reproduce coding errors often created by LLMs and

serve as a valuable resource and starting point in training LLMs for

secure code generation.

3 RELATED WORK

This section overviews automated vulnerability detection and no-

table existing datasets containing vulnerable code samples for vari-

ous training and benchmarking purposes.

3.1 ChatGPT in Software Engineering

In [23] Me et al. assessed the capabilities and limitations of ChatGPT

for software engineering (SE), specifically in understanding code

syntax and semantic structures like abstract syntax trees (AST),

control flow graphs (CFG), and call graphs (CG). ChatGPT exhibits

excellent syntax understanding, indicating its potential for static

code analysis. They highlighted that the model also hallucinates

when interpreting code semantics, creating non-existent facts. This

implies a need for methods to verify ChatGPT’s outputs to enhance

its reliability. This study provides initial insights into why the codes

generated by language models are syntactically correct but poten-

tially vulnerable. Frameworks and techniques for turning prompts

into executable code for Software Engineering are rapidly emerg-

ing, but the main focus is often functional correctness, omitting

important security aspects [36, 37, 39]. In [22], Liu et al. questions

the validity of existing code evaluation datasets, suggesting they

inadequately assess the correctness of generated code.

In [19], the authors generated 21 small programs in five different

languages: C, C++, Python, HTML, and Java. Combining manual

verification with ChatGPT-based vulnerability detection, the study

found that only 5 of the 21 generated programs were initially se-

cure. A recent study by Microsoft [16] found that GPT models

encounter difficulties when attempting to accurately solve arith-

metic operations. This aligns with the findings we presented in the

motivation Section. In a small study involving 50 students [32], the

authors found that students using an AI coding assistant introduced

vulnerabilities at the same rate as their unassisted counterparts.

Still, notably, the experiment was limited by focusing only on a

single programming scenario. Contrary to the previous study [32],

in [25], Pearce et al. conclude that the control group, which uti-

lized GitHub’s Copilot, incorporated more vulnerabilities into their

code. Instead of a single coding scenario like in [32], the authors

expanded the study’s comprehensiveness by choosing a diverse set

of coding tasks pertinent to high-risk cybersecurity vulnerabilities,

such as those featured in MITRE’s “Top 25” Common Weakness

Enumeration (CWE) list. The study highlights an important lesson:

to accurately measure the role of AI tools in code generation or

completion, it is essential to choose coding scenarios mirroring a

diverse set of relevant real-world settings, thereby facilitating the

occurrence of various vulnerabilities. This necessitates the creation

of code bases replicating a wide range of settings, which is one

of the primary goals the FormAI dataset strives to achieve. These

studies indicate that AI tools, and in particular ChatGPT, as of today,

can produce code containing vulnerabilities.

In a recent study, Shumailov et al. highlighted a phenomenon

known as “model collapse” [33]. Their research demonstrated that

integrating content generated by LLMs can lead to persistent flaws

in subsequent models when using the generated data for training.

This hints that training machine learning models only on purely

AI-generated content is insufficient if one aims to prepare these

models for detecting vulnerabilities in human-generated code. This

is essentially due to using a dataset during the training phase, which

is not diverse enough and misrepresents edge cases. We use our dy-

namic zero-shot prompting method to circumvent the highlighted

issue to ensure diversity. Moreover, our research goal is to find and

highlight what coding mistakes AI models can create, which re-

quires a thorough investigation of AI-generated code. On the other

hand, AI models were trained on human-generated content; thus,

the vulnerabilities produced have roots in incorrect code created

by humans. Yet, as discussed in the next section, existing datasets

notoriously include synthetic data (different from AI-generated),

which can be useful for benchmarking vulnerability scanners but

has questionable value for training purposes [8].

3.2 Existing Databases for Vulnerable C Code

We show how the FormAI dataset compares to seven widely studied

datasets containing vulnerable code. The examined datasets are:

Big-Vul [12], Draper [20, 30], SARD [3], Juliet [18], Devign [41],

REVEAL [5], and DiverseVul[8]. Table 1 presents a comprehensive

comparison of the datasets across various metrics. Some of this data

is derived from review papers that evaluate these datasets [8, 17].

Big-Vul, Draper, Devign, REVEAL, and DiverseVul comprise vul-

nerable real-world functions from open-source applications. These

five datasets do not include all dependencies of the samples; there-

fore, they are non-compilable. SARD and Juliet contain synthetic,

compilable programs. In their general composition, the programs

contain a vulnerable function, its equivalent patched function, and a

main function calling these functions. All datasets indicate whether

a code is vulnerable. The mentioned datasets use the following

vulnerability labeling methodologies:

• PATCH: Functions before receiving GitHub commits for de-

tected vulnerabilities are treated as vulnerable.

• MAN: Manual labeling

• STAT: Static analyzers

• ML: Machine learning-based techniques

• BDV: By design vulnerable

In the latter case, no vulnerability verification tool is used. Note

that the size of the datasets can be misleading, as many of the

datasets contain samples from other languages. For example, SARD

contains C, C++, Java, PHP, and C#. Moreover, newly released sets

often incorporate previous datasets or scrape the same GitHub

repositories, making them redundant.

For example, Dreper contains C and C++ code from the SATE IV

Juliet Test Suite, Debian Linux distribution, and public Git reposi-

tories. Since the open-source functions from Debian and GitHub

were not labeled, the authors used a suite of static analysis tools:

Clang, Cppcheck, and Flawfinder [30]. However, the paper does not
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Table 1: Comparison of various datasets based on their labeling classifications.

Dataset
Only
C-code

Source
#Code
Snippets

#Vuln.
Snippets

Multiple
Vulns/Snippet

Compiles/
Granularity

Vuln.
Labelling

#Avg Line
of Code

Labelling
Method

Big-Vul ✘ Real-World 188,636 100% ✘ ✘/Function CVE/CVW 30 PATCH

Draper ✘ Synthetic+Real-World 1,274,366 5.62% ✔ ✘/Function CWE 29 STAT

SARD ✘ Synthetic+Real-World 100,883 100% ✘ ✔/Program CWE 114 BDV+STAT+MAN

Juliet ✘ Synthetic 106,075 100% ✘ ✔/Program CWE 125 BDV

Devign ✘ Real-World 27,544 46.05% ✘ ✘/Function CVE 112 ML

REVEAL ✘ Real-World 22,734 9.85% ✘ ✘/Function CVE 32 PATCH

DiverseVul ✘ Real-World 379,241 7.02% ✘ ✘/Function CWE 44 PATCH

FormAI ✔ AI-generated 112,000 51.24% ✔ ✔/Program CWE 79 ESBMC

Legend:
PATCH: GitHub Commits Patching a Vuln.Man: Manual Verification, Stat: Static Analyser,ML: Machine Learning Based, BDV: By design vulnerable

mention if vulnerabilities were manually verified or if any confir-

mation has been performed to root out false positives. In [8], on top

of creating DiverseVul, Chen et al. merged all datasets that were

based on GitHub commits and removed duplicates, thus making

the most comprehensive collection of GitHub commits containing

vulnerable C and C++ code.

3.3 Vulnerability Scanning and Repair

Software verification is critical to ensure correctness, safety, and

security. The primary techniques are manual verification, static

analysis, and dynamic analysis, where a fourth emerging technique

is machine learning-based detection [9, 11, 23, 35]. Manual ver-

ification techniques such as code review or manual testing rely

on human effort and are not scalable. Static analysis can test the

source code without running it, using techniques such as static

symbolic execution, data flow analysis, control flow analysis, and

style checking. On the other hand, dynamic analysis aims at observ-

ing software behavior while running the code. It involves fuzzing,

automated testing, run-time verification, and profiling. The fourth

technique is a promising field where LLMs can be useful in a wide

range of tasks, such as code review and bug detection, vulnerabil-

ity detection, test case generation, and documentation generation;

however, as of today, each area has certain limitations. Research

related to the application of verification tools in analyzing code

specifically generated by LLMs remains rather limited. An earlier

work from 2022 examined the ability of various LLMs to fix vulner-

abilities, where the models showed promising results, especially

when combined. Still, the authors noted that such tools are not

ready to be used in a program repair framework, where further

research is necessary to incorporate bug localization. They further

highlighted challenges in the tool’s ability to generate functionally

correct code [26].

4 FORMAL VERIFICATION

This section presents the crucial foundational knowledge required

to understand the technology employed in this research, specifically

Bounded Model Checking (BMC). An intuitive question arises: is

there a possibility that BMC could introduce false positives or false

negatives to our dataset? The answer is no, and gaining insight into

the underlying reasons is vital for our work. This aspect will be

briefly outlined in this section.

Bounded Model Checking (BMC) is a technique used in formal

verification to check the correctness of a system within a finite

number of steps. It involves modeling the system as a finite state

transition system and systematically exploring its state space up

to a specified bound or depth. The latest BMC modules can handle

various programming languages [14, 15, 31, 38, 40]. This technique

first takes the program code, from which a control-flow graph

(CFG) is created [1]. In CFG, each node signifies a deterministic

or non-deterministic assignment or a conditional statement. Each

edge represents a potential shift in the program’s control position.

Essentially, every node is a block representing a “set of instructions

with a singular entry and exit point”. Edges indicate possible paths to

other blocks to which the program’s control location can transition.

The CFG is first transformed into Static Single Assignment (SSA)

and converted into a State Transition System (STS). This can be

interpreted by a Satisfiability Modulo Theories (SMT) solver. This

solver can determine if a set of variable assignments makes a given

formula true, i.e., this formula is designed to be satisfiable if and

only if there’s a counterexample to the properties within a specified

bound : . If there is no error state and the formula is unsatisfiable

up to the bound : , there is no software vulnerability within that

bound. If the solver reaches termination within a bound ≤ : , we

can definitively prove the absence of software errors.

To be more precise, let a given program P under verification be

a finite state transition system, denoted by a triple ST = ((, ', � ),

where ( represents the set of states, ' ⊆ ( × ( represents the set

of transitions and (B=, · · · , B<) ∈ � ⊆ ( represents the set of initial

states. In a state transition system, a state denoted as B ∈ ( consists

of the program counter value, referred to as pc, and the values of

all program variables. The initial state denoted as B1, assigns the

initial program location within the Control Flow Graph (CFG) to pc.

Each transition ) = (B8 , B8+1) ∈ ' between two states, B8 and B8+1, is

identified with a logical formula ) (B8 , B8+1). This formula captures

the constraints governing the values of the program counter and

program variables relevant to the transition.

Within BMC, properties under verification are defined as follows:

q (B) represents a logical formula that encodes states satisfying a
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safety/security property. In contrast,k (B) represents a logical for-

mula that encodes states satisfying the completeness threshold,

indicating states corresponding to program termination.k (B), con-

tains unwindings so that it does not exceed the maximum number

of loop iterations in the program. It is worth noting that, in our

notation, termination and error are mutually exclusive: q (B) ∧k (B)

is by construction unsatisfiable. If ) (B8 , B8+1) ∨ q (B) is unsatisfiable,

state B is considered a deadlock state. The bounded model checking

problem, denoted by �"�Φ is formulated by constructing a logical

formula, and the satisfiability of this formula determines whether

P has a counterexample of length : or less. Specifically, the formula

is satisfiable if and only if such a counterexample exists within the

given length constraint, i.e.:

�"�Φ (:) = � (B1) ∧

:−1∧

8=1

) (B8 , B8+1) ∧

:∨

8=1

¬q (B8 ). (1)

In this context, � denotes the set of initial states of ST , and

) (B8 , B8+1) represents the transition relation of ST , between time

steps 8 and 8 + 1. Hence, the logical formula � (B1) ∧
∧:−1

8=1
) (B8 , B8+1)

represents the executions of ST with a length of : and �"�Φ (:)

can be satisfied if and only if for some 8 ≤ : there exists a reachable

state at time step 8 in which q is violated. If �"�Φ (:) is satisfiable,

it implies that q is violated, and an SMT solver provides a satisfying

assignment from which we can extract the values of the program

variables to construct a counterexample.

A counterexample, or trace, for a violated property q , is defined

as a finite sequence of states B1, . . . , B: , where B1, . . . , B: ∈ ( and

) (B8 , B8+1) holds for 0 ≤ 8 < : . If equation (1) is unsatisfiable, we

can conclude that no error state is reachable within : steps or less.

This valuable information leads us to conclude that no software

vulnerability exists in the program within the specified bound of

: . With this methodology, we aim to classify every generated C

program as either vulnerable or not, within a given bound : . By

searching for counterexamples within this bound, we can establish,

based onmathematical proofs, whether a counterexample exists and

whether our program P contains a security vulnerability. This ap-

proach allows us to identify security issues such as buffer overflows

or access-bound violations. We note that if a program is catego-

rized as vulnerable, this determination relies on counterexamples,

effectively eliminating the chance of false positives. Conversely,

in situations where no counterexample exists, we can confidently

assert that the program is free from vulnerabilities up to the bound

: , ensuring the absence of false negatives.

4.1 The ESBMC Module

This work uses the Efficient SMT-based Context-Bounded Model

Checker (ESBMC) [13] as our chosen BMC module. ESBMC is a

mature, permissively licensed open-source context-bounded model

checker for verifying single- and multithreaded C/C++, Kotlin, and

Solidity programs. It can automatically verify both predefined safety

properties and user-defined program assertions. The safety proper-

ties include out-of-bounds array access, illegal pointer dereferences

(e.g., dereferencing null, performing an out-of-bounds dereference,

double-free of malloced memory, misaligned memory access), in-

teger overflows, undefined behavior on shift operations, floating-

point for NaN, divide by zero, and memory leaks. In addition, ES-

BMC implements state-of-the-art incremental BMC and k-induction

proof-rule algorithms based on SMT and Constraint Programming

(CP) solvers.

5 THE FORMAI DATASET

The FormAI dataset consists of twomain components: AI-generated

C programs and their vulnerability labeling. In the data generation

phase, we create 112, 000 samples. In the classification phase, we

utilize ESBMC to identify vulnerabilities in the samples. The exact

methodology is thoroughly explained in this section to ensure the

reproducibility of the dataset creation process.

5.1 Code Generation

To generate the dataset of small C programs, we utilized the GPT-

3.5-turbo model. While constructing the dataset, we opted for the

OpenAI API over the web interface to automate the sample gen-

eration process. We employ GPT-3.5 to generate C code instead

of GPT-4 as the latter can be up to 60 times more expensive than

the former model. During the creation process, special attention

was given to ensure the diversity of the FormAI dataset, which

contains 112, 000 compilable C samples. Requesting the model to

generate a C program frequently yields similar outcomes, such

as adding two numbers or performing basic string manipulation,

which does not align with our objectives. Our focus lies in system-

atically generating a comprehensive and varied collection of small

programs that emulates the code creation process undertaken by

developers. Therefore, we need a methodology to circumvent the

generation of redundant and repetitive C programs. To address

this issue, we have developed a prompting method consisting of

two distinct parts: dynamic and static parts. The static component

remains consistent and unchanged, while the dynamic portion of

the prompt undergoes continuous variation. An example of how a

single prompt looks is shown under Listing 3.

Dynamic code generation prompt

Write a unique C [Type] example program in a [Style] style.

Instructions: a. Minimum 50 lines. b. Be creative! c. Do not say

I am sorry. Always come up with some code. d. Make sure the

program compiles and runs without any errors. e. Please generate

a code snippet that starts with “‘c and ends with “‘.

Listing 3: Dynamic code generation prompt.

The dynamic part of the prompt, highlighted as [Type] and

[Style], represent distinct categories within the prompt, each en-

compassing different elements. Each API call selects a type from a

set of 200 elements for the Type category. This category contains

topics such as Wi-Fi Signal Strength Analyzer, QR code reader,

Image Steganography, Pixel Art Generator, Scientific Calculator

Implementation, etc. In a similar fashion, during each query, a cod-

ing style is chosen from a set of 100 elements within the Style
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category. This helps minimize repetition, as specific coding styles

such as “excited”, “relaxed”, or “mathematical” are combined with

each Type category. By employing this method, we can generate

200×100 = 20, 000 distinct combinations. As highlighted by lessons

from [26, 32] we need a code base that emulates an array of settings,

and tasks should be concise enough to ensure an LLM can produce

outputs within its token constraints. The tasks in the Type category

were selected with this goal in mind. More complex prompts like

“Create a CRUD application using React for the front-end, Node.js

with Express for the back-end, and MongoDB for the database”,

would need to be segmented into smaller tasks. A prompt where the

type is, for example “File handling" with a "thriller” Style, will be rep-

resented differently in the vector space when tokenized, compared

to when the style is “happy”. Although the Type-Style combination

might not seem compatible in all cases, we observed, that asking the

LLM to program in different styles, further increased the variability

and the difference between responses for the same task in most

cases. A high-temperature parameter that regulates the degree of

randomness in the model’s response, can further enhance diversity

among the programs created. The concept of prompt creation can

be seen in Figure 2.

[Type]

Table game

Encryption Password
management

Sorting

Graph

representation

String

manipulation

Memory
management Systemadministration

File handling

[Style]

creative

happyfunny
scientific

realistic
authentic

multi-
threaded

Prompt

Write a unique C sorting example program in a multi-threaded 
style. Instructions: a. Minimum 50 lines. b. Be creative! c. Do not
say I am sorry. Always come up with some code. d. Make sure the
program compiles and runs without any errors. Please generate a
code snippet that starts with ```c and ends with ```. 

Figure 2: Dynamic prompt creation.

Decreasing the number of unsuccessful queries is an important

factor from an efficiency perspective, as the price for gpt-3.5-turbo

is 0.002 USD\1K token at the time of writing. Hence, refining the

prompt to reduce the number of unsuccessful queries holds signifi-

cant importance. To minimize the error within the generated code,

we have established five instructions in each specific prompt:

a. Minimum 50 lines: This encourages the LLM to avoid the

generation of overly simplistic code with only a few lines

(which occasionally still happens);

b. Be creative!:The purpose of this instruction is to generate

a more diverse dataset;

c. Do not say I am sorry: The objective of this instruction

is to circumvent objections and responses such as “As an AI

model, I cannot generate code”, and similar statements.

d. Make sure the program compiles: This instruction en-

courages the model to include header files and create a com-

plete and compilable program.

e. Generate a code snippet that starts with “‘c: En-

able easy extraction of the C code from the response.

Once a C code is generated, the GNU C compiler is employed

to verify whether the corresponding code is compilable. During

the experiment, over 90% of the generated code was compilable.

The primary reason for having non-compilable code was due to

the absence of necessary headers, such as math.h, ctype.h, or

stdlib.h. During the code generation process, we ensure that

the FormAI dataset exclusively consists of compilable code, while

excluding any other code that does not meet this criterion. Code

generation does not require high computational power, and for

this task, we utilized a standard MacBook Pro 2017 with 16 GB

of RAM. The generation of 112, 000 code samples was completed

within 24 hours. As of the time of writing, the total cost for the

creation process was approximately 200 USD.

5.2 Vulnerability Classification

Following the code generation, we executed ESBMC on each indi-

vidual file to classify them. Let us denote the set of all the generated

C samples by Σ, such that Σ = {21, 22, . . . , 2112,000}, where each 28
represents an individual sample.

We can group all the samples into four distinct categories:

• VS ⊆ Σ: the set of samples for which verification was

successful (no vulnerabilities have been detected within the

bound :);

• VF ⊆ Σ: the set of samples for which the verification status

failed (vulnerabilities detected by ESBMC based on coun-

terexamples);

• TO ⊆ Σ: the set of samples forwhich the verification process

was not completed within the provided time frame (as a

result, the status of these files remains uncertain);

• ER ⊆ Σ: the set of samples for which the verification status

resulted in an error.

These categories are mutually exclusive, meaning a single sample

cannot belong to more than one category. For classification, there

are two important switches in the ESBMC module. The unwind

parameter controls the upper limit of loop iterations within the

program, guaranteeing it remains under the program’s predefined

threshold. Another crucial parameter is timeout, which terminates

the verification process after a set time interval. This is essential to

prevent overly long classification times for exceptionally complex

programs. Increasing the timeout parameter might improve results,

but it can also reduce speed performance. Hence, it’s recommended

to keep both the timeout and unwind parameters low to achieve a

balance between efficiency and precision.

The category denoted by “TIMEOUT” (TO) includes all instances

where the verification process could not be completed within the

specified timeframe. It is worth noting that the TO category is

significantly influenced by the runtime duration and the loop un-

winding parameter used during ESBMC execution. For instance, if

the loop unwinding parameter is set to a high number like 30, and

the timeout is set to 1 second, most samples are expected to fall into

this category. This occurs because only a subset of loops can be

unwound up to the specified bound of 30 within the given 1-second

timeframe. The category labeled as “ERROR” (ER) encompasses all

instances where the verification process faced errors or crashes in

the core ESBMC module, GOTO converter, SMT solver, or the clang

compiler module. These samples are omitted from the classification
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because they cannot be handled using the latest ESBMC module.

The category of “VERIFICATION SUCCESSFUL” (VS) indicates that

using formal verification up to a certain search depth (bound), no

counterexample was found in the program. However, it is impor-

tant to note that increasing the verification time or the unwinding

parameter can potentially lead to a change in the classification of a

program as vulnerable.

“Verification failed” (VF ) represents the main focus of our inter-

est. If a sample is classified as failed by ESBMC, it can be asserted

that there is a violation of properties in the program. Addition-

ally, ESBMC provides a counterexample to demonstrate the specific

property violation. We divided VF into 9 subcategories, where

the first 8 are the most frequently occurring vulnerabilities, while

“Other” encompasses the remaining vulnerabilities detected by ES-

BMC. Note, that in the CSV file that contains the vulnerability

classification, the exact type of vulnerability is always indicated if

applicable.

• ARO ⊆ VF : Arithmetic overflow

• BOF ⊆ VF : Buffer overflow on scanf()/fscanf()

• ABV ⊆ VF : Array bounds violated

• DFN ⊆ VF : Dereference failure : NULL pointer

• DFF ⊆ VF : Dereference failure : forgotten memory

• DFI ⊆ VF : Dereference failure : invalid pointer

• DFA ⊆ VF : Dereference failure : array bounds violated

• DBZ ⊆ VF : Division by zero

• OTV ⊆ VF : Other vulnerabilities

5.3 Experimental Setup for Classification

First, we must address why we chose ESBMC over other tools. For

vulnerability classification within a 10-30 second time-limit per pro-

gram, this verifier solves the highest amount of verification tasks

according to SV-COMP 20232. We ran the classification experiment

using an AMD Ryzen Threadripper PRO 3995WX processor with

32 CPU cores. Beyond the unwind and timeout parameters, there

are other crucial switches, such as the k-induction proof-rule

algorithm, which is a verification technique for establishing the

correctness of programs. It utilizes iterative deepening, consistently

unwinding the program’s execution for a set number of steps to

produce verification results. Due to its incremental nature, it per-

sistently finds the smallest property violations. The question that

naturally arises is: which parameters are optimal to use, yielding

the best return on computational investment?

We conducted experiments on 1,000 randomly selected sam-

ples from the FormAI and performed various tests guiding us to

determine the most optimal combination of parameters for this

dataset. Table 2 presents the classification results of the 1,000 sam-

ples, showcasing the effects of different unwind (u) and time (t),

coupledwith the use of k-induction. Examining the detection results

for parameter selection of (D, C) = (1, 10), (1, 30) or (1, 100) without

k-induction shows, that simply increasing the time threshold yields

diminishing returns for the same unwind parameter.

Increasing the timeout or unwind parameter may lead to identi-

fying more vulnerabilities, but at the cost of a significant increase in

processing time. The same can be observed for enabling k-induction:

2https://sv-comp.sosy-lab.org/2023/results/results-verified/

quantilePlot-Overall.svg

incremental improvement, increased run-time. Considering the bal-

ance between the total run-time and the number of identified vul-

nerabilities, we chose the unwind parameters to be (1, 30), without

using the k-induction proof algorithm, for classifying the FormAI

dataset. Particularly we have used the following command for each

sample:

esbmc file.c --overflow --unwind 1 --memory-leak-check

--timeout 30 --multi-property --no-unwinding-assertions

Using these parameters on our 1000 sample set, 416 files were

deemed non-vulnerable, while 519 files were determined to be vul-

nerable. Among these 519 files, a total of 2116 unique vulnerabilities

were detected.

Table 2: Classification results for different parameters

(u,t) VULN k-ind
Running
time (m:s)

VS VF TO ER

(2,1000) 2438 ✗ 758:09 371 547 34 48
(3,1000) 2373 ✗ 1388:39 366 527 57 50
(2,100) 2339 ✗ 175:38 367 529 61 43
(2,100) 2258 ✓ 400:54 340 603 20 37
(1,100) 2201 ✗ 56:29 416 531 17 36
(1,30) 2158 ✓ 146:13 349 581 34 36
(3,100) 2120 ✗ 284:22 354 483 120 43
(1,30) 2116 ✗ 30:57 416 519 30 35
(1,10) 2069 ✓ 61:58 360 553 52 35
(1,10) 2038 ✗ 19:32 413 503 51 33
(3,30) 1962 ✗ 125:19 342 444 172 42
(1,1) 1557 ✓ 10:59 355 406 208 31
(1,1) 1535 ✗ 6:22 395 374 201 30

✓: Enabled, ✗: Disabled, (D, C ) = unwind and timeout parameters

In the worst-case scenario, every program from FormAI would

utilize its allocated time resulting in 30 seconds being dedicated

to the verification of each sample. Using all 32 CPU threads, the

entire verification process on our experimental setup would take

approximately 1.2 days, calculated as 112, 000×30/3600/24/32. The

next section will cover the complete classification and provide a

detailed distribution of the vulnerabilities in the FormAI dataset.

6 EVALUATION OF THE FORMAI DATASET

As per our methodology, we verified the compilability of every

code piece by utilizing the GNU C compiler. Out of the complete

dataset, 109, 757 sample files (≈ 98%) can be compiled without

any dependencies solely using the simple command gcc -lm -o

<filename>. The remaining 2% of samples pose greater complex-

ity, including multithreaded applications, database management

applications, and cryptographic applications such as AES encryp-

tion. As a result, these samples utilize ten distinct external libraries,

including OpenSSL, SQLite3, POSIX thread, and others. Upon suc-

cessfully installing the following dependencies, all the files can be

compiled without any issues: libsqlite3-dev, libssl-dev, libportaudio2,

portaudio19-dev, libpq-dev, libpcap-dev, libqrencode-dev, libsdl2-dev,

freeglut3-dev, libcurl4-openssl-dev, libmysqlclient-dev.

ESBMC is using the clang3 compiler instead of gcc for the ver-

ification process. Among the 112, 000 samples analyzed, a subset

of 786 samples could not be successfully compiled using clang;

3https://clang.llvm.org
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therefore, these particular samples were excluded from the classi-

fication. Additionally, in a few cases, the ESBMC module crashed

when attempting to handle code samples (category ER), leading

to the exclusion of those samples from the “.csv” file containing

the vulnerability labels. Despite this, we intentionally chose not

to eliminate these samples from the dataset, as they hold value for

further research.

We have examined over 8,848,765 lines of C code, with an av-

erage of 79 lines per sample. Programs with 47 lines are the most

common, with a total of 1405 samples. Only one program surpasses

a line count of 600. We employ a token-based keyword-counting

mechanism to extract the cardinality of the 32C keywords as shown

in Figure 3. Tokens are the smallest elements of a programming

language syntax and serve as building blocks for constructing state-

ments, expressions, and other code constructs. The frequency is

normalized to show the occurrence of keywords per million lines of

code for each dataset. In this context, the frequency of if-statements,

loops, and variables mimics the distribution in real-world projects.

We attribute the similarity in patterns exhibited by FormAI to the

fact that the training data of GPT models included actual projects

from GitHub, which were written by human developers. For the
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Figure 3: C Keyword frequency in FormAI, SARD, and BigVul

classification, in the “.csv” files, we denoted the category VS: as

“NOT VULNERABLE up to bound k”. This aims to circumvent poten-

tial misinterpretations. We can only say that a program is devoid of

vulnerabilities detectable by ESBMC if we configure the –unwind pa-

rameter to infinite, i.e. (D = ∞) and subsequently obtain successful

verification. In total, from the 112, 000 C programs, we performed

the verification process on 106138 files. 5861 files were not clas-

sified due to crashes encountered by the ESBMC module. From

the 106138 files, 57389 unique programs were found vulnerable.

VS together with TO and ER constitutes 48749 C programs. The

overall number of vulnerabilities detected by ESBMC is 197800.

6.1 CWE Classification

Next, we connected the vulnerabilities to Common Weakness Enu-

meration (CWE) identifiers by manually associating the relevant

CWEs with each vulnerability group. The multifaceted nature of

software flaws often results in a single vulnerability being asso-

ciated with multiple CWE identifiers. Table 3 shows the catego-

rization of the most prevalent vulnerabilities and the associated

41 unique CWEs we identified across these categories. The “Other

vulnerabilities” (OTV) category includes Assertion failure, Same

object violation, Operand of free must have zero pointer offset, func-

tion call: not enough arguments, and several types of dereference

failure issues.

Table 3: The vulnerabilities identified by ESBMC, linked to

Common Weakness Enumeration identifiers.

#Vulns Vuln. Associated CWE-numbers

88,049 BOF CWE-20, CWE-120, CWE-121, CWE-125, CWE-129, CWE-131,
CWE-628, CWE-676, CWE-680, CWE-754, CWE-787

31,829 DFN CWE-391, CWE-476, CWE-690

24,702 DFA CWE-119, CWE-125, CWE-129, CWE-131, CWE-755, CWE-787

23,312 ARO CWE-190, CWE-191, CWE-754, CWE-680, CWE-681, CWE-682

11,088 ABV CWE-119, CWE-125, CWE-129, CWE-131, CWE-193, CWE-787,
CWE-788

9823 DFI CWE-416, CWE-476, CWE-690, CWE-822, CWE-824, CWE-825

5810 DFF CWE-401, CWE-404, CWE-459

1620 OTV CWE-119, CWE-125, CWE-158, CWE-362, CWE-389, CWE-401,
CWE-415, CWE-459, CWE-416, CWE-469, CWE-590, CWE-617,
CWE-664, CWE-662, CWE-685, CWE-704, CWE-761, CWE-787,
CWE-823, CWE-825, CWE-843

1567 DBZ CWE-369

Our research revealed 8 CWE identifiers that were included in

MITRE’s list of the TOP 25 CWEs for 2022. Listed in order, they are:

1. CWE-787, 4. CWE-20, 5. CWE-125, 7. CWE-416, 11. CWE-476,

13. CWE-190, 19. CWE-119, 22. CWE-362. The remaining CWEs

in the top 25 list relate to web vulnerabilities like SQL injection,

XSS, and authentication, which are not relevant to our C language

samples. It is vital to emphasize that, in our situation, classifying

the C programs based on CWE identifiers is not practical, contrary

to what is done for other databases like Juliet. As shown in Table

1, most datasets contain only one vulnerability per sample. In the

datasets ReVeal, BigVul, and Diversevul, a function is vulnerable if

the vulnerability-fixing commit changes it, while in Juliet, a single

vulnerability is introduced for each program. In FormAI, a single

file often contains multiple vulnerabilities. Moreover, a single vul-

nerability can be associated with multiple CWEs. In most cases,

multiple CWEs are required as prerequisites for a vulnerability to

manifest. For example, in the case of “CWE-120: Buffer Copy without
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Checking Size of Input (Classic Buffer Overflow)”, other vulnerabili-

ties can be facilitating the main issue. For example: “CWE-676: Use

of Potentially Dangerous Function”, which might be the use of scanf,

combined with “CWE-20: Improper Input Validation” can result in

“CWE-787: Out-of-bounds Write”.

Labeling the vulnerable function name, line number, and vul-

nerability type identified by the ESBMC module provides granular

information that can benefitmachine learning algorithms. This level

of detail can allow models to discern patterns and correlations with

higher precision, thereby improving vulnerability prediction and

detection capabilities. As our programs contain several vulnerabili-

ties and, in some cases, multiple instances of the same vulnerability,

classifying each into a single CWE group, as done for Juliet, would

be less optimal for training purposes. We also note that while other

datasets like DiversVul and Juliet focus more on CWEs related

to software security and vulnerabilities that could potentially be

exploited, ESBMC also detects issues related to software safety.

6.2 Future Research Directions

The dataset containing all 112, 000 C program files, along with the

two .csv files are published on GitHub4 and IEEE Dataport [34]. The

absence of false negatives and false positives makes the dataset suit-

able to benchmark the effectiveness of various static and dynamic

analysis tools. The diverse structure of the C programs generated

in the FormAI dataset made it excellent for an unexpected use case:

fuzzing different applications. While running ESBMC, we discov-

ered and reported seven bugs in the module. After validating these

issues, ESBMC developers managed to resolve them. These included

errors in the goto-cc conversion and the creation of invalid SMT

solver equations. Additionally, we identified bugs in the CBMC [21]

and the Clang compiler, which failed to compile several programs

while GNU C had no issue. We promptly communicated these find-

ings to the respective developers. The FormAI dataset aims to be a

useful resource to train machine learning algorithms to possess the

capabilities of the ESBMC module.

7 LIMITATIONS AND THREATS TO VALIDITY

While ESBMC is a robust tool for detecting many types of errors

in C, as of today, it is not suited to detect design flaws, semantic

errors, or performance issues. As such, more vulnerabilities might

be present in the code besides the detected ones. It is crucial to

highlight again that our method does not produce false negatives

(asVS only holds up to bound :) or false positives (validated by

counterexamples). A false negative result would mean that on a

certain program, we claim that it is completely void of vulnerabili-

ties, or there are no more vulnerabilities other than those detected.

With more relaxed bounds or the k-induction switch enabled, as

shown in Table 2, ESBMC might find slightly more vulnerabilities

in a given program. The available computational capacity decides

whether the verifier can finish the process under a given timeout.

To find all errors detectable by ESBMC, unwind must be set to

infinite, and ESMBC must complete the verification process. As

we provided the original C programs and the instructions on how

to run ESBMC, researchers who invest additional computational

resources have the potential to enhance our findings.

4https://github.com/FormAI-Dataset

In addition to the reported findings, we found several other

instances of “CWE-242: Use of Inherently Dangerous Function”. Al-

though ESBMC correctly reports several related functions as vul-

nerable, the reported line number of the vulnerability is often mis-

leading. For instance, when the gets() function is invoked –which

is declared in io.c– ESBMC marks a line number in io.c as the

place of the vulnerability. This would be misleading for machine

learning applications aiming to detect or fix vulnerabilities in the

source code; thus, we exclude such reports from the two CSV files.

We aim to update the CSV files as these issues are fixed in ESBMC.

8 CONCLUSIONS

This paper reveals that GPT-3.5-turbo introduces vulnerabilities

when generating C code. The diverse set of programming scenar-

ios exposed risky coding strategies and practices used by GPT-3.5

when handling certain tasks. We employed a zero-shot prompting

method to encompass numerous programming situations for C

code generation using GPT-3.5-turbo.These programs constitute

the FormAI dataset, containing 112, 000 independent compilable

C programs. We used the ESBMC bounded model checker to pro-

duce formally verifiable labels for bugs and vulnerabilities. In our

experiment, we allocated a verification time of 30 seconds to each

program, with the unwinding parameter set to 1. In total 197800

vulnerabilities were detected by ESBMC. Some programs contain

multiple different errors. The labeling is provided in a .csv file,

which includes: Filename, Vulnerability type, Function name, Line

number, and Error type. In addition, we provide a separate .csv file

containing the C code as a separate column. Finally, we connected

the identified vulnerabilities to CWE identifiers. Based on these

findings, we answer our research questions:

• RQ1: How likely is purely LLM-generated code to contain vulnera-

bilities on the first output when using simple zero-shot text-based

prompts? Answer: At least 51.24% of the samples from the 112,000

C programs contain vulnerabilities. This indicates that GPT-3.5 often

produces vulnerable code. Therefore, one should exercise caution

when considering its output for real-world projects.

• RQ2: What are the most typical vulnerabilities LLMs introduce

when generating code? Answer: For GPT-3.5: Arithmetic Overflow,

Array Bounds Violation, Buffer Overflow, and various Dereference

Failure issues were among the most common vulnerabilities. These

vulnerabilities are pertinent to MITRE’s Top 25 list of CWEs.

In addition, the FormAI dataset proved to be a valuable instru-

ment for fuzzing different applications, as we have demonstrated

by identifying multiple bugs in the ESBMC and CBMC modules

and the Clang compiler.
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