
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

SMT-Based Bounded Model Checking

of Multi-threaded Software in

Embedded Systems

by

Lucas Carvalho Cordeiro

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

April 2011

http://www.soton.ac.uk
mailto:lcc08r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Lucas Carvalho Cordeiro

Our reliance on the correct functioning of embedded systems is growing rapidly. Such

systems are used in a wide range of applications such as airbag control systems, mo-

bile phones, and high-end television sets. These systems are becoming more and more

complex and require multi-core processors with scalable shared memory to meet the

increasing computational power demands. The reliability of the embedded (distributed)

software is thus a key issue in the system development. In this thesis we describe and

evaluate an approach to reason accurately and effectively about large embedded software

using bounded model checking (BMC) based on Satisfiability Modulo Theories (SMT)

techniques. We present three major novel contributions. First, we extend the encodings

from previous SMT-based bounded model checkers to provide more accurate support for

variables of finite bit width, bit-vector operations, arrays, structures, unions and point-

ers and thus making our approach suitable to reason about embedded software. We then

provide new encodings into existing SMT theories and we show that our translations

from ANSI-C programs to SMT formulas are as precise as bit-accurate procedures based

on Boolean Satisfiability. Second, we develop three related approaches for model check-

ing multi-threaded software in embedded systems. In the lazy approach, we generate

all possible interleavings and call the SMT solver on each of them individually, until

we either find a bug, or have systematically explored all interleavings. In the schedule

recording approach, we encode all possible interleavings into one single formula and then

exploit the high speed of the SMT solvers. In the underapproximation and widening ap-

proach, we reduce the state space by abstracting the number of interleavings from the

proofs of unsatisfiability generated by the SMT solvers. Finally, we describe and evalu-

ate an approach to integrate our SMT-based BMC into the software engineering process

by making the verification process incremental. In particular, our approach looks at

the modifications suffered by the software system since its last verification, and submits

them to a partly static and dynamic verification process, which is thus guided by a set of

test cases for coverage. Experiments show that our SMT-based BMC can analyze larger

problems and reduce the verification time compared to state-of-the-art techniques that

use BMC, iterative context-bounding or counterexample-guided abstraction refinement.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:lcc08r@ecs.soton.ac.uk

Contents

Abbreviations xiii

Declaration Of Authorship xv

List of Publications xvii

Acknowledgements xix

1 Introduction 1

1.1 Problem Description . 4

1.2 Objectives . 7

1.3 Outline of the Solution . 8

1.4 Contributions . 11

1.5 Organization of the Thesis . 12

2 SAT-based and SMT-based Verification Techniques 15

2.1 Logical Foundations . 15

2.1.1 Propositional Logic . 16

2.1.2 Decision Procedures for Satisfiability 18

2.1.3 Satisfiability Modulo Theories . 21

2.1.4 Linear-time Temporal logic . 25

2.2 Bounded Model Checking of Software . 29

2.2.1 Formulation . 29

2.2.2 Verification Conditions . 30

2.2.3 Completeness . 32

2.2.3.1 Craig Interpolation . 32

2.2.3.2 K-Induction . 34

2.2.4 BMC Architecture . 35

2.2.5 Comparison to Other Verification Approaches 36

2.3 Verification of Multi-threaded Systems . 39

2.3.1 Concurrency and Interleaving . 40

2.3.2 Partial Order Reduction Technique 43

2.4 Summary . 46

3 SMT-based Bounded Model Checking for Embedded ANSI-C Soft-
ware 49

3.1 Introduction . 49

3.2 SMT-based BMC Formulation . 51

v

vi CONTENTS

3.3 Illustrative Example . 53

3.4 Encodings and Properties . 56

3.4.1 Scalar Data Types . 56

3.4.2 Fixed-Point Arithmetic . 58

3.4.3 Arithmetic Overflow and Underflow 59

3.4.4 Arrays . 60

3.4.5 Structures and Unions . 61

3.4.6 Pointers . 63

3.4.7 Dynamic Memory Allocation . 66

3.5 Experimental Evaluation . 68

3.5.1 Experimental Setup . 68

3.5.2 Comparison of SMT solvers . 69

3.5.3 Error-Detection Capability . 72

3.5.4 Comparison to SMT-CBMC . 73

3.5.5 Comparison to CBMC . 74

3.6 Industrial Case Study . 75

3.7 Related Work . 78

3.8 Conclusions . 81

4 Verifying Multi-threaded Software using SMT-based Context-Bounded
Model Checking 83

4.1 Introduction . 83

4.2 Preliminaries . 85

4.2.1 Multi-threaded Goto Programs . 85

4.2.2 Formal Model of Multi-threaded Software 86

4.2.3 Context-Bounded Encoding . 88

4.3 Context-Bounded Model Checking of Multi-threaded Software 89

4.3.1 Exploring the Reachability Tree 89

4.3.2 Lazy Approach . 95

4.3.3 Schedule Recording Approach . 96

4.3.4 UW Approach . 98

4.3.5 Pruning the RT with Partial Order Reduction 99

4.4 Verifying Race Conditions and Atomicity Violations 103

4.4.1 Detecting Data Races . 103

4.4.2 Checking Atomicity . 104

4.5 Modelling Synchronization Primitives in Pthread 105

4.5.1 Modelling Mutex Locking Operations 106

4.5.2 Modelling Conditional Waiting . 108

4.6 Experimental Evaluation . 112

4.6.1 Comparison to MPOR and PPOR 112

4.6.2 Comparison to CHESS . 114

4.6.3 Comparison to SATABS . 115

4.7 Related Work . 118

4.8 Conclusions . 119

5 Implementation of ESBMC 121

5.1 Introduction . 121

CONTENTS vii

5.2 Tool Architecture . 122

5.3 Code Simplification and Reduction . 123

5.4 Exploiting Datatype Representations . 127

5.5 Evaluation of Performance Improvements 128

5.6 Conclusions . 130

6 Integrating ESBMC into Software Engineering Practice 131

6.1 Introduction . 131

6.2 Continuous Verification . 132

6.3 Generalizing Test Cases . 135

6.4 Specifying Temporal Properties with Büchi Automata 137

6.5 Experimental Evaluation . 140

6.5.1 Set-top Box Case Study . 141

6.5.2 Medical Device Case Study . 145

6.6 Related Work . 148

6.7 Conclusions . 149

7 Conclusions 151

7.1 Main Contributions . 153

7.2 Future Work Directions . 154

7.3 Concluding Remarks . 155

A ESBMC plug-in 157

A.1 Front-end Options . 157

A.2 BMC Options . 159

A.3 SMT Solver Configuration . 160

A.4 Property Check . 161

A.5 Concurrency Check . 162

A.6 Counterexample, Property Violation, and Claim Views 163

B Static Analysis Benchmarks 165

B.1 EUREKA Suite . 165

B.2 POWERSTONE Suite . 165

B.3 NECLA Suite . 166

B.4 SNU-RT Suite . 167

B.5 VERISEC Suite . 169

B.6 WCET Suite . 176

C Functions of the Pthread Library 177

D Counterexample 179

References 185

List of Figures

1.1 A Synthetic Micro-benchmark. 6

1.2 Proposed SMT-based BMC procedure for software. 9

2.1 Syntax of the Background Theories . 23

2.2 LTL semantics for the operators X , G , F , U , and R (when ψ first becomes
true and when ψ never becomes true) over π [94]. 26

2.3 Example of a Kripke structure (with deadlock) for states s0, s1, and s2
(where s2 has a transition back to itself). 27

2.4 (a) A simple C program with a for loop. (b) The corresponding unwound
C program of (a) converted into SSA form. 31

2.5 Computing image by interpolation [125]. 33

2.6 The CBMC Architecture. 35

2.7 (a) A C program with violated property. (b) The C program of (a) in
SSA form. (c) Counterexample of C program in (a) 37

2.8 The CFG representation of threads TA and TB and we assume that ini-
tially the global variables a and b are set to zero, i.e., a = 0 and b = 0. . . 41

2.9 The CFG that represents all possible interleaving sequences of threads TA

and TB. 43

2.10 The transition system that represents the parallel execution of threads
TA and TB. 44

2.11 Model context switches inside individual visible statements 44

3.1 ANSI-C program with two violated properties. 53

3.2 The program of Figure 3.1 in SSA form. 54

3.3 ANSI-C program with typecast from char to int. 58

3.4 Array out of bounds example. 61

3.5 ANSI-C program with union. 62

3.6 C program with pointer to an array. 64

3.7 C program with pointer to a struct. 65

3.8 A fragment of an ANSI-C program with dynamic memory allocation. . . . 67

4.1 Multi-threaded Goto Program Language 86

4.2 (a) A multi-threaded C program with an assertion violation. (b) The C
program of (a) converted into multi-threaded goto form. 87

4.3 CFG of two threads of the goto program shown in Figure 4.2 (b). 88

4.4 Concurrent execution of two threads. 89

4.5 Fragment of the reachability tree of the multi-threaded goto-program of
Figure 4.2(b). Nodes with dashed line represent program locations that
violate the assertion statement in line 18 of Figure 4.2(b). 94

ix

x LIST OF FIGURES

4.6 Algorithm of the lazy approach. 96

4.7 Schedule recording applied to the left-hand side of the RT in Figure 4.5. . 97

4.8 Algorithm of the UW approach. 99

4.9 (a) A simple multi-threaded C program. (b) The C program of (a) con-
verted into goto form. 100

4.10 The reachability tree for threads t1, t2, and t3 of the multi-threaded goto-
program of Figure 4.9(b). Edges with dashed line represent transitions
that can be eliminated by RW-POR. 101

4.11 The reachability tree for threads t1, t2, and t3 after applying the RW-POR
technique. 102

4.12 Modelling data race conditions for read operations (l = g). 104

4.13 Modelling data race conditions for write operations (g = l). 104

4.14 Modelling atomicity violation at visible statements. 105

4.15 Computation paths blocking on a mutex. 106

4.16 Modelling mutex lock operation. 107

4.17 An example of local deadlock with mutex on a database application. . . . 109

4.18 Modelling conditional waiting operation. 110

4.19 An example of deadlock with condition variable on a producer and con-
sumer application. 111

5.1 Overview of the ESBMC architecture. 123

5.2 Code fragment of cyclic redundancy check. 124

5.3 Goto-program for the code fragment in Figure 5.2. 124

5.4 Loop unwound for the goto-program in Figure 5.3. 125

5.5 Code fragment of blit. 125

5.6 Code fragment of SumArray. 126

5.7 Code fragment of Fast Fourier Transformation. 126

5.8 A C program that uses shift-and-add to multiply two numbers. 127

6.1 Continuous Verification . 133

6.2 (a) Original function to invert the sign of signal. (b) Optimized version. . 134

6.3 Implementation of a circular buffer. 136

6.4 A unit test for the functions shown in Figure 6.3. 136

6.5 The modified unit test for the test case shown in Figure 6.4. 137

6.6 Specifying Temporal Properties for Software. 139

6.7 The C-monitor thread to watch out for violations of the specified property.139

6.8 Event thread to model the hardware interrupt. 140

6.9 Concurrent execution of main, monitor and event threads. 141

A.1 Front-end options. 158

A.2 BMC options. 159

A.3 SMT Solver Configuration. 160

A.4 Property check. 161

A.5 Concurrency check. 162

A.6 Counterexample view. 163

List of Tables

2.1 Truth table. 17

2.2 Examples of First-Order Theories. 21

3.1 Definitions of ANSI-C types and their corresponding SMT representations. 57

3.2 Results of the comparison between CVC3, Boolector and Z3. Time-outs
are represented with T in the Time column; Examples that exceed avail-
able memory are represented with M in the Time column. The subscript
b indicates that the error occurred in the back-end. 70

3.3 Results of the error-detection capability of ESBMC. 72

3.4 Results of the comparison between ESBMC and SMT-CBMC [11]. 74

3.5 Results of the comparison between CBMC and ESBMC. Internal errors
in the respective tool are represented with † in the Time column. The
subscripts f and b indicate whether the errors occurred in the front-end
or back-end, respectively. The superscript ∗ on the unwinding bound
indicates that it is not large enough to prove or falsify the properties. . . 76

3.6 Results of the comparison between CBMC and ESBMC on a industrial
case study. 79

4.1 Read-write analysis of interleaving equivalence between visible instructions.103

4.2 Results of the comparison between MPOR and PPOR, and lazy, schedule,
and UW ESBMC . 113

4.3 Results of the comparison between ESBMC (v1.15.1) and Microsoft CHESS
(v0.1.30626.0). 116

4.4 Results of the comparison between SATABS (v2.5) and ESBMC (v1.15.1). 117

6.1 Concrete values to check the circular buffer. 137

6.2 Transition function δ for the Büchi automaton shown in Figure 6.6. 138

6.3 Results for running the test cases for the functions commandLoop and
checkCommandParams. 142

6.4 Results for checking the equivalence between the functions of the exStb-
Demo application. 143

6.5 Results of the LTL properties verification of the pulse oximeter. 146

B.1 Results of applying ESBMC to the verification of the benchmarks from
the EUREKA suite. 166

B.2 Results of applying ESBMC to the verification of the benchmarks from
the PowerStone suite. 166

B.3 Results of applying ESBMC to the verification of the correct benchmarks
from the NECLA suite. 167

xi

xii LIST OF TABLES

B.4 Results of applying ESBMC to the verification of the bad benchmarks
from the NECLA suite. 168

B.5 Results of applying ESBMC to the verification of the benchmarks from
the SNU-RT suite. 168

B.6 Results of applying ESBMC to the verification of the correct benchmarks
from the VERISEC suite - Part I. 170

B.7 Results of applying ESBMC to the verification of the correct benchmarks
from the VERISEC suite - Part II. 171

B.8 Results of applying ESBMC to the verification of the correct benchmarks
from the VERISEC suite - Part III. 172

B.9 Results of applying ESBMC to the verification of the bad benchmarks
from the VERISEC suite - Part I. 173

B.10 Results of applying ESBMC to the verification of the bad benchmarks
from the VERISEC suite - Part II. 174

B.11 Results of applying ESBMC to the verification of the bad benchmarks
from the VERISEC suite - Part III. 175

B.12 Results of applying ESBMC to the verification of the benchmarks from
the WCET suite. 176

Abbreviations

ADC Analog-to-Digital Converter

AST Abstract Syntax Tree

BDD Binary Decision Diagram

SAT Boolean Satisfiability [24]

BMC Bounded Model Checking [24]

BA Buechi Automata

CBMC C Bounded Model Checker [42]

CI Continuous Integration [70]

CTL Computational Tree Logic

CNF Conjunctive Normal Form

CFG Control Flow Graph [134]

CEGAR Counterexample-Guided Abstraction Refinement [46]

DSP Digital Signal Processor

ECTL Existential Computational Tree Logic

DPLL Davis-Putnam-Logemann-Loveland [24]

ECS Effective Context Switches

EFSM Extended Finite State Machine

ESBMC Efficient SMT-Based Bounded Model Checker [52]

ESW Embedded Software

FOL First-Order Logic

FSM Finite State Machine

HDL Hardware Description Language

IC Integrated Circuit

IF Intermediate Frequency

IPC Inter-Process Communication

LTL Linear-time Temporal Logic

MDE Model-Driven Engineering

MDG Multiway Decision Graph

MPOR Monotonic Partial Order Reduction [103]

OCL Object Constraint Language

OFDM Orthogonal Frequency-Division Multiplexing

PL Propositional Logic [94]

xiii

xiv ABBREVIATIONS

POR Partial Order Reduction [40]

PPOR Peephole Partial Order Reduction [103]

PSL Property Specification Language [7]

QF Quantifier-Free Formula

QF AUFBV Quantifier-free formula over the theory of bit-vectors

and bit-vector arrays with function and predicate symbols [164]

QF AUFLIRA Quantifier-free formula over closed linear formulas with function

and predicate symbols over a theory of arrays of integer index

and real value [164]

RT Reachability Tree

RG Region Graph

RTCTL Real-Time Computational Tree Logic

SMT Satisfiability Modulo Theories [19]

TA Timed Automata

TECTL Timed Existential Computational Tree Logic

TPN Timed Petri Nets

TS Transport Stream

UW Under-approximation and Widening

V C Verification Condition

V CG Verification Condition Generator

WCET Worst-Case Execution Time

Declaration Of Authorship

I, Lucas Carvalho Cordeiro, declare that this thesis entitled as SMT-Based Bounded

Model Checking of Multi-threaded Software in Embedded Systems and the

work presented in it are my own and has been generated by me as the result of my own

original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

3. Where I have consulted the published work of others, this is always clearly at-

tributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published.

Signed:

Date:

xv

List of Publications

1. Cordeiro, L., Fischer, B., Chen, H., and Marques-Silva, J. Semiformal Verifi-

cation of Embedded Software in Medical Devices Considering Stringent Hardware

Constraints. In 6th Intl. Conf. on Embedded Software and Systems

(ICESS), pp. 396-403, IEEE, 2009.

2. Cordeiro, L., Fischer, B., and Marques-Silva, J. SMT-Based Bounded Model

Checking for Embedded ANSI-C Software. In 24th Intl. Conf. on Automated

Software Engineering (ASE), pp. 137-148, IEEE/ACM, 2009.

3. Cordeiro, L., Fischer, B. and Marques-Silva, J. Continuous Verification of Large

Embedded Software using SMT-Based Bounded Model Checking. In 17th Intl.

Conf. and Workshop on the Engineering of Computer Based Systems

(ECBS), pp. 160-169, IEEE, 2010.

4. Cordeiro, L. SMT-Based Bounded Model Checking for Multi-threaded Software in

Embedded Systems. In 32nd Intl. Conf. on Software Engineering (ICSE),

Doctoral Symposium. pp. 373-376, ACM/IEEE, 2010.

5. Cordeiro, L. and Fischer, B. Bounded Model Checking of Multi-threaded Soft-

ware using SMT solvers. In 8th Intl. Workshop on Satisfiability Modulo

Theories (SMT), Presentation-only paper, FLoC, 2010.

6. Rocha, H., Cordeiro, L., Barreto, R., and Neto, J. Exploiting Safety Properties

in Bounded Model Checking for Test Cases Generation of C Programs. In 4th

Brazilian Workshop on Systematic and Automated Software Testing

(SAST), pp. 121-130, SBC, 2010.

7. Cordeiro, L. and Fischer, B. Verifying Multi-threaded Software using SMT-based

Context-Bounded Model Checking. To appear in 33rd Intl. Conf. on Soft-

ware Engineering (ICSE), ACM/IEEE, 2011.

8. Cordeiro, L., Fischer, B., and Marques-Silva, J. SMT-Based Bounded Model

Checking for Embedded ANSI-C Software. Under review in the IEEE Trans-

actions on Software Engineering (TSE), IEEE, 2011.

xvii

Acknowledgements

I would like to thank my friend and supervisor Dr. Bernd Fischer. I could not have com-

pleted this thesis without his invaluable support, guidance, encouragement and friend-

ship over the years of my research. Beyond any duty, his effort helped me considerably to

turn this work into a PhD dissertation. I would also like to thank Prof. Joao Marques-

Silva and Prof. Michael J. Butler for their objective advice and assistance, and Prof.

Mark Zwolinski and Prof. Rupak Majumdar for agreeing to be the examiners of my

work. Many thanks to my friends and colleagues who helped me not only with fruitful

discussions about my work and “proof-reading” my scribbles, but also with my personal

life (beyond the work). I would also like to thank my sponsors (ORSAS and ECS) for

their financial support. Last but not least, I would like to thank my wife for her un-

conditional love and support. Without her continuous encouragement, I certainly would

not be where I am today. I am also very grateful to my parents for their support in my

education and my desire to always learn more and more.

xix

To my dearest wife and son . . .

xxi

Chapter 1

Introduction

Embedded computer systems are used in a variety of sophisticated applications, which

range from safety-critical systems such as nuclear reactors and automotive controllers, to

entertainment software such as games and graphics animation. Embedded systems are

ubiquitous in modern day information systems and are becoming increasingly important

in our society. As a consequence, human life has also become more and more depen-

dent on the services provided by this type of system. In general, an embedded system

may be viewed as consisting of an electrical and mechanical subsystem, a controlling

embedded computer and a man-machine interface, which together perform a group of

dedicated functions within a larger system [104]. More specifically, it consists of a set

of hardware/software components that together implement a set of functionalities while

satisfying constraints such as timing, power dissipation, and monetary costs.

Embedded systems also replace many mechanical and hydraulic control systems within

safety-critical and high dependability applications. Despite the criticality of the appli-

cations, the main role of the software in embedded systems is the interaction with the

physical world, rather than the transformation of data. Embedded software has thus

a number of characteristics that differ substantially from conventional desktop applica-

tions. For example, it is dedicated to perform a particular task, which requires to meet

the timing constraints of the application, access the memory region, handle concurrency,

and control the hardware registers. The reliability of the software in embedded systems

then plays an important role to avoid catastrophic errors (especially in safety-critical

systems) and to reduce costs (because software errors are expensive [1]).

Due to the high pressure imposed by the market to launch new products, coupled with

evolving system specifications, semiconductor and system development companies are

forced to choose flexible implementations where new products can be built quickly [51].

The increasing computational power and decreasing size and cost of processors is en-

abling system designers to move more functionalities to software. Market analysis shows

that software-based implementations account for more than 80% of system development

1

2 Chapter 1 Introduction

in the embedded systems domain [174]. The increasing number of functionalities moved

to software-based implementations leads to difficulties in verifying design correctness. In

practice, however, this verification is of importance due to the dependability properties

(briefly reliability and availability) required in several embedded system domains such

as automotive, industrial automation, and transportation. In order to verify the design

correctness of hardware blocks, model checking has been widely used as a verification

methodology [47]. However, the verification of embedded software has always been dif-

ficult, mainly due to the stringent constraints imposed by the hardware (e.g., real-time,

memory allocation, interrupts, and concurrency) when verifying the design correctness.

Nowadays, peer reviewing and testing are the major software verification techniques used

in practice [14]. A peer review is carried out by a team of experienced software engineers

that inspects the software and preferably has not been involved in the development of

the software under review. Empirical studies show that the peer review technique is

able to catch between 31% and 93% of the defects with a median around 60% [14].

Software testing, as opposed to peer review, is a dynamic technique that actually runs

the software instead of analyzing it statically without executing. Correctness is thus

determined by forcing the software to traverse a set of execution paths and by observing

during test execution the actual and expected output of the software. These approaches,

however, take up to 70% of the total development time to find out bugs and implement

the necessary corrections in the design [79].

We can thus see that there is clearly a tradeoff between time-to-market (i.e., the time

between product conception and arrival on the market), costs and quality. On the one

hand, consumer electronics companies strive to shorten the time-to-market with the

purpose of being the first one to launch the product and maximize the profit. However,

some steps of the development process might be skipped to achieve this, thus compro-

mising quality. On the other hand, software bugs cause a loss of billions of US dollars

annually [1]. It is then of great importance to detect software bugs as early as possible

with minimum effort, cost and time, because the cost of repairing a software flaw during

maintenance is hundreds of times more expensive than a fix in an early design phase.

Consequently, the development of techniques to ensure low-defect embedded systems

given their complexity (i.e., size and shorter development time) represents a significant

research challenge, a challenge that has increased significantly with the emergence of

multi-threaded applications. The motivation of this thesis is thus to deal with the in-

creasing difficulty in verifying embedded systems design correctness within the market

window and with the required level of confidence in the signed-off design.

Bounded model checking (BMC) based on Boolean Satisfiability (SAT) has already

been successfully applied to verify sequential software in embedded systems and discover

subtle errors in real designs [24]. However, the verification of multi-threaded software is

a hard problem, because we need to explicitly account for interleavings1 of transitions

1An interleaving represents a possible execution of the program where all of the concurrent events

Chapter 1 Introduction 3

of different threads. A major strength of BMC to combat this problem is that BMC

analyzes only bounded program runs (thereby achieving decidability) and state space

reduction is exploited internally by state-of-the-art SAT or SMT (Satisfiability Modulo

Theories) solvers with the use of conflict clauses and non-chronological backtracking.

The basic idea of the BMC technique is thus to check (the negation of) a given property

at a given depth: given a transition system M, a property φ, and a bound k, BMC

unrolls the system k times and translates it into a verification condition (VC) ψ such

that ψ is satisfiable if and only if φ has a counterexample of depth less than or equal to

k. Standard Boolean Satisfiability solvers can be used to check whether ψ is satisfiable.

In BMC of software, the bound k limits the number of loop iterations and recursive

calls in the program. BMC of software thus generates VCs that reflect the exact path in

which a statement is executed, the context in which a given function is called, and the

bit-accurate representation of the expressions. Proving the validity of the VCs arising

from (sequential or) multi-threaded software remains a major performance bottleneck in

verifying embedded software, despite attempts to cope with increasing system complexity

by applying SMT solvers.

In this thesis, we develop and evaluate approaches that exploit the use of SMT solvers for

model checking multi-threaded ANSI-C software and our modelling of the synchroniza-

tion primitives of the Pthread library [135]. We also describe translations from ANSI-C

programs to SMT formulas with the same precision as bit-accurate SAT-based proce-

dures. In this sense, we extend the encodings from previous SMT-based bounded model

checkers [11, 71] to provide more accurate support for variables of finite bit width, bit-

vector operations, arrays, structures, unions and pointers. In contrast to previous fully

symbolic approaches to handle multi-threaded systems (e.g., [73, 102, 103, 152, 84]), we

combine symbolic model checking with explicit state space exploration. We analyze a

reachability tree, which is a description of all reachable states of a program, built by

unfolding the actions of each thread and we then propose novel exploration methods

to traverse this reachability tree. In particular, we explicitly explore the possible inter-

leavings of a program (up to the given context bound) while we treat each interleaving

itself symbolically. We also exploit SMT techniques to prune the property and data

dependent search space and to remove interleavings that are not relevant by analyzing

the proof of unsatisfiability.

In summary, we propose a comprehensive SMT-based context-bounded model checking

procedure which we implemented in the ESBMC (Efficient SMT-based Context-Bounded

Model Checker)2 tool for verifying multi-threaded software in embedded systems written

in ANSI-C. In our work, we consider embedded software because it has characteristics

that make it attractive for BMC, e.g., dynamic memory allocations and recursion are

highly discouraged, and that make the limitations of bounded model checking less strin-

gent. We also chose ANSI-C because it is the most common implementation language

are arranged in a linear order.
2Available at http://users.ecs.soton.ac.uk/lcc08r/esbmc/

4 Chapter 1 Introduction

for embedded software (and in particular for developing optimized applications), but

all techniques that we describe in this thesis are also applicable to languages that are

similar to ANSI-C (e.g., MISRA-C). Our experimental results show that our approach

scales significantly better than both SAT-based and SMT-based versions of the CBMC

model checker [42, 105] and SMT-CBMC [11], a bounded model checker for sequen-

tial C programs that is based on the SMT solvers CVC3 [20] and Yices [65]. We also

show that our approaches to verify multi-threaded software can analyze larger problems

and substantially reduce the verification time compared to state-of-the-art techniques

for multi-threaded verification that use BMC (e.g., [103]), iterative context-bounding

algorithms (e.g., [138]) and others that implement counterexample-guided abstraction

refinement (CEGAR) techniques (e.g., [44]).

The rest of this chapter describes the problem statement, objectives and outlines the

solution. It then summarises our contributions and presents the structure of the thesis.

1.1 Problem Description

This PhD thesis tackles two major problems in computer-aided verification: (1) provid-

ing suitable encodings into the SMT theories to reason accurately and effectively about

realistic embedded programs and (2) exploiting SMT techniques to leverage bounded

model checking of multi-threaded software.

Part of the first problem stems from the fact that most software verification tools are

unable to reason accurately about embedded programs. Most programming languages

provide basic data types that have a bounded range defined by the number of bits

allocated to each of them. They also contain constructs such as structures, unions,

and pointers that are not directly supported by the SMT solvers, and are often en-

coded imprecisely using axioms and uninterpreted functions by software verification

tools that employ theorem provers (e.g., Simplify [62]) as back-end (e.g., ESC/Java [69],

BLAST [89], and Magic [35]). Nevertheless, in order to reason about embedded soft-

ware accurately, an SMT-based software verification tool must consider a number of

issues that are not easily mapped into the theories supported by the SMT solvers, e.g.,

QF AUFBV (the theory of bit-vectors and bitvector arrays with function and predicate

symbols) and QF AUFLIRA (closed linear formulas with function and predicate sym-

bols over a theory of arrays of integer index and real value) [164]. In previous work

on SMT-based BMC for software [11, 71] only the theories of uninterpreted functions,

arrays and linear arithmetic were considered, but no encoding was provided for ANSI-

C [95] constructs such as bit operations, unions, fixed-point arithmetic, pointers (e.g.,

pointer arithmetic and comparisons) and dynamic memory allocation. This limits its

usefulness for analyzing and verifying realistic embedded software written in ANSI-C.

The other part of the first problem stems from the fact that most software verification

Chapter 1 Introduction 5

tools are unable to reason effectively about embedded programs. There are tools that

employ SAT solvers as back-end and thus provide a bit-level accurate symbolic simulator

(e.g., CBMC [42], F-SOFT [96]), but they have limitations due to inefficient transla-

tions and loss of high-level design information during the BMC problem formulation,

especially when reasoning on the propositional encoding of arithmetical operators (e.g.,

multiplication) [49]. SMT solvers, however, often integrate a simplifier, which applies

standard algebraic reduction rules (e.g., a ∧ false 7→ false) and contextual simplification

(e.g., b = 7 ∧ p (b) 7→ b = 7 ∧ p (7)) before bit-blasting or bit-flattening (i.e., replacing

the word-level operators by bit-level circuit equivalents) propositional expressions to a

SAT solver. As structural word-level information remains in the problem formulation,

bit-blasting is used by the SMT solvers only as a last resort if the more abstract and less

expensive techniques are not powerful enough to solve the problem at hand (e.g., the

incremental and layered approach which permits strengthening incrementally the model

of the arithmetic operators [28]).

Consequently, new encodings are needed into existing SMT theories in order to make

verification scalable and to model precisely ANSI-C scalar data types (with accurate

arithmetic over- and underflow), arrays, pointers, structures, and unions.

Second, the widespread use of multi-core processors with scalable shared memory in

embedded systems is already having a tangible impact on development and testing for

major software vendors [144]. However, the verification of the software design and the

correctness of its multi-threaded implementations has become increasingly difficult, for

at least three reasons. The first reason is that the verification of multi-threaded programs

exhibits more non-deterministic behaviour (i.e., the choice of interleaving among threads

in addition to the non-deterministically chosen values), which results in a large state

space that must be explored by a model checker. The second reason is that concurrency

errors are tricky to reproduce and debug because they usually occur under specific thread

interleavings. These errors most frequently manifest as deadlock, data races, atomicity

violations, and order violations and finding them in realistic multi-threaded programs is

challenging. In particular, an empirical study shows that the most common concurrency

errors are related to atomicity and order violations (approx. 67%) and deadlock (approx.

30%) [117]. This leads to the third reason namely that errors related to multi-threaded

software typically involve changes in program state due to particular interleavings of

multiple threads of execution, thus making them difficult to understand in the code.

As an example of the non-determinism related to the choice of interleaving among

threads, we consider a synthetic micro-benchmark extracted from Ghafari et al. [74],

which checks for a single valid property as shown in Figure 1.1. This micro-benchmark

is used in [74] to check the scalability of multi-threaded software verification tools by

varying two key problem parameters: the number of threads (n) and program statements

(s).

6 Chapter 1 Introduction

S 0 : x + + ;
.
.
.

S k : x + + ;

a s s e r t (x > 0) ; a s s e r t (x > 0) ;

x + + ;
.
.
.

x + + ;

.

T 1 T 2

i n t x = 0

a s s e r t (x > 0) ;

x + + ;
.
.
.

x + + ;

T n

Figure 1.1: A Synthetic Micro-benchmark.

This micro-benchmark uses a shared global variable x, which in the initial state is initial-

ized to 0. Then, n threads are created such that each thread consists of s increments of

the variable x followed by an assertion that checks if x is greater than 0. Although this

micro-benchmark is a simplistic example of a multi-threaded program, it has essentially

three key elements that make it worthwhile to mention: local state (the program coun-

ters), shared global state x, and long data-dependency chains that grow with code size

and must then be inspected to prove the assertions. Therefore, this micro-benchmark

shows that as we increase n and s (and consequently the data-dependency), the number

of interleavings can grow very quickly (i.e., the number of possible execution sequences

is O (ns)) since context switches among threads (due to the global variable x) increase

the number of possible execution paths considerably. Hence, in order to fully verify

multi-threaded programs against a given specification, all possible interleavings must be

considered, and this thus represents a challenging problem in computer-aided verifica-

tion.

Recently, there have been attempts to extend BMC to the verification of multi-threaded

software [73, 102, 103, 152]. The main challenge remains the classic state space explosion

problem in which the number of interleavings grows exponentially with the number of

threads and program statements as sketched above. Previous attempts are unable to

model check realistic multi-threaded programs (e.g., [152] evaluate their approach on a

concurrent bubblesort and [103] on a parameterized version of the dining philosophers

model, which are untypical multi-threaded C programs.) and they are unable to find

bugs related to local and global deadlock (e.g., [73, 102, 103, 152]). Other attempts (e.g.,

[39]) encode the semantics of the SystemC scheduler, which does not allow preempting

a thread at any visible instruction in its execution and it is thus unsuitable to model

check multi-threaded software.

As far as we are aware, there is no other work that considers a comprehensive SMT-based

Chapter 1 Introduction 7

context-bounded model checking technique to verify real-world multi-threaded ANSI-C

software by combining symbolic model checking with explicit state space exploration.

Thus the problem considered in this thesis is expressed in the following question: can an

algorithmic method reason accurately about realistic multi-threaded software in embedded

systems and at the same time control the verification complexity?

1.2 Objectives

The main objective of this thesis is thus to propose and evaluate an SMT-based bounded

model checking formulation to reason accurately about multi-threaded software, for ex-

ample, used in embedded systems. In particular, we focus on embedded applications

written in ANSI-C that are platform-independent (single- and multi-threaded); and we

do not model check platform-dependent software (e.g., software that controls the hard-

ware registers) nor the timing constraints of the application. We further try to exploit

the SMT solvers to remove possible undesired models of the system in order to satisfy

a given property. In this respect, we develop new algorithmic methods and correspond-

ing tools based on SMT techniques to verify single- and multi-threaded software (with

shared variables) in embedded systems. More specifically we will:

1. Provide details of an accurate translation from programs written in (full) ANSI-C

into quantifier-free (QF) first-order logic formulae (cf. Chapter 3).

2. Propose approaches to model check multi-threaded software with shared variables

by combining symbolic model checking with explicit state space exploration and by

bounding the number of context switches allowed among threads (cf. Chapter 4).

3. Develop heuristics to simplify the unwound formula arising from BMC instances

and exploit the different theories and SMT solvers (cf. Chapter 5).

4. Detect design errors and integration problems as quickly as possible by exploit-

ing information from the software configuration management (SCM) system (cf.

Chapter 6).

In Chapter 3, we propose a new encoding for (full) ANSI-C by exploiting the back-

ground theories supported by the SMT solvers (e.g., uninterpreted functions, arithmetic,

bit-vectors, and arrays). Hence, we extend and combine these background theories to

develop an approach to model precisely the ANSI-C program’s semantics. We will

demonstrate that this new encoding allows us to reason accurately about realistic em-

bedded software systems and improve the performance of software model checking for a

wide range of applications.

8 Chapter 1 Introduction

In Chapter 4, we describe and evaluate three approaches to SMT-based bounded model

checking: lazy, schedule recording and underapproximation and widening. In all three

approaches, we combine symbolic model checking with explicit state space exploration

by constructing a reachability tree derived from the program and we also use a context-

bounded analysis [112, 171] that limits the number of context switches it explores. This

thus allows exploring explicitly the possible thread interleavings (up to the given con-

text bound) while treating each interleaving itself symbolically. We will evaluate our

approaches over several multi-threaded applications and show that they substantially

reduce the verification time compared to other state-of-the-art techniques.

In Chapter 5, we exploit the different background theories of SMT solvers and com-

bine different theories and solvers, based on an analysis of the syntactic structure of a

given ANSI-C program. This allows exploiting the structure provided by the program,

and thus, improving scalability by making the analysis computationally more tractable.

Additionally, we describe a set of simplifications that we used in order to reduce the un-

wound formula. We will evaluate the performance improvement of these simplifications

and heuristics over a large set of benchmarks and show that they prevent overburdening

the model checker in realistic applications.

In Chapter 6, we describe an approach to integrate our SMT-based model checker into

the software engineering practice by focusing systematically the verification effort on

new or modified functions. We investigate the use of equivalence checking to determine

whether modified functions need to be re-verified formally and use existing test cases

to reduce the search space for the model checker, thus combining dynamic and static

verification. We will demonstrate through case studies that the proposed approach can

potentially improve the error-detection capability and reduce the overall verification

time.

1.3 Outline of the Solution

Our approach deals with the theoretical and pragmatic aspects of using SMT techniques

to model check single- and multi-threaded software in embedded systems. We thus de-

velop algorithms and the corresponding tools and evaluate them using standard software

model checking benchmarks. The tools are built using a number of advanced (and com-

plex) techniques, including symbolic execution engines, satisfiability modulo theories

solvers, context-bounded analysis, and partial order reduction. We use off-the-shelf

software wherever possible and focus our effort on a comprehensive and implemented

SMT-based model checking procedure to verify embedded software or more precisely, fi-

nite approximations of embedded software. In particular, we reuse the C/C++ front-end

from the CProver framework3 and use existing SMT solvers.

3The CProver framework consists of the components on which the verification tools CBMC [42] and
SATABS [43] are based. It provides a mature and robust front-end for ANSI-C and C++ programs.

Chapter 1 Introduction 9

Figure 1.2 shows an overview of our SMT-based bounded model checking procedure for

single- and multi-threaded software in embedded systems. In Figure 1.2, the box labelled

CFG with solid lines represents the component that we reused without any modifica-

tion from the CProver framework (i.e., the construction of the control-flow graph). The

boxes labelled BMC (i.e., symbolic execution engine) and properties (i.e., property in-

strumentation) that are shown with thick dashed lines represent the components that we

substantially extended from the CProver framework in order to simplify the unwound

formula and handle multi-threaded programs; in particular, the CProver framework does

not perform bounded model checking of multi-threaded programs. The boxes labelled

scheduler and verification conditions with thick solid lines represent components that we

developed from scratch. We describe here only a summary of each phase of our proposed

approach; more details are presented in the next chapters. The phases can be described

as follows:

C / C + +
s o u r c e

C F G s c h e d u l e r

p r o p e r t i e s

B M C
v e r i f i c a t i o n
c o n d i t i o n s

S M T
s o l v e r

s c a n , p a r s e ,
a n d t y p e - c h e c k

s i n g l e - a n d
m u l t i - t h r e a d e d
g o t o p r o g r a m s

d e a d l o c k , a t o m i c i t y a n d
o r d e r v i o l a t i o n s , d a t a r a c e

g u i d e t h e s y m b o l i c
e x e c u t i o n e n g i n e f o r
m u l t i - t h r e a d e d g o t o
p r o g r a m s

s y m b o l i c e x e c u t i o n
e n g i n e

Q F f o r m u l a
g e n e r a t i o n

check sa t i s f i ab i l i t y us i ng
a n S M T s o l v e r

a r i t h m e t i c u n d e r - a n d o v e r f l o w ,
a r r a y b o u n d s , p o i n t e r s a f e t y ,
m e m o r y l e a k s , u s e r - s p e c i f i e d a s s e r t i o n s

s i n g l e - t h r e a d e d
g o t o p r o g r a m s

Figure 1.2: Proposed SMT-based BMC procedure for software.

• Building the control-flow graph (CFG): In BMC, the program to be analyzed

is modelled as a state transition system, which is extracted from the control-flow

graph (CFG) [134]. The CFG is used as part of a translation process from program

text to single static assignment (SSA) form. This component is thus responsible

for scanning, parsing, and type-checking the C/C++ code and is reused from the

CProver framework without any modification.

• Automatic generation of (concurrency) properties: In addition to the

language-specific safety properties that are generated automatically by the CProver

framework (e.g., absence of arithmetic under- and overflow, out-of-bounds array

indexing, or NULL-pointer dereferencing), we extend its class of properties to gen-

erate verification conditions to check for memory leaks, data races and atomicity

and order violations in single- and multi-threaded programs. We also provide a new

10 Chapter 1 Introduction

instrumented model of the Pthread functions to generate verification conditions to

check for local and global deadlocks in the client code.

• Thread scheduler: This component guides the symbolic execution between

threads and systematically explores all the possible interleavings. To this end,

we construct a reachability tree (RT) of a multi-threaded program by unwinding

the control-flow graph in a depth-first search manner. We thus generate explicitly

the thread interleavings (with techniques similar to explicit-state model checking)

and we then guide the symbolic execution engine in order to encode each thread

symbolically. In particular, we explore the reachability tree by using three differ-

ent approaches called lazy exploration, schedule recording, and underapproximation

and widening. In the lazy exploration approach, we traverse the RT depth-first,

and simply call the single-threaded BMC procedure on the interleaving whenever

we reach an RT leaf node. We stop the RT traversal either when we find a bug,

or have systematically explored all interleavings. In the scheduling recording ap-

proach, we use the RT to encode all the possible execution paths into one single

formula, which is then fed into the SMT solver. In the underapproximation and

widening approach, we model check models with an increasing set of allowed in-

terleavings. We start from an underapproximation describing a single interleaving

and widen the model by adding more interleavings incrementally based on the

proof objects generated from an SMT solver.

• Symbolic execution engine: For single-threaded programs, this component

takes as input the CFG representation of the program, a property φ, and a bound

k. It derives as output a verification condition ψk such that ψk is satisfiable

if and only if φ has a counter-example of length k or less. For multi-threaded

programs, this component takes as input a reachability tree Υ = {ν1 , . . . , νN }

(where νi is a given node in the reachability tree) that represents the program

unfolding for a context bound C and a bound k , and a property φ. It derives as

output a verification condition ψπ
k for a set of interleavings π =

∧m
i=0 πm (where

m is the total number of interleavings) or for a given interleaving (or computation

path) πi = {ν1 , . . . , νk} such that ψπ
k (or ψπi

k) is satisfiable if and only if φ has a

counterexample of depth less than or equal to k that is exhibited by π (or πi).

Here, we extend the SSA form of the symbolic execution engine to avoid naming

conflicts (when verifying multi-threaded programs) such as local (i.e., threads that

contain local variables with the same name) and path (i.e., nodes of the RT that

contain variables with the same name) conflicts. Additionally, we implement a set

of simplification techniques (e.g., constant propagation and forward substitution)

to reduce the unwound formula and we also perform an up-front analysis in the

control-flow graph of the program during the symbolic execution to determine the

most appropriate encoding and solver for a particular program.

• Quantifier-free formula generation: This component takes as input the veri-

Chapter 1 Introduction 11

fication conditions generated by the symbolic execution engine and encodes them

into a quantifier-free formula in a decidable subset of first-order logic. Here, new

encodings are provided into existing SMT theories to model precisely ANSI-C

scalar data types (with accurate arithmetic overflow and underflow), arrays and

pointers (i.e., pointer arithmetic and comparisons), structures and unions, memory

allocation and fixed-point arithmetic.

1.4 Contributions

The main contribution of this PhD thesis is the development, implementation, and

evaluation of a comprehensive SMT-based bounded model checking procedure to verify

realistic single- and multi-threaded software in embedded systems. In this respect, this

thesis makes three major novel contributions.

First, we describe the details of an accurate translation from ANSI-C programs into

quantifier-free formulae using the SMT logics QF AUFBV and QF AUFLIRA from the

SMT-LIB and we also apply a set of optimization techniques to prevent overburdening

the solver. We demonstrate that our encoding and optimizations improve the per-

formance of software model checking for a wide range of embedded software systems.

Additionally, we show that our encoding allows us to reason about arithmetic under-

and overflow, pointer safety, memory leaks, array bounds, atomicity and order viola-

tions, deadlock, data race, and user-specified assertions; and to verify programs that

make use of bit-level, pointers, dynamic memory allocation, structs, unions and fixed-

point arithmetic. Note that we do not require the user to annotate the programs with

pre/post-conditions and the verification is thus completely automatic. We also use three

different SMT solvers (CVC3 [20], Boolector [31], and Z3 [57]) in order to check the effec-

tiveness of our encoding techniques. We considered these solvers because they were the

most efficient ones for the categories of QF AUFBV and QF AUFLIRA in the last SMT

competitions.4 As far as we are aware, no SMT-based bounded model checking tool ex-

isted that can reliably handle full ANSI-C. We also exploit different background theories

and solvers, based on an analysis of the syntactic structure of a given ANSI-C program

in order to improve scalability and precision in a completely automatic way. To the best

of our knowledge, this is the first work that reasons accurately about ANSI-C constructs

commonly found in embedded software and extensively applies SMT solvers to check the

verification conditions emerging from the bounded model checking of embedded software

industrial applications.

Second, we exploit SMT to improve bounded model checking of multi-threaded software.

In particular, we exploit SMT solvers to prune the property and data dependent search

space (via non-chronological backtracking and conflict clauses learning) and to remove

4The results are available at http://www.smtcomp.org

12 Chapter 1 Introduction

possible undesired models (i.e., interleavings that are not relevant) of the system in order

to satisfy a given property (which is done by analyzing the proof of unsatisfiability). We

describe and evaluate three approaches: lazy, schedule recording, and underapproxima-

tion and widening (UW) to model check multi-threaded software with shared variables

and locks using bounded model checking based on SMT techniques and our modelling

of the synchronization primitives of the Pthread library. Here, the main novelty is in

the combination of symbolic model checking with explicit state space exploration that

underlies all three approaches. To the best of our knowledge, the lazy approach has

not been described or evaluated in the literature. Similarly, underapproximation and

widening has not been used for bounded model checking of multi-threaded software. Ad-

ditionally, our approach is based on the new notion of effective context switches (ECS)

blocks and it thus uses a different encoding from Grumberg et al. [84]. The difference

between our schedule recording and the approaches proposed by [73, 102, 103, 152] is

that they all work in a fully symbolic context. We also describe a new modelling of the

Pthread synchronization primitives for mutex and condition variables that allows us to

detect local and global deadlock.

Finally, we explore a new concept called continuous verification to detect design errors

and integration problems as quickly as possible by exploiting information from the soft-

ware configuration management (SCM) system, systematically focusing the verification

effort on new or modified functions [54]. We thus add a state-space reduction technique

for our SMT-based bounded model checking procedure, which looks at the modifica-

tions suffered by the system since its last verification, and submits them to a partly

static, partly dynamic “continuous” verification process, guided by a set of test cases

for coverage. As a result, we integrate the continuous verification approach with the

combination of different encodings and solvers in order to allow us to verify larger parts

of the state space of the system (compared to software model checkers only) and explore

more exhaustively the state space (compared to testing only).

1.5 Organization of the Thesis

This introduction has outlined the context, motivation, and problem addressed by this

thesis, and the objectives, solution and contributions of the research. The remainder of

the chapters of this thesis are organized as follows:

Chapter 2, SAT-based and SMT-based Verification Techniques, overviews the main con-

cepts needed to understand this thesis, such as propositional logic, SAT-based bounded

model checking, satisfiability modulo theories and concurrent systems and reviews some

methods to achieve completeness in the BMC framework such as Craig interpolation and

k -induction. It also includes an explanation about verification conditions and partial-

order reduction. Additionally, this chapter reviews the related work on model checking

Chapter 1 Introduction 13

sequential and multi-threaded software as well as techniques applied to the verification

of large embedded software systems.

Chapter 3, SMT-based Bounded Model Checking for Embedded ANSI-C Software, de-

scribes the encoding and application of different background theories and SMT solvers

to the verification of embedded software written in ANSI-C in order to improve scal-

ability and precision in a completely automatic way. We evaluate these approaches

on both standard software model checking benchmarks and typical embedded software

applications from telecommunications, control systems, and medical devices. Our ex-

periments show that our approaches can analyze larger problems than existing tools and

substantially reduce the verification time.

Chapter 4, Verifying Multi-threaded Software using SMT-based Context-Bounded Model

Checking, describes and evaluates three approaches to model check multi-threaded soft-

ware with shared variables and locks using bounded model checking based on Satisfia-

bility Modulo Theories (SMT) and our modelling of the synchronization primitives of

the Pthread library. In all three approaches, we bound the number of context switches

allowed among threads in order to reduce the number of interleavings explored. This

chapter shows that our approaches can analyze larger problems and substantially reduce

the verification time compared to state-of-the-art techniques that use BMC, iterative

context-bounding algorithms or counter-example guided abstraction refinement.

Chapter 5, Implementation of ESBMC, describes the main software components of the

ESBMC architecture and the simplifications that we used in order to reduce the un-

wound formula. It also evaluates the simplification techniques, which give a substantial

performance improvement over a large set of benchmarks.

Chapter 6, Integrating ESBMC into Software Engineering Practice, describes a new

approach called continuous verification to detect design errors as quickly as possible

by exploiting information from the software configuration management system and by

combining dynamic and static verification to reduce the state space to be explored. This

chapter shows that the proposed approach can potentially reduce the overall verification

time in a case study from the telecommunications domain.

Finally, Chapter 7, Conclusions, concludes the contributions of this thesis and describes

how our work differ from the others. This chapter also outlines the limitations of our

approaches and presents some directions for future work.

Appendix A describes an Eclipse plug-in for the ESBMC model checker that can assist

the software engineer during the verification process. This plug-in was developed with

the help of Qiang Li during his summer internship.

Appendix B shows the detailed results of the error-detection capability of ESBMC over

a large set of well-known static analysis benchmarks.

14 Chapter 1 Introduction

Appendix C describes the main functions of the POSIX Pthread library [135] that ES-

BMC supports.

Appendix D shows an example of the counterexample that is generated by ESBMC for

a multi-threaded program.

Chapter 2

SAT-based and SMT-based

Verification Techniques

This chapter introduces the main concepts needed to understand this thesis. It is di-

vided into three main sections. The first section, Logical Foundations, defines the syntax

and semantics of propositional logic and sketches decision procedures for checking sat-

isfiability of propositional formulae. It also describes the background theories of the

Satisfiability Modulo Theories (SMT) solvers that are used throughout this thesis, and

how to specify safety and liveness properties using linear-time temporal logic. The sec-

ond section, Bounded Model Checking of Software, presents the BMC technique and

shows how to achieve completeness in BMC via Craig interpolation and k -induction

techniques. This section also overviews the BMC architectures used in software verifi-

cation and compares the BMC technique to other software verification approaches that

also use logic to describe states and transformations between system states. Finally, the

third section, Verification of Multi-threaded Systems, presents concepts and definitions

of multi-threaded (concurrent) systems and the partial order reduction technique used

to prune the state space of multi-threaded systems.

2.1 Logical Foundations

Logic can be defined by means of symbols and a system of rules to manipulate the

symbols [29]. The use of logic allows us to model the programs and to reason about

them formally. This section thus introduces the logical foundations that will be the basis

for the explanation of our techniques described in Chapters 3, 4, and 6.

15

16 Chapter 2 SAT-based and SMT-based Verification Techniques

2.1.1 Propositional Logic

This section recalls the definition of propositional logic (PL) syntax and semantics along

with some examples. Further information can be found in textbooks [29, 94, 109, 130].

The syntax of PL consists of symbols and rules so that we can combine the symbols to

construct “sentences” (more specifically formulae). Generally speaking, propositional

logic or calculus is a two-valued logic, which is based on the assumption that every

sentence is either true or false. A truth value (or a logical value, which is represented

by tt or ff), is a value indicating the relation of a proposition (i.e., the meaning of

the sentence) to truth. The basic elements of PL are the constants true (sometimes

also represented as ⊤ or 1) and false (sometimes also represented as ⊥ or 0) and the

propositional variables: x1, x2, . . . , xn (whose set is usually denoted by the letter X,

except where noted otherwise and n is a finite number of propositional variables). Logical

operators (e.g., ¬,∧), also called Boolean operators, provide the expressive power of PL.

Definition 2.1. The syntax of formulae in PL is defined by the following grammar:

Fml ::= Fml ∧ Fml | ¬Fml | (Fml) |Atom

Atom ::= Variable | true | false

Using the logical operators conjunction (∧) and negation (¬), the full power of propo-

sitional logic is obtained. Other logical operators such as disjunction (∨), implication

(⇒), equivalence (⇔), exclusive or (⊕), and conditional expression (ite) can be defined

as follows.

Definition 2.2. We define the usual logical operators as follows:

• φ1 ∨ φ2 ≡ ¬ (¬φ1 ∧ ¬φ2)

• φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2

• φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)

• φ1 ⊕ φ2 ≡ (φ1 ∧ ¬φ2) ∨ (φ2 ∧ ¬φ1)

• ite (θ, φ1, φ2) ≡ (θ ∧ φ1) ∨ (¬θ ∧ φ2)

A PL formula is then defined in terms of the basic elements true, false, or a propositional

variable x; or the application of one of the following logical operators to a formula φ:

“not” (¬φ), “and” (φ1 ∧ φ2), “or” (φ1 ∨ φ2), “implies” (φ1 ⇒ φ2), “iff” (φ1 ⇔ φ2).

“parity” (φ1 ⊕ φ2) or “ite” (ite (θ, φ1, φ2)).

Each operator in PL has an arity (i.e., the number of arguments that it takes). The

operator “not” is unary while the other operators are binary, except for “ite”, which is

Chapter 2 SAT-based and SMT-based Verification Techniques 17

a ternary operator. The left and right arguments of ⇒ are called the antecedent and

consequent respectively. The propositional variables, and propositional constants, true

and false, stand for indecomposable propositions, known as atoms, or atomic proposi-

tions. A literal is an atom β or its negation ¬β. A formula is a literal or the application

of a logical operator to a formula or formulae.

Formulae in PL are strings over the alphabet {x1, x2, x3, . . .} ∪ {¬,∧,∨,⇒,⇔} ∪ {(,)}.

The string ∧ (¬) ∨ x1x2 ⇔ is a word over that alphabet, but it does have any meaning

as far as propositional logic is concerned.

Definition 2.3. We say that a PL formula is a well-formed formula if we use the

construction rules from Definition 2.1 to obtain it given that negation has priority over

conjunction.

Definition 2.4. We define the relative precedence of the logical operators from highest

to lowest as follows: ¬, ∧, ∨, ⇒ and ⇔.

In order to check whether a given PL formula is true or false, we first define a mechanism

for evaluating the propositional variables by means of interpretations. An interpretation

I assigns to every propositional variable exactly one truth value. For instance, I =

{x1 7→ tt , x2 7→ ff } is an interpretation assigning true to x1 and false to x2. Given a PL

formula and an interpretation, the truth value of a formula can be computed by a truth

table or by induction. Considering the possible evaluations of a propositional variable x

(i.e., tt or ff), we can construct the truth table for the logical operators ¬,∧,∨,⇒, ⇔

and ⊕ as shown in Table 2.1. It is important to note that x1 ⇒ x2 is false iff x1 is true

and x2 is false.

x1 x2 ¬x1 x1 ∧ x2 x1 ∨ x2 x1 ⇒ x2 x1 ⇔ x2 x1 ⊕ x2

ff ff tt ff ff tt tt ff

ff tt tt ff tt tt ff tt

tt ff ff ff tt ff ff tt

tt tt ff tt tt tt tt ff

Table 2.1: Truth table.

We also describe an inductive definition of PL’s semantics that defines the meaning of

basic operators and also the meaning of more complex formulae in terms of the basic

operators. We write I |= φ if φ evaluates to tt under I and I 6|= φ if φ evaluates to ff

under I.

Definition 2.5. We define the evaluation of formula φ under an interpretation I as

follows.

• I |= x iff I [x] = tt

18 Chapter 2 SAT-based and SMT-based Verification Techniques

• I |= ¬φ iff I 6|= φ

• I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

Lemma 2.6. The semantics of more complex formulae are evaluated as:

I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2

I |= φ1 ⇒ φ2 iff, whenever I |= φ1 then I |= φ2

I |= φ1 ⇔ φ2 iff I |= φ1 and I |= φ2, or I 6|= φ1 and I 6|= φ2

As an example, consider the formula φ : x1 ∨ x2 ⇒ x1 ∧ x2 under the interpretation

I : {x1 7→ ff , x2 7→ tt}. We can compute the truth value of φ as follows

1. I 6|= x1 since I [x1] = ff

2. I |= x2 since I [x2] = tt

3. I |= x1 ∨ x2 by 2 and semantics of the operator ∨

4. I 6|= x1 ∧ x2 by 1 and semantics of the operator ∧

5. I 6|= φ by 3 and 4 and semantics of the operator ⇒

2.1.2 Decision Procedures for Satisfiability

Section 2.1.1 introduced the truth table and semantic argument methods for determin-

ing the satisfiability of PL formulae. However, an algorithmic method can easily be

implemented in order to decide satisfiability of PL formulae.

Definition 2.7. A PL formula is satisfiable with respect to a class of interpretations if

there exists an assignment to its variables under which the formula evaluates to true.

The input of the algorithm to check the satisfiability is usually a PL formula in conjunc-

tive normal form (CNF).

Definition 2.8. Formally, a PL formula φ is in conjunctive normal form if it consists

of a conjunction of one or more clauses, where each clause is a disjunction of one or

more literals. It has the form
∧

i

(
∨

j lij

)

, where each lij is a literal.

A PL formula can easily be transformed into an equisatisfiable CNF formula in polyno-

mial time using Tseitin’s encoding [172].

Definition 2.9. Two PL formulae are said to be equisatisfiable if they are both satisfiable

or they are both unsatisfiable.

Chapter 2 SAT-based and SMT-based Verification Techniques 19

In Tseitin’s encoding, we add a new literal to each logical operator (e.g., ∧, ∨, and ¬)

in the original PL formula, and several clauses to constrain the value of this literal to

be equal to the expression it represents. The original PL formula is satisfiable iff the

conjunction of these clauses together with the new literal is satisfiable.

As an example, consider the following PL formula:

x1 ⇒ (¬x2 ∨ x3) (2.1)

For this example, let us assign the variable b3 to the subexpression ¬x2, b2 to the

subexpression b3 ∨ x3, and b1 to the implication x1 ⇒ b2, which is also the topmost

operator of this formula. We need to satisfy b1, together with three equivalences, as

follows:

b1 ⇔ x1 ⇒ b2

b2 ⇔ b3 ∨ x3

b3 ⇔ ¬x2 (2.2)

The equivalences can be rewritten to CNF using Definition 2.2 as follows:

(¬b1 ∨ ¬x1 ∨ b2) ∧ (x1 ∨ b1) ∧ (b1 ∨ ¬b2) (2.3)

(¬b2 ∨ b3 ∨ x3) ∧ (¬b3 ∨ b2) ∧ (¬x3 ∨ b2) (2.4)

(¬b3 ∨ ¬x2) ∧ (¬x2 ∨ b3) (2.5)

The overall CNF formula is thus the conjunction of (2.3), (2.4), (2.5), and the unit

clause (i.e., a clause that is composed of a single literal) b1, which represents the topmost

operator. The propositional satisfiability (SAT) problem is then to decide if there exists

a satisfying assignment to the literals of the PL formula φ (in CNF) to satisfy all clauses.

The algorithm to check the satisfiability of φ is a decision procedure, because given any

formula, the algorithm always terminates with a “correct” yes/no answer after some

finite amount of computation.

Modern decision procedures to check the satisfiability of PL formulae in CNF are based

on a variant of the Davis-Putnam-Logemann-Loveland algorithm (DPLL), which consists

essentially of two steps: (i) choose a truth value for some literal and (ii) propagate the

implications of this decision that are easy to infer. This method is known as unit

propagation, which can simplify a set of clauses and thus avoids a large part of the

20 Chapter 2 SAT-based and SMT-based Verification Techniques

naive search space. The algorithm backtracks when a conflict is reached and learns the

assignments to literals of the conflict to avoid reaching the same conflict again.

In this context, a SAT solver is thus an algorithm (based on a variant of the DPLL) that

takes as input a formula φ (which is in CNF) and decides whether it is satisfiable or

unsatisfiable. The formula φ is said to be satisfiable (or sat) if the SAT solver is able to

find an interpretation that makes the formula true (cf. Definition 2.7). The formula φ is

said to be unsatisfiable (or unsat) if none of the interpretations make the formula true.

In the satisfiable case, SAT solvers can provide a model, i.e., a satisfying assignment to

the propositional variables of the formula φ. In the unsatisfiable case, when a SAT solver

concludes that there is no satisfying assignment to φ, its internal steps for concluding

this can be used to construct a resolution proof [154] (and most state-of-the-art SAT

solvers can output such steps that can be used as an independently checkable proof of

unsatisfiability).

Definition 2.10. A resolution proof is a sequence of deduction steps based on the in-

ference rule:

p1∨...∨pn∨(α) q1∨...∨qm∨(¬α)
p1∨...∨pn∨q1∨...∨qm

where p1 ∨ . . . ∨ pn,∨q1 ∨ . . . ∨ qm are literals and α is a variable (also called resolution

variable). The clauses p1 ∨ . . . ∨ pn ∨ (α) and q1 ∨ . . . ∨ qm ∨ (¬α) are called resolving

and p1 ∨ . . . ∨ pn ∨ q1 ∨ . . . ∨ qm is called resolvent.

The intuitive interpretation of resolution is that to satisfy clauses p1 ∨ . . . ∨ pn ∨ (α)

and q1 ∨ . . . ∨ qm ∨ (¬α) that share the resolution variable α but disagree on its value,

either the rest of p1 ∨ . . .∨ pn or the rest of q1 ∨ . . .∨ qm must be satisfied. For example,

consider the following formula in CNF:

φ : (p ∨ ¬q) ∧ q ∧ ¬p (2.6)

from resolution

p ∨ ¬q q

p
(2.7)

we can construct

φ1 : (p ∨ ¬q) ∧ q ∧ ¬p ∧ p (2.8)

from resolution

Chapter 2 SAT-based and SMT-based Verification Techniques 21

¬p p

�
(2.9)

we can conclude that the original formula φ is unsatisfiable because the last deduction

step (2.9) ends with empty clause �. Therefore, we can also say that a PL formula

in CNF is unsatisfiable iff there exists a finite series of deduction steps (based on the

inference rule defined in (2.10)) ending with the empty clause.

Although PL formulae can be converted into CNF in polynomial time (using Tseitin’s

encoding as described above), the problem to decide satisfiability of PL formulae be-

longs to the well-known NP-complete [55] class. Much research in the past decade has

advanced the state-of-the-art considerably. For a recent survey on SAT we refer the

reader to [24].

From the verification point of view, a propositional encoding and use of a SAT solver

to reason about programs have two main limitations as follows. First, the size of the

propositional encoding depends directly on the size of the basic data types and arrays

occurring in the program. Consequently, large data-paths in programs involving complex

expressions lead to large propositional formulae. Second, high-level information is lost

when verification conditions are converted into propositional logic. SAT solvers operate

at the bit-level and are thus unable to exploit the structure provided by the higher

abstraction levels. These limitations can be substantially reduced by encoding word-

level information in theories richer than propositional logic and using SMT solvers for

the generated verification conditions.

2.1.3 Satisfiability Modulo Theories

SMT decides the satisfiability of certain first-order formulae using a combination of dif-

ferent background theories and thus generalizes propositional satisfiability by support-

ing uninterpreted functions, linear and non-linear arithmetic, bit-vectors, tuples, arrays,

and other decidable first-order theories (FOL is in general undecidable [37]). Table 2.2

shows some examples of the decidable first-order theories (e.g., equality, bit-vectors,

linear arithmetic, arrays) supported by typical SMT solvers.

Theory Example

Equality z1 = z2 ∧ ¬ (z1 = z3) ⇒ ¬ (z2 = z3)

Bit-vectors ((b >> i) ||2)&1 = 1

Linear Arithmetic (4y1 + 3y2 + 1 ≥ 4) ∨ (y2 − 3y3 + 5 ≤ 3)

Arrays (j = k ∧ select(a, k) = 2) ⇒ select(a, j) = 2

Combined Theories g (select (store (a, c, 12) , c)) 6= g (1) ∧ c− 3 = c− 3

Table 2.2: Examples of First-Order Theories.

A first-order theory T is defined by a signature Σ that consists of a set of functions,

22 Chapter 2 SAT-based and SMT-based Verification Techniques

predicates, and constant symbols (also called nonlogical symbols) and a set of axioms

A that consists of first-order logic formulae in which the only nonlogical symbols that

appear are in Σ [29]. A Σ-formula is a formula that uses nonlogical symbols of Σ, as

well as variables, logical connectives (∧, ∨, ¬), quantifiers (∃ and ∀) and parentheses.

Definition 2.11. Given a Σ-theory T and a quantifier-free formula ψ, we say that ψ

is T -satisfiable if and only if there exists a structure that satisfies both the formula and

the sentences of T , or equivalently, whether T ∪ {ψ} is satisfiable.

Definition 2.12. Given a set Γ∪{ψ} of first-order formulae over a Σ-theory T , we say

that ψ is a T -consequence of Γ, and write Γ |=T ψ, if and only if every model of T ∪ Γ

is also a model of ψ. Checking Γ |=T ψ can be reduced in the usual way to checking the

T -satisfiability of Γ ∪ {¬ψ}.

State-of-the-art SMT solvers are built on top of efficient SAT solvers to speed up the

performance and support the combination of different decidable theories [20, 31, 57]. For

example, SAT solvers do not scale well when reasoning on the propositional encoding

of arithmetical operators (e.g., multiplication), because the operands are treated as

arrays of Booleans and most of the computational effort might be wasted during the

boolean search (e.g., up to 2w factor in the amount of boolean search, where w represents

the width of the data type) [27]. SMT solvers, however, often integrate a simplifier,

which applies standard algebraic reduction rules (e.g., r ∧ false 7→ false) and contextual

simplification (e.g., a = 7 ∧ p (a) 7→ a = 7 ∧ p (7)) before replacing the word-level

operators by bit-level circuit equivalents (i.e., before bit-blasting). Furthermore, SMT

solvers (e.g., [32]) often implement an incremental and layered approach which permits

strengthening incrementally the model of the arithmetic operators and they thus achieve

performance improvements of several orders of magnitude when compared to plain bit-

blasting, as reported in [28]. Consequently, as structural word level information (i.e.,

predicates from various decidable theories) remains in the problem formulation, then

bit-blasting is used by the SMT solvers only as a last resort if higher level and less

expensive techniques are not enough to solve the problem at hand.

The SMT-LIB initiative [164] aims at establishing a common standard for the specifica-

tion of background theories, but the background theories still vary and most of current

SMT solvers provide functions in addition to those specified in the SMT-LIB. There-

fore, we describe here all the fragments that we found in the SMT solvers CVC3 [20],

Boolector [31] and Z3 [57] for the theory of linear, non-linear, and bit-vector arithmetic.

We summarize the syntax of these background theories as follows:

Note that here we use standard notation to describe the above grammar, and we thus

only focus on certain aspects of the notation. In this grammar Fml denotes Boolean-

valued expressions, Trm denotes terms built over integers, reals, and bit-vectors while

op denotes binary operators. The logical connectives con consist of conjunction (∧), dis-

junction (∨), exclusive-or (⊕), implication (⇒), and equivalence (⇔). The interpretation

Chapter 2 SAT-based and SMT-based Verification Techniques 23

Fml ::= Fml con Fml | ¬Fml | Atom
con ::= ∧ | ∨ | ⊕ | ⇒ | ⇔

Atom ::= Trm rel Trm | Var | true | false
rel ::= < | ≤ | > | ≥ | = | 6=

Trm ::= Trm op Trm | ∼ Trm | Var | Const
| select(Trm, i) | store(Trm, i , v)
| Extract(Trm, i , j) | SignExt(Trm, k) | ZeroExt(Trm, k)
| ite(Fml , Trm,Trm)

op ::= + | − | ∗ | / | rem | << | >> | & | | | ⊕ | @

Figure 2.1: Syntax of the Background Theories

of the relational operators (i.e., <, ≤, >, ≥) and the non-linear arithmetic operators

(i.e., ∗, /, rem) depend on whether their arguments are unsigned or signed bit-vectors,

integers or real numbers. Here, the operator rem denotes the signed or unsigned re-

mainder, depending on the arguments. The left- and right-shift operators (i.e., <<, >>)

depend on whether an unsigned or signed bit-vectors encoding is used. We assume that

the type of the expression is clear from the context. The bit-wise operators consist of

and (&), or (|), exclusive-or (⊕), complement (∼), right-shift (>>), and left-shift (<<).

Extract (Trm, i, j) denotes bit-vector extraction from bits i down to j to yield a new

bit-vector of size i− j + 1 while the operator @ denotes the concatenation of the given

bit-vectors. SignExt (Trm, k) extends the bit-vector to the signed equivalent bit-vector

of size w + k, where w is the original width of the bit-vector, while ZeroExt (Trm, k)

extends the bit-vector with zeros to the unsigned equivalent bit-vector of size w + k.

The conditional expression ite(f, t1, t2) takes as its first argument a Boolean formula f

and depending on its value selects either the second or the third argument.

The array theories of SMT solvers are typically based on the two McCarthy axioms [123].

The function select(a, i) denotes the value of array a at index position i and store(a, i,

v) denotes an array that is exactly the same as array a except that the value at index

position i is v if i is within the array bounds and unspecified otherwise. Formally, the

functions select(a, i) and store(a, i, v) can then be characterized by the following two

axioms [20, 31, 57]:

i = j ⇒ select (store (a, i, v) , j) = v

i 6= j ⇒ select (store (a, i, v) , j) = select (a, j)

The first axiom asserts that the value selected at index j is the same as the last value

stored to the index i if the two indices i and j are equal. The second axiom asserts that

storing a value to index i does not change the value at index j, if the indices i and j

are different. In addition to that, equality on array elements is defined by the theory of

equality with uninterpreted functions (i.e., a = b ∧ i = j ⇒ select (a, i) = select (b, j))

and the extensional theory of arrays then allows reasoning about array comparisons as

24 Chapter 2 SAT-based and SMT-based Verification Techniques

follows [20, 31, 57]:

a = b⇐ ∀i · select (a, i) = select (b, i)

a 6= b⇒ ∃i · select (a, i) 6= select (b, i)

The theory of arrays employs the notion of unbounded arrays size, but arrays in software

are typically of bounded size. This means that if an index variable i exceeds the size of

an array in a program, the value returned might be undefined or a crash might occur.

Chapter 3 shows how to generate verification conditions in order to check for array

bounds violation in programs.

Another theory of interest to software verification is the theory of tuples, where it allows

us to model the ANSI-C struct and union datatypes. They provide store and select

operations similar to those in arrays, but working on the tuple elements. Each field of

the tuple is represented by an integer number. Hence, the expression select(t, f) denotes

the field f of tuple t while the expression store(t, f, v) denotes a tuple t that at field

f has the value v and all other tuple elements remain the same. Chapter 3 shows how

structures and unions are encoded using the theory of tuples.

As a running example for background theories, we give a simple SMT formula that uses

three theories (bit-vector arithmetic, theory of arrays, and uninterpreted functions). Let

a be an array, b, c and d be signed bit-vectors of width 16, 32 and 32 respectively, and

let g be an unary function. The function g implies that for all x and y (where x and

y are variables), if x = y, then g (x) = g (y) (congruence rule). Formally, the unary

function g instantiates to the following axiom: ∀x, y.x = y ⇒ g (x) = g (y). In other

words, we say that function g always produces the same result when applied to the same

arguments [29, 58, 133].

g (select (store (a, c, 12) , SignExt (b, 16) + 3)) 6= g (SignExt (b, 16) − c+ 4)

∧SignExt (b, 16) = c− 3 ∧ c+ 1 = d− 4

In order to sum SignExt (b, 16)+3, subtract SignExt (b, 16)−c and compare SignExt (b, 16) =

c− 3, we have first to expand the term SignExt (b, 16) so that the resulting bit-vector,

say b′, extends b to the signed equivalent bit-vector of size 32 (i.e., SignExt (b, 16) thus

extends b to the size w + 16, where w is the original width of the bit-vector b). After

expanding the term SignExt (b, 16), we then obtain the following formula:

g (select (store (a, c, 12) , b′ + 3)) 6= g (b′ − c+ 4) ∧ b′ = c− 3 ∧ c+ 1 = d− 4

Now the bit-vectors b′ and c have the same width. One way of checking the satisfiability

of this formula is to replace b′ by c−3 in the inequality so that we obtain an equivalence

formula such as:

Chapter 2 SAT-based and SMT-based Verification Techniques 25

g (select (store (a, c, 12) , c− 3 + 3)) 6= g (c− 3 − c+ 4) ∧ c− 3 = c− 3 ∧ c+ 1 = d− 4

after using facts about bit-vector arithmetic, this formula can be rewritten as:

g (select (store (a, c, 12) , c)) 6= g (1) ∧ c− 3 = c− 3 ∧ c+ 1 = d− 4

Finally, the theory of arrays implies that the select/store functions reduce the arguments

of function g (select (store (a, c, 12) , c)) to g (12) and the formula becomes:

g (12) 6= g (1) ∧ c− 3 = c− 3 ∧ c+ 1 = d− 4

Consequently, the formula above is satisfiable since there is an assignment to the bit-

vectors c (e.g., c = 5) and d (e.g., d = 10) such that the first (g (12) 6= g (1)), second

(c− 3 = c− 3) and third (c+ 1 = d− 4) terms hold.

2.1.4 Linear-time Temporal logic

Linear-time temporal logic, or simply LTL, is a commonly used specification logic in

bounded model checking [22, 94, 101], which extends propositional logic (discussed in

Subsection 2.1.1) by including temporal operators. It models time by means of a se-

quence of states (denoted by si ∈ S, where i indicates a state in a given time step and

S is the set of states), or computation path (henceforth called π), extending infinitely

into the future (hence the term “linear”, which means that at each state in time there

is a single successor state). In LTL, we are thus able to specify properties of the type

“for some state on the path” or “for every two consecutive states”.

Definition 2.13. The syntax of LTL is defined over a set of atomic propositions, logical

operators and temporal operators as follows:

φ ::= ⊤ | ⊥ | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

| Xφ | Fφ | Gφ | Aφ | φ1Uφ2 | φ1R φ2

The symbols ⊤ and ⊥ are atoms and represent true and false respectively (as described

in Subsection 2.1.1). The logical operators include negation (¬), conjunction (∧), dis-

junction (∨) and implication (⇒). The temporal operators are “next state” (X), “some

future state (eventually)” (F), “all future states (globally)” (G), “along all computation

paths” (A), “until” (U) and “release” (R). An LTL formula can be evaluated over a com-

putation path π (i.e., π = s1 → s2 → . . .→ sn) or over a set of states. LTL formulae are

thus of two kinds: computation path and state formulae. The intuitive interpretation

of the operators X, G, F , U and R over computation path formulae is as follows:

26 Chapter 2 SAT-based and SMT-based Verification Techniques

• X φ means that φ has to hold at the neXt point in time.

• F φ means that φ has to hold at some point in the Future.

• G φ means that φ has to hold Globally (at all future points).

• ψ U φ means that ψ has to hold continuously Until φ holds.

• ψ R φ means that φ has to remain true up to and including the moment when ψ

first becomes true; if ψ never becomes true, φ must remain true forever; ψ Releases

φ.

and the interpretation of the operator A over state formulae is as follows:

• A φ means that φ has to hold along All computation paths.

The operators X, F , G and A are unary, so that X φ, F φ, G φ and Aφ are well-formed

formula whenever φ is a well-formed formula. The operators U and R are binary, so

that ψ U φ and ψ R φ are well-formed formula whenever both ψ and φ are well-formed

formulae. We omit the W operator because R and W are actually quite similar; the

differences are that they swap the roles of ψ and φ, and the clause for W has an i − 1

where R has i (see below the satisfaction relation of the LTL formulae). Figure 2.2

shows the informal semantics of the LTL operators so that each operator is shown in a

computation path π, where each dot represents a state in time (e.g., s1, s2, s3, . . .).

(a) X o p e r a t o r

(b) G o p e r a t o r

(c) F o p e r a t o r

(d) U o p e r a t o r

(e) R o p e r a t o r

(e) R o p e r a t o r

Figure 2.2: LTL semantics for the operators X , G , F , U , and R (when ψ first becomes
true and when ψ never becomes true) over π [94].

Software systems are typically modelled by means of a state transition system M (also

called model).

Definition 2.14. A state transition system, denoted by M , is defined by a triple (S,R, S0)

where S represents the set of states, R ⊆ S × S represents the set of transitions (i.e.,

pairs of states specifying how the system can move from state to state) and S0 ⊆ S

represents the set of initial states.

Chapter 2 SAT-based and SMT-based Verification Techniques 27

{a , b }

{b , c } { c }

S 0

S 1
S 2

Figure 2.3: Example of a Kripke structure (with deadlock) for states s0, s1, and s2
(where s2 has a transition back to itself).

In software systems, a state represents the assignment of values (e.g., Booleans, integers,

characters) to variables. The semantics of an LTL formula is then defined along a

computation path π = s1 → s2 → . . . → sn, which is a sequence of states over M . A

program thus defines the form of its states, the set of transitions between the states,

and the set of computations that it can potentially produce. The set of computations

of a program defines the program itself with the same precision of its source code.

Formally, let πi be a computation path π with a designated formula evaluation position

i. We assume a labelling (or interpretation) function L : S ⇒ 2P mapping L from each

state to the set of propositional variables represented by P . For example, the power set

of {a, b} is {⊘, {a} , {b} , {a, b}} and L is just an assignment of truth values to all the

propositional variables, exactly as it was for the case of interpretation of PL formulae. To

help us define the semantics of LTL formulae, we then extend definition 2.14 to include

the labelling function L : S ⇒ 2P so that M now becomes a quadruple K = (S,R, S0, L),

which is called a Kripke structure.

Definition 2.15. A Kripke structure is a quadruple K = (S,R, S0, L) consisting of a

set of states S, a set of transitions R, a set of initial states S0 (as defined in 2.14) and

a labelling function L : S ⇒ 2P , which defines for each state s ∈ S the set L(s) of all

propositional variables that belong to s.

Note that we can construct an infinite path in a Kripke structure and thus a deadlock

state (i.e., a state with a transition back to itself) might occur in K. Figure 2.3 shows

an example of representation of K, which consists of three states s0, s1 and s2 with

transitions s0 → s1, s0 → s2, s1 → s0, s1 → s2 and s2 → s2; and L (s0) = {a, b},

L (s1) = {b, c} and L (s2) = {c}.

Definition 2.16. Let K = (S,R, S0, L) be a model of our system and π be a path in

K. The formal semantics whether π satisfies an LTL formula φ is thus defined by the

satisfaction relation π |= φ, which extends the satisfaction relation of PL formulae over

temporal operators, as follows:

28 Chapter 2 SAT-based and SMT-based Verification Techniques

πi |= p iff p ∈ L (si)

πi |= ¬p iff πi 6|= p

πi |= φ1 ∧ φ2 iff πi |= φ1 and πi |= φ2

πi |= φ1 ∨ φ2 iff πi |= φ1 or πi |= φ2

πi |= X φ iff πi+1 |= φ

πi |= F φ iff for some i ≥ 1 such that πi |= φ

πi |= G φ iff for all i ≥ 1 , πi |= φ

πi |= φ1 U φ2 iff ∃j ≥ i such that πj |= φ2 and πn |= φ1 for all i ≤ n < j

we have πj |= φ1; or for all k ≥ 1 we have πk |= φ1

πi |= φ1R φ2 iff for all j ≥ i : πj |= φ2 or πn |= φ1 for some i ≤ n < j

πi |= A φ iff π |= φ for all paths π starting in si

According to definition 2.16, the following LTL formulae hold in the transition system

of Figure 2.3:

• s0 |= A (a ∧ b)

• s1 |= A (bU c)

• s2 |= AG c

and the following LTL formulae do not hold in the transition system of Figure 2.3:

• s0 6|= AX (b ∧ c)

• s1 6|= AG c

• s2 6|= AG F a

As an example of how LTL is used to specify properties, consider the classic mutual

exclusion problem in which two threads, say T1 and T2, cannot have simultaneous access

to a common resource CR. Thread Ti is essentially modelled by three locations as

follows:

1. the noncritical section (i.e., a section that does not need exclusive access to CR);

2. the waiting phase, which is entered when the thread intends to enter the critical

section, i.e., access CR; and

3. the critical section (i.e., a section that accesses CR that must not be concurrently

accessed by more than one thread).

Chapter 2 SAT-based and SMT-based Verification Techniques 29

Let the propositions c1 and c2 denote that thread T1 and T2 are in their critical sec-

tion. The safety property stating that T1 and T2 never simultaneously have access to

their critical sections (i.e., at most one thread is in critical section at any time) can be

described by the following LTL formula:

AG (¬c1 ∨ ¬c2) (2.10)

This formula expresses that for all paths π at least one of the two threads is not in its

critical section (expressed by ¬ci).

2.2 Bounded Model Checking of Software

This section presents the formulation of the BMC technique, an overview of complete-

ness methods to prove properties in the BMC framework, and describes typical BMC

architectures used in software verification. It also compares the BMC technique to other

state-of-the-art software verification techniques that are currently used in practice.

2.2.1 Formulation

Bounded model checking (BMC) has been successfully applied to verify software systems

and discovered subtle errors in commercial products. The idea of BMC is to unwind the

program and the correctness properties k times, and generate a propositional formula

that is satisfiable if and only if a counterexample of size k (or smaller) exists [25].

However, the technique is not complete because there might still be a counterexample

that is longer than k. Completeness can only be ensured if we know an upper bound

on the depth of the state space, i.e., if we can ensure that we have already explored

all the relevant behaviour of the system, and searching any deeper only exhibits states

that have already been checked. In BMC of software, the bound k limits the number

of loop iterations and recursive calls occurring in the program. BMC thus analyzes

only bounded program runs and thereby achieves decidability since software verification

in general is undecidable due to infinite program runs (e.g., in reactive or interactive

software systems).

Formally, given a temporal logic property φ to be verified on a finite transition system

M (cf. Definition 2.14), BMC unwinds the system k times and translates it into a

verification condition ψ such that ψ is satisfiable if and only if φ has a counterexample

(i.e., a behaviour which falsifies the property φ) of depth less than or equal to k. The

propositional problem associated with SAT-based BMC is formulated by constructing

the following formula [25]:

30 Chapter 2 SAT-based and SMT-based Verification Techniques

ψk = I (s0) ∧
k−1∧

i=0

R (si, si+1) ∧ ¬φk (2.11)

Here, φk represents a safety property φ in step k, I is the set of initial states of M ,

R (si, si+1) is the transition relation of M at time steps i and i+ 1. Hence, the formula
∧k−1

i=0
R (si, si+1) represents the set of all executions of M of length k. ¬φk represents

the condition that φ is violated in state k, which is reached by a bounded execution of

M of length k. Finally, the resulting (bit-vector) formula is translated to conjunctive

normal form in linear time and passed to a SAT solver for checking satisfiability. Formula

(2.11) can be used to check safety properties [149]. Liveness properties (e.g., starvation,

deadlock) that contain the LTL operator F are checked by encoding ¬φk in a loop within

a bounded execution of length at most k, such that φ is violated on each state in the

loop. In this case, formula 2.11 can be rewritten as:

ψk = I (s0) ∧
k−1∧

i=0

R (si, si+1) ∧

(
k∨

i=0

¬φi

)

(2.12)

where φi is the propositional variable φ at time step i. Thus, this formula can be satisfied

if and only if for some i (i ≤ k) there exists a reachable state at time step i in which φ

is violated.

Definition 2.17. Let M be a transition system. A state s ∈ S is called a reachable

state in M if there exists a finite sequence of state transitions starting from an initial

state s0 and ending in state s, i.e., s0
R0→ s1

R1→ . . .
Rn→ sn = s, where s0

R0→ s1 denotes a

state transition by applying R0.

However, in software verification, the more common application of BMC relies on check-

ing safety properties that contain the LTL operator G. They are typically formalized

using assert statements that encode the properties that have to hold at the respective

location. The safety properties in single- and multi-threaded programs typically check

for out-of-bounds array indexing, NULL-pointer dereferencing, memory leaks, data race,

atomicity and order violations, and arithmetic overflow.

2.2.2 Verification Conditions

BMC analyzes only bounded program runs, but generates verification conditions (VCs)

that reflect the exact path in which a statement is executed, the context in which a given

function is called, and the bit-accurate representation of the expressions. A verification

condition is a logical formula (constructed from the bounded program and desired cor-

rectness properties) whose validity implies that the program’s behaviour agrees with its

specification [12, 29, 74, 109]. Correctness properties in programs can be specified by the

Chapter 2 SAT-based and SMT-based Verification Techniques 31

user via assert statements or automatically generated from a specification language as

in [16]. If all of a bounded program’s VCs are valid, then the program is in compliance

with its specification up to the given bound.

In this thesis, we are concerned with verification conditions expressed in quantifier-

free first-order logic formulae (over finite data structures) such as those presented in

Table 2.2. As example, we consider a simple C program (slightly modified from [109])

with an exponential number of paths as shown in Figure 2.4(a); the corresponding C

program in single static assignment (SSA) form [9] is shown in Figure 2.4(b). Note

that the SSA form is an intermediate representation used by compilers to facilitate

optimizations and transformations of the program code. The common property in SSA

form is that every variable has only one definition in the program text. This is achieved

by introducing a fresh variable from the original name (e.g., with a subscript) such that

every assignment has a unique left hand side as shown in Figure 2.4(b).

1 #include <assert.h>
2 int x[N], a;
3 ...
4 int main(void) {
5 a=N;
6 for(int i=0; i<N; i++)
7 if (x[i]>1)
8 a--;
9 assert(a<=N);

10 return 0;
11 }

(a)

1 a1 = N
2 a2 = (x[0] > 1) ? a1 - 1 : a1
3 a3 = (x[1] > 1) ? a2 - 1 : a2
4 a4 = (x[2] > 1) ? a3 - 1 : a3
5 ...
6 an+1 = (x[N-1] > 1) ? an - 1 : an

(b)

Figure 2.4: (a) A simple C program with a for loop. (b) The corresponding unwound
C program of (a) converted into SSA form.

Apart from that, this program has an exponential number of paths since each element

of array x can be either greater than one or less than or equal to one. Despite the large

number of paths through the program, BMC unwinds it up to a bound k and translates

it into a VC ψ such that ψ is satisfiable if and only if the assertion (a <= N) fails. Note

that BMC still encodes the states of the program with a size that grows linearly with

N). More precisely, the program in Figure 2.4(a) is converted into the ψ using first-order

logic as follows:

32 Chapter 2 SAT-based and SMT-based Verification Techniques

ψ :=
















a1 = N

∧ a2 = ite (x[0] > 1, a1 − 1, a1)

∧ a3 = ite (x[1] > 1, a2 − 1, a2)

∧ a4 = ite (x[2] > 1, a3 − 1, a3)

∧ . . .

∧ aN+1 = ite (x[N − 1] > 1, aN − 1, aN)

∧¬ (aN+1 ≤ N)
















(2.13)

The ternary operator f ? t1 : t2 shown in Figure 2.4(b) is converted into the condi-

tional expression ite(f, t1, t2) that takes as its first argument the Boolean formula f and

depending on its value selects either the second (i.e., t1) or the third argument (i.e.,

t2). In order to verify that the assertion (a <= N) holds, its negation is added to ψ

and we check whether the entire formula is satisfiable using an off-the-self SMT solver.

As described in Section 2.1, Formula (2.13) can simply be represented as a Boolean

logic circuit, which can further be transformed into a (equisatisfiable) CNF formula over

propositional variables by Tseitin’s transform [172] in linear time and by introducing at

most a linear number of fresh variables. However, checking the validity of a first-order

logic formula in a given background theory is an NP-complete problem [145]).

2.2.3 Completeness

Bounded model checking can be used to find property violations up to the bound k but

not to prove properties, unless an upper bound is known on the depth of the state space,

which is not generally the case. For software verification, we can adopt two different

strategies in order to prove properties: (i) compute the completeness threshold, which

can be smaller than or equal to the maximum number of loop-iterations occurring in

the program or (ii) determine the high-level worst-case execution time (WCET), which

also gives a bound on the maximum number of loop-iterations [24, 45, 72]. However, in

practice, complex software systems involve large data-paths and complex expressions.

Therefore, the verification conditions that arise from BMC of programs become harder

to solve and require substantial amounts of memory to build.

2.2.3.1 Craig Interpolation

One feasible alternative to prove properties in BMC is to compute the Craig interpolants

for inconsistent pairs (or more generally, sets) of formulae [125, 126, 127, 128]. This

alternative approach exploits the SAT/SMT solvers’ ability to produce refutations, i.e.,

proofs that there is no counter-example of depth less than or equal to k. This proof does

not ensure whether a given property holds in the model, but it contains information

about the reachable states of the model.

Chapter 2 SAT-based and SMT-based Verification Techniques 33

Definition 2.18. Given a pair of formulae (A,B), and a proof by resolution for (A,B),

an interpolant for (A,B) is a formula F with the following properties [125, 126]:

• A⇒ F

• F ∧B is unsatisfiable

• F refers only to the common variables of A and B

As an example, consider A = (x1 ∧ x2) and B = (¬x2 ∧ x3). Given that (x1 ∧ x2) must

imply F (or simply that ¬x1 ∨ ¬x2 ∨ F hold) and F ∧ ¬x2 ∧ x3 must be unsatisfiable,

one possible interpolant for the given pair of formulae (A,B) is F = x2 since x2 is also

common to both A and B.

The use of interpolants allows us to define a complete method for finite-state reachability

analysis based on SAT and SMT solvers. In order to show how BMC and interpolation

can be combined, we refer to Section 2.2.1 where we define the Formula (2.11) and the

terms I, R, and φ. Now suppose that Q = I and we partition Formula (2.11) so that the

set of initial states I and the first instance of the transition relation R are in set A, while

the remaining instances of R and the property φ are in set B as shown in Figure 2.5

(note that k is unknown).

R R R R R R R

S 0 S k

A B

S 1 S 2

= > P

Figure 2.5: Computing image by interpolation [125].

Suppose that we use an SMT solver to prove that the A∧B is unsatisfiable, i.e., we use

an SMT solver to conclude that there is no satisfying assignment to A∧B.1 The internal

steps performed by the SMT solvers for reaching this conclusion can be used to construct

a proof of unsatisfiability Π. From this proof, we can derive an interpolant F for the pair

of formulae (A,B), i.e., F = interpolant (Π, A,B). According to Definition 2.18, A must

imply F and since we defined A to be the set of initial states and the first instance of R

(i.e., from Figure 2.5, A = s0∧s1), it follows that F is true in every state reachable from

the initial state in one step. In other words, we can say that F is an over-approximation

of the forward image of I [125, 126]. Also according to Definition 2.18, the formula F ∧B

must be unsatisfiable (from Figure 2.5, B = s2 ∧ s3 ∧ . . . ∧ sk), which means that there

is no state satisfying F that can reach a final state sk. After computing the interpolant

1Note that if at any stage we can satisfy the property φ within k steps from the initial state, then we
have found a counterexample.

34 Chapter 2 SAT-based and SMT-based Verification Techniques

F , we then check whether F implies Q. If F implies Q, then no reachable state can

satisfy the property φ and we can thus conclude that the property holds. However, since

F is an approximation, we can falsely conclude that the final state is reachable. In this

case, we update Q = F ∨ Q and A = F ∧ R0, increase the value of k + 1 and check

whether A ∧ B is unsatisfiable. If A ∧ B is satisfiable, we have found a valid counter-

example (i.e., a path from the initial state to the final state). Otherwise, we compute

the interpolant F = interpolant (Π, A,B) again and check whether F implies Q. We

stop this procedure when we have found a valid counter-example or have proved that

the final state is not reachable (i.e., the property holds). The details of the algorithm

and further information about the use of interpolants in model checking can be found

in [125, 126, 127, 128].

2.2.3.2 K-Induction

Another feasible alternative to prove properties in BMC is to compute invariants by

means of induction [162, 66]. The k -induction method has been successfully applied to

verify hardware designs (represented as finite state machines) using a SAT solver, but

the first attempts to apply this technique to software are only very recent [63]. In order

to present the k -induction method, we use the notation of [63, 66], which describes the

principle via temporal induction (i.e., the induction is carried out over the time steps of

the finite state machines). The simplest form of k -induction consists of two steps: the

base-case and the induction-step. Let I (s) and R (s, s′) encode the set of initial states

and transition relation of the finite transition system M , and let P (s) denote states

satisfying a safety property φ (recall Definition 2.14). The strengthened induction, as

proposed in [66], is then defined by the following formulae:

Basek = I (s0) ∧R (s0, s1) ∧ . . . ∧R (sk−1, sk) ∧ (¬P (s0) ∨ . . . ∨ ¬P (sk))

Stepk = P (s1) ∧R (s1, s2) ∧ . . . ∧ P (sk) ∧R (sk, sk+1) ∧ ¬P (sk+1) (2.14)

The intuitive interpretation of these two formulae are as follows: in the base-case, we

aim to check that P holds in all states reachable from an initial state within k steps (we

assume that k ≥ 0) and in the induction-step, we aim to check that whenever P holds in

k consecutive states s1, . . . , sk, P also holds in the next state sk+1 of the system. In both

cases, we check whether formulae Basek and Stepk, as described above, are unsatisfiable.

An algorithm can then be devised from these two formulae, which unwinds the system

design incrementally and check whether Basek is satisfiable or Stepk is unsatisfiable in

order to determine termination. In particular, if Basek turns to be satisfiable in time

step k, then we have found a violation of the property. If Stepk is unsatisfiable in time

step k, then the property holds.

Chapter 2 SAT-based and SMT-based Verification Techniques 35

2.2.4 BMC Architecture

Here, we overview typical BMC architectures used in software verification, focusing

on the most prominent example, the C Bounded Model Checker (CBMC) [42, 41, 106].

The CBMC tool implements the BMC technique for ANSI-C/C++ programs using SAT

solvers. CBMC can process C/C++ code using the goto-cc tool [179], which compiles

the C/C++ code into equivalent GOTO-programs (i.e., control-flow graphs) using a

gcc-compliant style. The GOTO-programs can then be processed by the symbolic exe-

cution engine. Alternatively, CBMC uses its own, internal parser based on Flex/Bison,

to process the C/C++ files and to build an abstract syntax tree (AST). The type-

checker of the CBMC’s front-end annotates this AST with types and generates a symbol

table. CBMC’s IRep class then converts the annotated AST into an internal, language-

independent format used by the remaining phase of the CBMC front-end.

CBMC derives the VCs using two recursive functions that compute the assumptions or

constraints (i.e., variable assignments) and properties (i.e., safety conditions and user-

defined assertions). 2 CBMC’s VC generator (VCG) automatically generates safety

conditions that check for arithmetic overflow and underflow, array bounds violations,

and null-pointer dereferences. Both functions accumulate the control flow predicates

to each program point and use that to guard both the constraints and the properties,

so that they properly reflect the program’s semantics. Figure 2.6 shows the CBMC

architecture.

C / C + +
s o u r c e

p a r s e
t r e e

I R e p
t r e e

P r o p e r t i e s

B M C ver i f i ca t i on
c o n d i t i o n

S A T
s o l v e r

Figure 2.6: The CBMC Architecture.

Although CBMC implements several state-of-the-art techniques for propositional BMC,

it still has the following limitations [11, 71]: (i) large data-paths involving complex

expressions lead to large propositional formulae due to the number of variables and the

width of data types, (ii) high-level information is lost when the VCs are converted into

propositional logic, and (iii) the size of the encoding increases with the size of the arrays

used in the program.

As an example of the verification process supported by CBMC, Figure 2.7 shows a

syntactically valid C program that writes accidentally to an address outside the allocated

2Section 2.2.2 shows in a nutshell how to construct logical formulae (or VCs) from a program and
desired correctness properties (for further references, we refer the reader to [8, 26, 42, 106]).

36 Chapter 2 SAT-based and SMT-based Verification Techniques

memory region of the array a (line 6). In order to reason about this C program, seven

VCs are generated as follows: the first six VCs check the lower and upper bound of

array a in lines 4, 6 and 7 respectively and the last VC checks the assertion stated by

the user in line 7. However, before actually checking the properties, the front-end of

CBMC performs a set of transformations and converts the program into single static

assignment form, which requires a pointer analysis.3

As a result, the original C program in Figure 2.7(a), when converted into SSA form,

consists only of if -instructions, assignments and assertions as shown in Figure 2.7(b).

Note that the store operator WITH shown in Figure 2.7(b) takes array a, index i, and

value v and produces an array a′ that is exactly the same as array a, except for the

content of a[i] being replaced by v (e.g., a′ = a WITH [i := v], where a′ is the modified

array after the store operation) [43]. Figure 2.7(c) shows the counterexample produced

by the CBMC model checker for the C program in Figure 2.7(a). In this counterexample,

the content for array a is {0, 0}, which violates the invariant a[i+1] = 1 given that i = 0.

F-SOFT [96] is another tool that implements BMC for C programs, which is able to

unwind the entire program. It uses the CIL front-end [140] to parse and simplify the C

code (e.g., re-write switch and while in terms of if and goto statements). F-SOFT also

performs a set of static analysis techniques (e.g., program slicing and range analysis [184])

to reduce the size of the unwound (bit-vector) formula. It also features a SAT solver

that is highly customized to solve the verification problems arising from BMC. The

main architectural difference between F-SOFT and CBMC is that the latter is able

to perform program slicing with respect to the property being checked, but it lacks

the implementation of range analysis to statically determine possible ranges for values

of program variables. Moreover, F-SOFT adopts a block-based approach instead of a

statement-based approach (as in CBMC) to model the software and it is thus able to

get up to 25% of performance improvement if compared to CBMC [96]. The idea of

the block-based approach is to group related statements in a block so that irrelevant

blocks (i.e., those that can not affect the program’s ability to reach the error block) are

simply removed by backward slicing.4 However, the developers of F-SOFT have shown

benchmarks related to system-level UNIX applications (e.g., pppd), but no realistic

examples of embedded software verification have been reported in the literature (and

there is also no quantitative comparison of F-SOFT against CBMC) [96].

2.2.5 Comparison to Other Verification Approaches

Modern software verification tools usually make use of logic to describe states and trans-

formations between system states. In [76], Godefroid et al. propose an SMT-based ap-

3Here, we omit the full details of the process to translate from ANSI-C to SSA form. For further
information about this process and the CBMC model checker, we refer the reader to [46].

4The slice is performed by working backwards from the property of interest to the initial program
location, i.e., by finding all blocks that can affect the property of interest and discarding the others [118].

Chapter 2 SAT-based and SMT-based Verification Techniques 37

1 int main() {
2 int a[2], i=0, x;
3 if (x==0)
4 a[i]=0;
5 else
6 a[i+2]=1; //array bounds violation
7 assert(a[i+1]==1); //violated assertion
8 }

(a)

1 i1 == 0
2 g1 == (x1 == 0)
3 a1 == (a0 WITH [0:=0])
4 a2 == a0
5 a3 == (a2 WITH [2:=1])
6 a4 == (g1 ? a1 : a3)
7 t1 == (a4[1] == 1)

(b)

1 Counterexample:
2

3 State 2 file <built-in> line 19 thread 0
4 --
5 __CPROVER_alloc=(assignment removed)
6

7 State 3 file <built-in> line 20 thread 0
8 --
9 __CPROVER_alloc_size=(assignment removed)

10

11 State 4 file <built-in> line 29 thread 0
12 --
13 __CPROVER_rounding_mode=0 (00000000000000000000000000000000)
14

15 State 6 file example_t.c line 2 function main thread 0
16 --
17 example_t::main::1::i=0 (00000000000000000000000000000000)
18

19 State 9 file example_t.c line 6 function main thread 0
20 --
21 example_t::main::1::a={ 0, 0 }
22

23 Violated property:
24 file example_t.c line 7 function main
25 assertion
26 a[i + 1] == 1

(c)

Figure 2.7: (a) A C program with violated property. (b) The C program of (a) in
SSA form. (c) Counterexample of C program in (a)

38 Chapter 2 SAT-based and SMT-based Verification Techniques

proach called “dynamic” symbolic execution, which extends “static” symbolic execution

by exploiting concrete execution paths to obtain symbolic constraints. The basic idea

of dynamic symbolic execution is to explore different execution paths by selecting and

negating a given branch condition from the symbolic traces. After performing this mod-

ification, the resulting path condition is encoded using the background theories that

are typically supported by SMT solvers and checked for satisfiability. If the modified

path condition is satisfiable, then the SMT solver provides a satisfying assignment that

can be used to guide the execution through new paths. In another related work, Sen

proposes an approach to execute a program concretely and symbolically by combining

random testing and symbolic execution [160]. Both approaches, however, might fail to

compute concrete values that satisfy a given (large) path constraint (which might be

involve complex expressions) due to the solver performance.

Recently, a number of static checkers have been developed that trade off scalability

and precision. PREfix is a static program analysis tool that integrates an SMT solver to

perform bit-precise static analysis [34]. PREfix has been developed and used at Microsoft

to analyze large C/C++ programs. Although PREfix could detect several software bugs

related to arithmetic overflow in the Microsoft products, it may also detect false positive

arithmetic overflow bugs as pointed out in [26]. Calysto [13] and Saturn [180] are also

representative examples of static checker that employ SAT/SMT solvers as back-ends

to solve the verification conditions. These tools, however, do not support fixed-point

operations and are not able to detect buffer overflow bugs (which is the number one issue

as reported in [3]), because they unsoundly approximates loops by unwinding them only

once or twice. As a consequence of this decision, soundness is evidently relinquished for

performance gains.

In extended static checking, a verification condition generator (VCG) is used to con-

vert code annotated with “contracts” into logical formulas. The contracts consist of a

pre-condition assumption inserted at some location in the program that specifies how a

procedure may be called, a post-condition assertion that specifies the resulting state of

a procedure call (i.e., specifies a property that has to hold at the respective location),

and a loop invariant that specifies properties of intermediary system state. The Spec#

programming system is a good example of a tool that integrates contracts for extended

type safety [17]. Spec# uses the low-level procedural language of Boogie [18] to generate

the VCs and the SMT solver Z3 [57] to check the validity of these VCs. The develop-

ment of Boogie and Spec# were essentially inspired by the experiences obtained with

the extended static checker ESC/Java [62]. However, in contrast to Spec#, ECS/Java

employs the Simplify theorem prover [62] to verify user-supplied invariants and thus

important constructs of the programming language (e.g., bitwise operation) are often

encoded imprecisely using axioms and uninterpreted functions.

Explicit-state model checking is an automated technique that, given a model and a

property, systematically checks whether this property holds for a given state in that

Chapter 2 SAT-based and SMT-based Verification Techniques 39

model [14]. It manipulates each state individually as opposed to symbolic model check-

ing, which implicitly manipulates large sets of states (by applying data structures such as

BDDs or SAT/SMT procedures). State space reduction techniques such as partial-order

reduction thus takes advantage of the explicit-state model checking technique because

it is much easier to capture and exploit transitions that are independent with respect

to individual states than for a set of states [103]. In this scenario, explicit state model

checkers for concurrent programs have been widely used to verify large designs that arise

from the industry.

One of the most robust explicit state model checkers is Spin [90, 91], which is able to

verify software models using a high level specification language called Promela (Spin

also supports the use of embedded C code as part of the Promela code to verify directly

low-level software). Spin implements a number of advanced optimization techniques

to tackle the state explosion by using a compact representation of the search space

and to reduce the number of interleavings by means of partial-order reduction. The

main state compression techniques implemented in Spin include collapse compression (to

avoid replicating a complete description of all local components of the system state) and

bitstate hashing (to store a single bit at the slot indexed by the hash number of the state

to memorize whether the corresponding state has been explored). Additionally, Spin

exploits the use of multi-core computers to leverage parallelism in very large verification

models.

Java Pathfinder (JPF) is another widely used explicit state model checker, which targets

efficient Java bytecode verification [176]; the latest version of JPF also support symbolic

model checking of Java bytecode [185]. JPF implements a set of techniques such as

backtracking (to find different possible execution paths that have not been explored),

state matching (to check whether every new state has already been explored), partial

order reduction (to reduce the number of thread interleavings) and configurable search

strategies (to use heuristics to order and filter the set of states according to the property

being checked). JPF is able to check properties related to data race condition, deadlocks,

heap bounds, unhandled exceptions (e.g. nil-pointer exceptions) and user-specified as-

sertions arising from (concurrent) Java programs. For a recent survey on software model

checking we refer the reader to [100].

2.3 Verification of Multi-threaded Systems

Multi-threaded software is typically difficult to validate with testing methods, mainly

due to two reasons: the non-deterministic executions of the program and the potentially

large state space. On the one hand, as mentioned in Chapter 1, traditional validation

of multi-threaded software aims to test all possible interleaving sequences with the cost

of overloading the system without ensuring complete coverage. On the other hand,

40 Chapter 2 SAT-based and SMT-based Verification Techniques

model checking multi-threaded software can guarantee complete coverage with the cost

of generating an extremely large state space.

In Section 2.2, we introduced the notion of transition systems and we have shown the

model checking problem associated with BMC of single-threaded programs. In BMC of

multi-threaded programs, we still have the same notion of states (i.e., the assignment of

values to variables) as described in the sequential case, but here we must now consider the

interleavings of transitions of different threads. In particular, a multi-threaded program

contains a number of threads that execute in parallel and the execution of a thread is

scheduled in a non-deterministic way by a global system scheduler, as will be explained

in the next section. For now, we informally assume that the operational behaviour of

the threads that run in parallel are given by transitions systems M1, . . . ,Mn (recall

Definition 2.14). We can then define a transition system Mt =
⋃n

j=0
Mj that specifies

the behaviour of the parallel composition of transition systems M1 through Mn.

This section describes mechanisms to model multi-threaded systems by means of tran-

sition systems composed from different individual threads; further information can be

found in textbooks [14, 40]. This then allows us to encode explicitly the interleaving

model into the BMC framework to model check multi-threaded programs.

2.3.1 Concurrency and Interleaving

There are two modes of concurrent execution; asynchronous and synchronous. In the

asynchronous mode, which we consider, only one thread can make progress at a time,

whereas in the synchronous mode all threads can run at the same time. Threads in

asynchronous mode can communicate via message passing or shared variable. In the

message passing model, threads can send/receive messages (comprising zero or more

bytes, data structures, or even segments of code) to/from other threads. In the shared

variable model, a region of memory may be simultaneously accessed by multiple threads

in order to provide communication among them.

Thread synchronization or serialization (e.g., via mutual exclusion or condition variable)

ensures that multiple threads do not access specific regions of memory at the same time.

This means that if one thread started to access a region of memory, any other thread

trying to access this region must wait until the first thread finishes. This work considers

multi-threaded programs with asynchronous mode and assumes that the threads in the

program only communicate through shared (global) variables and synchronize to avoid

the simultaneous access to shared variables. Note that this assumption also applies

to the verification of software in multi-core systems since asynchronous operation is a

standard solution to avoid contention for memory in multi-core processors [60].

A widely adopted paradigm for multi-threaded programs is that of interleaving. 5 In

5The definition of interleaving is based on the notion of the asynchronous mode, i.e., only one thread

Chapter 2 SAT-based and SMT-based Verification Techniques 41

this paradigm, an interleaving sequence represents a possible execution of the program

where all of the concurrent events are arranged in a linear order. Thus, the notion of

concurrency is represented by that of interleaving, that is, the non-deterministic choice

between activities of the simultaneously acting threads. This perspective is based on the

fact that only one core is available on which the actions of the threads are interleaved.

From the modelling point of view, this concept also applies if the threads run on different

cores. In both cases (single-core or multi-core), there are many interleaving sequences

with different orderings between concurrent events.

The interleaving representation of concurrency depends on a scheduler, which interleaves

the steps of concurrently executing threads according to a given strategy. This type of

representation completely abstracts from the speed of the participating threads and thus

models any possible realization by a single-core machine or by several cores with arbitrary

speeds. From the verification point of view, in order to fully verify a concurrent program

against a given specification, all possible interleaving sequences must be considered. This

can result in an extremely large state space that must be explored by a model checker,

which in turn is the main source of state explosion problem.

As a running example, consider the control-flow graph (CFG) of two threads, say TA and

TB as shown in Figure 2.8, where variables a and b are declared as global. For each thread

Ti, its control-flow graph is a directed graph Ti = 〈Ni, Ei, ni0〉, where Ni is the set of

nodes that represent program statements, Ei is the set of edges that represent transitions

(i.e., saying how each thread Ti can move from node to node) and ni0 is the initial node.

In our example, thread TA = 〈NA, EA, nA0
〉 where the nodes NA = {TA0, TA1, TA2, TA3},

the edges EA = (TA0 → TA1, TA1 → TA2, TA2 → TA3), and the initial node nA0
= TA0,

while thread TB = 〈NB, EB, nB0
〉 where the nodes NB = {TB0, TB1, TB2, TB3}, the edges

EB = (TB0 → TB1, TB1 → TB2, TB2 → TB3), and the initial node nB0
= TB0.

T A 2 : a = a + (b / 3)

T A 3

T A 0

T B 2 : b = b + 3

T B 3

T B 0

T A 1 : a = 2 T B 1 : b = 6

Figure 2.8: The CFG representation of threads TA and TB and we assume that
initially the global variables a and b are set to zero, i.e., a = 0 and b = 0.

We say that a program statement is visible if it accesses a global variable, and it is

invisible otherwise. In our example, we consider that all program statements (i.e., a = 2,

is executed at a given time.

42 Chapter 2 SAT-based and SMT-based Verification Techniques

a = a+ (b/3), b = 6 and b = b+ 3) are visible.

An interleaving represents a possible execution of the program where all of the concurrent

events are arranged in a linear order. Any change of the active thread in an interleaving

is a context switch. A program statement is considered to be atomic if no context switch

can happen during its execution. Statements that involve at most one global variable

are not affected by context switches. In our example, program statements a = 2, b = 6

and b = b + 3 are atomic while the program statement a = a + (b/3) is not atomic,

because it is affected by context switches.

The CFG that represents all possible interleaving sequences of threads TA and TB is

shown in Figure 2.9. The number of possible interleaving sequences I for a given number

of threads N consisting of s program statements in a program without loops can be

computed as follows [176].

I =

(
∑N

i=1
si

)

!
∏N

i=1
(si!)

(2.15)

In our running example, we have N = 2, sA = 2 and sB = 2 and the number of possible

interleaving sequences is thus:

I =
(2 + 2)!

(2! · 2!)
=

24

6
= 6 (2.16)

The transition system that represents the parallel execution of threads TA and TB is

shown in Figure 2.10. As we can see in Figure 2.10, the choice of two (i.e., those

that have as final state {a = 4, b = 9}) and three (i.e., those that have as final state

{a = 5, b = 9}) interleaving sequences of the threads in Figure 2.8 do not affect the final

state (i.e., they result in the same state when executed in different orders) and so they

generate equivalent interleaving sequences. Unfortunately, this observation is not true

for the example in Figure 2.8, because we have to consider context switches inside the

individual visible statements that involve more than one access to a global variable

(since threads TA and TB share the same global variable b). For example, the program

statement a = a+ (b/3) in Figure 2.8 is thus broken into three different statements (see

nodes TA′

2
, TA′

3
, and TA′

4
in Figure 2.11) so that a context switch may now occur between

these statements. In chapter 4, we show how to break the visible program statements and

check for atomicity violations. In this new scenario, the number of possible interleaving

sequences increases from six (without considering context switches inside the individual

visible statements) to fifteen as follows:

I =
(4 + 2)!

(4! · 2!)
=

720

48
= 15 (2.17)

Chapter 2 SAT-based and SMT-based Verification Techniques 43

T A 2 , T B 0
a = a + (b / 3)

T A 3 , T B 3

T A 0 , T B 0

T A 1 , T B 0
a = 2

T A 1 , T B 1
b = 6

T A 3 , T B 1
b = 6

T A 3 , T B 2
b = b + 3

T A 2 , T B 1
a = a + (b / 3)

T A 1 , T B 2
b = b + 3

T A 2 , T B 2
b = b + 3

T A 2 , T B 2
a = a + (b / 3)

T A 3 , T B 3 T A 3 , T B 3

T A 0 , T B 2
a = a + (b / 3)

T A 3 , T B 3

T A 0 , T B 1
b = 6

T A 1 , T B 1
a = 2

T A 1 , T B 3
a = 2

T A 2 , T B 2
a = a + (b / 3)

T A 2 , T B 1
a = a + (b / 3)

T A 1 , T B 2
b = b + 3

T A 2 , T B 2
b = b + 3

T A 2 , T B 2
a = a + (b / 3)

T A 3 , T B 3 T A 3 , T B 3

Figure 2.9: The CFG that represents all possible interleaving sequences of threads
TA and TB .

However, in order to remove redundant interleaving sequences, partial order reductions

are usually applied to reduce significantly the size of the traversed model (i.e., the

number of possible interleavings to be checked).

2.3.2 Partial Order Reduction Technique

The name Partial Order Reduction (POR) comes from partial order model of program

execution [75]. According to the model, concurrently executed events are not ordered

and each partially ordered execution can correspond to multiple interleaving sequences.

In [146], the name model checking using representatives is used to better describe the

name partial order reduction since the verification is carried out using representatives

from equivalence classes of the behaviours. POR techniques [14, 40, 49, 103, 131] aim

to prune the number of states that have to be searched by model checking algorithms.

This is done by removing interleaving sequences that lead to the same system state, i.e.,

it avoids exploring different equivalent interleavings of the concurrent events.

As an example of the number of states to be searched, consider the parallel composition

of a number of threads T1 through Tn. The size of the state space to be explored,

which consists of the parallel composition of transition systems M1 through Mn (i.e.,

Mt =
⋃n

j=0
Mj), is exponential in the number n of threads and program statements. To

model check a simple LTL property of this system requires an inspection of all states

in the underlying transition system Mt. However, instead of constructing a full state

44 Chapter 2 SAT-based and SMT-based Verification Techniques

T A 2 , T B 0
a = 2 , b = 0

T A 3 , T B 3

T A 0 , T B 0
a = 0 , b = 0

T A 1 , T B 0
a = 2 , b = 0

T A 1 , T B 1
a = 2 , b = 6

T A 3 , T B 1
a = 2 , b = 6

T A 3 , T B 2
a = 2 , b = 9

T A 2 , T B 1
a = 4 , b = 6

T A 1 , T B 2
a = 2 , b = 9

T A 2 , T B 2
a = 4 , b = 9

T A 2 , T B 2
a = 5 , b = 9

T A 3 , T B 3 T A 3 , T B 3

T A 0 , T B 2
a = 0 , b = 9

T A 3 , T B 3

T A 0 , T B 1
a = 0 , b = 6

T A 1 , T B 1
a = 2 , b = 6

T A 1 , T B 3
a = 2 , b = 9

T A 2 , T B 2
a = 5 , b = 9

T A 2 , T B 1
a = 4 , b = 6

T A 1 , T B 2
a = 2 , b = 9

T A 2 , T B 2
a = 4 , b = 9

T A 2 , T B 2
a = 5 , b = 9

T A 3 , T B 3 T A 3 , T B 3

Figure 2.10: The transition system that represents the parallel execution of threads
TA and TB .

T A ’ 2 : t m p 1 = a

T A ’ 5

T A ’ 0

T B ’ 2 : b = b + 3

T B ’ 3

T B ’ 0

T A ’ 3 : t m p 2 = b / 3

T A ’ 4 : a = t m p 1 + t m p 2

T B ’ 1 : b = 6T A ’ 1 : a = 2

Figure 2.11: Model context switches inside individual visible statements

graph, which may be too large to fit in memory, POR techniques aim to build a reduced

state graph using only representatives from the equivalence classes of behaviours.

Naturally, the POR techniques are best suited if applied to concurrent asynchronous

system, because there we can exploit the commutativity of concurrently executed in-

dependent events, i.e., events that result in the same state when executed in different

Chapter 2 SAT-based and SMT-based Verification Techniques 45

orders. In this scenario, POR is done in a way that if the property φ holds on the reduced

model, say M ′ = (S′, R′, S0), it also holds on the original model M = (S,R, S0) (recall

Definition 2.14). This reduction is then based on the notion of independence relation

between transitions (I ⊆ R×R), which is defined as follows.

Definition 2.19. I ⊆ R × R is an independence relation if and only if for each α and

β, where (α, β) ∈ I, the following two conditions hold for all s ∈ S:

1. Transitions α and β may execute in either order from state s, i.e., if α is enabled

in s and s
α
→ s′, then β is enabled in s if and only if β is enabled in s′;

2. Executing either of the two transition α and β starting from state s leads to the

same state s′, i.e., if α and β are enabled in s, there is a unique state s′ such that

s
α,β
→ s′ and s

β,α
→ s′.

The intuitive interpretation of these two conditions is that (1) independent transitions

can neither disable nor enable each other (enabledness), and (2) executing them in either

order results in the same state (commutativity). The dependency relation D is simply

defined as the complement of I, i.e., if two transitions α and β are not independent, then

they are dependent. The partial order reduction thus exploits the dependency relation

that exists between the transitions of the threads. From a pragmatic point of view,

two transitions α (related to thread T1) and β (related to thread T2) are called to be

independent of each other if and only if the execution of α and β in either order results

in the same global state. If interleaving sequences that differ only by such independently

executed events are indistinguishable by a specification, they are called to be equivalent.

It is thus sufficient to select only one interleaving sequence from such equivalence class

as representative to be checked against the specification by a model checking algorithm.

Classic POR algorithms explore at each state s an adequate subset ample(s) of the

transitions enabled (the set of transitions enabled in s is denoted by enabled(s)). This

exploration has to respect a set of conditions based on Definition 2.19:

• Condition C0: ample(s) = ∅ iff enable(s) = ∅.

• Condition C1: Along every path of the (full) state graph starting in s, a transi-

tion that is dependent on a transition α in ample(s) must be preceded by α, i.e,

transition α has to occur first.

• Condition C2: if ample(s) 6= enabled(s), then each transition α in ample(s)

must be invisible w.r.t. property φ.

• Condition C3: If for each state s ∈ S of a cycle in reduced model M ′, a transition

α is enabled, then α must be in ample(s).

46 Chapter 2 SAT-based and SMT-based Verification Techniques

Conditions C0 to C3 are sufficient to guarantee that the resulting (reduced) model M ′

preserves properties specified in LTL (described in Section 2.2) [14, 40].

2.4 Summary

This chapter described the main concepts needed to understand this thesis. In Sec-

tion 2.1, Logical Foundations, we introduced PL syntax and semantics along with some

examples. We defined a mechanism to check whether a given PL formula is true or false

by means of interpretations. In particular, we showed that given a PL formula and an

interpretation, the truth value of a formula can be computed by a truth table (most

commonly used for evaluating PL formulae) or by induction (which is most suitable for

evaluating first-order logic formulae). We also described the problem of deciding the

satisfiability of PL formulae and how SAT solvers deal with this problem. In Subsec-

tion 2.1.3, we described the SMT problem, which aims to decide the satisfiability of

first-order logic formulae using a combination of different background theories. We also

presented the main background theories implemented in modern SMT solvers and their

advantages over SAT solvers when reasoning about verification problems arising from

real-world applications. In Subsection 2.1.4, we also described together with some illus-

trative examples the specification logic LTL that is commonly used to specify properties

in the BMC framework.

In Section 2.2, Bounded Model Checking of Software, we presented the BMC technique

that consists of unwinding the design and the correctness property k times, and gener-

ating a propositional formula that is satisfiable if and only if a counterexample exists.

We also discussed that the BMC technique can be used to find violations of the tem-

poral property up to the bound k, but not to prove properties. In Subsection 2.2.3, we

described two methods to prove properties in the BMC framework, which are Craig inter-

polants and k -induction. Craig interpolation in model checking exploits the SAT/SMT

solvers’ ability to produce proof of unsatisfiability. This proof does not ensure whether

a given property holds in the model, but it contains information about the reachable

states of the model. Therefore, the use of interpolants allows us to define a complete

method for finite-state reachability analysis based entirely on SAT and SMT solvers.

The k -induction method is a stronger version of the standard invariant approach to

verify safety properties. We present it as temporal induction (i.e., the induction is

carried out over the time steps of the finite state machines) and we also showed how

to devise an algorithm from the k -induction method to prove properties in the BMC

framework. We also overviewed typical architectures of the BMC technique such as

those implemented in the CBMC and F-SOFT model checkers, which are able to model

check ANSI-C programs. We conclude this section by comparing the BMC technique to

other modern software verification techniques that make use of logic to describe states

and transformations between system states.

Chapter 2 SAT-based and SMT-based Verification Techniques 47

Finally, in Section 2.3, we provided mechanisms to model multi-threaded systems by

means of transition systems, which allow us to encode multi-threaded systems into the

BMC framework. We also presented the concept of asynchronous and synchronous

modes where the former only allows one thread to make progress at a time, and the

latter allows all threads to run at the same time. In this sense, we further presented

the message passing and shared variable models. In the message passing model, threads

can send/receive messages to/from other threads; while in the shared variable model, a

region of memory may be simultaneously accessed by multiple threads in order to provide

communication among them. As in this work we focus on asynchronous systems, we then

described the interleaving paradigm to model multi-threaded programs, which represents

a possible execution of the program where all of the concurrent events are arranged in

a linear order. We thus concluded this section by showing the effectiveness of partial

order reduction techniques to prune the number of states that have to be searched by

model checking algorithms.

Chapter 3

SMT-based Bounded Model

Checking for Embedded ANSI-C

Software

Propositional bounded model checking has been applied successfully to verify embed-

ded software but remains limited by increasing propositional formula sizes and the loss

of high-level information during the translation preventing potential optimizations to

reduce the state space to be explored. These limitations can be overcome by encod-

ing word-level information in theories richer than propositional logic and using SMT

solvers for the generated verification conditions. Here, in order to achieve the first ob-

jective stated in Section 1.2, we have modified and extended the encodings from previous

SMT-based bounded model checkers to provide more accurate support for variables of

finite bit width, bit-vector operations, arrays, structures, unions and pointers. Addi-

tionally, to achieve that objective, we have integrated the Boolector [31], CVC3 [20],

and Z3 [57] solvers with the CProver framework and evaluated them using both stan-

dard software model checking benchmarks and typical embedded software applications

from telecommunications, control systems, and medical devices. The experiments show

that our ESBMC model checker can analyze larger problems than existing tools and

substantially reduce the verification time.

3.1 Introduction

Bounded Model Checking (BMC) based on Boolean Satisfiability (SAT) has been intro-

duced as a complementary technique to Binary Decision Diagrams (BDDs) for alleviating

the state explosion problem [24]. The basic idea of BMC is to check the negation of

a given property at a given depth: given a transition system M, a property φ, and a

bound k, BMC unrolls the system k times and translates it into a verification condition

49

50 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

(VC) ψ such that ψ is satisfiable if and only if φ has a counterexample of depth k or

less. Standard SAT checkers can be used to check whether ψ is satisfiable. Note that in

BMC of software, the bound k limits the number of loop iterations and recursive calls

in the program.

In order to cope with increasing software complexity, SMT (Satisfiability Modulo The-

ories) solvers can be used as back-ends for solving the generated VCs [10, 11, 71, 105].

Here, predicates from various decidable theories are not encoded using propositional

variables as in SAT, but remain in the problem formulation. These theories are handled

by dedicated decision procedures. Thus, in SMT-based BMC, ψ is a quantifier-free for-

mula in a decidable subset of first-order logic which is then checked for satisfiability by

an SMT solver.

In order to reason about embedded software accurately, an SMT-based BMC must

consider a number of issues that are not easily mapped into the theories supported

by SMT solvers. In previous work on SMT-based BMC for software [10, 11, 71] only the

theories of uninterpreted functions, arrays and linear arithmetic were considered, but

no encoding was provided for ANSI-C [95] constructs such as bit-level operations, fixed-

point arithmetic, pointers (i.e., pointer arithmetic and comparisons) and unions. This

limits its usefulness for analyzing and verifying embedded software written in ANSI-C. In

addition, the SMT-based BMC approaches proposed by Armando et al. [10, 11] and by

Kroening [105] do not support the checking of arithmetic overflow and do not make use

of high-level information to simplify the unrolled formula. We address these limitations

by exploiting the different background theories of SMT solvers to build an SMT-based

BMC tool that precisely translates program expressions into quantifier-free formulae

and applies a set of optimization techniques to prevent overburdening the solver. This

way we achieve significant performance improvements over SAT-based BMC and the

previous work on SMT-based BMC [10, 11, 71, 105].

We describe the details of an accurate translation from single-threaded ANSI-C programs

into quantifier-free formulae using the logics QF AUFBV and QF AUFLIRA from the

SMT-LIB [164].

Definition 3.1. The QF AUFBV logic represents quantifier-free formulae that are built

over bit-vectors and arrays with free sort and function symbols, but with the restriction

that all array terms have the following structure (array (bit-vector i[w1]) (bit-vector

v[w2])), where i is the index with bit-width w1 and v is the value with bit-width w2.

Definition 3.2. The QF AUFLIRA logic represents quantifier-free formulae that are

built over reals, integers and arrays with free sort and function symbols, but with the

restriction that all array terms are of the sort (array int real) or (array int (array int

real)), where all argument terms of sort int and real are linear, i.e., there is no occurrences

of the function symbols ∗, /, div, rem, and abs.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 51

We further demonstrate that our encoding and optimizations improve the performance

of software model checking for a wide range of software systems, with a particular em-

phasis on embedded software. Additionally, we show that our encoding allows us to

reason about arithmetic overflow and to verify programs that make use of bit-level,

pointers, unions and fixed-point arithmetic. We also use three different SMT solvers

(Boolector [31], CVC3 [20], and Z3 [57]) in order to check the effectiveness of our en-

coding techniques. We considered these solvers because they were the most efficient

ones for the categories of QF AUFBV and QF AUFLIRA in the last SMT competi-

tions [168]. To the best of our knowledge, this is the first work that reasons accurately

about ANSI-C constructs commonly found in embedded software and extensively applies

SMT solvers to check the VCs emerging from the BMC of industrial embedded software

applications. We implemented our ideas in the ESBMC1 (Efficient SMT-Based Bounded

Model Checker) tool that builds on the front-end of the C Bounded Model Checker

(CBMC) [42, 107]. ESBMC supports different theories and SMT solvers in order to

exploit high-level information to simplify and to reduce the formula size. Experimental

results show that our approach scales significantly better than both the SAT-based and

SMT-based CBMC model checker [42, 107, 105] and SMT-CBMC [11], a bounded model

checker for C programs that is based on the SMT solvers CVC3 and Yices.

The remainder of the chapter is organized as follows. In Section 3.2 we describe the

SMT-based BMC Formulation. In Section 3.3 we provide a running example to illus-

trate our encoding while in Section 3.4 we present the details of an accurate translation

from ANSI-C programs into quantifier-free formulae using the SMT logics. In Section 3.5

we present the results of our experiments using several software model checking bench-

marks and embedded systems applications while in Section 3.6 we describe the results

of applying ESBMC to the verification of a commercial embedded software used in the

telecommunications domain. In Section 3.7 we discuss the related work and we conclude

and describe future work in Section 3.8.

3.2 SMT-based BMC Formulation

In BMC, the program to be analyzed is modelled as a state transition system, which

is extracted from the control-flow graph (CFG) [134]. This graph is built as part of a

translation process from program text to single static assignment (SSA) form. A node in

the CFG represents either a (non-) deterministic assignment or a conditional statement,

while an edge in the CFG represents a possible change in the program’s control location.

Let M be an abstract machine that represents a state transition system according to

Definition 2.14. A state s ∈ S consists of the value of the program counter pc and the

values of all program variables. An initial state s0 assigns the initial program location of

1Available at http://users.ecs.soton.ac.uk/lcc08r/esbmc/

52 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

the CFG to pc. We identify each transition γ = (si, si+1) ∈ R between two states si and

si+1 with a logical formula γ(si, si+1) that captures the constraints on the corresponding

values of the program counter and the program variables.

Given the transition system M, a property φ, and a bound k, BMC unrolls the system k

times and translates it into a VC ψ such that ψ is satisfiable if and only if φ has a counter-

example of length k or less. The VC ψ is a quantifier-free formula in a decidable subset

of first-order logic, which is then checked for satisfiability by an SMT solver. In this

chapter, we are interested in checking safety properties of single-threaded programs. The

associated model checking problem is formulated by constructing the following logical

formula:

ψk = I(s0) ∧
k∨

i=0

i−1∧

j=0

γ(sj , sj+1) ∧ ¬φ(si) (3.1)

Here, φ is a safety property, I the set of initial states of M and γ(sj , sj+1) the transition

relation of M between time steps j and j+1. Hence, I(s0)∧
∧i−1

j=0
γ(sj , sj+1) represents

the executions of M of length i and ψk can be satisfied if and only if for some i ≤ k

there exists a reachable state at time step i in which φ is violated. If ψk is satisfiable,

then φ is violated and the SMT solver provides a satisfying assignment, from which

we can extract the values of the program variables to construct a counter-example. A

counter-example for a property φ is a sequence of states s0, s1, . . . , sk with s0 ∈ S0,

sk ∈ S, and γ (si, si+1) for 0 ≤ i < k. If ψk is unsatisfiable, we can conclude that no

error state is reachable in k steps or less. Note that formula (3.1) differs slightly from

(2.11) (presented in Section 2.2) because it represents a violation of length k or less to

the considered safety property while (2.11) represents a violation of exactly length k.

This means that if the system deadlocks in l ≤ k steps and the error is at step j ≤ l,

then the formula (2.11) turns out to be unsatisfiable and therefore it will not detect the

error.

It is important to note that this approach can be used only to find violations of the

property up to the bound k. In order to prove properties we need to compute the

completeness threshold (CT), which can be smaller than or equal to the maximum

number of loop-iterations occurring in the program [24, 45, 72]. However, computing

CT to stop the BMC procedure and to conclude that no counter-example can be found

is as hard as model checking. Moreover, complex programs involve large data-paths and

complex expressions. Consequently, even if we knew CT, the resulting formulae would

quickly become too hard to solve and require too much memory to build. In practice we

can thus only ensure that the property holds in M up to a given bound k. In our work,

we focus on embedded software because it has characteristics that make it attractive for

BMC, e.g., dynamic memory allocations and recursion are highly discouraged, and that

make the limitations of bounded model checking less stringent.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 53

3.3 Illustrative Example

We use the code shown in Figure 3.1 as a running example to illustrate the process

of transforming a given ANSI-C program into SSA form and then into the quantifier-

free formulae C and P shown in formulas (3.2) and (3.3). This code implements a

simplified version of the character stuffing technique, which avoids resynchronization

after an error by starting each frame with the ASCII character sequence DLE STX and

ending it with the sequence DLE ETX [169]. Note that this syntactically valid ANSI-C

program contains two subtle errors. One error is that it writes in line 28 to an address

outside the allocated memory region of the array out. The second error occurs when

the ASCII character “NULL” is transmitted, i.e., the condition of the while loop (line

11) does not hold; as a result the assert macro in line 29 fails. To detect this error,

we use a non-deterministic input, i.e., we set the third position of array in (line 6) to

nd uchar(), which can return any value in the range from zero to 255.

1 #define DLE 16
2 #define STX 2
3 #define ETX 3
4 uchar nd_uchar();
5 int main (void) {
6 uchar in[6] = {DLE, STX, nd_uchar(),
7 DLE, ETX, ’\0’};
8 uchar out[6];
9 int i = 0;

10 int j = 0;
11 while (in[i] != ’\0’) {
12 switch (in[i]) {
13 case (DLE):
14 if (in[i+1]==STX || in[i+1]==ETX) {
15 out[j] = in[i];
16 } else {
17 out[j] = in[i];
18 out[++j] = DLE;
19 };
20 break;
21 default:
22 out[j] = in[i];
23 break;
24 }
25 i++;
26 j++;
27 }
28 out[j] = ’\0’;
29 assert(out[4]==ETX || out[5]==ETX);
30 return 0;
31 }

Figure 3.1: ANSI-C program with two violated properties.

In reasoning about this C program, ESBMC checks 25 properties (or claims) related to

array bounds and overflow, and the user-specified assertion in line 29. However, before

54 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

actually checking the claims, the front-end unrolls the program using the simplification

described in Section 5.3 and converts it into SSA form, which only consists of conditional

and unconditional assignments as well as assertions, as shown in Figure 3.2. For each

assignment (e.g., i = 0), the left-hand side variable is replaced by a new variable (e.g.,

i1). In addition, in Figure 3.2 the variable declarations as well as the return-statement

are removed. The SSA notation uses WITH as symbolic representation of the array

store operator described in Section 2.1.3, i.e., a WITH [i := v] is equivalent to store(a,

i, v). After unrolling, ESBMC initially generates 63 VCs, but after the simplifications

described in detail in Section 5.3, only 9 remain. The first eight of these VCs check the

bounds of the array out in lines 15, 18 and 28 and the last VC checks the user-specified

assertion in line 29; note that the VCs to check the bounds of the array out are not

simplified away due to the non-determinism in one of the elements of the array in, which

does not allow checking statically whether the guard of the if statement in line 14 is

true or false. For comparison, in this particular example, CBMC v3.8 generates 136

VCs out of which 48 remain after simplification. The limited static analysis capability

of CBMC thus leads to a substantially higher overhead in the solver.

1 in1 == {16, 2, nd_uchar1, 16, 3, 0}
2 i1 == 0
3 j1 == 0
4 out1 == (out0 WITH [0:=16])
5 i2 == 1
6 j2 == 1
7 out2 == (out1 WITH [1:=2])
8 i3 == 2
9 j3 == 2

10 g1 == (nd_uchar1 != 0)
11 g2 == !(nd_uchar1 == 16)
12 out3 == (out2 WITH [2:=nd_uchar1])
13 j4 == 3
14 out4 == (out3 WITH [3:=16])
15 out5 == out2
16 j5 == j3
17 out6 == (out5 WITH [j5:=nd_uchar1])
18 out7 == (!g2 ? out4 : out6)
19 j6 == (!g2 ? j4 : j5)
20 i4 == 3
21 j7 == 1 + j6
22 out8 == (out7 WITH [j7:=16])
23 i5 == 4
24 j8 == 1 + j7
25 out9 == (out8 WITH [j8:=3])
26 i6 == 5
27 j9 == 1 + j8
28 out10 == (!g1 ? out2 : out9)
29 i7 == (!g1 ? i3 : i6)
30 j10 == (!g1 ? j3 : j9)
31 out11 == (out10 WITH [j10:=0])

Figure 3.2: The program of Figure 3.1 in SSA form.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 55

C :=







































in1 = store(store(store(store(store(store(in0,

0, 16),

1, 2),

2, nd uchar1),

3, 16),

4, 3),

5, 0)

∧ i1 = 0 ∧ j1 = 0 ∧ out1 = store (out0, 0, 16)

∧ i2 = 1 ∧ j2 = 1 ∧ out2 = store (out1, 1, 2)

∧ g1 = nd uchar1 6= 0

∧ g2 = ¬ (nd uchar1 = 16)

∧ out3 = store (out2, 2, nd uchar1)

∧ j4 = 3

∧ . . .

∧ j10 = ite (¬g1, j3, j9)

∧ out11 = store (out10, j10, 0)







































(3.2)

P :=






j5 ≥ 0 ∧ j5 < 6 ∧ j7 ≥ 0 ∧ j7 < 6

∧ j8 ≥ 0 ∧ j8 < 6 ∧ j10 ≥ 0 ∧ j10 < 6

∧ ((select (out11, 4) = 3) ∨ (select (out11, 5) = 3))




 (3.3)

After this transformation, we build the constraints and properties as shown in formulae

(3.2) and (3.3) using the background theories of the SMT solvers. Furthermore, we create

additional Boolean variables (called definition literals) for each clause of the formula P

in such a way that the definition literal is true if and only if a given clause of the formula

P is true. In the example we add a constraint for each clause of P as follows:

l0 ⇔ j5 ≥ 0

l1 ⇔ j5 < 6

· · ·

l9 ⇔ ((select (out, 4) = 3) ∨ (select (out, 5) = 3))

These definition literals are used to identify the VCs. Note that the language-specific

safety properties (e.g., out-of-bounds array indexing) and the user-specified properties

that hold trivially in the code are already simplified away (e.g., by keeping track of the

size of the array during the symbolic execution of the code). For instance, there is no

need to generate VCs that check for violations of the lower and upper bound of array

in, since i only takes the values from 0 to 4 when it is used in indexing the array, and

the validity of the bounds check can be evaluated statically. After mapping each VC to

56 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

a definition literal, we then rewrite (3.3) as:

¬P := ¬l0 ∨ ¬l1 ∨ . . . ∨ ¬l9 (3.4)

Finally, the formula C∧¬P is passed to an SMT solver to check satisfiability. Our

approach is thus slightly different from that of Armando et al. [11], who transform the

ANSI-C code into conditional normal form as an intermediary step to encode C and P

while we first apply a number of simplifications (as described in Section 5.3) during the

transformation and then encode the ANSI-C code directly from the simplified SSA form.

Consequently, Armando et al. [11] end up with two sets of quantifier-free formulae C and

P (but possibly with a higher overhead for the solver) and check the validity C |=T

∧
P

using an SMT solver.

3.4 Encodings and Properties

This section describes the encodings that we use to convert the constraints and properties

from the ANSI-C program into the background theories of the SMT solvers.

3.4.1 Scalar Data Types

We provide two approaches to model (unsigned and signed) integer data types, either

as the integers provided by the corresponding SMT-lib theories or as bit-vectors, which

are encoded using a particular bit width such as 32 bits. Table 3.1 shows a list of the

ANSI-C types and their corresponding bit-vector representations, based on the storage

sizes (i.e., number of bits) required by ISO ANSI-C [95]. It also gives the representation

using the abstract numerical domains of the SMT-LIB.

In our SMT-based BMC framework, the encoding of the relational (e.g., <, ≤, >, ≥)

and arithmetic operators (e.g., +, −, /, ∗, rem) then depends on the encoding of their

operands as unsigned or signed bit-vectors, or integer or fixed-point numbers. The SMT-

based BMC approach proposed by Armando et al. [11] does not support the encoding of

fixed-point numbers and Kroening [105] does not exploit the SMT solvers to model the

program variables through the corresponding numerical domain (e.g., Z, R). Addition-

ally, the SAT-based BMC approach of Clarke et al. [42] (note that [42] is the original

paper that describes the CBMC’s implementation; a detailed technical report can be

found in [107]) transform the relational and arithmetic operators into a propositional

equation using a carry chain adder and the size of their encoding thus depends on the

size of the bit-vector representation of the scalar data types.

For the bit-vector encodings, the front-end provides six scalar datatypes: bool, signedbv,

unsignedbv, fixedbv, floatbv, and pointer. The ANSI-C datatypes int, long int, long long

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 57

SMT bit-vector representation SMT abstract

numerical domain

16-bit 32-bit 64-bit

ANSI-C Type architecture architecture architecture

bool bool(1) bool(1) bool(1) bool

char signedbv(8) signedbv(8) signedbv(8) integer

unsigned char unsignedbv(8) unsignedbv(8) unsignedbv(8) unsigned integer

short int signedbv(16) signedbv(16) signedbv(16) integer

unsigned short int unsignedbv(16) unsignedbv(16) unsignedbv(16) unsigned integer

int signedbv(16) signedbv(32) signedbv(32) integer

unsigned int unsignedbv(16) unsignedbv(32) unsignedbv(32) unsigned integer

long int signedbv(32) signedbv(32) signedbv(64) integer

unsigned long int unsignedbv(32) unsignedbv(32) unsignedbv(64) unsigned integer

long long int signedbv(64) signedbv(64) signedbv(128) integer

unsigned long long int unsignedbv(64) unsignedbv(64) unsignedbv(128) unsigned integer

pointer pointer(32) pointer(32) pointer(64) integer

double fixedbv(64) fixedbv(64) fixedbv(64) real

Table 3.1: Definitions of ANSI-C types and their corresponding SMT representations.

int, and char are considered as signedbv with different bit widths (depending on the

machine architecture) and the unsigned versions of these datatypes are considered as

unsignedbv. For double and float we currently only support fixed-point arithmetic (i.e.,

fixedbv) at this point in time, but not full floating-point arithmetic (i.e., floatbv); see

the following section for more details.

We support all type casts, including conversion between integer and fixed-point types. In

the bit-vector representation, the conversions between signedbv, unsignedbv and fixedbv

are performed using the word-level functions Extract (Trm, i, j), SignExt (Trm, k) and

ZeroExt (Trm, k) described in Section 2.1.3. Similarly, upon dereferencing, the object

that a pointer points to is converted using the same word-level functions. The conversions

between signedbv, unsignedbv and fixedbv using the abstract numerical domains are

straightforward; we only consider the integral part. In addition, signedbv and unsignedbv

are converted to bool using the 6=-operator by comparing the variable to be converted

with zero. Formally, let v be a variable of signed or unsigned type, k be a constant whose

value represents zero in the type of v, and t be a Boolean variable such that t ∈ {0, 1}.

We then convert v into t as follows:

t = ite (v 6= k, 1, 0) (3.5)

while bool is converted to signedbv and unsignedbv using the ite-operator as follows:

v = ite (t, 1, 0) (3.6)

58 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

As an illustrative example, consider the fragment of code (extracted from the VERISEC

suite) as shown in Figure 3.3, which contains a do-while loop in lines 4-6 with a halt

condition str [i] != EOS that requires a typecast operation from char to int.

1 #define EOS 0
2 static int parse_expression(char *str) {
3 ...
4 do {
5 ...
6 } while (str[i] != EOS);
7 }

Figure 3.3: ANSI-C program with typecast from char to int.

In order to check the condition str [i] != EOS , we must first select the i -th element of str

and then apply a sign extension to it since EOS is of type signedbv(32) and str is of type

signedbv(8) in a 32-bit architecture. As a result, the encoding SignExt (select(str, i), 24)

extends the i -th element of str to the signed equivalent bit-vector of size 32.

3.4.2 Fixed-Point Arithmetic

Embedded applications from domains such as discrete control and telecommunications

often require arithmetic over non-integral numbers. However, an encoding of the full

floating-point arithmetic into the BMC framework leads to large formulae; instead, we

approximate it by fixed-point arithmetic, which might introduce behaviour that is not

present in a real implementation. We use two different representations to encode non-

integral numbers, binary (when dealing with bit-vector arithmetic) and decimal (when

dealing with rational arithmetic). In this way, we can explore the different background

theories of the SMT solvers and trade off speed and accuracy as further described in

Section 5.4. In both encodings, we encode fixed-point numbers using the integral and

fractional parts separately [109].

Binary encoding. Given a rational number that consists of an integral part I with

m bits and a fractional part F with n bits, we represent it by 〈I.F 〉 and interpret it

as I + F/2n. For instance, the number 0.75 can be represented as 〈0000.11〉 in base 2

while 0.125 can be represented as 〈0000.0010〉. We encode fixed-point arithmetic using

bit-vector arithmetic as in the binary integer encoding (we concatenate the integral and

fractional parts), but we assume that the operands have the same bitwidths both before

and after the radix point. If this is not the case, we pad the shorter bit sequence and add

zeros from the right (if there are bits missing in the fractional part) using the word-level

function ZeroExt or from the left (if there are bits missing before the radix point) using

the word-level function SignExt . Continuing the example, we thus get 0.75 + 0.125 =

〈0000.1100〉 + 〈0000.0010〉.

Formally, let a be a bit-vector of size ta, with ma and na (where ta = ma + na) the

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 59

number of bits of the integral and fractional parts, respectively, and b be a bit-vector of

size tb, with mb and nb defined similarly. We apply the encodings in (3.7) and (3.8) in

order to get the new bit-vector b = i@f that has the same bitwidth before and after the

radix point of a.

i =

{

Extract (b, nb +ma − 1, nb) : ma ≤ mb

SignExt (Extract (b, tb − 1, nb) ,ma −mb) : otherwise

(3.7)

f =

{

Extract (b, nb − 1, nb − na) : na ≤ nb

ZeroExt (Extract (b, nb − 1, 0) , na − nb) : otherwise

(3.8)

Rational encoding. We encode fixed-point arithmetic using rational arithmetic by

rounding the fixed-point numbers to rationals in base 10. We extract the integral and

fractional parts and convert them to integers I and F , respectively; we then divide F

by 2n, round the result to a given number of decimal places, and convert everything to

a rational number in base 10. Formally, let p be the number of decimal places and let

i and f be the integral and fractional parts resp. of a given fixed-point number a. We

apply the encoding in (3.9) in order to convert a to a rational number.

a =

{ (

i ∗ p+
(

f∗p
2n + 1

))

/p : f 6= 0

i : otherwise
(3.9)

For example, with m = 2, n = 16, and six places decimal precision, the number 3.9

(with a binary representation of 11.1110011001100110) is converted to I = 3, and F =

58982/216, and finally to 3899994/100000. As a result, the arithmetic operations are

performed in the domain of Q instead of R and there is no need to add missing bits to

the integer and fractional parts.

In general, the drawback is that some numbers are not precisely represented with fixed-

point arithmetic. As an example, if m = 4 and n=4, then the closest representable

numbers to 0.7 are 0.6875 (〈0000.1011〉) and 0.75 (〈0000.1100〉). As a result, the number

needs to be rounded and the deviation might eventually change the control flow of

the program. However, we have not detected any false results caused by this in our

benchmarks.

3.4.3 Arithmetic Overflow and Underflow

Arithmetic overflow and underflow are frequent sources of bugs in embedded soft-

ware. ANSI-C, like most programming languages, provides basic data types that have

60 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

a bounded range defined by the number of bits allocated to them. Some model check-

ers (e.g., SMT-CBMC [11], F-Soft [71] and Blast [88]) treat program variables either

as unbounded integers or do not generate VCs related to arithmetic overflow, and can

consequently produce false results. In our work, we generate VCs related to arithmetic

overflow and underflow of bit-vectors following the ANSI-C standard. This requires that,

on arithmetic overflow of unsigned integer types (e.g., unsigned int, unsigned long int),

the result must be interpreted using modular arithmetic as r mod 2w, where r is the

expression rooted with the operation that caused overflow and w is the width of the

resulting type in terms of bits [95]. Hence, the result of this encoding is one greater than

the largest value that can be represented by the resulting type. This semantics can be

encoded trivially using the background theories of the SMT solvers. For each unsigned

integer (sub-)expression, we generate a literal lunsigned overflow to represent the validity

of the unsigned operation and add the following definition:

lunsigned overflow ⇔ (r − (r mod 2w)) < 2w

On the other hand, the ANSI-C standard does not define any behaviour on arithmetic

overflow of signed types (e.g., int, long int), and only requires that integer division-

by-zero must be detected. In addition to division-by-zero detection, we consider arith-

metic overflow of signed types on addition, subtraction, multiplication, division and

negation operations by defining boundary conditions. For example, we define a lit-

eral loverflow∗

x,y
that is true iff the multiplication of x and y exceeds LONG MAX (i.e.,

x ∗ y > LONG MAX) and another literal lunderflow∗

x,y
that is true iff the multiplication

of x and y is below LONG MIN. We use a literal lres op∗ to denote the validity of the

signed multiplication with the following definition:

lres op∗ ⇔ (¬loverflow∗

x,y
∧ ¬lunderflow∗

x,y
)

The constraints on addition, subtraction, and division are encoded in a similar way. The

literal overflow∼
x is true if and only if the negation of x is outside the interval given by

LONG MIN and LONG MAX.

3.4.4 Arrays

Arrays are encoded in a straight-forward manner using the SMT domain theories, and we

consider the WITH operator and index operator [] to be part of the encoding [42, 80].

These operators are mapped directly to the functions store and select of the array

theory presented in Section 2.1.3 respectively. The assignment a′ = a WITH ([i] := v)

is encoded as a store operation a′ = store (a, i, v) while a[i] is simply encoded as a select

operation select (a, i). The theory of arrays employs the notion of unbounded arrays size,

but arrays in software are typically of bounded size. This means that if an index variable

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 61

i exceeds the size of an array in a program, the value returned might be undefined or a

crash might occur. As an example, consider the code fragment shown in Figure 3.4. In

order to check for array bounds violation, we simply keep track of the size of the array

and generate for array access (i.e., for both WITH and [] operations) a VC that ensures

that the value of the index is within the known (and fixed) bounds.

1 int i, a[N];
2 ...
3 i=nondet_int();
4 j=nondet_int();
5 ...
6 a[i+j]=2*i;
7 ...

Figure 3.4: Array out of bounds example.

In order to check for the array bounds in line 6 of Figure 3.4, we create a VC to check

the array index i+ j, which does not require the array theory, as follows:

i+ j ≥ 0 ∧ i+ j < N (3.10)

Armando et al. [11] also encode programs with arrays using the array theory of the SMT

solvers, but they do not generate VCs to check for array bounds violation. The SAT-

based version of CBMC generates such VCs but the underlying array representation is

fundamentally different. Each array a of size s is replaced by s different scalar variables

a0, a2, . . . , as−1 and a′ = store(a, i, v) is then represented by the following formula [42,

107]:
s−1∧

j=0

a′j = ((i = j) ∧ v) ∨ (¬ (i = j) ∧ aj) (3.11)

Similarly, b = select(a, i) is represented as follows:

s−1∧

j=0

(i = j) ⇒ (b = aj) (3.12)

The size of the propositional formulae (3.11) and (3.12) depends on the bit-width of

the scalar data types and the size of the arrays occurring in the program, as observed

by [11]. In addition, all high-level structure present in the original formula is lost. In

contrast, our approach yields more compact VCs and keeps the inherent structure.

3.4.5 Structures and Unions

Structures and unions are encoded using the theory of tuples in SMT and we map update

and access operations to the functions store and select of the theory of tuples presented

62 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

in Section 2.1.3. Let w be a structure type, f be a field name of this structure, and v be

an expression matching the type of f. The expression store(w,f,v) returns a tuple that

is exactly the same as w except that the value of field f is v ; all other tuple elements

remain the same. Formally, if w’=store(w,f,v) and j is a field name of w, then:

w′.j =

{

v if j = f,

w.j if j 6= f
(3.13)

In contrast to the situation with arrays, we do not need to generate any VCs, since the

field names cannot be computed at run-time, and illegal names would lead to syntac-

tically incorrect programs. We encode unions in a similar way. The difference is that

we add an additional field tag to indicate the (number of the) field that was used last

for writing into the union. This is used to insert the required type-cast operations if

any subsequent read access uses a different field. As an illustrative example, consider

the fragment of code as shown in Figure 3.5, which contains the union u type and three

assertions to check the value of the u type fields.

1 union u_type {
2 int i;
3 char ch;
4 };
5 int main() {
6 union u_type u;
7 u.i=1;
8 assert(u.i==1);
9 u.ch=’a’;

10 assert(u.ch==’a’);
11 assert(u.i==97);
12 }

Figure 3.5: ANSI-C program with union.

In this example, the union u type is modelled as a tuple u with three fields i, ch and

tag, where tag indicates the field that was used last for writing into the union u. Note

that in our implementation, we identify the fields tag, i and ch by the numbers 0, 1 and

2 respectively. Note that before we generate C and P as shown in (3.14) and (3.15), we

first convert the ASCII character ‘a’ to its respective decimal representation (i.e., 97) in

order to avoid using the word-level functions to typecast the character into an integer.

C :=

[

u1 = store(store(u0, 1, 1), 0, 1)

∧u2 = store(store(u1, 2, 97), 0, 2)

]

(3.14)

P :=






select(u1, select(u1, 0)) = 1

∧select(u2, select(u2, 0)) = 97)

∧select(u2, select(u2, 0)) = 97)




 (3.15)

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 63

In contrast, the SMT-based BMC approach proposed by Armando et al. [11] does not

support unions; Clarke [42, 107] and Kroening [105] encode structs and unions by con-

catenating all fields into a single bit-vector and extracting them again. This approach,

however, might be less scalable because high-level information is lost and therefore, needs

to be re-discovered by the SAT or SMT solver (possibly with a substantial performance

penalty).

3.4.6 Pointers

In ANSI-C, pointers (and pointer arithmetics) are used as alternative to array indexing:

∗(p + i) is equal to a[i], if p has been assigned a (see Figure 3.6). The CProver frame-

work removes all pointer dereferences during the unwinding phase and treats pointers

as program variables. CBMC’s VCG uses the predicate SAME OBJECT to represent

that two pointer expressions point to the same memory location or same object. Note

that SAME OBJECT is not a safety property, but is mainly used to produce sensible

error messages. The VCG generates safety properties that check that (i) the pointer

offset does not exceed the object bounds (represented by LOWER BOUND and UP-

PER BOUND) and (ii) the pointer is neither NULL2 nor an invalid object (represented

by INVALID POINTER). Our approach is similar to the encoding of CBMC into propo-

sitional logic, but we use the background theories such as tuples, integer and bit-vector

arithmetic while CBMC encodes them by concatenating and extracting the bit-vectors,

which operates at the bit-level and is thus less scalable.

We exploit two assumptions about the memory model that is valid in most architectures:

no object has address 0 (i.e., &a 6= NULL and &b 6= NULL) and different objects do

not share the same address (i.e., &a 6= &b). We thus encode pointers into SMT using

two fields of a tuple p such that p.o encodes the object the pointer points to, while the

p.i encodes an offset within that object. Note that the object can be an array, a struct,

or a scalar and that the interpretation of p.i depends on the type of the object: for

arrays, it denotes the index, for structs the field, and for scalar it is fixed to zero. Note

further that we update the object field p.o dynamically (using the store operation of the

tuple theory) to accommodate changes of the object that the pointer points to.

Formally, let pa and pb be pointer variables pointing to the objects a and b and let η

denote the NULL pointer encoded as a unique identifier. We encode SAME OBJECT

by a literal lsame object with the following definition:

lsame object ⇔ (pa.o = pb.o) ∧ (select (pa.o, pa.i) 6= η) ∧ (select (pb.o, pb.i) 6= η) (3.16)

A pointer p may point to a set of objects (denoted by Op) during its lifetime. Whenever p

2Note that the ANSI-C guarantees that the NULL pointer compares to the integer zero and can be
obtained by converting the integer zero to a pointer type.

64 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

is used as array indexing, we check whether p points to some object (in Op) and if so, we

check the upper and lower bounds of p’s index. Formally, in order to check the pointer

index, we define the upper and lower bound of an object b by bu and bl respectively.

We then encode the properties LOWER BOUND and UPPER BOUND by creating two

literals llower bound and lupper bound with the following definitions:

llower bound ⇔ ((pa.o = b ∧ select (pa.o, pa.i) 6= η) ⇒ ¬ (pa.i < bl))

lupper bound ⇔ ((pa.o = b ∧ select (pa.o, pa.i) 6= η) ⇒ ¬ (pa.i ≥ bu)) (3.17)

To check invalid pointers, let ν denote an invalid object that is neither NULL nor a valid

object, i.e., ν is an object that is not any of the existing objects. If p denotes a pointer

expression, we encode the property INVALID POINTER by a literal linvalid pointer with

the following definition:

linvalid pointer ⇔ (p.o 6= ν) ∧ (select (p.o, p.i) 6= η) (3.18)

As example, consider the C program of Figure 3.6 where the pointer p points to the

array a as shown in line 3. We build the constraints and properties shown in (3.19) and

(3.20) so that the assignment p=a in line 3 is converted into a tuple p. The first two

conjuncts p1 = store (p0, 0, a) and p2 = store (p1, 1, 0) of (3.19) store the object (i.e.,

array a) and the index 0 at the first two positions of the tuple p.

1 int main() {
2 int a[2], i, x, *p;
3 p=a;
4 if (x==0)
5 a[i]=0;
6 else
7 a[i+1]=1;
8 assert(*(p+2)==1); //violated
9 }

Figure 3.6: C program with pointer to an array.

C :=
















p1 = store (p0, 0, a0)

∧ p2 = store (p1, 1, 0) ∧ g1 = (x1 = 0)

∧ a1 = store(a0, i0, 0)

∧ a2 = a0

∧ a3 = store(a2, 1 + i0, 1)

∧ a4 = ite(g1, a1, a3)

∧ p3 = store (p2, 1, select (p2, 1) + 2)
















(3.19)

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 65

P :=









i0 ≥ 0 ∧ i0 < 2

∧ 1 + i0 ≥ 0 ∧ 1 + i0 < 2

∧ select (p3, 0) = a0 ∧ select (p3, 1) 6= η

∧ select (select (p3, 0) , select (p3, 1)) = 1









(3.20)

In order to check the property specified in line 8, we first add the value 2 to p.i (i.e.,

p3 = store (p2, 1, select (p2, 1) + 2) as shown in the last expression of (3.19)) and then

check whether p and a point to the same memory location (as shown in (3.20)). As the

value returned by select(p3, 1) exceeds the size of the object stored in p3.o, (i.e., array

a), the SAME OBJECT property is violated and thus the assert macro in line 8 fails.

Pointers to structures consisting of n fields with scalar data types are also manipulated

like an array with n elements. This means that the CProver framework allows us to

encode the structures by using the usual update and access operations. If the structure

contains arrays, pointers and scalar data types, then p.i points to the object within the

structure only. As an example, Figure 3.7 shows a C program that contains a pointer

to a struct consisting of two fields (an array a of integer and a char variable b). As

the struct y is declared as global in Figure 3.7 (see lines 1-4), its members must be

initialized before performing any operation [95], as shown in the first two lines of (3.21).

The assignment p = &y (see line 7 of Figure 3.7) is encoded by assigning the structure

y to the field p1.o and the value 0 to the field p1.i. The assertions in line 10 and 11 of

the C program in Figure 3.7 are simply encoded using the select operation of the tuple

theory (presented in Section 2.1.3) as shown in (3.22).

1 struct x {
2 int a[2];
3 char b;
4 } y;
5 int main(void) {
6 struct x *p;
7 p=&y;
8 p->a[1]=1;
9 p->b=’c’;

10 assert(p->a[1]==1);
11 assert(p->b==’c’); //ASCII 99
12 }

Figure 3.7: C program with pointer to a struct.

C :=











y0.b := 0

∧ y1 := store(store(y0.a, 0, 0), 1, 0)

∧ p1.o := y ∧ p1.i := 0

∧ y2 := store(y1, a, store(y1.a, 1, 1))

∧ y3 := store(y2, b, 99)











(3.21)

66 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

P :=

[

select(select(y3, a), 1) = 1

∧ select(y3, b) = 99

]

(3.22)

3.4.7 Dynamic Memory Allocation

Although dynamic memory allocation is discouraged in embedded software, ESBMC is

capable of model checking programs that use it through the ANSI-C functions malloc

and free. We model memory just as an array of bytes and exploit the array theories of

SMT solvers to model read and write operations to the memory array on the logic level.

ESBMC checks three properties related to dynamic memory allocation; in particular,

it checks whether (i) the argument to any malloc, free, or dereferencing operation is a

dynamic object (IS DYNAMIC OBJECT), (ii) the argument to any free or dereferenc-

ing operation is still a valid object (VALID OBJECT), and (iii) whether the memory

allocated by the malloc function is deallocated at the end of an execution (DEALLO-

CATED OBJECT) [48]. The last check extends CProver framework VCG.

Formally, let po be a pointer expression that points to the object o of type t and let m

be a memory array of type t and size n, where n represents the number of elements to

be allocated. In our encoding, the representation of each dynamic object do contains

a unique identifier ρ that indicates the object’s “serial number” in the sequential order

of all dynamically allocated objects (i.e., 0 < ρ ≤ k, where k represents the current

number of dynamic objects). Each dynamic object consists of the memory array m, the

size in bytes of m, the unique identifier ρ and the location in the execution where m is

allocated, which is used for error reporting.

To detect invalid reads/writes, we check whether do is a dynamic object and also whether

po is within the bounds of the memory array. Let i be an integer variable that indicates

the position in which the object pointed to by po must be stored in the memory array

m of size n. We encode IS DYNAMIC OBJECT as a literal lis dynamic object with the

following definition:

lis dynamic object ⇔





k∨

j=1

do.ρ = j



 ∧ (0 ≤ i < n) (3.23)

To check for invalid objects, we add one additional bit field ν to each dynamic object

which indicates whether the object is still alive or not. We set ν to true when the

function malloc is called to denote that the object is alive. When the function free is

called, we update ν to false to denote that the object is no longer alive. We then encode

VALID OBJECT as a literal lvalid object with the following definition:

lvalid object ⇔ (lis dynamic object ⇒ do.ν) (3.24)

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 67

To detect forgotten memory, we check, at the end of the (unrolled) program, for each

dynamic object whether it has been deallocated by the function free. We can use the

existing flag, encoding DEALLOCATED OBJECT as a literal ldeallocated object with the

following definition:

ldeallocated object ⇔ (lis dynamic object ⇒ ¬do.ν) (3.25)

Note that the difference between VALID OBJECT and DEALLOCATED OBJECT is

the location at which they are checked: VALID OBJECT is checked for each access

to a pointer variable, while DEALLOCATED OBJECT is checked only immediately

before the (unrolled) program terminates. Note further that both allocation location

and size of each dynamic object are immutable whereas the bit field ν is updated when

the functions malloc and free are called.

As an illustrative example, consider the fragment of code as shown in Figure 3.8, which

contains two pointers p in line 3 and q in line 4 and allocates three dynamic objects

(do1 in line 3, do2 in line 4 and do3 in line 7) of five bytes each. This program contains a

typical memory leak since the pointer reassignment in line 5 makes the dynamic object

do1 to become an orphan (i.e., do2.ν is set to false in line 6, but do1.ν is still true) and

as a result the literal ldeallocated object that encodes the deallocation of do1 becomes false

(i.e., there is a property violation). The constraints and properties of this program are

shown in (3.26) and (3.27). The intuitive interpretation of these formulae is that the

memory location pointed by p in line 3 (i.e., do1) cannot be freed because there is no

reference to this location, which then results in a memory leak of 5 bytes.

1 #include <stdlib.h>
2 void main(){
3 char *p = malloc(5); // ρ=1
4 char *q = malloc(5); // ρ=2
5 p = q;
6 free(p);
7 p = malloc(5); // ρ=3
8 free(p);
9 }

Figure 3.8: A fragment of an ANSI-C program with dynamic memory allocation.

C :=











do1.ρ = 1 ∧ do1.size = 5 ∧ do1.ν = true ∧ p = do1

∧do2.ρ = 2 ∧ do2.size = 5 ∧ do2.ν = true ∧ q = do2

∧p = do2 ∧ do2.ν = false

∧do3.ρ = 3 ∧ do3.size = 5 ∧ do3.ν = true ∧ p = do3

∧do3.ν = false











(3.26)

P :=
[

¬do1.ν ∧ ¬do2.ν ∧ ¬do3.ν
]

(3.27)

68 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

3.5 Experimental Evaluation

The experimental evaluation of the approach presented in this chapter consists of five

parts. After describing the setup in Section 3.5.1, we compare in Section 3.5.2, the

SMT solvers Boolector, CVC3, and Z3 to identify the most suitable SMT solver for

further experiments. In Section 3.5.3 we check the error detection capability of ESBMC

over a large set of both correct and buggy ANSI-C programs. In the last two sub-

sections, we evaluate ESBMC’s performance relative to that of two other ANSI-C BMC

tools. In Section 3.5.4, we compare ESBMC and SMT-CBMC, using SMT-CBMC’s

own benchmark suite, while we compare ESBMC and CBMC in the final Section 3.5.5,

using a variety of programs, including embedded software used in telecommunications,

control systems, and medical devices. Section 3.6 contains the experimental results of

applying ESBMC and CBMC to the verification of a commercial embedded software.

The purpose of this section is to evaluate both tools ESBMC and CBMC using large

embedded software industrial applications.

3.5.1 Experimental Setup

We used benchmarks from a variety of sources to evaluate ESBMC’s precision and per-

formance, which include embedded systems benchmark suites and applications as well as

other testsuites and applications, such as the SAT solver PicoSAT [23], the open-source

applications flex [153] and git-remote [132], and a flasher manager application [175]. We

also extracted one particular application from the CBMC manual [42] that implements

the multiplication of two numbers using bit-level operations.

The PowerStone [159] suite contains graphics applications, image decompression, paging

communication protocols, engine control applications and group three fax decode. The

SNU-RT [116] suite consists of matrix and signal processing functions such as matrix

multiplication and decomposition, quadratic equations solving, insertion sort algorithm,

cyclic redundancy check, fast Fourier transform, LMS adaptive signal enhancement, and

JPEG encoding. We use the non-deterministic version of these benchmarks where all

inputs are replaced by non-deterministic values. We also a cubic equation solver from

the MiBench [2] suite. The HLS suite [86] contains programs that implement the encoder

and decoder of the adaptive differential pulse code modulation (ADPCM).

The NECLA [157] and VERISEC [110] benchmarks are not specifically related to embed-

ded software, but they allow us to check ESBMC’s error-detection capability easily since

they provide ANSI-C programs with and without known bugs. Here, we use the suffix

“-bad” to denote the subset with seeded errors, and “-ok” to the denote the supposedly

correct (“golden”) versions.3 The programs make use of dynamic memory allocation,

3The detailed results shown in Appendix B also show which programs are “bad” and which are “ok”.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 69

interprocedural dataflow, aliasing, pointers typecast and string manipulation. In addi-

tion, we used some programs from the well-known Siemens [142] test suite, including

pattern matching and string processing, statistics, and aerospace applications. The EU-

REKA [11] benchmarks finally contain programs that allow us to assess the scalability

of the model checking tools on problems of increasing complexity [11].

Unless stated otherwise, all experiments were conducted on an otherwise idle Intel Xeon

5160, 3GHz server with 4 GB of RAM running Linux OS. For all benchmarks, the time

limit has been set to 3600 seconds for each individual property. All times given are wall

clock time in seconds as measured by the unix time command.

3.5.2 Comparison of SMT solvers

As a first step, we compared to which extent the SMT solvers support the domain

theories that are required for SMT-based BMC of ANSI-C programs. For this purpose,

we analyzed the SMT solvers Boolector (V1.4), CVC3 (V2.2), and Z3 (V2.11). In the

theory of linear and non-linear arithmetic, CVC3 and Z3 do not support the remainder

operator, but they allow us to use axioms to define it. Currently, Boolector does not

support the theory of linear and non-linear arithmetic at all. In the theory of bit-

vectors, CVC3 does not support the division and remainder operators for bit-vectors

representing signed and unsigned integers. However, in all cases, axioms can be used in

order to define the missing operators. Boolector and Z3 support all word-level, bit-level,

relational, arithmetic functions over unsigned and signed bit-vectors. In the theories of

arrays and tuples, the verification problems only involve selecting and storing elements

from/into arrays and tuples, respectively, and both domains thus comprise only two

operations. These operations are fully supported by CVC3 and Z3; Boolector supports

only the theory of arrays but not that of tuples.

We then used 15 ANSI-C programs to compare the performance of Boolector, CVC3,

and Z3 as ESBMC back-ends. The programs 1-8 allow us to assess the scalability of the

model checking tools on problems of increasing complexity [11] and the programs 9-15

contain typical ANSI-C constructs found in embedded software, i.e., they contain linear

and non-linear arithmetic and make heavy use of bit operations.

70
C

h
a
p
ter

3
S
M

T
-b

a
sed

B
o
u
n
d
ed

M
o
d
el

C
h
eck

in
g

fo
r

E
m

b
ed

d
ed

A
N

S
I-C

S
o
ftw

a
re

CVC3 (v2.2) Boolector (v1.4) Z3 (v2.11)

Program L B P Solver Total Solver Total Solver Total

1 EUREKA.BubbleSort 43 35 17 14 (3) 17 (5) <1 (<1) 2 (2) <1 (<1) 2 (3)

43 70 17 Mb (16) Mb (33) 3 (1) 16 (17) 3 (1) 16 (17)

43 140 17 Mb (Mb) Mb (Mb) 85 (53) 282 (311) 65 (11) 265 (269)

2 EUREKA.SelectionSort 34 35 17 17 (2) 18 (3) <1 (<1) 1 (1) <1 (<1) 1 (1)

34 70 17 Mb (8) Mb (17) 1 (<1) 9 (10) 1 (1) 9 (11)

34 140 17 Mb (42) Mb (209) 10 (3) 161 (171) 12 (6) 165 (173)

3 EUREKA.BellmanFord 49 20 33 <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

4 EUREKA.Prim 79 8 30 <1 (1) 5 (2) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

5 EUREKA.StrCmp 14 1000 6 4 (444) 11 (454) 192 (248) 195 (257) 32 (37) 35 (46)

6 EUREKA.SumArray 12 1000 7 <1 (106) 1 (107) <1 (<1) 1 (1) 9 (<1) 10 (1)

7 EUREKA.MinMax 19 1000 9 Tb (Mb) Tb (Mb) 38 (2) 42 (7) 2 (1) 6 (7)

8 SNU-RT.InsertionSort 34 35 17 2 (3) 4 (5) <1 (<1) 3 (3) <1 (<1) 3 (3)

34 70 17 3 (11) 14 (24) 4 (<1) 15 (13) 2 (1) 12 (14)

34 140 17 21 (67) 194 (283) 193 (3) 350 (219) 42 (7) 212 (222)

9 SNU-RT.Fibonacci 40 30 4 <1 (<1) 39 (38) <1 (<1) 39 (38) <1 (<1) 39 (38)

10 SNU-RT.bs 95 15 7 <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

11 SNU-RT.lms 258 202 23 97 (17) 225 (324) <1 (<1) 303 (307) 3 (<1) 306 (307)

12 MiBench.Cubic 66 5 5 <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1) <1 (<1)

13 CBMC.BitWise 18 8 1 3 (6) 3 (6) 7 (8) 7 (8) 30 (26) 30 (26)

14 HLS.adpcm encode 149 200 12 <1 (21) 6 (26) <1 (<1) 6 (6) <1 (<1) 6 (6)

15 HLS.adpcm decode 111 200 10 <1 (24) 3 (27) <1 (<1) 3 (3) <1 (<1) 3 (3)

Table 3.2: Results of the comparison between CVC3, Boolector and Z3. Time-outs are represented with T in the Time column; Examples that
exceed available memory are represented with M in the Time column. The subscript b indicates that the error occurred in the back-end.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 71

Table 3.2 shows the results of the comparison. Here, L is the number of lines of code,

B the unwinding bound, and P the number of properties verified, for each ANSI-C

program. We checked for all language-specific safety properties (as described in the

previous sections) as well as user-specified properties. For each solver, we provide the

total time (in seconds) to simultaneously check all properties of each program, using

the specified unwinding bound, as well as the solver time itself. The difference between

both times is spent in the ESBMC front-end. In addition, we provide (in brackets)

the timings using the SMT-LIB interface instead of the native API of the solver.4 The

fastest time for each program is shown in bold. We also indicate whether ESBMC fails

during the verification process, either due to a time out (T) or due to memory overflow

(M). In this set of experiments, all failures occurred in the back-end (i.e., solver), which

is indicated by the subscript b.

As we can see in Table 3.2, if we use the native API of the solvers, Z3 usually runs

slightly faster than Boolector and CVC3; however, both CVC3 and Boolector are faster

for some programs. Generally the differences between the solvers (in particular between

Boolector and Z3) are small, although CVC3 fails for some examples. If we use the

SMT-LIB interface, the situation changes, and Boolector runs slightly faster than Z3

and CVC3. However, similar to case of the native API, it is not always the fastest solver;

again, the differences are generally small, and even smaller than when using the native

API.

Generally, the native API is slightly faster than the SMT-LIB interface, although the

difference is small as well; this happens because in the SMT-LIB interface, we have to

write/read the resulting SMT formula to/from a file in the disk in order to interact

with the SMT solver, which is extremely slower than accessing the SMT solver directly

through the native API. However, there are a few notable exceptions where the SMT-

LIB interface is slightly faster than the native API. Using the SMT-LIB interface, CVC3

scales better for BubbleSort and SelectionSort, but slows down substantially for StrCmp

and SumArray. We manually inspected the respective VCs and found that their structure

is essentially the same. We conclude that the SMT-LIB interface of CVC3 lacks some

optimization during the preprocessing. Similarly, Boolector speeds up for InsertionSort

using the SMT-LIB API, but the structure of the VCs using both APIs is also the same;

similarly, we conclude that the SMT-LIB interface enables some optimization during the

preprocessing.

We decided to continue the evaluation with Z3 and Boolector using both the native and

SMT-LIB APIs since CVC3 does not scale so well and fails to check three benchmarks

BubbleSort, SelectionSort and MinMax.

4See Chapter 5 for a detailed description of the different solver integrations.

72 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

Time Properties Errors

Testsuite #N ΣL ΣP S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

#Ne tr
u
e

fa
ls

e

1 EUREKA 7 787 420 182 543 420 0 - - -

2 NECLA-ok 30 891 254 98 172 212 42 2 3 0

NECLA-bad 10 342 112 37 47 87 25 10 25 0

3 POWERSTONE 9 2857 2031 728 816 2019 12 1 12 0

4 SNU-RT 20 3320 828 15 570 799 29 4 29 0

5 VERISEC-ok 80 4521 2114 128 211 2094 15 9 15 0

VERISEC-bad 83 4569 2024 127 226 1808 216 83 216 0

6 WCET 10 3430 726 7 73 722 4 2 3 1

Table 3.3: Results of the error-detection capability of ESBMC.

3.5.3 Error-Detection Capability

We now analyze to which extent ESBMC is able to handle and detect errors in standard

ANSI-C benchmarks. Table 3.3 summarizes the results. Here, N is the number of

programs in the benchmark suite, while ΣL and ΣP give its total size (in lines of code)

and the total number of properties checked, respectively. The table again shows both

the solver and total verification time. In the last three columns, Ne is the number

of programs in which ESBMC has detected violations of safety properties and user-

specified assertions, “true” reports the number of property violations that correspond

to true, confirmed faults, “false” reports the number of false negatives produced by

ESBMC. The Appendix B gives the complete results.

The EUREKA suite only contains correct programs and ESBMC is able to verify all

properties without producing any false negative. In the NECLA and VERISEC suites,

ESBMC is able to detect errors related to buffer overflow, aliasing, dynamic memory allo-

cation, and string manipulation; in particular, it detects all seeded errors in the versions

NECLA-bad and VERISEC-bad. Moreover, ESBMC could verify two programs that

were originally in NECLA-bad, but did not contain any seeded errors; the benchmark

creators confirmed that these programs were misclassified and subsequently changed the

error seeding [97].

Surprisingly, ESBMC also detects errors in the supposedly correct golden versions. In

NECLA-ok, ESBMC finds three property violations in two programs, which have been

confirmed as true faults by the benchmark creators [97]. The first is an array bounds

violation, caused by an indexing expression x%32 that can become negative for negative

inputs x. The other two are also related to array bounds violations, but are caused by

repeated in-place updates of a buffer using the strcat-function, which also appends a

new NULL-character at the end of the new string formed by the concatenation of both

arguments; this NULL-character then causes the violation in the last iteration of the

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 73

loop. In VERISEC-ok, ESBMC finds 15 property violations in nine programs, which

have also been confirmed by the benchmark creators [36]. All violations are related to

arithmetic overflow on the typecast operation caused by assignments of the form c=i,

where c is declared as a char and i as an int.

In the WCET test suite, ESBMC finds four property violations in two programs, which

we inspected manually. Two violations point to possible overflows that stem from as-

signments between incompatible datatypes (e.g., long int vs. int), which are indeed

errors; a further violation points to a potential division by zero error, which is very

unlikely to be uncovered by testing, as it requires an entire array to be randomly initial-

ized with zeroes. The final property indicates an arithmetic overflow in an expression

StopTime-StartTime, but this is a false negative, since both variables are guaranteed

to be positive at runtime, and moreover, StopTime is always larger than StartTime.

This false negative can be suppressed by adding an assumption on the return values

to the ttime-function that is used to compute both variables. Finally, ESBMC finds

array bounds violations and overflows in arithmetic expressions in four of the SNU-RT

benchmarks and invalid pointers in one of the PowerStone benchmarks; we confirmed

by inspection that these are indeed faults.

3.5.4 Comparison to SMT-CBMC

This subsection describes the evaluation of ESBMC against another SMT-based BMC

developed by Armando et al. [11]. For the evaluation, we took the official benchmark

of the tool [148], because it does not support some of the ANSI-C constructs com-

monly found in embedded software (e.g., bit operations, fixed-point arithmetic, pointer

arithmetic); Table 3.4 summarizes the results. The timings in brackets again refer to

ESBMC’s SMT-LIB interface; we do not report for SMT-CBMC because it does not

output the formula in the SMT-LIB format (SMT-CBMC uses the native API of the

solver only). Note that results given for ESBMC differ from those in Table 3.2: since

SMT-CBMC does not generate any checks for safety properties we used both systems

only to check the single user-specified property. SMT-CBMC has been invoked by set-

ting manually the file name and the unwinding bound (i.e., SMT-CBMC -file Module

-bound B). Furthermore, we compared SMT-CBMC with its default solver (i.e, CVC3

2.2) against ESBMC using both its default solver (i.e., Z3 2.11) as well as CVC3 2.2.

If CVC3 is used as the SMT solver, both tools run out of memory and thus fail to

analyze BubbleSort for large B (B=140). SMT-CBMC runs out of time when analyzing

the program SelectionSort and StrCmp while ESBMC runs out of time for the program

MinMax. ESBMC outperforms SMT-CBMC by a factor of 6-90 for those benchmarks

that do not fail. However, if Z3 is used as solver for ESBMC, the difference between

both tools becomes more noticeable and ESBMC generally outperforms SMT-CBMC by

a factor of 10-200. We can conclude that SMT-CBMC has limitations not only in the

74 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

ESBMC (Z3) ESBMC (CVC3) SMT-CBMC

Module L B P Solver Total Solver Total Total

1 EUREKA.BubbleSort 43 35 1 <1 (<1) 2 (2) 15 (3) 16 (3) 100

43 60 1 2 (<1) 7 (8) 128 (9) 134 (16) 304

43 70 1 3 (1) 13 (15) Mb (16) Mb (30) 407

43 140 1 68 (11) 259 (265) Mb (Mb) Mb (Mb) M

43 180 1 Mf (Mf) Mf (Mf) Mf (Mf) Mf (Mf) M

2 EUREKA.SelectionSort 34 35 1 <1 (<1) <1 (<1) <1 (<1) <1 (<1) T

34 70 1 <1 (<1) 8 (9) <1 (7) 7.6 (15) T

34 140 1 10 (4) 157 (162) 2 (34) 160 (193) T

34 170 1 18 (6) 336 (344) 2 (53) 323 (392) T

34 180 1 Mf (Mf) Mf (Mf) Mf (Mf) Mf (Mf) T

3 EUREKA.BellmanFord 49 20 1 <1 (<1) <1 (<1) <1 (<1) <1 (<1) 43

4 EUREKA.Prim 79 8 1 <1 (<1) <1 (<1) <1 (<1) <1 (<1) 96

5 EUREKA.StrCmp 14 1000 1 25 (30) 27 (38) 3 (253) 7 (261) T

6 EUREKA.SumArray 12 1000 1 9 (<1) 25 (<1) <1 (108) <1 (108) 98

7 EUREKA.MinMax 19 1000 1 2 (1) 6 (6) Tb (Mb) Tb (Mb) 65

Table 3.4: Results of the comparison between ESBMC and SMT-CBMC [11].

verification time (due to the lack of simplification based on high-level information; see

Section 5.3 for more details), but also in the encodings of important ANSI-C constructs

used in embedded software.

3.5.5 Comparison to CBMC

CBMC [42] is one of the most widely used BMC tools for ANSI-C. It has recently been

extended by an SMT backend [105], and in our comparison we tried to use the SMT

solvers Z3 and Boolector (by invoking --z3 or --boolector) for evaluating both

tools CBMC and ESBMC. However, the SMT-based CBMC version failed to check all

benchmarks reported in Table 3.5 due to problems in the SMT back-end. Consequently,

we compare our approach only against the SAT-based CBMC version, which is able to

support most of the benchmarks from Table 3.5; in particular, we compared CBMC

v3.8 and ESBMC v1.15. We invoked both tools by manually setting the file name, the

unwinding bound, the checks for array bounds, pointer safety, division by zero, and

arithmetic over- and underflow.5 Table 3.5 reports the results in the usual format.

As we can see in Table 3.5, SAT-based CBMC is not able to check the module pocsag

due to memory limitations; it times out in five cases and fails in four cases due to errors

in the front-end, and in another five cases due to errors in the back-end. ESBMC runs

out of time to check the modules qurt and ludcmp, but it is able to check seven (of

5 The tools where invoked as follows: cbmc file --unwind B --bounds-check
--div-by-zero-check --pointer-check --overflow-check --string-abstraction and
esbmc file --unwind B --overflow-check --string-abstraction.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 75

eight) properties of the module qurt and fifteen additional benchmarks in comparison to

SAT-based CBMC. Both CBMC and ESBMC find errors in the SNU-RT (as confirmed

in Section 3.5.3). However, ESBMC finds additional confirmed errors (see Section 3.5.3

again) in the WCET, SNU-RT, and PowerStone benchmarks, while CBMC produces

false negatives or fails.

In the case of print tokens2, ESBMC runs out of memory if we try to increase the un-

winding bound to 82, but if we restrict the verification to the function get token, it

finds an array-bounds violation in the golden version. We extracted the counterexam-

ple provided by ESBMC and used it to confirm that this is a true fault. ESBMC also

finds additional errors in flasher manager (violation of a user-specified assertion) and

adpcm encode (array-bounds violation) applications. Moreover, SAT-based CBMC also

produces false negatives for the golden version of the programs ex30 and ex33 by re-

porting non-existing bugs related to dynamic object upper bounds and invalid pointers.

We can also see that ESBMC not only has a better precision than SAT-based CBMC,

but it also runs slightly faster than the SAT-based CBMC in those benchmarks that it

does not fail. The results in Table 3.5 thus allow us to conclude that ESBMC improves

substantially precision and scales significantly better than CBMC for problems that in-

volve tight interplay between non-linear arithmetic, bit operations, pointers and array

manipulations, which are typical for embedded systems software.

3.6 Industrial Case Study

In order to further evaluate ESBMC’s performance relative to CBMC, we analyzed the

embedded software used in a commercial product from NXP semiconductors [141], a

set-top box that is used in high definition internet protocol (IP) and hybrid digital TV

applications. The embedded software of this platform relies on the Linux operating

system and makes use of different applications such as:

1. LinuxDVB that is responsible for controlling the front-end, tuners and multiplex-

ers [6].

2. DirectFB that provides graphics applications and input device handling [5].

3. ALSA that is used to control the audio applications [4].

This platform contains two embedded processors that exchange data via an inter-process

communication (IPC) mechanism using socket (which thus allows the communication

between the two processors).

76
C

h
a
p
ter

3
S
M

T
-b

a
sed

B
o
u
n
d
ed

M
o
d
el

C
h
eck

in
g

fo
r

E
m

b
ed

d
ed

A
N

S
I-C

S
o
ftw

a
re

SAT-based CBMC (v3.8) [42] ESBMC (v1.15)
Time Properties Time Properties

Module L B P S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

F
ai

l

S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

F
ai

l

1 Siemens.print tokens2 510 81∗ 135 <1 <1 135 0 0 <1 (<1) <1 (<1) 135 0 0
(get token) 51 82 76 Tb Tb 0 0 135 29 (35) 60 (65) 134 1 0

2 Siemens.replace 564 1∗ 199 †f †f - - - <1 (<1) <1 (<1) 199 0 0

3 Siemens.tot info 406 30∗ 73 †f †f - - - 32 (3) 98 (79) 73 0 0
4 Siemens.tcas 173 4 38 <1 <1 38 0 0 1 (<1) 2 (1) 38 0 0
5 Siemens.space 9125 126∗ 2016 <1 4 2016 0 0 <1 (<1) 3 (3) 2016 0 0

6 WCET.statistics 157 ∞ 29 †f †f - - - 1 (<1) 53 (53) 27 2 0
7 WCET.statemate 1273 3 6 <1 <1 6 0 0 <1 (<1) <1 (<1) 6 0 0
8 SNU-RT.crc new 125 ∞ 13 <1 6 12 1 0 <1 (<1) 8 (8) 12 1 0

9 SNU-RT.fft1k new 158 ∞ 39 †b †b 35 0 4 <1 (1) 56 (57) 39 0 0
10 SNU-RT.fibcall new 83 50∗ 2 <1 <1 1 1 0 <1 (<1) <1 (<1) 1 1 0
11 SNU-RT.fir new 316 ∞ 25 5 6 25 0 0 <1 (<1) 2 (2) 25 0 0

12 SNU-RT.insertsort new 94 13 20 †b †b 0 0 20 8 (<1) 8 (2) 14 6 0

13 SNU-RT.lms new 256 ∞ 35 †b †b 29 0 6 3 (<1) 24 (24) 35 0 0
14 SNU-RT.ludcmp new 142 ∞ 79 Tb Tb 84 0 4 Tb (Tb) Tb (Tb) 84 0 4
15 SNU-RT.qurt new 159 ∞ 8 Tb Tb 2 0 6 Tb (Tb) Tb (Tb) 7 0 1
16 PowerStone.bcnt 83 17 153 2 3 153 0 0 2 (2) 2 (2) 153 0 0
17 PowerStone.blit 95 1 133 <1 <1 133 0 0 <1 (<1) <1 (<1) 129 4 0
18 PowerStone.pocsag 521 42 187 Mf Mf - - - 4 (<30) 22 (48) 186 1 0
19 NECLA.ex30 45 101 16 <1 2 12 4 0 <1 (<1) 3 (3) 16 0 0
20 NECLA.ex33 35 100 13 <1 <1 6 7 0 <1 (<1) <1 (<1) 13 0 0

21 picosat 8160 23∗ 3142 Tf Tf - - - 27 (†b) 79 (†b) 3142 0 0

22 flex 14192 2∗ 10002 †f †f - - - 3492 (†b) 3526 (†b) 10002 0 0

23 git-remote-gitkrb5 6288 5∗ 174 †b †b 0 0 174 196 (†b) 225 (†b) 174 0 0
24 flasher manager 521 21 26 2 4 26 0 0 25 (22) 29 (27) 25 1 0
25 HLS.adpcm encode 150 100 25 Tb Tb 0 0 25 <1 (<1) 6 (6) 24 1 0

Table 3.5: Results of the comparison between CBMC and ESBMC. Internal errors in the respective tool are represented with † in the Time column.
The subscripts f and b indicate whether the errors occurred in the front-end or back-end, respectively. The superscript ∗ on the unwinding bound

indicates that it is not large enough to prove or falsify the properties.

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 77

We analyzed the following embedded applications:

1. exStbKey: This application checks the DirectFB key codes that are returned when

the remote control or front panel keys are pressed.

2. exStbHDMI: This application is used to set various capabilities of the HDMI device

(e.g., audio rate, video mode) and to read various statuses of the HDMI device

(e.g., sink type, hotplug status).

3. exStbLED: This application is responsible for setting the front panel LED display;

and uses raw keyboard input from the UART to control what is displayed on the

front panel LED display.

4. exStbHwAcc: This application demonstrates the advantages that can be gained by

using the graphics hardware acceleration that is available on the set-top box.

5. exStbResolution: This application is responsible for modifying the framebuffer

dimensions and upscaling by setting framebuffer to be accessed and updating the

width and height of the framebuffer.

6. exStbFb: This application is used to decode image files and display them in a

framebuffer or on a video layer.

7. exStbCc: This application outputs a test closed caption stream.

8. exStbDemo: This application is used to demonstrate a multitude of system features

in an integrated system. It includes support for DVB reception, channel change,

installation, programme information, recording and playback, IP reception and

playback (both unicast and multicast formats), media file playback (elementary

streams and transport streams), image decoding and display manipulation.

As we did in Section 3.5.5, we compare our approach only against the SAT-based CBMC

version, which is able to support most of the benchmarks from Table 3.6; in particular,

we again compared CBMC v3.8 and ESBMC v1.15. We also invoked both tools by

manually setting the file name, the unwinding bound, the checks for array bounds,

pointer safety, division by zero, and arithmetic over- and underflow, as before. Table 3.6

reports the results in the usual format.

Both SAT-based CBMC and ESBMC were able to find a bug in the application exStb-

HwAcc, which is related to an arithmetic overflow on typecast. In a given part of the

program exStbHwAcc, there is a typecast operation of the form (int32 t)(finfo.smem len),

which converts the field smem len of type unsigned integer into a signed integer; and

this is thus considered to be an overflow. ESBMC also found two bugs in the applica-

tion exStbCc, which are related to arithmetic overflow on addition. In this program, we

have the program statement offset[0] += ret guarded by an if condition, but inside an

78 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

infinite loop. Therefore, successive additions of the variable ret to the array offset can

lead to an arithmetic overflow.

We are able to model check the application exStbDemo up to the bound 16, and we do

not find any property violation. If we increase the unwinding bound further to search

deeper on the state space, we are unable to model check exStbDemo due to memory

limitation and time out resp. as shown in lines 8.1 (running on a machine with 4 GB of

RAM) and 8.2 (running on a machine with 28 GB of RAM) of Table 3.6. If we verify the

application exStbDemo function-by-function, we can thus go deeper into the system and

explore more exhaustively the state space. However, ESBMC provides false negatives

related to pointer safety since we assume that the function parameters are unconstrained

(see functions readLine (8.3), getCommand (8.4) and main Thread) (8.15). From this

set of experiments, we can conclude that the size of the programs that state-of-the-art

bounded model checkers can cope with is still restricted (even if we define only small

parts of the program to be verified).

3.7 Related Work

There has been work in the verification of low-level (assembly language) programs for

embedded systems. Thiry and Claesen [170] apply a model checking algorithm based

on binary decision diagrams (BDDs) using the SMV model checker [33] to verify a

mouse controller. In this work, however, the authors use the computational tree logic

(CTL) to model and verify the embedded software. Thiry and Claesen are able to find

inconsistencies between the assembly code and flow chart specifications of the mouse

controller. The drawback of this approach is that it is limited to complexity problems

in the symbolic state space representation and manipulation using BDDs [25].

In another work, Balakrishnan and Tahar extend the BDD-based model checking al-

gorithm to support the more general multiway decision graph (MDG) to avoid some

BDD-size blow-up [15]. The main idea behind MDG is to represent the model at higher

abstract levels using a subset of first order logic (FOL) and then make use of the au-

tomation offered by BDDs-based tools. Balakrishnan and Tahar also verify the mouse

controller case study of [33]. The authors report that with their approach they can also

find inconsistencies between the specification and the code in few seconds. This ap-

proach, however, is applied to verify one small embedded application and consequently

does not demonstrate the verification of real-world embedded software.

C
h
a
p
ter

3
S
M

T
-b

a
sed

B
o
u
n
d
ed

M
o
d
el

C
h
eck

in
g

fo
r

E
m

b
ed

d
ed

A
N

S
I-C

S
o
ftw

a
re

79

SAT-based CBMC (v3.8) [42] ESBMC (v1.15)
Time Properties Time Properties

Module L B P S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

F
ai

l

S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

F
ai

l

1 exStbKey 558 4 33 <1 4 33 0 0 <1 (<1) 1 (1) 33 0 0
2 exStbHDMI 1508 15∗ 138 500 706 138 0 0 316 (†b) 429 (†b) 138 0 0
3 exStbLED 430 50∗ 102 72 122 102 0 0 48 (68) 80 (79) 102 0 0
4 exStbHwAcc 1432 3 239 2 6 238 1 0 <1 (†b) 1 (†b) 238 1 0
5 exStbResolution 353 50 79 †b †b 0 0 70 26 (59) 59 (61) 70 0 0
6 exStbFb 689 10 218 484 825 167 0 0 52 (†b) 101 (†b) 167 0 0
7 exStbCc 331 3 21 <1 3 19 2 0 <1 (<1) <1 (<1) 19 2 0
8 exStbDemo 14841 16∗ 471 †f †f - - - <1 (<1) 6 (7) 471 0 0

exStbDemo [4 GB] 14841 17 471 †f †f - - - Mf (Mf) Mf (Mf) - - -
exStbDemo [28 GB] 14841 17 471 †f †f - - - Tf (Tf) Tf (Tf) - - -

8.1 threadRename 6 17 0 <1 3 0 0 0 <1 (<1) 3 (3) 0 0 0
8.2 fileExists 19 17 0 <1 3 0 0 0 <1 (<1) 3 (3) 0 0 0
8.3 readLine 27 17 11 <1 3 10 1 0 <1 (<1) 3 (3) 10 1 0
8.4 getCommand 269 17 61 <1 6 60 1 0 <1 (<1) 3 (3) 60 1 0
8.5 powerDown 9 17 0 <1 2 0 0 0 <1 (<1) 2 (2) 0 0 0
8.6 digitStart 12 17 0 <1 2 0 0 0 <1 (<1) 2 (2) 0 0 0
8.7 digitAdd 34 17 2 <1 2 2 0 0 <1 (<1) 2 (2) 2 0 0
8.8 checkEndOfPvrStream 32 13 13 <1 2 13 0 0 <1 (<1) 2 (2) 13 0 0
8.9 checkEndOfMediaStream 28 1 1 <1 2 1 0 0 <1 (<1) 2 (2) 1 0 0
8.10 commandLoop 545 17 53 Mf Mf - - - Mf (Mf) Mf (Mf) - - -
8.11 checkCommandParams 238 17 269 Tb Tb 0 0 269 Tb (Tb) Tb (Tb) 0 0 269
8.12 signal handler 13 17 0 <1 2 0 0 0 <1 (<1) 2 (2) 0 0 0
8.13 setupFBResolution 29 17 0 <1 2 0 0 0 <1 (<1) 2 (2) 0 0 0
8.14 setupFramebuffers 115 17 8 <1 3 8 0 0 <1 (<1) 3 (3) 8 0 0
8.15 main Thread 68 17 4 Tf Tf - - - <1 (<1) 4 (4) 3 1 0
8.16 set to raw 8 17 0 <1 3 0 0 0 <1 (<1) 3 (3) 0 0 0
8.17 set to buffered 8 17 0 <1 2 0 0 0 <1 (<1) 2 (2) 0 0 0

Table 3.6: Results of the comparison between CBMC and ESBMC on a industrial case study.

80 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

Lettnin et al. [114] describe a semiformal verification methodology that adopts simu-

lation and formal verification. This solution uses the frontend of BLAST tool [88] to

convert a C program to a CFG and uses the SymC model checker [83] to verify the

design properties. Lettnin et al. apply this methodology in a case study to verify the

locking and unlocking rules of a driver. This approach, however, faces memory overflow

problems due to the BDD-based model checking algorithm and consequently the authors

have to set a threshold on the number of states during the static verification. Lettnin

et al. [115] extends [114] to combine assertion-based verification and symbolic simulation

for the verification of embedded software with hardware dependencies. However, their

approach does not produce counter-examples and therefore becomes hard to debug the

code in case of a failing property.

SMT-based BMC is gaining popularity in the formal verification community due to

the advent of sophisticated SMT solvers built over efficient SAT solvers [20, 31, 57].

Previous work related to SMT-based BMC [71, 181, 11] combined decision procedures

for the theories of uninterpreted functions, arrays and linear arithmetic only, but did

not encode key constructs of the ANSI-C programming language such as bit operations,

fixed-point arithmetic and pointers. Ganai and Gupta describe a verification framework

for BMC which extracts high-level design information from an extended finite state

machine (EFSM) and applies several techniques to simplify the BMC problem [71, 72].

However, the authors flatten structures and arrays into scalar variables in such a way that

they use only the theory of integer and real arithmetic in order to solve the verification

problems that come out in BMC.

Armando et al. also propose a BMC approach using SMT solvers for C programs [11].

However, they only make use of linear arithmetic (i.e., addition and multiplication by

constants), arrays, records and bit-vectors in order to solve the VCs. As a consequence,

their SMT-CBMC prototype does not address important constructs of the ANSI-C pro-

gramming language such as non-linear arithmetic and bit-shift operations. Kroening

also encodes the VCs generated by the front-end of CBMC by using the bit-vector arith-

metic and does not exploit other background theories of the SMT solvers to improve

scalability [105]. Donaldson et al. present an approach to compute invariants in BMC of

software by means of k -induction [63]. Their method, however, is highly customized for

checking assertions representing DMA operations in the Cell processor, which requires

only a small number of loop iterations and thus allows k -induction to work well with

a small value of k. Xu proposes the use of SMT-based BMC to verify real-time sys-

tems by using TCTL to specify the properties [181]. The author considers an informal

specification (written in English) of the real-time system and then models the variables

using integers and reals and represents the clock constraints using linear arithmetic

expressions.

De Moura et al. present a bounded model checker that combines propositional SAT

solvers with domain-specific theorem provers over infinite domains [59]. Differently

Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software 81

from other related work, the authors abstract the Boolean formula and then apply a

lazy approach to refine it in an incremental way. This approach is applied to verify

timed automata and RTL level descriptions. Jackson et al. [98] discharge several VCs

from programs written in the Spark language to the SMT solvers CVC3 and Yices as

well as to the theorem prover Simplify. The idea of this work is to replace the Praxis

prover by CVC3, Yices and Simplify in order to generate counter-example witnesses to

VCs that are not valid. In [99], Jackson and Passmore extend [98] by implementing a

tool to automatically discharge VCs using SMT solvers. The authors observed significant

performance improvement of the SMT solvers if compared to the Praxis prover. Jackson

and Passmore, however, focus on translating VCs into SMT from programs written in the

SPARK language (which is a subset of the Ada language) instead of ANSI-C programs.

Recently, a number of static checkers have been developed in order to trade off scalability

and precision. Calysto is an automatic static checker that is able to verify VCs related

to arithmetic overflow, null-pointer dereferences and assertions specified by the user [13].

The VCs are passed to the SMT solver SPEAR which supports boolean logic and bit-

vector arithmetic and is highly customized for the VCs generated by Calysto. However,

Calysto does not support floating-point operations and unsoundly approximates loops by

unrolling them only once. As a consequence, soundness is relinquished for performance.

Saturn is another automatic static checker that scales to larger systems, but with the

drawback of losing precision by supporting only the most common integer operators and

performing at most two unwindings of each loop [180]. In contrast to [13, 180], the ex-

tended static checker for Java (ESC/JAVA) is a semi-automatic verification tool, which

requires the programmer to supply loop, function, and class invariants and thus limits

its acceptance in practice [69]. In addition, ESC/Java employs the Simplify theorem

prover [62] to verify user-supplied invariants and thus important constructs of the pro-

gramming language (e.g., bitwise operation) are often encoded imprecisely using axioms

and uninterpreted functions.

3.8 Conclusions

In this chapter, we have investigated SMT-based verification of ANSI-C programs, with

a focus on embedded software. In this sense, we have described a new set of encodings

that allow us to reason accurately about bit operations, unions, fixed-point arithmetic,

pointers and pointer arithmetic and implemented it in the ESBMC tool. As far as

we are aware, no encoding into the SMT theories existed that can reliably handle full

ANSI-C. With these encodings we have successfully achieved the first objective stated

in Section 1.2.

Moreover, our experiments constitute, to the best of our knowledge, the first substan-

tial evaluation of SMT-based BMC on industrial applications. The results show that

82 Chapter 3 SMT-based Bounded Model Checking for Embedded ANSI-C Software

ESBMC outperforms CBMC [42] and SMT-CBMC [11] if we consider the verification

of embedded software. ESBMC is able to model check ANSI-C programs that involve

tight interplay between non-linear arithmetic, bit operations, pointers and array manip-

ulations. In addition, it was able to find undiscovered bugs in the NECLA, PowerStone,

Siemens, SNU-RT, VERISEC and WCET benchmarks related to arithmetic overflow,

buffer overflow, invalid pointers and pointer arithmetic.

SMT-CBMC still has limitations not only in the verification time (due to the lack of

simplification based on high-level information), but also in the encodings of important

ANSI-C constructs used in embedded software. CBMC is a SAT-based BMC tool for full

ANSI-C, but it has limitations due to the fact that the size of the propositional formulae

increases significantly in the presence of large data-paths and high-level information is

lost when the VCs are converted into propositional logic (preventing potential optimiza-

tions to reduce the state space to be explored). Its prototype SMT-based back-end is

still unstable and fails on a large fraction of our benchmarks.

Chapter 4

Verifying Multi-threaded

Software using SMT-based

Context-Bounded Model

Checking

We describe and evaluate three approaches to model check multi-threaded software with

shared variables and locks using bounded model checking based on Satisfiability Mod-

ulo Theories (SMT) and our modelling of the synchronization primitives of the Pthread

library in order to achieve the second objective stated in Section 1.2. In the lazy ap-

proach, we generate all possible interleavings and call the SMT solver on each of them

individually, until we either find a bug, or have systematically explored all interleavings.

In the schedule recording approach, we encode all possible interleavings into one single

formula and then exploit the high speed of the SMT solvers. In the underapproximation

and widening approach, we reduce the state space by abstracting the number of inter-

leavings from the proofs of unsatisfiability generated by the SMT solvers. In all three

approaches, we bound the number of context switches allowed among threads in order to

reduce the number of interleavings explored. We implemented these approaches in ES-

BMC, our SMT-based bounded model checker for ANSI-C programs. Our experiments

show that ESBMC can analyze larger problems and substantially reduce the verifica-

tion time compared to state-of-the-art techniques that use iterative context-bounding

algorithms or counter-example guided abstraction refinement.

4.1 Introduction

Bounded model checking (BMC) has already been successfully applied to verify software

and to discover subtle errors in real systems [24]. In an attempt to cope with growing

83

84 Chapter 4 Verifying Multi-threaded Software

system complexity, Boolean Satisfiability (SAT) solvers are increasingly replaced by

Satisfiability Modulo Theories (SMT) solvers to prove the validity of the generated

verification conditions (VCs) [11, 53, 71]. Recently, there have also been attempts to

extend BMC to the verification of multi-threaded software [73, 102, 103, 152]. The

main challenge here is the state space explosion problem, as the number of possible

interleavings grows exponentially with the number of threads and program statements.

However, two important observations can help us. First, most concurrency bugs in real

applications have been found to be shallow so that only a few context switches are

required to expose them [150]. We can thus use a context-bounded analysis [112, 171]

that limits the number of context switches it explores. Second, SAT and SMT solvers

produce unsatisfiable cores that allow us to remove logic that is not relevant to a given

property [129]. Grumberg et al. [84] showed that the unsatisfiable cores can also be

used to control the number of allowed interleavings of the given set of processes. They

proposed a SAT-based BMC method to model check a multi-process system using a

series of under-approximated models. However, their method does not combine context-

bounded analysis with symbolic algorithms, which limits its usefulness for verifying

multi-threaded software. It has also not been applied in conjunction with the SMT

solvers.

In the previous chapter, we extended the encodings from previous SMT-based BMC [11,

71] to provide more accurate support for variables of finite bit width, bit-vector opera-

tions, arrays, structures, unions and pointers. Here, we continue this work and develop

and evaluate three related approaches for model checking multi-threaded ANSI-C soft-

ware. In contrast to previous fully symbolic approaches (e.g., [73, 102, 103, 152, 84]), we

combine symbolic model checking with explicit state space exploration. In particular,

we explicitly explore the possible interleavings (up to the given context bound) while we

treat each interleaving itself symbolically. This approach is similar to the recent ESST

approach by Cimatti et al. [39], but we handle ANSI-C instead of SystemC, we use

BMC instead of predicate abstraction, and place no restrictions on the scheduler. Our

approaches all implicitly use the reachability tree (RT) derived from the system, but

differ in the way they exploit it. In the lazy approach, we traverse the RT depth-first,

and simply call the single-threaded BMC procedure on the interleaving whenever we

reach an RT leaf node. We stop the RT traversal either when we find a bug, or have sys-

tematically explored all interleavings. In the schedule recording approach, we use the RT

to encode all the possible execution paths into one single formula, which is then fed into

the SMT solver. In a third approach, we extend the under-approximation and widening

(UW) algorithm [84] with the purpose of addressing the verification of real-world C code

using different background theories and SMT solvers.

This chapter makes two major novel contributions. First, we exploit SMT to improve

BMC of multi-threaded software. We describe a comprehensive SMT-based BMC proce-

dure to support the checking of multi-threaded C programs that use the synchronization

Chapter 4 Verifying Multi-threaded Software 85

primitives of the POSIX Pthread Library [135]. Second, we describe and evaluate three

related approaches to SMT-based BMC. This work also marks the first application of the

UW algorithm in combination with context-bounded model checking to verify non-trivial

multi-threaded C software. Experiments obtained with the extended ESBMC show that

our approaches can analyze larger problems and substantially reduce the verification time

compared to state-of-the-art techniques that use iterative context-bounding algorithms

and others that implement counter-example guided abstraction refinement (CEGAR)

techniques.

4.2 Preliminaries

In the widely adopted interleaving paradigm for multi-threaded programs, the notion

of concurrency is represented by that of interleaving, i.e., the non-deterministic choice

between activities of the simultaneously acting threads [40]. If only a single core is

available, the actions of the different threads must obviously be interleaved on this core;

however this concept also applies to multiple cores, as there are many different possible

orderings between truly concurrent events [14]. An interleaving represents a possible

execution of the program where all of the concurrent events are arranged in a linear

order. Any change of the active thread in an interleaving is called a context switch.

The interleaving paradigm relies on a scheduler, which selects the concurrently executing

threads according to a given strategy. This abstracts from the speed of the participating

threads and thus models any possible realization by a single-core machine or by several

cores with arbitrary speeds. However, in order to fully verify a multi-threaded program

against a given specification, all possible interleavings must be considered. This results

in a large state space that must be explored by a model checker.

4.2.1 Multi-threaded Goto Programs

We consider multi-threaded ANSI-C programs in asynchronous mode and assume that

all threads in the program only communicate through shared global variables. ESBMC

handles full ANSI-C, but for presentation, we use a minimal language similar to the

internal goto-language of the CBMC model checker [42]. It is expressive enough to

model multi-threaded programs. We summarize the language in Figure 4.1.

A multi-threaded goto-program is a (numbered) list of commands. Commands include

assignments, non-deterministic assignments (V ar = ∗), blocking statements (assume)

to cut off subsequent executions paths, and assertion statements (assert) to indicate

user-specified properties. All control structures are represented by explicit (conditional)

jumps to a statement l ∈ {1, . . . , n}. A thread t is a sublist of commands between

begin thread and end thread. Threads are created via asynchronous procedure calls

86 Chapter 4 Verifying Multi-threaded Software

Prop ::= Var | true | false | Prop ∧ Prop | . . . | Exp = Exp | . . .

Exp ::= Var | Const | Var [Exp] | Exp + Exp | . . .

Cmd ::= skip | Var = Exp | Var = ∗ | assume Prop | assert Prop

| goto l | if Prop goto l | begin atomic | end atomic

| begin thread Id | end thread

| Var = start thread Id | join thread Var

Prog ::=Cmd ; . . . ;Cmd

Figure 4.1: Multi-threaded Goto Program Language

(start thread), which return an integer that can be used as thread identifier for synchro-

nization (join thread); hence, dynamic thread creation is allowed. Atomic statements

(atomic begin and atomic end) indicate that a code segment cannot be preempted by

another thread. Figure 4.2 shows an example of a multi-threaded C program and its

representation in the multi-threaded goto-language. In this running example, we have

three threads t1, t2 and main. Each thread contains one or more effective statements,

i.e., statements that can influence the program state. In our minimal language, the

only effective statements are assignments and assertions, since control-flow tests cannot

influence the state. In the example in Figure 4.2(b), thread t1 contains two effective

statements (in lines 3 and 5), thread t2 contains three (in lines 9, 10 and 12), while

thread main contains one (in line 18).

4.2.2 Formal Model of Multi-threaded Software

The multi-threaded software to be analyzed is modelled as a tuple M = (S, S0, T, V)

(cf. Definition 2.14), where:

• S is a finite set of states, with S0 ⊂ S the set of initial states;

• T = t0, t1, ..., tn is the set of threads, where n represents the total number of

threads;

• V = Vglobal ∪
⋃
Vj where Vglobal is the set of global variables and Vj is the set of

local variables of tj .

We assume that each variable ranges over a finite domain. A state s ∈ S consists of

the values of the global and local variables, including a local program counter for each

thread. Each thread j is a tuple tj = (Rj , lj), where:

• Rj ⊆ S × S is the transition relation of thread tj ;

• lj = 〈lji 〉 is the sequence of thread locations lji at time step i.

Chapter 4 Verifying Multi-threaded Software 87

1 #include <pthread.h>
2 int x=0;
3 void* t1(void* arg) {
4 x++;
5 if (x>1)
6 x--;
7 return NULL;
8 }
9 void* t2(void* arg) {

10 _Bool y;
11 x++;
12 y = (x>1);
13 if (y)
14 x--;
15 return NULL;
16 }
17 int main(void) {
18 pthread_t id1, id2;
19 pthread_create(&id1,NULL,t1,NULL);
20 pthread_create(&id2,NULL,t2,NULL);
21 pthread_join(&id1,NULL);
22 pthread_join(&id2,NULL);
23 assert(x==1)
24 return 0;
25 }

(a)

1 int x = 0;
2 begin_thread t1;
3 x = x + 1;
4 if !(x > 1) then goto L6;
5 x = x - 1;
6 L6: end_thread;
7 begin_thread t2;
8 _Bool y;
9 x = x + 1;

10 y = x>1;
11 if !(y) then goto L13;
12 x = x - 1;
13 L13: end_thread;
14 id1 = start_thread t1;
15 id2 = start_thread t2;
16 join_thread id1;
17 join_thread id2;
18 assert(x==1);
19 return 0;

(b)

Figure 4.2: (a) A multi-threaded C program with an assertion violation. (b) The C
program of (a) converted into multi-threaded goto form.

88 Chapter 4 Verifying Multi-threaded Software

L 3 : x = x + 1

L4 : i f ! (x > 1)

L5 : x = x - 1

L 2 : S T A R T _ T H R E A D 1

L 6 : E N D _ T H R E A D

F A L S E

T R U E

L 9 : x = x + 1

L11 : i f ! y

L12 : x = x - 1

L 7 : S T A R T _ T H R E A D 2

L 1 3 : E N D _ T H R E A D

F A L S E

T R U E

L 8 : _ B o o l y

L 1 0 : y = x > 1

Figure 4.3: CFG of two threads of the goto program shown in Figure 4.2 (b).

The execution of the instructions of each thread tj is modelled by means of transition

relations and we use the notation Rj
i (s, s

′) to denote that s′ is a successor of s obtained

by executing at time step i an instruction of thread tj . We define Ri(s, s
′) =

⋃

j R
j
i (s, s

′)

and R(s, s′) =
⋃

iRi(s, s
′). Finally, a particular program location, denoted by lj0 is

designated as the entry point of thread tj .

4.2.3 Context-Bounded Encoding

As described in Section 2.3, our work considers multi-threaded programs in asynchronous

mode and assumes that the threads in the program only communicate through shared

(global) variables and synchronize to avoid the simultaneous access to shared variables.

This means that at all times only one thread is running until a context switch occurs

and another thread resumes its execution. Figure 4.4 shows an example of one possible

concurrent execution of the two threads from Figure 4.3.

In our approach, we only consider effective context switches, i.e., context switches to

effective statements. An ECS block then defines as a sequence of program statements

that are executed with no intervening ECS. This definition is key to our context-bounded

translation, because we only allow context switches before visible statements (i.e., before

global variables and synchronization points). If the program statements are invisible,

we group them into one ECS block thus reducing the number of possible concurrent

executions.

Chapter 4 Verifying Multi-threaded Software 89

s t a r t _ t h r e a d 1 s t a r t _ t h r e a d 2

E C S B l o c k 0
x = 1

E C S B l o c k 1
x = 2 , y

E C S B l o c k 2
x = 1

E C S B l o c k 3
x = 1 , y = f a l se

E C S B l o c k 4
e n d _ t h r e a d E C S B l o c k 5

e n d _ t h r e a d

Figure 4.4: Concurrent execution of two threads.

In order to obtain a bounded multi-threaded C program, we bound the number of context

switches between the ECS blocks up to C, as described in detail in the next sections. The

technique is incomplete because there might still be a counterexample that requires more

context switches than the specified context-bound C, but it is both sound and precise

for context-bounded executions of multi-threaded programs. The technique of bounding

the number of context switches was originally proposed by Qadeer and Rehof [150], but

the authors apply this idea on Boolean programs using pushdown automata. Recently,

a number of context-bounded translations for model checking Boolean [112, 171] and C

programs [111, 152] have been proposed in the literature, but they neither use bounded

model checking to generate the VCs nor SMT solvers to check the validity of the VCs.

4.3 Context-Bounded Model Checking of Multi-threaded

Software

This section describes how to exploit SMT techniques to improve BMC of multi-threaded

software. In particular, we exploit SMT solvers to prune the property and data depen-

dent search space and to remove thread interleavings that are not relevant by analyzing

proofs of unsatisfiability. We then propose three approaches to SMT-based BMC and

show how the lazy, schedule recording, and UW approaches are encoded into BMC

framework of multi-threaded software.

4.3.1 Exploring the Reachability Tree

In order to describe reachable states of a multi-threaded goto program, we use a reach-

ability tree (RT) that is obtained by unfolding the set of running threads.

Definition 4.1. For a multi-threaded program with n active threads, each node in the

RT is a tuple ν = (Ai, Ci, si, 〈l
j
i , G

j
i 〉

n
j=1)i for a given time step i, where:

90 Chapter 4 Verifying Multi-threaded Software

• Ai represents the currently active thread;

• Ci represents the context switch number;

• si represents the current state;

• lji represents the current location of thread j;

• Gj
i represents the control flow guards accumulated in thread j along the path from

lj0 to lji .

Since threads only communicate via global variables, we only need to consider context

switches at visible instructions, i.e., synchronization points and statements containing

global variables. As in Gupta et al. [73], we do not model context switches inside individ-

ual visible statements. This is safe as long as the statements only read or write a single

global variable, but in general it is an under-approximation. However, we have not en-

countered any problems in the benchmarks we have used. Additionally, we do not model

context switches between a visible control-flow test and the next visible statement, since

the test cannot influence the state. However, note that we can simulate the effect of a

context switch right after a visible test by hoisting the test out of the conditional, and

assigning its result to a new auxiliary variable, as shown in thread t2 in Figure 4.2(a).

ESBMC can be configured to automatically insert such auxiliary variables. Finally,

we also assume sequential consistency, as is common in model checking multi-threaded

software [44, 102, 138, 152].

In order to expand the RT and explore all possible interleavings, we symbolically execute

each instruction of the multi-threaded goto-program. This takes as input the program

and the current RT node, and generates its children according to the set of rules described

below. We assume that we expand an RT node ν at time step i and that the guard GAi

i

of the thread tAi is enabled in state si (i.e., that the corresponding formula is satisfiable),

so that the thread can potentially execute the instruction I at location lAi

i .

R1 (ASSIGN): If I is an assignment x = e, then we symbolically execute I, which

generates a new state si+1. We then add as child to ν a new node ν ′

ν ′ = (Ai, Ci, si+1, 〈l
j
i+1
, Gj

i 〉)i+1 (4.1)

where the active thread remains unchanged. We increment the location of the active

thread only (i.e., lAi

i+1
= lAi

i + 1) and leave all other locations and all guards unchanged;

however, note that the evaluation of the guards can change under the new state si+1,

and hence threads may become enabled.

We have fully expanded ν if

Chapter 4 Verifying Multi-threaded Software 91

• lAi

i is within an atomic block; or

• I contains no global variable (since we allow context switches only at visible in-

structions); or

• we have reached the upper bound of context switches to be explored (i.e., Ci = C).

If ν is not yet fully expanded, we then also explore all context switches, up to the given

context bound C. For each thread j 6= Ai where Gj
i is enabled in si+1, we thus create a

new child node

ν ′j = (j, Ci + 1, si+1, 〈l
j
i , G

j
i 〉)i+1 (4.2)

In ν ′j we then continue the RT exploration with thread j executing in the state produced

by the current thread Ai.

R2 (SKIP): If I is a skip-statement with target l, then we simply increment the location

of the current thread and continue with it. However, we explore no context switches,

i.e., we only add a single child node

ν ′ = (Ai, Ci, si, 〈l
j
i+1
, Gj

i 〉)i+1 (4.3)

where lji+1
= lji + 1 only if j = Ai and lji+1

= lji otherwise.

R3 (unconditional GOTO): If I is an unconditional goto-statement with target l, then we

simply set the location of the current thread and continue with it. However, we explore

no context switches, i.e., we only add a single child node

ν ′ = (Ai, Ci, si, 〈l
j
i+1
, Gj

i 〉)i+1 (4.4)

where lji+1
= l only if j = Ai and lji+1

= lji otherwise.

R4 (conditional GOTO): If I is a conditional goto-statement with test c and target l,

then we create two child nodes ν ′ and ν ′′ for both possible outcomes of the test. For ν ′,

we assume that c is true and proceed with the target instruction of the jump, similar to

unconditional jumps. However, we also add c to the guards of all other threads, since it

may contain global variables, and may thus enable or disable other transitions.1 Hence,

we construct

ν ′ = (Ai, Ci, si, 〈l
j
i+1
, c ∧Gj

i 〉)i+1 (4.5)

1 Note that any thread local variables in c are of course inaccessible to the other threads.

92 Chapter 4 Verifying Multi-threaded Software

where lji+1
= l if j = Ai and lji+1

= lji otherwise. For ν ′′, we add ¬c to the guards and

continue with the next instruction in the current thread, i.e.,

ν ′′ = (Ai, Ci, si, 〈l
j
i+1
,¬c ∧Gj

i 〉)i+1 (4.6)

where lji+1
= lji + 1 if j = Ai and lji+1

= lji otherwise. We prune one of the nodes if the

condition is determined in the current state (i.e., either evaluates to true or to false).

Note that we are not exploring any possible context switches (even if I is visible), since

the condition cannot change the global state.

R5 (ASSUME): If I is an assume-statement with argument c, then we proceed similar

to the way described in R1. We continue with the unchanged state si but add c to all

guards, as described in R4. If c ∧Gj
i evaluates to false, we prune the execution paths.

R6 (ASSERT): If I is an assert-statement with argument c, then we proceed similar

to the way described in R1. We continue with the unchanged state si but add c to

all guards, as described in R4. We also generate a verification condition to check the

validity of c.

R7 (START THREAD): If I is a start thread instruction, we just add the indicated thread

to the set of active threads, i.e., we add a node

ν ′ = (Ai, Ci, si, 〈l
j
i+1
, Gj

i+1
〉n+1

j=1
)i+1 (4.7)

where ln+1

i+1
is the initial location of the indicated thread, and Gn+1

i+1
= GAi

i , i.e., the

thread starts with the guards of the currently active thread.

R8 (JOIN THREAD): If I is a join thread instruction with argument Id, then we add a

child node

ν ′ = (Ai, Ci, si, 〈l
j
i+1
, Gj

i 〉)i+1 (4.8)

where lji+1
= lAi

i + 1 only if the joining thread Id has exited. We model this by an addi-

tional variable exitj that is set to false when begin thread Id is called. When end thread

is reached, we set exitj to true to indicate that thread Id has exited.

The remaining instructions (begin atomic, end atomic, begin thread, and end thread) are

just scoping constructs and do not contribute to the expansion of the RT. As example,

we consider the C program with two threads and the corresponding goto-program, as

shown in Figure 4.2(a) and (b). This example is modified slightly from Ghafari et al. [74],

where it is used to check (by increasing the number of increments) the scalability of

Chapter 4 Verifying Multi-threaded Software 93

different context-bounded analysis algorithms. Both threads increment a global variable

x, and then, depending on the value of x, decrement it again. t2 uses a local variable

y to store the value of x and uses this in the test (cf. lines 12–13). This simulates a

possible context switch between the evaluation of the guard and the execution of the

next statement. Figure 4.3 shows the CFG representation of the two threads t1 and t2.

Note that this example contains an assertion violation in line 23, where the invariant

x = 1 does not hold under specific thread interleavings.

Figure 4.5 shows a fragment of the reachability tree for threads t1 and t2 (where t0 repre-

sents the main thread). We build this by first executing the goto-program of Figure 4.2(b)

sequentially, i.e., in the same order that the threads are created. In this case, we first exe-

cute the statements of t1 (i.e., lines 3-5), followed by the statements of t2 (i.e., lines 8-12).

The initial node of the RT fragment is ν0 = (t0, 0, s0, 〈(L16, true), (L2, true), (L7, true)〉),

i.e., the main thread t0 is active at line 16, the program is before the first context switch,

the state s0 has x = 0 and y undefined, and both threads t1 and t2 have just been started,

i.e., are at their initial location with guards true. To expand the RT, we check which

threads are enabled from ν0.
2 Since t1 and t2 are both enabled and since our approach

always expands the enabled thread with the smallest index, we expand the transitions

of t1. The transition relation R1
1(s0, s1) of t1 that represents the assignment x = x + 1

is defined as follows:

R1
1(s0, s1) ⇔ l11 = L3 ∧ x1 = x0 + 1 ∧ ∀v ∈ V \ {x} : v1 = v0

The first term corresponds to the unconditional edge from line 2 to 3 (see Figure 4.3). The

second term defines the new value of the shared variable x. The third term ensures that

the values of V , but not x, do not change in the transition from s0 to s1. To create node

ν1, we apply rule R1, which gives us ν1 = (t1, 1, s1, 〈(L16, true), (L3, true), (L7, true)〉).

We then check again which threads are enabled and expand t1 as the enabled thread

with the smallest index. The transition relation that represents the branch at program

location L4 is defined by a case-split on the value of x in state s1.

R1
2(s1, s2) ⇔ l12 =

{

L6 : ¬(x1 > 1),

L5 : otherwise

∧∀v ∈ V : v2 = v1

The transition does not affect the global state (as the condition ¬(x1 > 1) holds), so we

only increment the program location but do not create a new node in the RT (described in

rule R4). Therefore, to expand the next node from ν1, we check again which threads are

enabled and since t1 has executed all its statements, we then expand the first instruction

of thread t2. The transition relation R2
3(s2, s3) of t2 is similar to R1

1(s0, s1). We thus apply

2We ignore interleavings with t0 to simplify the presentation.

94
C

h
a
p
ter

4
V

erify
in

g
M

u
lti-th

rea
d
ed

S
o
ftw

a
re

ν0: t0, 0, x=0, y
(L16,true), (L2,true),

(L7,true)

ν1: t1,1, x=1,y
(L16,true), (L3,true),

(L7,true)

ν2: t2, 2, x=2,y=false
(L16,true), (L6,true),

(L9,true)

ν3: t2, 3, x=2,y=true
(L16,true), (L6,true),

(L10,true)

ν4: t2, 4, x=1,y=true
(L16,true), (L6,true),

(L12,false)

ν5: t2, 2, x=2,y=false
(L16,true), (L3,true),

(L9,true)

ν6: t1, 3, x=1,y=false
(L16,true), (L5,false),

(L9,true)

ν7: t2, 4, x=1,y=false
(L16,true), (L5,false),

(L10,true)

ν8: t2, 3, x=2,y=true
(L16,true), (L3,true),

(L10,true)

ν9: t1, 4, x=1,y=true
(L16,true), (L5,false),

(L10,true)

ν10: t2, 5, x=0,y=true
(L16,true), (L5,false),

(L12,false)

ν12: t2,1, x=1,y=false,
(L16,true),(L2,true),

(L9,true)

ν13: t1, 2, x=2,y=false
(L16,true),(L3,true),

(L9,true)

ν14: t1, 3, x=1,y=false
(L16,true), (L5,false),

(L9,true)

ν15: t2,4,x=1,y=false
(L16,true), (L5,false),

(L10,true)

ν16: t2, 3, x=2,y=true
(L16,true), (L3,true),

(L10,true)

ν17: t1, 4, x=1,y=true
(L16,true), (L5,false),

(L10,true)

ν18: t2, 5, x=0,y=true
(L16,true),(L5,false),

(L12,false)

ν20:t2, 2, x=1,y=false
(L16,true), (L2,true),

(L10,true)

ν21: t1, 3, x=2,y=false
(L16,true), (L3,true),

(L13,true)

ν22: t1, 4, x=1,y=false
(L16,true), (L5,false),

(L13,true)

ν11: t2, 4, x=1,y=true
(L16,true), (L5,true),

(L12,false)

ν19: t2, 4, x=1,y=true
(L16,true), (L3,true),

(L12,false)

F
ig

u
r
e

4
.5

:
F
ragm

en
t

of
th

e
reach

ab
ility

tree
of

th
e

m
u
lti-th

read
ed

goto-p
rogram

of
F
igu

re
4.2(b

).
N

o
d
es

w
ith

d
ash

ed
lin

e
rep

resen
t

p
rogram

lo
cation

s
th

at
v
iolate

th
e

assertion
statem

en
t

in
lin

e
18

of
F
igu

re
4.2(b

).

Chapter 4 Verifying Multi-threaded Software 95

rules R1 and R2 to derive ν2 = (t2, 2, s2, 〈(L16, true), (L6, true), (L9, true)〉). ν3 and ν4

are derived in the same way. After creating ν4, both t1 and t2 do not have enabled

transitions and we backtrack to explore pending transitions from previous nodes; in this

case, we have already explored ν3 and ν2 and continue the RT exploration at ν1.

4.3.2 Lazy Approach

The idea of the lazy approach to verify multi-threaded software is to traverse the RT

depth-first, and to call the single-threaded BMC procedure on each interleaving whenever

we reach an RT leaf node. We stop the RT traversal either when we find a bug, or have

systematically explored all interleavings. This approach seems obvious, but to the best

of our knowledge, it has not been formalized nor evaluated in the literature. Figure 4.6

details how the lazy approach works. Formally, given an RT Υ = {ν1, . . . , νN} that

represents the program unfolding for a context bound C and a bound k, and a property

φ, we derive a VC ψπ
k for a given interleaving (or computation path) π = {ν1, . . . , νk}

such that ψπ
k is satisfiable if and only if φ has a counterexample of depth k that is

exhibited by π. As always in our work, the VC ψπ
k is a quantifier-free formula in a

decidable subset of first-order logic, which is checked for satisfiability by an SMT solver.

The model checking problem associated with SMT-based BMC of a given π is then

formulated by constructing the logical formula [11, 71]:

ψπ
k =

constraints
︷ ︸︸ ︷

I(s0) ∧R(s0, s1) ∧ . . . ∧R(sk−1, sk)∧

property
︷︸︸︷

¬φk (4.9)

Here, φk represents a safety property φ in step k, I is the function for the set of initial

states of M and Ri(si, si+1) is the function representing the transition relation of M at

time steps i and i+ 1, as described by the states in the nodes of π. If ψπ
k is satisfiable,

then φ is violated and the SMT solver provides a satisfying assignment, from which

we can extract the values of the program variables to construct a counterexample. A

counterexample for a property φ is a sequence of states s0, s1, . . . , sk with s0 ∈ S0, and

R(si, si+1) for 0 ≤ i < k. If ψπ
k is unsatisfiable, we can conclude that no error state is

reachable in length k along π.

On the face of it, the lazy approach seems to be naive: despite the context-bounding, the

RT and thus the number of interleavings can grow very quickly, and we need to invoke

the SMT solver several times to check the satisfiability of formula (4.9), which might slow

down the verification process. However, there are several observations that make this

approach worthwhile. First, if the program contains any errors at all, they will often be

exhibited in a substantial fraction of the interleavings (cf. Qadeer and Rehof [150] and

our evaluation in Section 4.6 for experience on benchmarks and applications), so that in

practice we only need to explore a small part of the search space until we find the first

96 Chapter 4 Verifying Multi-threaded Software

Step 1: Initialize the stack with the initial node ν0 and the initial path π0 = 〈ν0〉.

Step 2: If the stack is empty, terminate with “no error”.

Step 3: Pop the current node ν and current path π off the stack and compute the set
ν ′ of successors of ν using rules R1-R8.

Step 4: If ν ′ is empty, derive the VC ψπ
k for π using formula (4.9), and call the SMT

solver on it. If ψπ
k is satisfiable, terminate with “error”; otherwise, goto step 2.

Step 5: If ν ′ is not empty, then for each node ν ∈ ν ′, add ν to π, and push node and
extended path on the stack. Goto step 3.

Figure 4.6: Algorithm of the lazy approach.

error. In our running example, the invariant x = 1 does not hold for the two nodes ν10 and

ν18 and if we traverse the RT depth-first and left-to-right, the error already shows up in

the third interleaving. Second, we do not need to actually build the entire RT; instead, we

only keep in memory nodes on computation paths that are still unexplored and expand

them one path at a time. We then construct the VC for the chosen computation path

and feed it into the SMT solver to check for satisfiability. Third, and most important,

we can leverage the optimizations from the ESBMC front-end (e.g., constant folding

and constant propagation as described in Chapter 5) to exploit which transitions are

enabled in a given state to drive the exploration of the interleavings and to reduce both

the number of interleavings to be explored and the size of the formulas sent to the SMT

solver. For example, if we continue to explore thread t1 from node ν1, the front-end

exploits the fact that x = 1 to infer that the guard in line 4 holds. t1 thus continues

in line 6, and terminates, so that the exploration continues with a context switch to

thread t2, as shown in node ν2. Note that our current implementation does not check

the satisfiability of the accumulated guards, and simply assumes that all running threads

are enabled, unless they have explicitly been blocked or their guards evaluate to false.

Implementing this could further reduce the size of the RT to be explored.

In summary, the lazy approach guides the symbolic execution between the threads and

systematically explores all the possible interleavings in a lazy way. This approach can find

bugs fast and the VCs are relatively small, since they correspond to a single interleaving

only, but as the front-end invokes the SMT solver, once for each possible computation

path, it can suffer performance degradation, in particular for correct programs where

we have to explore all possible interleavings.

4.3.3 Schedule Recording Approach

State-of-the-art SMT solvers are built on top of efficient SAT solvers to speed up the

performance on large problems by exploiting the support for conflict clauses and non-

chronological backtracking [163]. In the schedule recording approach we leverage this

Chapter 4 Verifying Multi-threaded Software 97

and avoid invoking the SMT solver repeatedly. We thus build the RT as before to

systematically explore the interleavings, but we now add schedule guards [103] to record

in which order the scheduler has executed the program. Figure 4.7 shows how schedule

guards are added to the program during the exploration of the left-hand side of the

RT in Figure 4.5. We then encode all interleavings into a single large formula, which is

finally passed to the SMT solver.

 L2 : (t1 , #0)
L7 : (t 2 , #0)

L3 : (t 1 , #1)
t s 1 = = 1 - > x = x + 1

L9 : (t 2 , #2)
t s 2 = = 2 - > x = x + 1

L10 : (t 2 , #3)
t s 3 = = 2 - > y = x > 1

L12 : (t 2 , #4)
t s 4 = = 2 - > x = x - 1

L9 : (t 2 , #2)
t s 2 = 2 - > x = x + 1

L5 : (t 1 , #3)
t s 3 = = 1 - > x = x - 1

L10 : (t 2 , #4)
t s 4 = = 2 - > y = x > 1

L10 : (t 2 , #3)
t s 3 = = 2 - > y = x > 1

L5 : (t 1 , #4)
t s 4 = = 1 - > x = x - 1

L12 : (t 2 , #5)
t s 5 = = 2 - > x = x - 1

L12 : (t 2 , #4)
t s 4 = = 2 - > x = x - 1

Figure 4.7: Schedule recording applied to the left-hand side of the RT in Figure 4.5.

Since control-flow tests cannot influence the state, we only need to add guards to ef-

fective statements, i.e., assignments and assertions (as described in Section 4.2.3). Each

effective program statement is then prefixed by a schedule guard tsi = j where tsi is

the thread selection variable for the i-th ECS and j is the thread identifier. Its intuitive

interpretation is that the statement can only be executed if thread j is scheduled to run

after the i-th ECS. For example, the schedule guard ts1 = 1 at L3 encodes that the

assignment x = x+ 1 can only be executed if t1 runs after the first ECS.

The schedule guards are added when program statements are executed symbolically

and become part of the produced verification conditions. They can be derived from the

RT nodes, i.e., for node νi we construct the guard tsCi
= Ai. The thread selection

variables are free variables that the SMT solver will instantiate with concrete values.

The instantiation of all thread selection variables corresponds to the choice of a specific

interleaving. In our running example, if the SMT solver chooses ts1 = 1, ts2 = 2,

ts3 = 2, and ts4 = 2, then the model checker simulates the effect of executing the

98 Chapter 4 Verifying Multi-threaded Software

program statements at L3, L9, L10, and L12 (in that order). Note that the ordering of

statements within a thread is of course still ensured by the program order semantics, so

that the program statement at L10 will not be executed before the program statement

at L9 (i.e., we ensure sequential consistency [44, 102, 138, 152]). We further define a

schedule SCH to determine which interleavings should be considered and encode the

guards in (4.10) as:

ψk =

constraints
︷ ︸︸ ︷

I(s0) ∧R(s0, s1) ∧ . . . ∧R(sk−1, sk)∧

property
︷︸︸︷

¬φk

∧

scheduler
︷ ︸︸ ︷

SCH(s0) ∧ . . . ∧ SCH(sk) (4.10)

Here SCH(si) represents a constraint on the schedule guard of state si. If we do not

impose any schedule constraints, then we formulate
∧k

i=0
SCH(si) = true and all possi-

ble interleavings are considered. However, if we want to apply aggressive reductions (for

example by exploiting the proofs of unsatisfiability as described in the next subsection),

we can add constraints to SCH to force the removal of interleavings that do not con-

tribute to checking a given property. Although we can bound the number of preemptions

and exploit which transitions are enabled in a given state when we build formula (4.10),

the number of threads and context switches can still grow very large quickly, and easily

lead to formulae that overwhelm the solver.

4.3.4 UW Approach

The core idea of the under-approximation and widening (UW) approach is to check

models with an increasing set of allowed interleavings [84]. We start from an underap-

proximation describing a single interleaving and widen the model by adding more inter-

leavings incrementally based on the proof objects generated from an SMT solver [57].

We thus exploit the SMT solvers to remove possible undesired models of the program in

order to satisfy a given property. This is possible because the SMT solvers can conclude

that a given model is unsatisfiable without even using all of its constraints (since some

of them might be redundant).

We define ψ′ as an underapproximated model of ψ, i.e., ψ′ = ψ ∧ SCH(s0) ∧ . . . ∧

SCH(sk), where we introduce constraints on the schedule guards. We can see that if ψ

is unsatisfiable, then ψ′ is also unsatisfiable; however, it is possible that ψ is satisfiable

while ψ′ is not, due to the constraints on the schedule. Thus, ψ′ can be thought of as

an underapproximation of ψ and each satisfying assignment of ψ′ is also a satisfying

assignment to ψ. The main steps of the UW algorithm are shown in Figure 4.8.

The additional literals clij introduce constraints on the schedule guards (e.g., clij →

tsi = j), which allow us to guide the widening process according to the variables that

Chapter 4 Verifying Multi-threaded Software 99

Step 1: Add control literals clij (where i is the ECS number and j is the thread iden-
tifier) to the VC ψk.

Step 2: Add negated control literals ¬clij to the schedule SCH, except those enabling
the first interleaving.

Step 3: Check satisfiability of ψk; if ψk is satisfiable, then terminate with “error”.

Step 4: Check whether the proof objects generated by the SMT solver contains any
control literals; if not terminate with “no error”.

Step 5: Remove literals that are contained in the proof objects from the schedule SCH
and go to step 3.

Figure 4.8: Algorithm of the UW approach.

participate in the proof of unsatisfiability produced by the SMT solver. This means that

the schedule is now updated based on the information extracted from the proof, which

aims to remove interleavings that are not relevant for checking a given property [84,

129]. Note that the way that we encode the underapproximation differs from Grumberg

et al. [84]. Grumberg et al. encode an underapproximation using m× n control literals,

where m is the number of control points that guard each program statement and n is

the number of threads. In our encoding, we use e × n control literals, where e is the

number of ECS (with e ≤ m) and n is the number of threads. If we were to include a

control literal for each statement as in [84], then our solution might not scale in practice

to large multi-threaded software systems.

4.3.5 Pruning the RT with Partial Order Reduction

In the modelling of multi-threaded software, we consider that any of the threads j ∈ T

is able to make a transition and then we have to compute all states for which a thread j

exists. The problem is that the number of states to be explored can grow dramatically

with the number of program statements and threads. The purpose of the Partial-Order

Reduction (POR) technique [40, 75, 146] is to reduce the number of states that have to

be explored. This is done in a way that if the property holds on the reduced model, it

also holds on the original model.

In our SMT-based BMC framework, as threads communicate only through global vari-

ables, we apply partial order reduction techniques at two levels in our algorithm. At the

first level, we apply the visible instruction analysis POR (VI-POR) [146], which removes

the interleavings of instructions that do not affect the global variables (i.e., we remove

transitions which are independent from transitions made by any other thread). As we

mentioned in Section 4.3.1, an instruction is visible only if it accesses a global variable,

and it is invisible otherwise. VI-POR is “hard-wired” into our approach, due to the way

we build the ECS blocks.

100 Chapter 4 Verifying Multi-threaded Software

1 #include <pthread.h>
2 int x=0, y=0;
3 void* t1(void* arg) {
4 x++;
5 return NULL;
6 }
7 void* t2(void* arg) {
8 x++;
9 return NULL;

10 }
11 void* t3(void* arg) {
12 y++;
13 return NULL;
14 }
15 int main(void) {
16 pthread_t id1, id2, id3;
17 pthread_create(&id1,NULL,t1,NULL);
18 pthread_create(&id2,NULL,t2,NULL);
19 pthread_create(&id3,NULL,t3,NULL);
20 return 0;
21 }

(a)

1 x = 0;
2 y = 0;
3 begin_thread t1;
4 x = x + 1;
5 end_thread;
6 begin_thread t2;
7 x = x + 1;
8 end_thread;
9 begin_thread t3;

10 y = y + 1;
11 end_thread;
12 id1 = start_thread t1;
13 id2 = start_thread t2;
14 id3 = start_thread t3;
15 return 0;

(b)

Figure 4.9: (a) A simple multi-threaded C program. (b) The C program of (a)
converted into goto form.

At the second level, we apply the read-write analysis POR (RW-POR) [49] in which

two (or more) independent interleavings can be safely merged into one. As example,

we consider a simple goto program with three threads and two global variables (x and

y) as shown in Figure 4.9. Note that the global variable x in Figure 4.9 is shared

between threads t1 and t2 only while the global variable y is only accessed by thread t3.

Figure 4.10 shows the reachability tree for threads t1, t2, and t3. We build this RT by

applying the rules R1-R8 as described in Section 4.3.1.

Chapter 4 Verifying Multi-threaded Software 101

ν0 : t0,0,x=0,y=0
(L3, L6, L9)

ν1 : t1,1,x=1,y=0
(L5, L6,L9)

ν2 : t2,2,x=2,y=0
(L5, L8, L9)

ν5 : t3,2,x=1,y=1
(L5, L6, L11)

ν7: t2,1,x=1,y=0
(L3, L8,L9)

ν8 : t1,2,x=2,y=0
(L5, L8, L9)

ν10 : t3,2,x=1,y=1
(L3, L8, L11)

ν12: t3,1,x=0,y=1
(L3, L6,L11)

ν13: t1,2,x=1,y=1
(L5, L6, L11)

ν15: t2,2,x=1,y=1
(L3, L8, L11)

ν3: t3,3,x=2,y=1
(L5, L8, L11)

ν6 : t2,3,x=2,y=1
(L5, L8, L11)

ν9: t3,3,x=2,y=1
(L5, L8, L11)

ν11: t2,3,x=2,y=1
(L5, L8, L11)

ν14: t3,3,x=2,y=1
(L5, L8, L11)

ν16: t1,3,x=2,y=1
(L5, L8, L11)

Figure 4.10: The reachability tree for threads t1, t2, and t3 of the multi-threaded
goto-program of Figure 4.9(b). Edges with dashed line represent transitions that can

be eliminated by RW-POR.

In order to implement the RW-POR technique, we compute the sets of variables written

(WRj) and read (RD j) by each of the threads. In particular, if

WRj ∩ (
⋃

k 6=j

RDk ∪ WRk) = ∅ (4.11)

and

RD j ∩
⋃

k 6=j

WRk = ∅ (4.12)

i.e., if the intersection between the set of visible variables that are written and read by

thread j and all other threads is empty, then we only explore the successors generated

by executing j while all other transitions can be safely ignored.

For instance, in Figure 4.10 we get the node ν1 from the initial node ν0 after executing

the program statement x = x + 1 of thread t1. We can see that from node ν1, we still

have statements from threads t2 and t3 to execute. However, since thread t3 does not

share any global variable with thread t1, then we can safely ignore the transition from

node ν1 to ν5 (and consequently from node ν5 to node ν6). This reduction is safe because

the different order of execution between the statements of threads t2 to t3 (or vice-versa)

from node ν1 always results in the same state. Hence, the RW-POR technique exploits

the commutativity of concurrent transitions that result in the same state when they are

executed in different orders. In our example, the transitions that can be safely eliminated

by applying the RW-POR technique are indicated by edges with dashed line, as shown

in Figure 4.10. Figure 4.11 shows the RT of Figure 4.10 after applying the RW-POR

102 Chapter 4 Verifying Multi-threaded Software

technique.

ν0 : t0, 0, x=0, y=0
(L3, L6, L9)

ν1 : t1, 1, x=1, y=0
(L5, L6,L9)

ν2 : t2, 2, x=2, y=0
(L5, L8, L9)

ν7 : t2, 1, x=1, y=0
(L3, L8,L9)

ν8 : t1, 2, x=2, y=0
(L5, L8, L9)

ν3 : t3, 3, x=2,y=1
(L5, L8, L11)

ν9 : t3, 3, x=2, y=1
(L5, L8, L11)

Figure 4.11: The reachability tree for threads t1, t2, and t3 after applying the RW-
POR technique.

In summary, there are six possible combinations of visible instructions of different

threads, as shown in Table 4.1. There are three particular situations to consider when

we build the reachability tree, as follows:

1. Two read operations from the same global variable, but from different threads will

not modify the state, so they will always generate equivalent interleavings.

2. Two program statements accessing different variables are independent w.r.t. their

execution states, thus these two program statements always generate equivalent

interleavings with both execution orders.

3. Two program statements accessing the same global variable in such a way that at

least one of them is a write access (i.e., with read-write and write-write relations)

will generate non-equivalent interleavings.

In all three cases, the read-write relation actually causes read-write races and the write-

write relation causes the write-write races. Consequently, only two types of relations

will generate non-equivalent interleavings, while all other four types of relations gener-

ate equivalent interleavings. Those redundant interleavings are simply removed in our

approach.

PORs work best in conjunction with an alias analysis. Our algorithms are able to

remove redundant interleavings originating from pointer aliasing by dereferencing the

actual thread parameters before building the reachability tree. This means that when

a given thread is created with an argument (e.g., a pointer to a void type) and this

Chapter 4 Verifying Multi-threaded Software 103

Access Relations to Read-Read Read-Write Write-Write

Same variable Equivalent Non-equivalent Non-equivalent

Different variables Equivalent Equivalent Equivalent

Table 4.1: Read-write analysis of interleaving equivalence between visible instructions.

argument is used by the thread, we first get the object that the pointer points to before

we apply the POR algorithms to build the reachability tree.

4.4 Verifying Race Conditions and Atomicity Violations

Concurrency bugs are tricky to reproduce and debug because they usually occur under

specific thread interleavings. When verifying multi-threaded programs, it is important

to detect data race conditions and atomicity violations, which are consistently ranked

as the most common and difficult source of concurrency faults [61, 117]. This section

presents our instrumentation to check for data race and atomicity violations in the

multi-threaded goto programs.

4.4.1 Detecting Data Races

In a multi-threaded program with shared variable communication between the threads,

data race conditions occur when multiple threads perform unsynchronized accesses to

the shared variable [67, 139, 155, 158, 161]. In particular, a data race occurs when two

(or more) threads access a shared variable at the same time and at least one of them

is a write access. In a multi-threaded program, data races are often manifestations of

bugs, because they may cause the program to behave in ways that are not expected by

the developers.

There are two situations where data races may occur when two threads have access to

the same shared variable simultaneously. In read-write races, one of the operations is

read and the other one is write. Here, data race occurs because the value is changed

by the write operation at the same time when the value is read by the read operation.

In write-write races, both operations are writing (different) values to the same variable.

Here, data race occurs because the first value written is overwritten by the other write

operation.

We can identify both types of data races by breaking visible statements into two stages.

In the first stage, we copy the value of the global variable into a local temporary variable

and allow context switch. In the second stage, we check if the current value of the variable

is the same as the copied value and if so we perform the assignment; otherwise we have

detected an error (i.e., the assertion in the atomic section is violated). Figure 4.12

104 Chapter 4 Verifying Multi-threaded Software

and 4.13 show our modelling of data race conditions for read and write operations

(where g means a global variable while l means a local variable), respectively.

tmp = g;
atomic {
assert(tmp==g);
l = g;

}

Figure 4.12: Modelling data race conditions for read operations (l = g).

tmp = g;
atomic {
assert(tmp==g);
g = l;

}

Figure 4.13: Modelling data race conditions for write operations (g = l).

Visible statements that contain structs, arrays, and pointers are treated similarly. For

example, if there is an assignment l = ∗p where a pointer p points to a global variable

g, we should first assign ∗p to tmp, allow a context switch and then check whether

tmp = ∗p. If the assertion fails, we have detected a data race condition; otherwise we

simply perform the assignment l = ∗p.

4.4.2 Checking Atomicity

Atomicity, which is also referred as serializability, of program statements is satisfied only

if the resulting state of data in a concurrent execution is the same as that of a serialized

execution (i.e., if a thread interleaving executes a program statement without other

threads interleaved in between) [144, 177]. An atomic block is a sequence of statements

whose execution is not intervened by other threads. A program statement that contains

more than one (global) variable access is not always executed as an atomic block. The

assembly code generated by the compiler might break the statement into instructions so

that a context switch may occur between these instructions. For example, the program

statement result = x + y can be broken by the compiler into four different (assembly)

instructions as follows:

reg1 = x (MOV reg1 , #x)

reg2 = y (MOV reg2 , #y)

reg2 = reg1 + reg2 (ADD reg2 , #reg1)

result = reg2 (MOV result , #reg2)

The instruction MOV reg1, #x moves the content of x to reg1 while ADD reg2, #reg1

Chapter 4 Verifying Multi-threaded Software 105

sums the content of registers reg1 and reg2 and stores the result in reg2. Note that

as a context switch may occur between these instructions, we have to consider this

behaviour by modelling visible statements that contain more than one global variable

just as a compiler does. However, from the verification point of view, statements that

read or write a single global variable are not affected by context switches.

We thus implement a procedure to break statements with multiple global variables so

that our approach can produce sound results. In particular, we break a visible statement

into two atomic blocks. The first block contains temporary variables to store each

variable of the right-hand side of the visible statement. The second block checks whether

the temporary variables are equal to the variables of the right-hand side of the visible

statement and if so we perform the assignment; otherwise we have detected an atomicity

violation. Note that a context switch may occur between the first and second atomic

block (but only there).

As example, consider the program statement result = x + y, where x and y are

global variables. Figure 4.14 shows how we model atomicity violation at statement

result = x + y. We first assign x and y to the temporary variables tmp1 and tmp2,

respectively. After that, we allow a context switch and we then check whether tmp1 == x

and tmp2 == y.

atomic {
tmp1 = x;
tmp2 = y;

}
atomic {
assert(tmp1==x && tmp2==y);
result = x + y;

}

Figure 4.14: Modelling atomicity violation at visible statements.

Note further that statements that involve conditionals and loops are treated similarly,

i.e., if the condition accesses more than one global variable, we hoist the statement out

of the conditional, and then break it into two atomic blocks.

4.5 Modelling Synchronization Primitives in Pthread

This section presents our modelling of the synchronization primitives of the Pthread

library [135]. We assume that the library function implementations are correct and

focus our effort on verifying only the client programs that use them. We thus provide

an instrumented model of the Pthread functions and use this to model check the client

code. We show, in our experiments, that our modelling is able to detect incorrect use of

the functions and is also able to detect blocking operations that can lead to local and

global deadlocks.

106 Chapter 4 Verifying Multi-threaded Software

4.5.1 Modelling Mutex Locking Operations

The Pthread library supports two functions to implement mutual exclusion between

threads called pthread mutex lock and pthread mutex unlock [143]. Both functions

take as argument a data structure called mutex that has two states, “locked” and “un-

locked”. The function pthread mutex lock locks the mutex if it is unlocked; otherwise

it blocks the current thread until the mutex is unlocked and can successfully be locked

again. The function pthread mutex unlock simply unlocks a locked mutex. Compu-

tation paths are blocked on a mutex when a thread tries to lock a mutex that has

already been locked by another thread. As an example, consider the threads tA and

tB, which both lock and unlock the same mutex m, as shown in Figure 4.15. The paths

A0;A1;B0;B1 and B0;B1; A0;A1 are non-blocking or wait-free while the other two paths

are blocked.

A 0

A 1

B 0

B 1

B 0

A 0

B 0

A 0 A 1

B 1

A 1

B 1

S T A R T _ T H R E A D

A 0 : l o c k (* m)

A 1 : u n l o c k (* m)

E N D _ T H R E A D

S T A R T _ T H R E A D

B 0 : l o c k (* m)

B 1 : u n l o c k (* m)

E N D _ T H R E A D

Figure 4.15: Computation paths blocking on a mutex.

A strategy to model mutex operations based on the notion of wait-free paths was pro-

posed by [151, 152]. Instead of blocking the computation paths starting with A0;B0 and

B0;A0, they are simply ignored by modelling the function pthread mutex lock(m) as

atomic {assume(∗m == 0); ∗m = 1}

where the statement assume(∗m == 0) cuts off subsequent paths if the mutex is already

locked. pthread mutex unlock(m) is then modelled as

atomic {assert(∗m == 1); ∗m = 0}

which simply checks if the mutex is already locked. If so, the lock is released; otherwise, a

thread tries to unlock a mutex that has not been locked previously, and we have detected

an error.

This is sufficient to find bugs related to data races and lock acquisition ordering, but

not to detect local and global deadlocks [151, 152]. We thus model pthread mutex lock

Chapter 4 Verifying Multi-threaded Software 107

in such a way that we can detect global and local deadlock caused by the wrong use of

the mutexes; pthread mutex unlock remains unchanged. For this, we first need to look

in more detail at the different possible states that our model allows for a thread:

1. Join state: the thread is waiting for another thread to terminate.

2. Lock state: the thread is waiting for a mutex to be unlocked.

3. Wait state: the thread is waiting for a signal or broadcast to wake up.

4. Exit state: the thread has already exited.

5. Free state: the thread is not in any of the above four states and is free to execute

its instructions.

The wait state is introduced to handle synchronization via signal/wait (see Section 4.5.2).

A thread is blocked if it is in one of the join, lock or wait states, and is supposed to

be running if it is not in exit state. Global deadlock occurs when all threads wait for a

mutex and a local deadlock occurs when some of the threads form a waiting cycle. In

both cases, we can detect the deadlock if there is no running thread in the free state,

i.e., the number of blocked threads is equal to the number of running threads.

Figure 4.16 presents our modelling to detect global and local deadlock with mutexes,

which maintains counts on both blocked and running threads with global variables.

1 int pthread_mutex_lock(pthread_mutex_t *m) {
2 extern uint trds_in_run, c_lock=0;
3 atomic {
4 unlocked = (mutex_lock_field(*m)==0);
5 if (unlocked) mutex_lock_field(*m) = 1;
6 else c_lock = c_lock + 1;
7 }
8 atomic {
9 if (mutex_lock_field(*m)==0)

10 c_lock = c_lock - 1;
11 if (!unlocked) {
12 deadlock_mutex = (c_lock<trds_in_run);
13 assert(deadlock_mutex);
14 assume(!deadlock_mutex);
15 }
16 }
17 return 0;
18 }

Figure 4.16: Modelling mutex lock operation.

mutex lock field retrieves the state of the mutex. We also use the variable c lock to count

the number of threads that are in the lock state due to mutex m, and trds in run to

count the number of threads that are currently running. Initially, the mutex is unlocked

108 Chapter 4 Verifying Multi-threaded Software

and we only lock it after the first call to pthread mutex lock. In subsequent calls, we

increase the value of the variable c lock, allow context switches, check if the mutex m

was unlocked, and then assert c lock < trds in run. If the assertion fails, a deadlock was

detected: a thread is blocked by a lock operation on a mutex and the required mutex

never gets unlocked by the thread that owns it, either because the locking thread has

exited or because it has been blocked by another operation. If the assertion holds, we

then eliminate this execution as described above.

As example, Figure 4.17 shows a code fragment extracted (and slightly modified) from

the INSPECT suite [182], which aims to capture a concurrent scenario typically used in

database systems, as described in [183]. For the sake of simplicity, we show the code for

threads t1 and t2 only, which support two distinct classes of operations A and B (see

lines 9 and 20) on a shared database. The intuitive interpretation of these operations is

that the threads can run concurrently only if they belong to the same operation class.

Here, the global variables A and B count the number of threads that are performing

operations A and B respectively. The mutex l is used for the mutual exclusion between

threads of distinct classes, while the mutex m is used for the mutual exclusion between

threads of the same class.

The code shown in Figure 4.17 tries to implement the concurrent scenario described

above, but it contains a subtle error (i.e., a local deadlock) that is exposed only un-

der specific thread interleavings. Since we have four threads and two locked (i.e.,

trds in run = 4 c lock = 2), our approach does not detect the local deadlock imme-

diately. A local deadlock is detected only when the exploration of the running threads

(that are not in deadlock) terminates and the invariant c lock < trds in run becomes

false.

One possible thread interleaving to expose this error is to execute the program statements

of threads t1 and t2 in the following order: t1,5, t1,6, t1,7, t2,16, t2,17 and t2,18 (the term

tj,i denotes that j is the thread identifier and i is the program statement). The full

counterexample produced by our model checker is shown in Appendix D.

4.5.2 Modelling Conditional Waiting

We model the functions pthread cond wait, pthread cond signal, and pthread cond broadcast

from the Pthread library that implement conditional waiting [143]. All functions take

as argument a condition variable c that has also two states, “locked” and “unlocked”;

pthread cond wait also takes a mutex argument. Our modelling of the conditional wait-

ing operation again employs the notion of wait-free execution paths. pthread cond wait

is used to block the thread on a condition variable; the blocked thread is woken up only

if another thread calls signal or broadcast. If several threads are blocked on a condition

variable, then pthread cond signal non-deterministically unblocks at least one of them

Chapter 4 Verifying Multi-threaded Software 109

1 #include <pthread.h>
2 pthread_mutex_t m, l;
3 int A = 0, B = 0;
4 void *t1(void *arg) {
5 pthread_mutex_lock(&m);
6 A++;
7 if (A == 1) pthread_mutex_lock(&l);
8 pthread_mutex_unlock(&m);
9 //perform class A operation

10 pthread_mutex_lock(&m);
11 A--;
12 if (A == 0) pthread_mutex_unlock(&l);
13 pthread_mutex_unlock(&m);
14 }
15 void *t2(void *arg) {
16 pthread_mutex_lock(&m);
17 B++;
18 if (B == 1) pthread_mutex_lock(&l);
19 pthread_mutex_unlock(&m);
20 //perform class B operation
21 pthread_mutex_lock(&m);
22 B--;
23 if (B == 0) pthread_mutex_unlock(&l);
24 pthread_mutex_unlock(&m);
25 }
26 ...
27 int main(void) {
28 ...
29 pthread_create(&id1, NULL, t1, NULL);
30 pthread_create(&id2, NULL, t2, NULL);
31 pthread_create(&id3, NULL, t3, NULL);
32 pthread_create(&id4, NULL, t4, NULL);
33 ...
34 }

Figure 4.17: An example of local deadlock with mutex on a database application.

while pthread cond broadcast unblocks all threads blocked on the specified condition

variable.

Figure 4.18 shows our modelling for the wait-operation. We use the variable c wait to

count the number of threads that are in the wait state due to condition c. Whenever a

thread calls pthread cond wait, we atomically lock the condition variable c, assert that

the mutex m is currently locked, release the mutex (so that other threads that access it

can make progress), and then increment the number of threads in wait state (i.e., threads

that are waiting for a signal or broadcast to wake up). We then allow context switches

before we check whether the number of threads in wait state is less than the total number

of the threads that are currently running with the assertion c wait < trds in run. If

the assertion holds or the variable c is locked, we simply eliminate this execution as

described above.

110 Chapter 4 Verifying Multi-threaded Software

1 int pthread_cond_wait(pthread_cond_t *c,
2 pthread_mutex_t *m) {
3 extern uint trds_in_run, c_wait=0;
4 atomic {
5 cond_lock_field(*c) = 1
6 assert(mutex_lock_field(*m))
7 mutex_lock_field(*m) = 0
8 c_wait = c_wait + 1
9 }

10 atomic {
11 deadlock_wait = (c_wait<trds_in_run)
12 assert(deadlock_wait);
13 assume(!deadlock_wait
14 || cond_lock_field(*c)==0);
15 c_wait = c_wait - 1
16 }
17 mutex_lock_field(*m) = 1
18 return 0;
19 }

Figure 4.18: Modelling conditional waiting operation.

To model signal-operations, we simply release the condition variable, i.e., c = 0. To model

broadcast-operations, we create a global variable called broadcast id, which records

the number of broadcast operations that have executed and which gets incremented

inside pthread cond broadcast. In the wait-operation, the thread records the current

broadcast id before it is forced to make context switches to other threads. When the

context is switched back to the current thread, an assertion checks if a broadcast op-

eration has occurred by checking whether the current value of broadcast id is greater

than the recorded value. The deadlock is detected if there is no path with broadcast

operations.

As example, Figure 4.19 shows a code fragment extracted again from the INSPECT

suite [182], which implements the producer-consumer (also known as the bounded-buffer)

application. This example consists of two threads producer and consumer, which share

a global variable num; the producer increments the variable num (see line 12) while the

consumer decrements it (see line 23). This simulates the access to a shared bounded-

buffer. In order to make sure that the producer will not increment the variable num if

it is greater than zero (i.e., try to put more data into a “buffer” that is full) and the

consumer will not decrement the variable num if it is zero (i.e., try to remove data from

a “buffer” that is empty), we use the condition variables full and empty to synchronize

the producer and consumer threads. Whenever the “buffer” is full, the producer waits

on the condition variable empty (see line 11); similarly, whenever the buffer is “empty”,

the consumer waits on the condition variable full (see line 22).

The code shown in Figure 4.19 tries to implement the producer-consumer scenario as

described above, but it contains a deadlock because we initialize the variable num (see

Chapter 4 Verifying Multi-threaded Software 111

1 #include <pthread.h>
2 #define N 2
3 int num;
4 pthread_mutex_t m;
5 pthread_cond_t empty, full;
6 void* producer(void* arg) {
7 int i = 0;
8 while (i < N) {
9 pthread_mutex_lock(&m);

10 while (num > 0)
11 pthread_cond_wait(&empty, &m);
12 num++; //produce
13 pthread_mutex_unlock(&m);
14 pthread_cond_signal(&full);
15 i++;
16 } }
17 void* consumer(void* arg) {
18 int j = 0;
19 while (j < N){
20 pthread_mutex_lock(&m);
21 while (num == 0)
22 pthread_cond_wait(&full, &m);
23 num--; //consume
24 pthread_mutex_unlock(&m);
25 pthread_cond_signal(&empty);
26 j++;
27 } }
28 int main() {
29 pthread_t id1, id2;
30 num = 2; //wrong initialization
31 pthread_mutex_init(&m, 0);
32 pthread_cond_init(&empty, 0);
33 pthread_cond_init(&full, 0);
34 pthread_create(&id1, 0, producer, 0);
35 pthread_create(&id2, 0, consumer, 0);
36 pthread_join(id1, 0);
37 pthread_join(id2, 0);
38 return 0;
39 }

Figure 4.19: An example of deadlock with condition variable on a producer and
consumer application.

line 30 of Figure 4.19) incorrectly so that the thread consumer decrements num twice

while the thread producer increments it only once. Since we have two threads and one

locked (i.e., trds in run = 2 and c lock = 1), our approach detects the deadlock when the

exploration of the thread consumer terminates and the invariant c wait < trds in run

thus becomes false since the producer is still waiting for the consumer to decrement the

variable num.

112 Chapter 4 Verifying Multi-threaded Software

4.6 Experimental Evaluation

We have implemented the lazy, schedule recording, and UW approaches described in

Section 4.3 in ESBMC. In our experiments, we have used ESBMC v1.15.1 together with

Z3 v2.11 [57], which was the most efficient SMT solver in our previous experiments [53]

(see also Chapter 3).

The experimental evaluation of our work consists of three parts. In Section 4.6.1, we com-

pare our approaches against the Monotonic Partial Order Reduction (MPOR) [103] and

Peephole Partial Order Reduction (PPOR) [178] that are implemented in an SMT-based

bounded model checker using the Yices SMT solver [65]. In Section 4.6.2, we compare

our lazy approach against CHESS v0.1.30626.0 [136, 137], which is a concurrency test-

ing tool for C# programs. CHESS supports iterative context-bounding by exploring the

various thread schedules deterministically. In Section 4.6.3, we compare our approaches

against SATABS version 2.5 [44] connected to Cadence SMV [124], which is a state-of-

the-art C model checker and supports the verification of multi-threaded software with

shared variables using the CEGAR technique.

All experiments were conducted on an otherwise idle Intel Pentium Dual CPU, 2GHz

and 3GHz with 4 GB of RAM running Windows and Linux OS respectively. For all

benchmarks, the time limit has been set to 3600 seconds to check all properties at

once. All times given are wall clock time in seconds as measured by the unix time

command through a single execution. In our experiments, we chose CHESS [136, 138]

and SATABS [44] as two of the most widely used verification tools.

4.6.1 Comparison to MPOR and PPOR

We use the dining philosophers model to evaluate our approaches against MPOR and

PPOR. MPOR and PPOR combine dynamic partial order reduction [68] with symbolic

state space exploration for model checking multi-threaded software. Both MPOR and

PPOR thus explore all necessary interleavings by dynamically tracking interactions be-

tween the threads interleavings and adding constraints to allow automatic pruning of

redundant interleavings in the SMT solver. However, MPOR is based on the notion of

quasi-monotonic sequences of thread-ids, i.e., if all transitions enabled at a global state

are independent then MPOR needs to explore just one interleaving, which is chosen to

be the one in which transitions are executed in increasing (monotonic) order of their

thread-ids; while PPOR is based on the notion of guarded independent transitions, i.e.,

transitions that can be considered as independent in certain execution paths. MPOR

is optimal (i.e., remove all redundant interleavings) for multi-threaded programs with

more than two threads while PPOR is optimal for programs with two threads.

Since the benchmarks used by Kahlon et al. [103] are not available, we re-implemented

Chapter 4 Verifying Multi-threaded Software 113

MPOR PPOR Lazy Sched. UW

Module L T B Time Time Time #FI/#I Time Time Itr

1 dp2 unsat 63 2 3 0.2 (0.2) 0.1 (0.1) 0.2 0/2 0.2 0.2 1

2 dp3 unsat 63 3 4 0.8 (0.9) 1.0 (1.1) 0.3 0/6 0.3 0.3 1

3 dp4 unsat 63 4 5 5.0 (5.3) 41.9 (44.9) 1.3 0/24 1 1 1

4 dp5 unsat 63 5 6 21.4 (22.9) 138.7 (148.6) 6 0/120 5.3 5.3 1

5 dp6 unsat 63 6 7 48.8 (52.3) 470.4 (504.4) 45 0/720 65.3 64.2 1

6 dp7 unsat 63 7 8 150.8 (161.6) TO - 360 0/5040 MO MO 0

7 dp2 sat 63 2 3 0.1 (0.1) 0.1 7(0.1) 0.1 2/2 0.2 0.2 3

8 dp3 sat 63 3 4 1.2 (1.3) 0.3 (0.3) 0.1 6/6 0.2 0.5 3

9 dp4 sat 63 4 5 8.9 (9.5) 3.6 (3.8) 0.2 24/24 0.6 2.6 4

10 dp5 sat 63 5 6 88.4 (94.7) 57.6 (61.7) 0.3 120/120 2.8 24.5 5

11 dp6 sat 63 6 7 294.4 (315.4) 2130.8 (2283) 0.3 720/720 24.5 568.2 6

12 dp7 sat 63 7 8 1136.8 (1218) TO - 0.3 5040/5040 818.1 816.2 1

Table 4.2: Results of the comparison between MPOR and PPOR, and lazy, schedule,
and UW ESBMC

them as described there. The implementation is available for downloading at the ESBMC

webpage (http://users.ecs.soton.ac.uk/lcc08r/esbmc). Each philosopher

has its own local variables, and they communicate only through a global shared array of

forks. This version guarantees the absence of deadlocks. As in [103], we also check two

properties: (i) whether all philosophers can eat simultaneously (this property does not

hold, i.e., the verification condition is unsatisfiable) and (ii) whether all philosophers

have eaten at least once (this property holds, i.e., the verification condition is satisfiable).

Kahlon et al. [103] run their experiments on a workstation with 2.8 GHz Xeon processor

and 4GB of RAM memory running Linux OS. In order to make the results comparable,

we scale their times in Table 4.2. We give both original (in brackets) and scaled timings.

Table 4.2 shows the detailed results of the comparison between MPOR, PPOR, and the

three ESBMC approaches. The first column L gives the number of lines of code, the

second column T reports the total number of threads and the third column B provides

the unwinding bound. The Time column provides the time in seconds while the column

#I provides the total number of generated interleavings and the column #FI the total

number of failed interleavings. The column Itr gives the number of iterations to prove

or disprove the property in the UW approach.

As we can see in Table 4.2, our approaches perform equivalently to MPOR to check

the first property of the model until we increase the number of philosophers to 6. If

we continue increasing the number of philosophers, MPOR performs better than our

approaches. However, our three approaches perform better than PPOR in checking the

first property. In addition, our lazy ESBMC scales significantly better than the other ap-

proaches (including our UW and schedule recording approaches) in checking the second

(violated) property of the dining philosophers model, i.e., whether all philosophers have

114 Chapter 4 Verifying Multi-threaded Software

eaten at least once. We also show in column #FI/#I that all interleavings generated

by our lazy ESBMC are satisfiable, i.e., that each interleaving exhibits the error. In

summary, our lazy approach outperforms both MPOR and PPOR for those benchmarks

that generate satisfiable formulae and is still comparable to MPOR and PPOR when

the generated formulae are unsatisfiable.

4.6.2 Comparison to CHESS

CHESS is a concurrency testing tool for C# programs. It implements iterative context-

bounding and explores the various thread schedules deterministically [136, 138]. CHESS

requires idempotent unit tests that it repeatedly executes in a loop, exploring a different

interleaving on each iteration. In this respect, it is similar to our lazy approach; however,

CHESS is a purely dynamic, test-based tool and originally employed a stateless search

technique, although its latest version (v0.1.30626.0) performs state hashing based on

happens-before graph to avoid exploring the same state redundantly.

Table 4.3 shows the detailed results of the comparison between ESBMC and CHESS on a

2GHz machine. reorder, twostage, and wronglock are different versions of a reader/writer

program [156]. The numbers (x, y) indicate that we have x instance(s) of thread tset and

y instance(s) of thread treader. According to [156], increasing the number of instances

of a given thread while keeping constant the number of instances of the other thread,

substantially increases the “semantic hardness” of the error discovery. Note that all

these benchmarks only check for a single, violated property. micro is a synthetic micro-

benchmark [74] (shown in Figure 1.1 of Chapter 1) which checks a single valid property.

It is used to check the scalability of multi-threaded software verification tools. The

number in brackets indicates the total number of visible statements on each thread. In

the table, L is the size of the code (in lines), and T the total number of threads. B is

the number of BMC unrolling steps for each loop, while C is the context switch bound.

Except for reorder 6 bad, C is set to the minimum number of context switches required

to expose the error. We increase further the number of context switches for reorder 6 bad

because we want to check the scalability of both tools. Time is the time in seconds until

the error is found; timeouts are denoted by TO. For ESBMC, I is the total number of

generated interleavings, while FI is the total number of failed interleavings. The column

itr gives the number of iterations required to prove or disprove the property in the UW

approach. For CHESS, Tests reports the approximate number of tests executed, which

is not related to the number of interleavings. Both tools identify the property violation

(resp. confirm that it holds) in all cases where they do not run out of time or memory.

As we can see in Table 4.3, CHESS is effective for programs where there are a small

number of threads, but it does not scale that well and consistently runs out of time when

we increase the number of threads. In general, CHESS times out when the number of

threads increases beyond six. The relatively poor scalability of CHESS has already been

Chapter 4 Verifying Multi-threaded Software 115

observed by [156]. In contrast, our lazy algorithm is able to find bugs quickly even when

we increase the number of threads and the context bound, and consistently outperforms

CHESS as well as the schedule recording and UW approaches. However, note that our

lazy algorithm runs out of memory for test cases 16 and 18 when we increase the number

of context switches to 18 and 13 respectively.

4.6.3 Comparison to SATABS

SATABS is an ANSI-C model checker which supports the verification of multi-threaded

software with shared variables using the CEGAR technique. We compare our approaches

against SATABS v2.5 [44] based on Cadence SMV using a number of multi-threaded

programs taken from standard benchmark suites. Table 4.4 shows the results achieved

on a 3Ghz machine. Programs that end on “bad” contain an error (i.e., at least one of

the properties is satisfiable) while those that end on “ok” are correct. Here, #P gives

the number of properties to be verified for each program, which includes array bounds,

pointer safety, division by zero, deadlock and order violations checks. A context bound

of ∞ means that we did not specify a bound. A “-” result indicates that the tool failed

with an error such as internal (†) and refinement (RF) failure, memory overflow (MO),

time-out (TO), or failed to detect errors in the program. A “+” indicates that the tool

detected the error or proved all VCs.

Programs 1-6 are concurrent implementations of stack, queue, and circular buffer data

structures; programs 1 and 2 are extracted from an embedded application [51]. Pro-

grams 7-14 are from the INSPECT benchmark [182] and use mutex and condition syn-

chronization primitives from the Pthread library. Programs 15-17 are from the VV-lab

benchmarks [156] and contain common concurrency bugs such as data races, atomicity

and order violations. Programs 18-20 are embedded applications that run on a dual

core processor; they are implemented in a commercial set-top box product from NXP

semiconductors [141]. Program 21 is the same synthetic micro-benchmark described in

Section 4.6.2, but here we increase further the number of context switches to check the

scalability of our approaches.

As we can see in Table 3.3, SATABS produces refinement failures (RF) and fails with

internal errors (†) for most programs. These programs contain linear arithmetic oper-

ations with arrays and the predicate abstraction technique implemented in SATABS

seems to suffer from a lack of precision when dealing with arrays. However, the ability of

a verification tool to check such programs is particularly important as many real-world

multi-threaded programs belong to this class. SATABS also times out for large programs

or for programs with many threads (cf. programs 7, 8, 9, 13, and 21). Additionally, SA-

TABS gives false positives on programs 14-16, which contain known bugs related to data

races, atomicity and order violations.

116
C

h
a
p
ter

4
V

erify
in

g
M

u
lti-th

rea
d
ed

S
o
ftw

a
re

CHESS Lazy Schedule UW

Test Program #L #T B C T
im

e

T
es

ts

T
im

e

#FI / #I T
im

e

T
im

e

It
r

1 reorder 3 bad (2,1) 84 3 3 4 1 200 <1 1/29 <1 <1 4

2 reorder 4 bad (3,1) 84 4 4 5 98 13000 <1 1/82 1 4 5

3 reorder 5 bad (4,1) 84 5 5 6 TO 429000 <1 1/277 4 18 6

4 reorder 6 bad (5,1) 84 6 6 7 TO 396000 <1 1/853 36 72 7

5 reorder 6 bad (5,1) 84 6 6 8 TO 371000 <1 1/2810 225 592 7

6 reorder 6 bad (5,1) 84 6 6 9 TO 367000 <1 1/8124 MO MO 1

7 twostage 3 bad (2,1) 128 3 3 4 4 500 1 1/35 1 3 5

8 twostage 4 bad (3,1) 128 4 4 4 215 27000 2 1/42 1 4 5

9 twostage 5 bad (4,1) 128 5 5 4 TO 384000 2 1/44 1 5 5

10 twostage 6 bad (5,1) 128 6 6 4 TO 366000 2 1/45 2 5 5

11 wronglock 4 bad (1,3) 110 4 4 8 21 3000 5 2/489 10 89 9

12 wronglock 5 bad (1,4) 110 5 5 8 724 93000 10 3/2869 50 408 9

13 wronglock 6 bad (1,5) 110 6 6 8 TO 356000 18 4/12106 225 2060 9

14 wronglock 7 bad (1,6) 110 7 7 8 TO 330000 34 5/39100 MO MO 1

15 micro 2 ok (100) 247 2 1 2 316 35855 <1 0/4 <1 <1 1

16 micro 2 ok (100) 247 2 1 17 TO 400000 1095 0/131072 MO MO 1

17 micro 3 ok (100) 365 3 1 2 TO 272000 <1 0/9 <1 <1 1

18 micro 3 ok (100) 365 3 1 12 TO 290000 1021 0/121393 MO MO 1

Table 4.3: Results of the comparison between ESBMC (v1.15.1) and Microsoft CHESS (v0.1.30626.0).

C
h
a
p
ter

4
V

erify
in

g
M

u
lti-th

rea
d
ed

S
o
ftw

a
re

117

SATABS Lazy Schedule UW

Test Program L T P B C T
im

e

R
es

u
lt

T
im

e

R
es

u
lt

#FI / #I T
im

e

R
es

u
lt

T
im

e

R
es

u
lt

It
r

1 circular buffer ok [51] 111 2 9 8 ∞ † − 477 + 0/12870 MO − MO − 1

2 circular buffer bad [51] 109 2 8 8 5 † − <1 + 3/32 2 + 11 + 6

3 queue ok [55] 147 2 12 41 ∞ RF − 3 + 0/6 3 + 3 + 1

4 queue bad [55] 153 2 15 41 8 † − 3 + 91/256 50 + 373 + 7

5 stack ok [55] 105 2 5 11 12 † − 225 + 0/4094 1026 + 1097 + 1

6 stack bad [55] 106 2 6 11 4 RF − <1 + 4/16 2 + 6 + 4

7 fsbench ok [182] 81 26 47 26 2 † − 252 + 0/676 304 + 301 + 1

8 fsbench bad [182] 80 27 48 27 2 † − <1 + 729/729 360 + 786 + 2

9 indexer ok [182] 77 13 21 129 4 TO − 595 + 0/17160 220 + 218 + 1

10 stateful20 ok [182] 60 2 3 20 10 † − 95 + 0/1024 487 + 518 + 1

11 sync02 ok [182] 74 2 6 21 21 RF − 44 + 0/121 60 + 60 + 1

12 sync02 bad [182] 74 2 6 21 21 RF − 8 + 5/186 132 + 383 + 3

13 aget-0.4 bad [182] 1233 3 279 200 2 3346 + 137 + 1/1 127 + 125 + 1

14 bzip2smp ok [182] 6366 3 8568 1 9 TO − 1800 + 0/1294 MO − MO − 1

15 reorder 10 bad (9,1) [156] 84 10 7 10 11 1 − <1 + 1/154574 MO − MO − 1

16 twostage 100 bad (99,1) [156] 128 100 13 100 4 2 − 88 + 1/139 93 + 195 + 5

17 wronglock 8 bad (1,7) [156] 110 8 8 8 8 2 − 90 + 6/104015 MO − MO − 1

18 exStbHDMI ok [141] 1060 2 24 16 20 TO − 229 + 0/1 226 + 213 + 1

19 exStbLED ok [141] 425 2 45 10 10 RF − 73 + 0/11 73 + 787 + 1

20 exStbThumbs bad [141] 1109 2 249 2 1 317 + 95 + 3/3 14 + 12 + 1

21 micro 10 ok (100) [74] 1171 10 10 1 17 TO − 254 + 0/29260 MO − MO − 1

Table 4.4: Results of the comparison between SATABS (v2.5) and ESBMC (v1.15.1).

118 Chapter 4 Verifying Multi-threaded Software

Note that SATABS uses predicate abstraction and refinement, and in some sense tries to

solve a harder problem than bounded model checking. However, the results in Table 4.4

indicate that this problem may still be too hard for multi-threaded applications, as

SATABS is unable to prove the required properties.

We can also see in Table 3.3 that if the program contains errors at all, these errors indeed

generally occur in most interleavings explored; consequently, the lazy approach is very

fast for these cases. The notable exception is wronglock bad, where less than 0.1% of the

interleavings expose the error and SATABS is substantially faster than ESBMC (but fails

to find the error); however, even here the lazy approach outperforms both the schedule

recording and UW approaches. Similarly, the lazy approach is capable of handling safe

programs in which the number of threads and context switches grows quickly, which

makes the formula harder and often “blows up” the SMT solver. The UW approach

is typically slower than schedule recording. We suspect that the proof generation of

the SMT solver (which is required to produce the unsatisfiable cores) causes memory

overhead and corresponding slowdowns; this was also reported previously [56].

4.7 Related Work

SMT-based BMC is gaining popularity in the formal verification community [57]. Ganai

and Gupta describe a verification framework for BMC and apply several techniques to

simplify the BMC problem [71]. However, the authors focus on sequential software and

use only the theory of integer and real arithmetic, which does not reflect precisely the

ANSI-C semantics. Armando et al. also propose a BMC approach using SMT solvers

for sequential ANSI-C programs [11] by using linear arithmetic, arrays, records and

restricted bit-vectors arithmetic but they do not address important constructs of the

ANSI-C language.

Cimatti et al. [39] describe an approach to verify SystemC that similarly combines

explicit state space exploration (i.e., the explicit exploration of the different possible

interleavings) with symbolic model checking (i.e., the symbolic representation and up-

dates of the state). However, we use BMC instead of predicate abstraction, and we

implement a realistic scheduler, i.e., our scheduler may preempt a thread at any visible

instruction in its execution, whereas [39] encodes the semantics of the non-preempting

SystemC scheduler. We also exploit the SMT techniques on large problems by encoding

all possible interleavings into a single formula.

Qadeer and Rehof present a pragmatic method to discover bugs in concurrent software in

which the program analysis is restricted to executions with a bounded number of context

switches [150]. However, the authors do not apply it to realistic and large concurrent soft-

ware benchmarks and the integration of this context-bounded model checking algorithm

Chapter 4 Verifying Multi-threaded Software 119

into the explicit state model checker ZING is left for future work. Rabinovitz and Grum-

berg describe an extension of the CBMC model checker to concurrent C programs [152],

which translates C threads into SSA form and adds constraints for a bounded number

of context-switches, as described in [150]. This approach, however, is limited to two

threads, and requires the user to run the model checker twice in order to detect different

types of bugs (“regular” and concurrency bugs). It is also only evaluated on a concurrent

bubblesort, but not on a set of realistic applications.

Ganai and Gupta describe a lazy method for modelling multi-threaded concurrent sys-

tems using shared variables [73], but this method is also restricted to two threads. Gupta

et al. [103] extend [73, 102] by supporting more than two threads and by combining dy-

namic partial order reduction with symbolic state space exploration. The benchmarks

that have been reported are a parameterized version of the dining philosophers model,

which are untypical multi-threaded C programs. Grumberg et al. propose an algorithmic

method based on SAT and BMC to model check a multi-process system based on a series

of under-approximated models [84]. This approach, however, does not integrate context-

bounded analysis and it does not address the problem of model checking multi-threaded

C software.

4.8 Conclusions

We have presented three different approaches to model check multi-threaded ANSI-C

software with shared variable communication between the threads. The lazy approach

iteratively generates all possible interleavings and calls the BMC procedure on each

interleaving. The schedule recording approach systematically encodes all possible in-

terleavings into one formula. The underapproximation and widening approach checks

models with an increased set of allowed interleavings. The main contribution of all

three approaches is in the combination of symbolic model checking with explicit state

space exploration. As far as we are aware, the lazy approach has not been described or

evaluated in the literature. Similarly, the underapproximation-widening approach has

not been used for bounded model checking of multi-threaded software. The difference

between our schedule recording and Gupta et al. [103] is that they work in a fully sym-

bolic context. With these novel approaches we have successfully achieved the second

objective stated in Section 1.2.

Additionally, we have presented our modelling of the synchronization primitives of the

Pthread library that allows us to detect not only atomicity and order violations, but also

local and global deadlock, that previous attempts are unable to find [73, 102, 103, 152].

Surprisingly, our approach to check constraints lazily is extremely fast for programs

that contain errors and to a lesser extent even for safe programs in which the num-

ber of threads and context switches grows quickly. The experimental results also show

120 Chapter 4 Verifying Multi-threaded Software

that the lazy approach generally outperforms not only the schedule recording and UW

approaches, but also CHESS [136] and SATABS [44] tools on several non-trivial bench-

marks. As far as we are aware, there is no other work that considers a comprehensive

SMT-based BMC procedure to verify multi-threaded ANSI-C software by combining

symbolic model checking with explicit state space exploration. In future work, we plan

to explore the use of Craig interpolants to prove non-interference of context switches

among the threads up to a given depth and develop an efficient method on top of ES-

BMC to localize faults in multi-threaded programs.

Chapter 5

Implementation of ESBMC

Chapter 5 describes the main software components of the ESBMC architecture. Addi-

tionally, in order to achieve the third objective stated in Section 1.2, we describe the

simplifications and heuristics that we used in order to reduce the unwound formula

and to determine the best representation for the program variables. It also evaluates

the simplifications and heuristics, which show a substantial performance improvement

over a large set of benchmarks. The results described in the previous chapters have

been achieved using the implementation described here, so this chapter should not be

interpreted as a continuation of the previous chapters, but a “separation of concerns”.

5.1 Introduction

ESBMC is a context-bounded model checker for embedded ANSI-C software based on

SMT solvers. It allows the verification engineer to:

• verify single- and multi-threaded software (with shared variables and locks);

• reason about arithmetic under- and overflow, pointer safety, memory leaks, array

bounds, atomicity and order violations, deadlock, data race, and user-specified

assertions;

• verify programs that make use of bit-level, arrays, pointers, structs, unions, mem-

ory allocation and fixed-point arithmetic.

ESBMC does not require the user to annotate the programs with pre/post-conditions,

but allows the user to state additional properties using assert-statements, that are then

checked as well. It also provides three approaches (lazy, schedule recording, and under-

approximation and widening) to model check multi-threaded software. ESBMC can be

invoked through the command-line interface or configured through the Eclipse plug-in

121

122 Chapter 5 Implementation of ESBMC

(see Appendix A). ESBMC converts the verification conditions using different back-

ground theories and passes them directly to an SMT solver. In addition, ESBMC can

output verification conditions using the SMT logics QF AUFBV and QF AUFLIRA.

ESBMC is built on top of the CProver framework; the next section explains ESBMC’s

overall architecture, and the framework modifications.

5.2 Tool Architecture

Figure 5.1 shows its main software components. Every step of the model checking

process in ESBMC is implemented within a separate software component. ESBMC is

written in C++ and can be executed on all major operating systems and machines (i.e.,

32-bit Windows/x86, 32-bit Linux/x86, 64-bit Windows/x64 and 64-bit Linux/x64). In

Figure 5.1, the white boxes (except for the SMT solver) represent the components that

we reused from the CProver framework without any modification while the gray boxes

with dashed lines represent the components that we modified in order to:

1. generate automatically assertions to check for memory leaks, data races, atom-

icity and order violations and deadlocks (implemented in the component GOTO

program, see Subsections 3.4.7, 4.4 and 4.5);

2. extend the SSA form of the symbolic execution engine to avoid naming conflicts

when verifying multi-threaded programs (implemented in the component GOTO

symex, see Subsection 4.3.1);

3. simplify the unwound formula based on high-level information to prevent over-

burdening the solver (implemented in the component GOTO symex, see Subsec-

tions 3.3 and 5.3);

4. perform an up-front analysis in the CFG of the program to determine the best en-

coding and solver for a particular program (implemented in the component GOTO

symex, see Subsection 5.4).

The GOTO program component converts the ANSI-C program into a goto-program,

which simplifies the representation (e.g., replacement of switch and while by if and

goto statements). The GOTO symex component performs a symbolic simulation of the

program, which thus handles the unrolling of the loops and the elimination of recursive

functions; and generates the verification conditions to be encoded in the back-end.

In Figure 5.1, the gray boxes with solid lines represent new components that we imple-

mented from scratch in order to guide the symbolic execution via a thread scheduler

(see the component Scheduler) and to encode the given constraints and properties of

an ANSI-C program into a global logical context (see the components constraints and

Chapter 5 Implementation of ESBMC 123

properties), using the background theories supported by the SMT solvers. We also imple-

mented new components from scratch to interpret the counter-example generated by the

supported SMT solvers (see component Interpret counter-example). The software com-

ponents to convert the constraints and properties and to interpret the counter-example

must be implemented in the back-end to support each new SMT solver. In total, we

implemented approximately 20000 lines of C++ code, which approx. 80% belong to the

back-end and 20% belong to the front-end.1

G O T O
s y m e x

S e l e c t
S M T s o l v e r

c o n v e r t c o n t r a i n t s

c o n v e r t p r o p e r t i e s

L o g i c a l
C o n t e x t

I n te rp re t
c o u n t e r - e x a m p l e

S M T
s o l v e r

P r o p e r t y
h o l d s u p t o
b o u n d k

P r o p e r t y
v i o l a t i on

P a r s e
t r e e

I R e p
t r e e s

G O T O
p r o g r a m

t y p e
c h e c k

c o n t r o l - f l o w
g r a p h

C / C + +
s o u r c e

S c a n

S S A
f o r m

g u i d e s y m b o l i c
e x e c u t i o n

S c h e d u l e r

m u l t i - t h r e a d e d
g o t o p r o g r a m
w i t h a s s e r t i o n s

O K

s i n g l e -
t h r e a d e d
g o t o
p r o g r a m
w i t h
a s s e r t i o n s

P r o p e r t i e s

p r o g r a m
i n s t r u m e n t a t i o n

Figure 5.1: Overview of the ESBMC architecture.

In the back-end of ESBMC, we build two sets of quantifier-free formulae C (for the

constraints) and P (for the properties) so that C encodes the first part of ψk (more

precisely, I (s0)∧
∨k

i=0

∧i−1

j=0
γ (sj , sj+1)) and ¬P encodes the second part (more precisely,

∨k
i=0

¬φ (si)). After that, we check C |=T P using an SMT solver. If the answer is

satisfiable, we have found a violation of the property φ, which is encoded in ψk. If not,

the property holds up to the bound k.

5.3 Code Simplification and Reduction

We observed during development and preliminary evaluation that constant propaga-

tion and forward substitution techniques [134] significantly improved the performance

of ESBMC over a wide range of embedded software applications. Constant propagation

allows us to replace the values of known constants in expressions at verification time.

1Measured by running find . -name “*.[cpp]” | xargs wc -l and find . -name
“*.[h]” | xargs wc -l in the project directory.

124 Chapter 5 Implementation of ESBMC

The front-end of ESBMC, in particular the GOTO symex component, already propa-

gates constants related to scalar variables, but not for pointers to objects and for store

operations that update the content of arrays, structs and unions. Figure 5.2 shows a

fragment extracted from the cyclic redundancy check algorithm of the SNU-RT bench-

mark [116] as an example where constant propagation for scalar variables leads to a

significant performance improvement.

1 ...
2 int icrc1(int crc, int onech);
3 static int icrctb[256], rchr[256];
4 static int it[16]={0,8,4,12,2,10,6,14,1,9,5,
5 13,3,11,7,15};
6 int j;
7 for (j=0;j<=255;j++) {
8 icrctb[j]=icrc1(j<<8,0);
9 rchr[j]=(it[j&0xF]<<4 | it[j>>4]);

10 }
11 return 0;
12 ...

Figure 5.2: Code fragment of cyclic redundancy check.

Figure 5.3 shows the goto-program for the code fragment in Figure 5.2, which adds

additional assertions to check for array bounds violation. As explained in Section 3.4.4,

the verification conditions to check for array bounds violation do not require the array

theory. Therefore, after unwinding the loop of the goto-program shown in Figure 5.3,

the validity of the array bounds check (see lines 3, 5, 6 and 7) can be evaluated statically

(e.g., by simply propagating the value of the scalar variable j during the loop unwinding).

Figure 5.4 shows the loop unwinding of the goto-program shown in Figure 5.3. Note

that the expressions icrctb1 = ARRAY OF (0) and rchr1 = ARRAY OF (0) mean that

all elements of the arrays icrctb1 and rchr1 are initialized to zero.

1 ...
2 1: if !(j<=255) then goto 2
3 assert j<256 //array ‘icrctb’ upper bound
4 icrctb[j]=icrc1((j<<8),0)
5 assert j<256 //array ‘rchr’ upper bound
6 assert (15&j)<16 //array ‘it’ upper bound
7 assert j>>4<16 //array ‘it’ upper bound
8 rchr[j]=((it[j&15])<<4 | (it[j>>4]));
9 j = j + 1;

10 goto 1
11 2: return 0;
12 ...

Figure 5.3: Goto-program for the code fragment in Figure 5.2.

We also exploit the constant propagation technique to replace pointers to objects that

are constants by the respective constant and to replace store operations that update

the content of arrays, structs and unions with constant values by the values of the

Chapter 5 Implementation of ESBMC 125

1 icrctb1 == ARRAY_OF(0)
2 rchr1 == ARRAY_OF(0)
3 it1 == { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
4 13, 3, 11, 7, 15 }
5 j1 == 0
6 icrctb2 == (icrctb1 WITH [0:=0])
7 rchr2 == (rchr1 WITH [0:=0])
8 j2 == 1
9 icrctb3 == (icrctb2 WITH [1:=4129])

10 rchr3 == (rchr2 WITH [1:=128])
11 ...
12 j3 == 255
13 icrctb257 == (icrctb256 WITH [255:=7920])
14 rchr257 == (rchr256 WITH [255:=255])

Figure 5.4: Loop unwound for the goto-program in Figure 5.3.

known constants. Figure 5.5 shows an example extracted from the POWERSTONE

benchmark [159] to illustrate how constant propagation works for pointers in ESBMC.

1 ...
2 void puts(const char *s) {
3 while(*s) {
4 putc(*s++);
5 }
6 }
7 ...
8 puts("blit: success");

Figure 5.5: Code fragment of blit.

The function puts defined in line 2 is often called with a pointer to an array of constants

(e.g., see line 8), but CBMC’s VCG still generates VCs to check for the bounds of the

pointer s as explained in Section 3.4.6. During the unrolling phase, we check whether the

last value assigned to a pointer is a constant, and if so, we replace it by the constant and

pass the modified expression to a simplifier, which is able to perform simple deductions

before generating a VC to be encoded by the back-end.

We also propagate the store-operations for arrays, structs and unions up to a certain

level. Figure 5.6 shows an example extracted from the EUREKA benchmark [148] to

illustrate how constant propagation works for arrays. In line 2, we initialize the first

position of array a with a constant (see line 2). In each iteration of the for -loop, we add

the value of the loop counter i to the last value written in array a and write the result

to the next position of a (line 4). After the loop, we then check whether the assertion

in line 6 holds. However, after unrolling the loop N times we obtain a large expression

store(. . . (store(store(store(a0, 0, 1), 1, 2), 2, 4), 3, 7), . . .) of nested store operations for a.

Since all arguments except a0 are constants, we can in principle check statically whether

the assertion in line 6 holds. In practice, however, the model checker becomes slower than

the SMT solvers in propagating these constants if the expressions become too large. In

126 Chapter 5 Implementation of ESBMC

our benchmarks, we observed a substantial improvement in performance if we propagate

the known constants up to six nested store operations. We thus reduce substantially the

number of VCs, but we leave the harder cases for the SMT solvers.

1 ...
2 a[0]=1;
3 for(i=1; i<N; i++){
4 a[i]= a[i-1] + i;
5 }
6 assert(a[i-1]<2*1000);
7 ...

Figure 5.6: Code fragment of SumArray.

We also observed that several applications repeat the same expression at many different

places, especially after loop unrolling, in a way that the value of the operands does not

change in between the occurrences. This can be detected easily in the SSA form and used

for caching and forward substitution. Figure 5.7 shows a fragment of the Fast Fourier

Transform (FFT) algorithm, extracted again from the SNU-RT benchmark [116], as

an example of where the forward substitution technique can be applied. This occurs

because the SSA representations of the two outermost for -loops (in lines 6-15 and lines

8-14, respectively) will eventually contain several copies of the innermost for -loop (lines

10-13), and thus the right-hand side of the assignment in line 11 is repeated several times

in the SSA form, depending on the unwinding bound used to model check this program.

1 typedef struct {
2 float real, imag;
3 } complex;
4 int n=1024;
5 complex x[1024], *xi;
6 for(le=n/2; le>0; le/=2) {
7 ...
8 for (j=0; j<le; j++) {
9 ...

10 for (i=j; i<n; i=i+2*le) {
11 xi = x + i;
12 ...
13 }
14 }
15 }

Figure 5.7: Code fragment of Fast Fourier Transformation.

For example, if we set the unwinding bound k to 1024 (which is required because the

upper bound n of the innermost for -loop is equal to 1024, see line 4), the for -loop in

lines 6-15 will contain nine copies of the for -loop in lines 8-14, where the variable le

will assume the values 512, 256, 128, . . . , 1. Consequently, the expression x + i that is

assigned to the xi pointer index is replaced up to nine times for each value that i takes

in the for -loop in lines 10-13. We thus include all expressions into a cache so that when

Chapter 5 Implementation of ESBMC 127

a given expression is processed again in the program, we only retrieve it from the cache

instead of creating a new copy using a new set of variables.

We also try to simplify the quantifier-free formulae C and P by using local and recursive

transformations in order to remove functionally redundant expressions and redundant

literals as follows:

a ∧ true = a a ∧ false = false

a ∨ false = a a ∨ true = true

a⊕ false = a a⊕ true = ¬a

ite (true, a, b) = a ite (false, a, b) = b

ite (f, a, a) = a ite (f, f ∧ a, b) = ite (f, a, b)

We apply these simplifications to try reducing the size of the unrolled formula and

consequently achieve simplification not only within each time step but also across time

steps during the unwinding of the program.

5.4 Exploiting Datatype Representations

As mentioned in Chapter 3, modern SMT solvers provide ways to model the program

variables either as bit-vectors or as elements of an abstract numerical domain (e.g., Z,

Q, or R). If the program variables are modelled as bit-vectors of fixed size, then the

result of the analysis can be precise (w.r.t. the ANSI-C semantics), depending on the

size considered for the bit-vectors. On the other hand, if the program variables are

modelled as numerical values, then the result of the analysis is independent from the

actual binary representation, but it may not be precise when arithmetic expressions are

involved. As a motivating example, consider the following small C program from [42] as

shown in Figure 5.8.

1 int main() {
2 unsigned char a, b;
3 unsigned int result=0, i;
4 a=nondet_uchar();
5 b=nondet_uchar();
6 for(i=0; i<8; i++)
7 if((b>>i)&1)
8 result+=(a<<i);
9 assert(result==a*b);

10 }

Figure 5.8: A C program that uses shift-and-add to multiply two numbers.

This program non-deterministically selects two values of type unsigned char and uses

bitwise AND, right- and left-shift operations to multiply them. Reasoning about this

128 Chapter 5 Implementation of ESBMC

program by means of integer arithmetic produces wrong results if the bit-level operators

are treated as uninterpreted functions (UFs) because, even though UFs simplify the

proofs, they ignore the semantics of the operators and consequently make the formula

weaker. This problem occurs in several software model checkers (e.g., SMT-CBMC [11]

handles restricted bit-vectors arithmetic and BLAST [88] treats bit-level operations as

UFs, models integers as elements of Z and does not account for arithmetic overflows [21]),

which fail to check the assertion in line 9. In contrast, bit-vector arithmetic allows us

to encode bit-level operators in a more accurate way. However, in our benchmarks, we

noted that the majority of VCs are solved faster if we model the basic datatypes as Z

and R. Consequently, we have to trade off between speed and accuracy which are two

competing goals in formal verification using SMT.

Based on the extent to which the SMT solvers support the domain theories and on

experimental results obtained with a large set of benchmarks, we developed a simple

but effective heuristic to determine the best representation for the program variables

as well as the best SMT solver to be used in order to check the properties of a given

ANSI-C program:

1. Our default representation for encoding the constraints and properties of a given

ANSI-C program are integers and reals, respectively, and our default SMT solver

is Z3.

2. We then explore the CFG representation of the program.

3. If we find expressions that involve bit-level operations (e.g., <<, >>, &,|, ⊕)

or typecasts from signed to unsigned datatypes and vice-versa, we encode the

corresponding variables as bit-vectors.

4. We switch the SMT solver to Boolector if no pointers are used but we keep Z3 if

pointers are used.

We adopted this strategy because we are able to implement the theory of tuples on top

of Z3 to model pointers and thus exploit the structure provided by the word-level instead

of bit-level models (i.e., instead of concatenating and extracting bit-vectors) [108].

5.5 Evaluation of Performance Improvements

We evaluate the effectiveness of the simplification techniques and the exploration of the

datatype representations described in Sections 5.3 and 5.4 resp. using 174 programs,

with a total size of 70K lines of code, taken as a representative sample from the bench-

mark suites Siemens, SNU-RT, PowerStone, NECLA and NXP. With all optimizations

enabled, ESBMC can check all 174 programs in 439 seconds, which serves as our baseline.

Chapter 5 Implementation of ESBMC 129

We then evaluate the effect of the simplifications by disabling them one at a time as fol-

lows: constant propagation of store operations for arrays, structs and unions (CP store);

constant propagation for constant strings (CPString); forward substitution (FS); and re-

moval of functionally redundant literals and variables (FRLV). We set the time out to

180 seconds because this is longest time to check a given program with all optimizations

enabled.

Surprisingly, ESBMC performs marginally better when we disable the removal of func-

tionally redundant literals and variables (FRLV) and checks all 174 programs in 423

seconds. We can thus conclude that the SMT solvers already eliminate the function-

ally redundant literals and variables during the preprocessing phase in a more efficient

way. Fortunately, all other simplifications pay off. Using CP store , ESBMC checks 170

programs in 1059 seconds and times out in four programs. With CPString , it checks 173

programs in 590s and times out in one program, and with FS , it checks 171 programs

in 972 seconds and times out in three programs. The optimizations are complementary

in the sense that disabling each one of them causes ESBMC to time out on different

programs. Moreover, their effect is not only restricted to the programs that ESBMC

fails to check when they are disabled: on the remaining 166 programs, disabling CP store

causes an average slow-down of more than 30%. However the effects are less pronounced,

or even reversed, for disabling CPString and FS , with a slow-down of approx. 8%, and a

speed-up of approx. 4%, respectively.

We also evaluated the effect of automatically selecting the best representation for the

program variables using the SMT logics QF AUFBV and QF AUFLIRA together with

the SMT solver Z3 in order to encode the verification conditions using all simplifications

described above. If we use QF AUFBV (i.e., the bit-vector representation), ESBMC

checks 170 programs in 1143 seconds and times out in four programs; and it does not

give any false (positive or negative) result. If we use QF AUFLIRA (i.e., integers and

reals), ESBMC checks all 174 programs in 419 seconds, but it gives a false negative in

one program in which the property to be checked contains bit-level operators (& and ⊕)

and typecasts from unsigned to signed integer (note that this false result does not show

up in our experiments in Chapters 3 and 4 because we used the heuristics described

in Section 5.4). Differently from other simplifications, their effect is restricted to the

programs that ESBMC fails: using our heuristics as described in Section 5.4, ESBMC

checks the remaining 170 programs in 336 seconds, encoding the VCs using QF AUFBV

causes an average slow-down of 1% while encoding the VCs using QF AUFLIRA gives

a speed-up of approx. 4%.

130 Chapter 5 Implementation of ESBMC

5.6 Conclusions

We presented the main software components of the ESBMC architecture, the simplifica-

tions that we applied to reduce the unwound formula and the heuristics that we used to

determine the best representation for the program variables. With the implementation

of these simplifications and heuristics we successfully achieved the third objective stated

in Section 1.2. Moreover, we have seen that every step of the model checking process in

ESBMC is implemented within a separate component. The communication between the

software components is conducted by means of well-defined interfaces. Therefore, single

components of the model checking process in ESBMC could, in principle, be exchanged

independently. We have also shown that the simplifications CP store , CPString and FS

reduce substantially the unwound formula that is passed to the SMT solvers. Addition-

ally, we also observed in our benchmarks that the majority of the verification conditions

are solved faster if we model the basic datatypes as integer and/or real as specified in

the SMT-LIB.

Chapter 6

Integrating ESBMC into Software

Engineering Practice

In this chapter, we describe an approach to integrate SMT-based bounded model check-

ing into the software engineering process by exploiting practices such as incremental

development and regression tests; this chapter is directed towards the fourth objective

stated in Section 1.2. In particular, our approach looks at the modifications suffered by

the software system since its last verification, and submits them to a partly static, partly

dynamic “continuous” verification process, guided by a set of test cases for coverage. A

case study from the telecommunications domain shows that the proposed approach can

potentially improve the error-detection capability and reduce the overall verification

time.

6.1 Introduction

The complexity of software in embedded systems has increased significantly over the

last years so that software verification now plays an important role in ensuring the

overall product quality. In this context, bounded model checking has been successfully

applied to discover subtle errors, but for larger applications, it often suffers from the

state space explosion problem, as we pointed out in Chapter 3. We try to address this

bottleneck with a new concept called continuous verification, which combines existing

ideas of software engineering (e.g., continuous integration [70]) and formal verification

(e.g., equivalence checking [30]) communities.

The continuous verification approach thus aims to automatically detect design errors

and integration problems as quickly as possible by exploiting information from the soft-

ware configuration management (SCM) system, systematically focusing the verification

effort on new or modified functions. We use equivalence checking to determine whether

131

132 Chapter 6 Integrating ESBMC into Software Engineering Practice

modified functions need to be re-verified formally and we use existing test cases to reduce

the search space for the model checker, thus combining dynamic and static verification.1

The formal verification community has extensively used equivalence checking for hard-

ware designs [30, 109], but there is little evidence that equivalence checking for large

embedded software will improve the scalability of software model checking. In partic-

ular, Godlin and Strichman describe an approach to prove the equivalence of similar

programs [78, 167] and apply it to random and industrial programs (e.g., ranging from

300 to 3000 lines of code). The authors claim that their approach takes from few seconds

to 30 minutes in order to prove equivalence on equivalent programs or it can take several

hours (or run out of memory) on non-equivalent programs. The results are inconclusive

since Godlin and Strichman do not specify how many functions they are able to prove in

their benchmarks, the time needed to check each one, how many functions are actually

equivalent and how often these functions are modified from one version to another. Mat-

sumoto et al. also describe an approach to check the equivalence of C programs using

the SMT solver CVC, but the authors restrict the C programs to be checked (e.g., no

pointer uses) due to limitations of their symbolic execution engine [121]. The paper also

does not provide sufficient details to compare their results to the results of our approach.

The main purpose of this chapter is thus to investigate whether the continuous verifica-

tion approach can indeed substantially reduce the verification time of large embedded

software using our SMT-based context-bounded model checker.

6.2 Continuous Verification

The continuous verification approach has its roots in the continuous integration (CI)

practice described by Fowler [70]. CI relies on every developer to create and execute unit,

functional and integration tests before committing their source code to a single source

repository. It also assumes the existence of an automated unit test framework. The SCM

is then used to perform the system build and test processes in a completely automatic

way. In continuous verification, we use the same information (i.e., development history

and test cases), but in a different way to improve the coverage and substantially reduce

the verification time throughout the development of a product or product line. We

use SMT-based bounded model checking to verify for each system build that the entire

system still satisfies all properties given as assertions by the designers, as well as a

range of language-specific safety properties such as the absence of arithmetic under- and

overflow, out-of-bounds array indexing, NULL-pointer dereferencing, or memory leaks.

We also consider properties expressed in LTL which we can easily convert to C-monitors

via Büchi automata [173] and model-check with ESBMC. Figure 6.1 shows the main

1We use the term dynamic to denote that the program is executed and its actual and expected
outputs observed and static to denote that a mathematical model of the program is analyzed.

Chapter 6 Integrating ESBMC into Software Engineering Practice 133

elements and steps of the continuous verification approach; the gray boxes indicate core

steps.

S C M

C h e c k f o r m o d i f i c a t i o n s

T e s t
S u i t e

M o d i f i e d F u n c t i o n s

S ta t i c
Ve r i f i ca t i on

D y n a m i c
Ve r i f i ca t i on

C h e c k p r o p e r t y a n d p a t h c o v e r a g e

B u e c h i
A u t o m a t a

P r o p e r t y
A s s e r t i o n s

P r o p e r t y
L T L

Figure 6.1: Continuous Verification

For large embedded software systems, the computational effort to re-verify the entire

software from scratch is high, and is even largely wasted if, as is often the case, the

changes are small [70]. For each system build, we thus consult the SCM to identify the

functions and methods that have actually been modified and focus on these. We then

use equivalence checking to determine whether they need to be re-verified formally: if

we can prove that the old and new versions of a function are functionally equivalent,

then we do not need to show for the new version any of the properties already shown for

the old version. This can potentially reduce the immediate verification effort because

proving the equivalence of two function versions can be less expensive than re-verifying

the function [78, 109, 167]. However, and more importantly, it also reduces overall system

verification efforts because it limits the propagation of changes through the system: if

we can prove the two versions of the function computationally equivalent, then we do

not need to re-verify any other function that depends it (unless that function has been

changed as well). Of course, proving the equivalence of two functions is in general

undecidable, due to unbounded memory usage [109], and the effort we spend in trying

to do so might be wasted.

As an example, consider the two versions of the signalInverter function shown in Fig-

ure 6.2. They were extracted from the embedded software of two releases of a medical

device product. In order to prove the equivalence of these two ANSI-C functions, we

compare their input-output relations. We thus:

134 Chapter 6 Integrating ESBMC into Software Engineering Practice

1 unsigned signalInverter(int signal) {
2 unsigned inverter;
3 if(signal >= 0)
4 inverter = signal;
5 else
6 inverter = -1*signal;
7 return inverter;
8 }

(a)

1 unsigned signalInverter(int signal) {
2 if(signal < 0)
3 return -signal;
4 else
5 return signal;
6 }

(b)

Figure 6.2: (a) Original function to invert the sign of signal. (b) Optimized version.

1. remove from each function the variable declarations and return statements;

2. convert the function bodies into single static assignment (SSA) form [134] (i.e.,

we introduce fresh variables by subscripting the original name such that every

assignment has a unique left hand side);

3. conjoin all program statements.

These operations produce two intermediate formulas α1 and α2 representing the func-

tions’ computations, as shown below.

α1 ≡ inverter1 = signal1 ∧ inverter2 = −1 ∗ signal1

∧ inverter3 = (signal1 ≥ 0 ? inverter1 : inverter2)

α2 ≡ signal ′2 = (signal ′1 < 0 ?−signal ′1 : signal ′1)

Note that in general we need to rename apart the formulas, because we need to prevent

that unrelated intermediate steps are accidentally related. For the actual equivalence

check, we identify the input variables (i.e., signal1 = signal ′1), and show using SMT-

based bounded model checking that, given the representation of the function bodies, the

output variables then also coincide:

(α1 ∧ α2 ∧ (signal1 = signal ′1)) ⇒ (inverter3 = signal ′2) (6.1)

If the functions access a global variable g, we also have to ensure that the value of g

coincide for both functions, i.e., we add the term g1 = g′1 to the consequent of the above

Chapter 6 Integrating ESBMC into Software Engineering Practice 135

formula. As in [78, 167], we also abstract calls to other functions with uninterpreted

function symbols with the purpose of keeping the size of the SMT formula relatively

small. This is sound as long as the called functions have no side-effects and have been

proved to be equivalent.

6.3 Generalizing Test Cases

After detecting new and/or modified functions, we use the existing unit test cases to

reduce the state space to be explored by the model checker. In this phase, we first run

the unit tests, keeping track of which inputs have already been used. We then guide

the model checker to visit states that have not been visited previously (e.g., by placing

assumptions on the input). In addition, the test cases also help to reduce the state space

to be explored in another way: by using the test stubs, we can break the global model

(containing the entire program) into local models (containing only the functions under

test) and generate on-demand the reachable states to be visited by the model checker,

starting with the state described by the test case. We can so reduce the number of paths

and variables to be considered during model checking.

This approach is similar to concolic testing, which simultaneously executes a program

concretely and symbolically [119, 160]. However, here we do not generate new concrete

values for the test cases with the purpose of maximizing the code coverage. Instead, we

use existing test cases and assume-statements to block larger parts of the search space

(e.g., by combining respective concrete values of the test cases into a single interval).

As an example consider the three simple C functions shown in Figure 6.3 that were

extracted from a medical device, and one of the test cases shown in Figure 6.4. The

device, called a pulse oximeter [51], is responsible for measuring the oxygen saturation

(SpO2) and heart rate (HR) in the blood system using a non-invasive method. The

functions, that we consider here from the pulse oximeter, implement a simple circular

buffer using a FIFO (First In, First Out) policy. The test case checks whether messages

are correctly added to and removed from the circular buffer using the FIFO policy.

Other test cases check for buffer underflow and/or overflow and whether the elements

are lost before reading them from the buffer.

The pulse oximeter sources contain seven test cases, which intend to cover all possible

execution paths related to the circular buffer, and during dynamic verification, we are

not able to find any bug in the circular buffer implementation with these. However, the

implementation is flawed: the array buffer is declared to be of type char [] (see line 1 in

Figure 6.3) but we assign an element b of type int (see line 14). The test cases do not

uncover this error because they happen to use only integer values that can safely be cast

to a char.

136 Chapter 6 Integrating ESBMC into Software Engineering Practice

1 static char buffer[BUFFER_MAX];
2 void initLog(int max) {
3 buffer_size = max;
4 first = next = 0;
5 }
6

7 int removeLogElem(void) {
8 first++;
9 return buffer[first-1];

10 }
11

12 void insertLogElem(int b) {
13 if (next < buffer_size) {
14 buffer[next] = b;
15 next = (next+1)%buffer_size;
16 assert(next<buffer_size);
17 }
18 }

Figure 6.3: Implementation of a circular buffer.

1 static void testCircularBuffer(void){
2 int ssr[]={1, -128, 98, 88, 59,
3 1, -128, 90, 0, -37};
4 int i;
5 initLog(5);
6 for(i=0; i<10; i++)
7 insertLogElem(ssr[i]);
8 for(i=5; i<10; i++)
9 TEST_ASSERT_EQUAL_INT(ssr[i],

10 removeLogElem());
11 }

Figure 6.4: A unit test for the functions shown in Figure 6.3.

Using SMT-based bounded model checking, we can detect this bug by non-determininisti-

cally assigning a value to the parameter b (i.e., by adding an assignment b = nondet int()

after line 12 in Figure 6.3). However, in general this approach can lead to false nega-

tives because the non-deterministic choice of values for program variables may force the

exploration of paths that are infeasible in the original program. Rather than modify-

ing the program we thus modify the test stubs and replace the concrete input values

by non-deterministic choices. Here, we replace the initialization of the array ssr (see

line 2 of Figure 6.4) by int ssr [] = {nondet int(),. . . ,nondet int()}. We then use as-

sume-statements to force the model checker away from the values that have already

been explored during testing.

In order to block larger parts of the search space, we use the given concrete values from

all stubs and combine the respective values into a single interval for each variable or

array element; here we assume that all “obvious” boundary values are used in some of

the stubs (e.g., using boundary-value analysis [166]), so that we force the model checker

Chapter 6 Integrating ESBMC into Software Engineering Practice 137

Test Case ssr[0] ssr[1] ssr[2] ssr[3] ssr[4] ssr[5] ssr[6] ssr[7] ssr[8] ssr[9]

TC1 1 -128 98 88 59 1 -128 90 0 -37

TC2 43 -28 -98 18 -90 0 -1 1 0 -37

TC3 43 -28 -98 18 -90 0 -1 1 0 -37

TC4 1 -5 50 40 -20 1 -50 20 0 -37

TC5 1 10 -60 60 30 1 -10 40 0 -37

Table 6.1: Concrete values to check the circular buffer.

towards the “unobvious” errors. In the example, we thus add an assume-statement such

as assume(ssr [0]<1 && ssr [0]>43) as shown in Figure 6.5 and we are then able to find

two bugs related to overflow and underflow. Table 6.1 shows all concrete values to check

dynamically the circular buffer and that we used to derive the single intervals (shown in

Figure 6.5).

1 static void testCircularBuffer(void) {
2 int ssr[] = {nondet_int(),..., nondet_int()};
3 assume(ssr[0] <1 && ssr[0] > 43);
4 assume(ssr[1]<-128 && ssr[1]>-28);
5 assume(ssr[2]<-98 && ssr[2]>98);
6 assume(ssr[3]<18 && ssr[3]>88);
7 assume(ssr[4]<-90 && ssr[4]>59);
8 assume(ssr[5]<0 && ssr[5]>1);
9 assume(ssr[6]<-128 && ssr[6]>-1);

10 assume(ssr[7]<1 && ssr[7]>90);
11 assume(ssr[8]!=0);
12 assume(ssr[8]!=-37);
13 ...
14 int i;
15 initLog(5);
16 for(i=0; i<10; i++)
17 insertLogElem(ssr[i]);
18 for(i=5; i<10; i++)
19 ASSERT_EQUAL_INT(ssr[i],
20 removeLogElem());
21 }

Figure 6.5: The modified unit test for the test case shown in Figure 6.4.

6.4 Specifying Temporal Properties with Büchi Automata

In addition to the language-specific safety properties as described previously in Chap-

ters 3 and 4, we can also show user-specified properties. These can be given directly as

assertions in the code, using C’s assert macro to state an assumption, or as formulas

in linear-time temporal logic (LTL), which can track temporal properties of the software

design. We translate the LTL formulas into Büchi automata using the Wring tool [165]

and further into ANSI-C and merge them into the code. The resulting ANSI-C pro-

138 Chapter 6 Integrating ESBMC into Software Engineering Practice

gram then monitors the design’s progress and watches out for violations of the specified

properties.

As an example, we extract two properties from the specification of the pulse oximeter

device, and show how they can be modelled and used in the context of the continuous

verification. In particular, we verify:

(a) the data flow to compute the HR value that is provided by the pulse oximeter sensor

hardware.

(b) whether the user of the pulse oximeter is capable of adjusting the sample time of

the embedded device.

The properties (a) and (b) can be expressed using the following LTL pattern (as de-

scribed in Chapter 2):

AG (p→ Fr) (6.2)

Here, A (“for all paths”), G (“always”), and F (“eventually”) are the LTL quantifiers,

and p and r represent the required pre- and post-states. In the example, for the property

(a), p denotes the state in which the buffer contains HR and SpO2 raw data, while r

denotes the state that defines the respective HR value. Consequently, (6.2) specifies that

any state containing the HR and SpO2 raw data in the buffer is eventually followed by

a state representing the respective HR value.

A Büchi automaton is a finite automaton over infinite words. It differs from a standard

finite automaton over finite words in the definition of accepting a word, which is based

on passing through an accepting state infinitely often (rather than terminating in a

final state) [40]. The Büchi automata we consider here work over computation traces,

i.e., sequences of states of the program to be analyzed. These are abstracted by the

predicates of interest (here p and r). Hence the “words” can be represented by sequences

of propositional expressions over the variables p and r. Figure 6.6 shows the non-

deterministic Büchi automaton that represents the LTL formula (6.2) and Figure 6.7

shows its corresponding ANSI-C monitor. The transition function δ is given in Table 6.2.

1 r ∨ ¬p r ¬p

init {S1, S2} S3 init init

S1 S1 S1 S3 S1

S2 S2 S2 S2 S3

S3 S3 S3 S3 S3

Table 6.2: Transition function δ for the Büchi automaton shown in Figure 6.6.

From the initial state, we can transition to S3 if r ∨ ¬p holds, stay in the initial state if

either r, or ¬p holds, or non-deterministically transition to either S1 or S2 if none of the

Chapter 6 Integrating ESBMC into Software Engineering Practice 139

in i t

s 1 s 2

s 3

(r) | | (!p)

r
! p

1

1
1

1 1

Figure 6.6: Specifying Temporal Properties for Software.

three properties hold (denoted by 1). This automaton will accept all infinite words that

represent computations in which each state in which p holds will eventually be followed

by a state in which r holds.

1 void* monitor_thread(void* arg) {
2 ...
3 while (1) {
4 choice = nondet_uint() % 2;
5 if (p) flag = true;
6 switch(state) {
7 case init:
8 if (r || !p) state = s3;
9 else if (choice == 0) state = s1;

10 else state = s2;
11 break;
12 case s1:
13 if (r) state = s3;
14 else state = s1;
15 break;
16 case s2:
17 if (!p) state = s3;
18 else state = s2;
19 break;
20 case s3:
21 state = s3;
22 break;
23 default:
24 abort();
25 }
26 if (flag && !is_processing) assert(state == s3);
27 }
28 pthread_exit(NULL);
29 }

Figure 6.7: The C-monitor thread to watch out for violations of the specified property.

In order to model the non-deterministic transition of the Büchi-automata in the ANSI-

140 Chapter 6 Integrating ESBMC into Software Engineering Practice

C specification, we use the function nondet uint() (which returns any number of type

unsigned int as described in Chapter 3) and then restrict its return value to the domain

{0, 1}, as shown in line 4 of Figure 6.7. The property is then checked by using a “monitor”

in such a way that the C program monitors the design’s progress and watches out for

a specific type of error up to the bound k. An assertion is then used to claim that an

error is never encountered, i.e., to claim that the accepting state (S3) is reached (see line

26 of Figure 6.7). Note that we use the Boolean variable flag in the monitor thread to

check whether p has occurred (i.e., to check whether the buffer contains HR and SpO2

raw data).

In our example, we ensure that the buffer is not empty and contains the computed HR

and SpO2 values. The C-monitor together with the assertion is included into a thread,

which interleaves with two other threads: the main thread that contains the code to

be checked and an event thread that models the hardware interrupt and consequently

interacts with the pulse oximeter hardware, as shown in Figure 6.8. Note that we use

the Boolean variable is processing in the event thread to check whether an interrupt has

occurred or not.

1 bool is_processing = false;
2 ...
3 void* event_thread(void* arg){
4 while (1) {
5 if (nondet_bool()) {
6 is_processing = true;
7 timer_interrupt(); //A hardware interrupt
8 is_processing = false;
9 }

10 }
11 pthread_exit(NULL);
12 }

Figure 6.8: Event thread to model the hardware interrupt.

Figure 6.9 shows the concurrent execution of the main, monitor and event threads. Here,

the main thread starts the monitor and event threads, which then interleave among them

in order to monitor the design’s progress and watch out for violations of the LTL property

(6.2).

6.5 Experimental Evaluation

This section contains the results of applying the continuous verification approach to

two case studies: a pulse oximeter equipment and a large embedded software used in a

commercial telecommunication product.

Unless stated otherwise, all experiments were conducted on an otherwise idle Intel Xeon

5160, 3GHz server with 4 GB of RAM running Linux OS. For all benchmarks, the time

Chapter 6 Integrating ESBMC into Software Engineering Practice 141

m a i n _ t h r e a d m o n i t o r _ t h r e a de v e n t _ t h r e a d

E C S
b l o c k 0

E C S
b l o c k 1

E C S
b l o c k 3

E C S
b l o c k 2

E C S
b l o c k 4

E C S
b l o c k 5

E C S
b l o c k 6

E C S
b l o c k 7

E C S
b l o c k 8

Figure 6.9: Concurrent execution of main, monitor and event threads.

limit has been set to 3600 seconds for each individual property. All times given are wall

clock time in seconds as measured by the unix time command.

All experiments were conducted on an otherwise idle Intel Xeon 5160, 3GHz server with

4 GB of RAM running Linux OS. For all benchmarks, the time limit has been set to

3600 seconds for each individual property. All times given are wall clock time in seconds

as measured by the unix time command through a single execution.

6.5.1 Set-top Box Case Study

In a second case study, we evaluate the feasibility of the elements of the continuous

verification approach, i.e., use of the unit tests and function equivalence checking. We

use the same NXP set-top box software as in the case study described in Section 3.6,

and focus on the exStbDemo application, in particular the functions commandLoop and

checkCommandParams.

As described in Section 3.6, the state-of-the-art model checkers fail to verify the functions

due to memory limitations and time-outs. However, if we use test cases to guide the

state space exploration, we can use the concrete values to drive our symbolic execution

engine and then explore the execution paths that were not yet fully explored during

dynamic verification. This approach is similar to concolic execution [119, 160], but here

we do not generate randomly the concrete values of the test cases with the purpose

of maximizing the code coverage. As we can see in Table 6.3, if we use test cases to

guide the symbolic execution engine, ESBMC can verify the functions commandLoop

and checkCommandParams with a larger bound, which they both represent the hardest

functions to be model checked of the exStbDemo application. However, even if we explore

only parts of the search space, ESBMC is not yet able to prove or falsify some of the

142 Chapter 6 Integrating ESBMC into Software Engineering Practice

Time Properties

Test Case L B P V C S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

F
ai

l

1 commandLoop.TC1 545 ∞ 18 0 <1 4 18 0 0

2 commandLoop.TC2 545 500∗ 18 3 11 29 18 0 0

3 commandLoop.TC3 545 500∗ 18 3 11 29 18 0 0

4 commandLoop.TC4 545 17 18 5 8 14 18 0 0

5 commandLoop.TC5 545 ∞ 18 1 <1 4 18 0 0

6 commandLoop.TC6 545 ∞ 18 0 <1 4 18 0 0

7 commandLoop.TC7 545 1 18 15 15 19 18 0 0

8 commandLoop.TC8 545 1 18 11 28 31 18 0 0

9 checkCommandParams.TC1 238 17 17 56 <1 9 17 0 0

10 checkCommandParams.TC2 238 17 17 36 <1 5 17 0 0

11 checkCommandParams.TC3 238 17 17 37 <1 5 17 0 0

12 checkCommandParams.TC4 238 17 17 36 7 30 17 0 0

13 checkCommandParams.TC5 238 17 17 80 <1 50 17 0 0

14 checkCommandParams.TC6 238 17 17 664 15 44 17 0 0

15 checkCommandParams.TC7 238 20∗ 17 957 37 78 17 0 0

16 checkCommandParams.TC8 238 20∗ 17 1117 170 215 17 0 0

Table 6.3: Results for running the test cases for the functions commandLoop and
checkCommandParams.

properties in the functions commandLoop (see lines 2 and 3) and checkCommandParams

(see lines 15 and 16) due to unwinding violations. In any case, the test cases are still

useful since the verification of the functions are not completely deterministic, i.e., we

still have verification conditions to be checked by the SMT back-end, as we can see in

the column V C of the Table 6.3, which shows the total number of generated verification

conditions. However, the generalization of the test cases does not produce significant

results here since we only have a small number of test cases available and ESBMC

thus still runs out of memory or time out to check the properties of the functions

commandLoop and checkCommandParams.

C
h
a
p
ter

6
In

teg
ra

tin
g

E
S
B

M
C

in
to

S
o
ftw

a
re

E
n
g
in

eerin
g

P
ra

ctice
143

Time Properties Product Releases

Function L B P S
ol

ve
r

T
ot

al

P
as

se
d

V
io

la
te

d

F
ai

l

P
R

10

P
R

11

P
R

12

P
R

13

1 threadRename 6 17 0 <1 3 0 0 0 X

2 fileExists 19 17 0 <1 3 0 0 0 X

3 readLine 27 17 11 <1 3 1 0 0 X

4 getCommand 269 17 61 <1 3 61 0 0 X N/3 N/3

5 powerDown 9 17 0 <1 2 0 0 0 X

6 digitStart 12 17 0 <1 2 0 0 0 X Y/2

7 digitAdd 34 17 2 <1 2 2 0 0 X Y/2

8 checkEndOfPvrStream 32 17 13 <1 2 13 0 0 X Y/2

9 checkEndOfMediaStream 28 17 1 <1 2 1 0 0 X

10 commandLoop 545 17 53 Mf Mf - - - X Mf Mf

11 checkCommandParams 238 17 269 Tb Tb 0 0 269 X Tb Tb Tb

12 signal handler 13 17 0 <1 2 0 0 0 X

13 setupFBResolution 29 17 0 <1 2 0 0 0 X Y/3 Y/3 Y/2

14 setupFramebuffers 115 17 8 <1 3 8 0 0 X N/3 N/2 N/2

15 main Thread 68 17 4 <1 4 4 0 0 X Y/3 Y/3

16 set to raw 8 17 0 <1 3 0 0 0 X

17 set to buffered 8 17 0 <1 2 0 0 0 X N/2

Table 6.4: Results for checking the equivalence between the functions of the exStbDemo application.

144 Chapter 6 Integrating ESBMC into Software Engineering Practice

We also had access, from the NXP development team, to four different product releases

(PRs) that contain the application exStbDemo. Based on these four PRs, we identified

the functions and methods that have actually been modified and focus on these since the

computational effort to re-verify each system build from scratch, in principle, is too high.

The four PRs are shown on the right-hand side in Table 6.4 as PR 10, 11, 12, 13. The

development time of each PR is about one month and each one contains new features,

enhancements (through refactoring), and bug fixes. We use PR10 as a reference (and

starting point) to compare with PR11, PR11 to compare against PR12 and so on.

Similar to Matsumoto et al. [121], in order to check the equivalence between the func-

tions, we first check the difference between them using the command diff in the “old”

and “new” releases (i.e., using the command diff file1.c file2.c -p) to identify the tex-

tual differences and then check whether the modified functions are equivalent using our

SMT-based bounded model checking as described in Section 6.2. The functions in lines

1 and 5-14 shown in Table 6.4 do not present input/output relations, but they modify

global variables; and we are thus able to check the equivalence of them. The notation

N/3 in line 4 and column PR11 of Table 6.4 means that the function getCommand is

not equivalent and it takes about 4 seconds to be checked. The notation Y/2 in line 6

and column PR11 of Table 6.4 means that the function digitStart is different using the

command diff, but it is functionally equivalent using our SMT-based bounded model

checking procedure and it takes 2 seconds to be checked. Blank entries indicate that the

respective function is unchanged compared to the previous PR.

As we can see in Table 6.4, each PR only changes a few functions, but while 7 functions

remain unchanged over all PRs, there are changes in each individual PR. In particu-

lar, the function getCommand is not equivalent in PR10, PR11 and PR13; the func-

tion setupFramebuffers is not equivalent over all product releases; while the function

set to buffered is not equivalent in PR10 and PR12. In summary, we have 19 changes

over all PRs, where 8 changes are proved to be equivalent, 6 changes are proved to be

not equivalent and we fail to check 5 changes (note that we are not able to prove the

equivalence of the functions commandLoop and checkCommandParams due to memory

and time limitations respectively).

From this set of experiments, we conclude that the continuous verification approach can

potentially reduce the verification time since the functions 4, 14 and 17 are modified, but

they remain functionally equivalent, function 10 (which represents one of the hardest

functions) is not modified in PR13, and functions 1-3, 9, 12 and 16 are not modified

at all. However, as the verification times of these functions (except for function 10)

are small, the advantage of the continuous verification approach is not as substantial as

expected. However, if there would be more functional correctness assertions in the code,

re-verification would be more expensive and the continuous verification approach would

be more advantageous.

Chapter 6 Integrating ESBMC into Software Engineering Practice 145

6.5.2 Medical Device Case Study

In order to check ESBMC’s performance in verifying temporal properties, we analyzed

the embedded software of a pulse oximeter device, which is composed of device drivers

(i.e., display, keyboard, serial, sensor, and timer) that are hardware-dependent code, a

system log component that allows the developer to debug the code through data stored

on RAM memory, and an API that enables the application layer to call the services

provided by the platform. The final version of the pulse oximeter embedded software

has approximately 3500 lines of ANSI-C code and 80 functions.

In order to meet the application’s deadline, there are 100 lines of Assembly code that

are responsible for writing text messages to the LCD hardware. ESBMC does not verify

Assembly code and as a result we execute this part of the code dynamically only by

writing diagnostic messages to a buffer so that we are able to examine the call stack (each

message written to the buffer reports the source file, line number, severity, and diagnostic

text). These diagnostic messages have been proved to be quite useful to evaluate flight

software systems and aid test engineer to understand the system behaviour [82].

Table 6.5 summarizes the results in the usual format. The column Property gives the

identifier of the LTL property that has been checked. The column L gives the number

of lines of code of the test program while the column T reports the total number of

threads. Note that T is always three because here we only have the main, monitor and

event threads that are running, as described in Section 6.4. The column B provides the

unwinding bound for each loop while C is the context switch bound. We use the symbol -

to denote that C has not been specified, i.e., we do not restrict the context switch bound.

The Time column provides the time in seconds while the column #FI/#I provides the

total number of failed and generated interleavings respectively. The superscript † means

that we injected a fault in the module.

We checked two types of LTL properties (i.e., AG(p → F r) and AG(p)) over different

modules of the pulse oximeter. Here, we describe in detail each property presented in

Table 6.5:

P1: Whenever the start button is pressed, the application will eventually be initial-

ized (i.e., AG (startButton → F startApp). To check this property, we included

two additional Boolean variables into the program menu app to indicate whether

the start button has been pressed (represented by startButton) and whether the

application has been initialized (represented by startApp).

P2: It is possible to get to a state where the next position of the buffer is less than

its total size (i.e., AG (next < buffer size)). To check this property, we did not

change the program log since next and buffer size are already declared as global

variables.

146 Chapter 6 Integrating ESBMC into Software Engineering Practice

Test program Property L T B C Time #FI / #I

1 menu app P1 847 3 2 - 16 0/3003

847 3 3 20 271 0/50456

847 3 4 20 625 0/87386

2 menu app† P1 847 3 2 - 9 663/3003

847 3 3 20 121 7584/50456

847 3 4 20 218 12548/87386

3 log P2 135 3 2 - 12 0/12

135 3 3 - 820 0/22

135 3 4 10 1149 0/8

4 log† P2 135 3 2 - 1 12/16

135 3 3 - 3 27/31

135 3 4 - 5 48/52

5 keyboard P3 49 3 2 - 7 0/120

49 3 3 - 80 0/1001

49 3 4 - 1007 0/8568

6 keyboard† P3 49 3 2 - 1 2/6

49 3 3 - 1 3/8

49 3 4 - 1 4/10

7 serial P4 165 3 2 - 16 0/1287

165 3 3 - 980 0/50388

165 3 4 10 21 0/1023

8 serial† P4 165 3 2 - 3 347/1287

165 3 3 - 147 17286/50388

165 3 4 10 3 189/1023

9 sensor P5 584 3 2 20 333 0/27768

584 3 3 20 1452 0/54900

584 3 4 10 12 0/330

10 sensor† P5 584 3 2 20 56 4420/18096

584 3 3 20 211 4655/26326

584 3 4 20 365 4655/26708

Table 6.5: Results of the LTL properties verification of the pulse oximeter.

P3: Whenever the bit 0 of the micro-controller port is set to high, the start button

of the pulse oximeter keyboard will eventually be detected (i.e., AG (BIT0 →

F startButton)). To check this property, we included two additional Boolean

variables into the program keyboard to indicate whether the first bit of the micro-

controller port has been set to high (represented by BIT0) and whether the start

button has been detected (represented by startButton).

P4: Whenever we set the baud rate of the micro-controller serial port to 1200 bits/sec-

ond, then its serial register will eventually be configured (i.e., AG(br1200 → F

reg1200)). To check this property, we included two additional Boolean variables

into the program serial to indicate whether the baud rate has been set to 1200

bits/second (represented by br1200) and whether the serial register has been con-

Chapter 6 Integrating ESBMC into Software Engineering Practice 147

figured (represented by reg1200).

P5: Whenever we receive the synchronism bit from the pulse oximeter sensor, its con-

tent will eventually be stored into the checksum2 array (i.e., AG(sync byte → F

checksum stored)). To check this property, we included two additional Boolean

variables into the program sensor to indicate whether the synchronization byte

has been received (represented by sync byte) and whether it has been stored into

the checksum array (represented by checksum stored).

Note that we have to manually introduce additional Boolean variables into all test pro-

grams (except for the test program log) in order to indicate whether a given event has

occurred or not. Note further that we have to manually merge the resulting C-monitor

into the code as we described in Section 6.4.

As shown in Table 6.5, we also injected faults in all test programs as follows:

menu app: We do not initialize the application after the start button is pressed.

log: We change the program statements so that in a situation where the next index is

at the end of the array buffer, an overflowing index by one byte can occur, i.e., we

replace the program statement

next = (next + 1)%buffer size;

by

next% = buffer size;

next+ = 1;

keyboard: We comment out the break statement (of the following program statement

that is included into a switch-case: case START: command=startButton; break;)

so that if START was pressed, the code would fall through to the next line, and

have the wrong value assigned to startButton.

serial: Similar to the faulty keyboard program, we comment out the break statement

that selects the baud rate so that the case statement selecting the baud rate would,

in the case of 1200 baud, fall through a case and set the timer to a wrong value

(i.e., 2400).

sensor: We replaced assignments to an internal flag (that detects the synchronization

bit) by non-deterministic values (i.e., flag = nondet bool() ? true : false).

2The checksum of the pulse oximeter detects errors that might be introduced during the data collec-
tion.

148 Chapter 6 Integrating ESBMC into Software Engineering Practice

The pulse oximeter software is a reactive system and does not terminate. In general,

ESBMC can thus only check the LTL properties up to a certain unwinding and context-

switch bounds as shown in Table 6.5. However, for smaller values of the unwinding

bound B, the number of context switches is limited, and ESBMC is able to model check

the properties without a specified upper bound on the context switches (denoted by -

in Table 6.5). Additionally, if a given LTL property does not hold in the test program,

ESBMC is able to detect the violation in few seconds and about 15% of the generated

interleavings actually fail.

6.6 Related Work

One way of tackling large verification problems is to leverage both parallelism and search

diversity [93]. Holzmann et al. describe the Swarm tool that allows using different search

strategies on multi-core machines [93]. It is the main interface to the SPIN model checker

to verify larger systems. This approach, however, involves large communication overhead

and does not take into account information from the software configuration management

(SCM) system in order to focus the verification effort on new and/or modified functions.

In another related work, Holzmann et al. explore the availability of large chunks of

memory in order to explore more exhaustively the state space. However, the authors

do not consider that the search modes implemented in the SPIN model checker (mainly

based on depth-first search) still remain the main performance bottleneck to verify larger

system [92].

Peled proposes a set of combinations between model checking and testing, which includes

black box checking, adaptive model checking, and unit checking [147]. However, he does

not consider the development history from the SCM system and also uses explicit model

checking based on automata theory, which does not scale well due to the number of

program variables and data type widths [64]. In addition, Peled only describes the

techniques, but does not apply it to any commercial product. Gunter and Peled [85]

extend this approach by proposing a symbolic verification approach for a unit of code,

also called unit checking. The authors, however, apply this approach only to check

whether a complex number diverges to infinity, while we focus on the verification of

large embedded software.

Sen et al. propose an approach called concolic testing that aims to simultaneously execute

a program concretely and symbolically by combining random testing with symbolic

execution [77, 119, 160]. It thus removes partially the limitations of random testing (i.e.,

coverage) and symbolic execution (i.e., scalability). This approach, however, can fail to

compute concrete values that satisfy a given (large) path constraint (which can involve

complex expressions) due to the solver performance. However, in [119], Majumdar and

Sen proposed an approach called hybrid concolic testing that combines random and

Chapter 6 Integrating ESBMC into Software Engineering Practice 149

concolic testing and scale it to large software implementations (e.g., for programs with

up to 150K lines of code).

Godlin and Strichman describe an approach called regression verification that aims to

prove the equivalence of two C programs [78, 167]. Their approach is built on top of

CBMC [42], which thus eliminates loops and recursive functions and can handle almost

all of the features of ANSI-C. In order to make their approach to scale, the authors

isolate functions from their callees and abstract them with uninterpreted functions.

Godlin and Strichman apply their approach to random and industrial programs (e.g.,

from 300 to 3000 lines of code); and they are thus able to check equivalence in minutes.

Matsumoto et al. also describe an approach to check the equivalence of two C programs

using the SMT solver CVC [121]. Before checking the equivalence of the two programs,

the authors first identify the textual differences between them in order to get hints where

the equivalence must be checked. However, in their approach the authors restrict the

C programs to be checked (e.g., no pointer uses) due to limitations of their symbolic

execution engine.

6.7 Conclusions

For large embedded software, SMT-Based bounded model checking suffers from the

state space explosion problem. In this chapter we proposed an approach called continu-

ous verification to detect design errors as quickly as possible by looking at the software

configuration management system and by combining dynamic and static verification to

reduce the state space to be explored. As a result, the continuous verification approach

and the combination of different encodings and solvers allowed us to explore more ex-

haustively the state space of the program. Controlled experiments using a case study

from the telecommunications domain with more than 10K of lines of C code shows that

this approach can potentially improve the error-detection capability and reduce the ver-

ification time. However, the advantage of the continuous verification approach is not

as substantial as expected, and in this sense we achieved the fourth objective stated in

Section 1.2 only partially. If there would be more functional correctness assertions in

our case study, re-verification would be more expensive and the continuous verification

approach would then be more advantageous.

Chapter 7

Conclusions

In this thesis, we investigated SMT-based verification for single- and multi-threaded

ANSI-C programs, focusing in particular on embedded software. As a first step, we de-

scribed a new set of encodings that allow us to reason accurately about bit operations,

unions, fixed-point arithmetic, arrays, pointers (and pointer arithmetic) and dynamic

memory allocation and implemented it in the ESBMC tool. We integrated the SMT

solvers CVC3, Boolector, and Z3 into ESBMC and evaluated them using both standard

software model checking benchmarks and typical embedded software applications from

telecommunications, control systems, and medical devices. Our experiments constitute,

to the best of our knowledge, the first substantial evaluation of SMT-based bounded

model checking on industrial applications. The results show that our approach out-

performs CBMC [42] and SMT-CBMC [11] if we consider the verification of embedded

software and thus confirm that we successfully met the first objective stated in Sec-

tion 1.2. ESBMC is able to model check ANSI-C programs that involve tight interplay

between non-linear arithmetic, bit operations, pointers and array manipulations. In

addition, it was able to find undiscovered bugs in the NECLA, PowerStone, Siemens,

SNU-RT, VERISEC and WCET benchmarks related to arithmetic overflow, buffer over-

flow, invalid pointers and pointer arithmetic.

Compared to ESBMC, SMT-CBMC still has limitations not only in the verification

time (due to the lack of simplification based on high-level information), but also in the

encodings of important ANSI-C constructs used in embedded software. CBMC is a

SAT-based BMC tool for full ANSI-C, but it has limitations due to the fact that the

size of the propositional formulae increases significantly in the presence of large data-

paths and high-level information is lost when the verification conditions are converted

into propositional logic (preventing potential optimizations to reduce the state space

to be explored). Its prototype SMT-based back-end is still unstable and fails on a

large fraction of our benchmarks. We also improved considerably the performance of

SMT-based bounded model checking for embedded software by making use of high-level

information to simplify the unwound formula and by determining the best representation

151

152 Chapter 7 Conclusions

(i.e., SMT logics) to model the program variables and thus successfully met the third

objective stated in Section 1.2. As a result, our approach represents a promising direction

to improve the state space coverage and to verify quickly properties in larger state spaces

using bounded model checking.

Despite the large body of (theoretical) research in the verification of multi-threaded sys-

tems, there are only few formal verification tools that analyze multi-threaded programs

with shared variables and locks. As a second step, we presented the lazy, schedule record-

ing, and underapproximation and widening algorithms to model check multi-threaded

ANSI-C software with shared variable, mutexes and conditions. In the lazy approach, we

generate all possible interleavings and call the BMC procedure on each of them individ-

ually, until we either find a bug, or have systematically explored all interleavings. In the

schedule recording approach, we encode all possible interleavings into one single formula

and then exploit the high speed of the SMT solvers. In the underapproximation-widening

approach, we reduce the state space by abstracting the number of state variables and

interleavings from the proofs of unsatisfiability generated by the SMT solvers. In all

three approaches, we bound the number of context-switches and use partial-order re-

duction techniques to reduce the number of interleavings explored. We also presented

our modelling of the synchronization primitives of the Pthread library that allowed us to

detect not only atomicity and order violations, but also local and global deadlock, that

previous attempts are unable to find [73, 102, 103, 152]. Surprisingly, our approach to

check constraints lazily is extremely fast for programs that contain errors and to a lesser

extent even for safe programs in which the number of threads and context switches grows

quickly. Our experimental results also show that the lazy approach generally outperforms

not only the schedule recording and underapproximation and widening approaches, but

also the CHESS [136] and SATABS [44] tools on several non-trivial benchmarks as well

as state-of-the-art techniques that combine classic partial order reduction methods with

symbolic algorithms. With these approaches to verify multi-threaded software (with

shared variables) we successfully met the second objective stated in Section 1.2.

For large embedded software, SMT-based bounded model checking still suffers from the

state space explosion problem. Finally, as a third step, we defined and evaluated the

continuous verification approach, which combines existing ideas of software engineering

(e.g., continuous integration [70]) and formal verification (e.g., equivalence checking [30])

communities. We applied the elements of the continuous verification approach to the

verification of small and large embedded software used in the medical and telecommu-

nications domains. In the medical device case study, ESBMC can only check the LTL

properties up to a certain unwinding and context-switch bounds since the software is

a reactive system and does not terminate. However, if a given LTL property does not

hold, ESBMC is able to detect the violation in few seconds and about 15% of the gener-

ated interleavings actually fail. In the telecommunication case study, we concluded that

the continuous verification approach can potentially reduce the verification time of large

Chapter 7 Conclusions 153

embedded software systems. However, as the complete verification time of the functions

under observation is small, the advantage of the continuous verification approach is not

so pronounced and in this sense we achieved the fourth objective stated in Section 1.2

only partially; if there would be more (functional correctness) assertions in the code,

re-verification would be more expensive and the continuous verification approach would

then be more advantageous.

7.1 Main Contributions

Our work makes two major contributions. First, we describe the details of an accurate

translation from single-threaded ANSI-C programs into quantifier-free formulae using

the logics QF AUFBV and QF AUFLIRA from the SMT-LIB [164]. We demonstrate

that our encoding and optimizations improve the performance of software model checking

for a wide range of software systems, with a particular emphasis on embedded software,

if compared to other approaches proposed by Kroening [105] and Armando et al. [11]. To

the best of our knowledge, no SMT-based BMC tool existed that can reliably handle full

ANSI-C. Additionally, we show that our encoding allows us to reason about arithmetic

overflow and to verify programs that make use of bit-level, pointers, unions and fixed-

point arithmetic, where previous attempts fail [105, 11, 71, 88]. We also use three

different SMT solvers (Boolector, CVC3, and Z3) in order to check the effectiveness

of our encoding techniques. This evaluation thus allows us to quantitatively assess

the benefit of using SMT solvers in software verification; in addition, it also provides

direction for the new development of SMT solvers.

The second main contribution is in the combination of symbolic model checking with ex-

plicit state space exploration that underlies our lazy, schedule recording and underapproxi-

mation-widening approaches to handling multi-threaded software. In particular, the dif-

ference between our approach and that of Cimatti et al. [39] is that we use BMC instead

of predicate abstraction and we implement a realistic scheduler, i.e., our scheduler may

preempt a thread at any visible instruction in its execution, whereas Cimatti et al. [39]

encodes the semantics of the non-preempting SystemC scheduler. To the best of our

knowledge, the lazy approach has not been described or evaluated in the literature.

Similarly, the underapproximation-widening approach has not been used for bounded

model checking of multi-threaded software; also our approach uses a different encod-

ing based on the notion of effective context-switch blocks. The difference between our

schedule recording and Gupta et al. [103] is that they work in a fully symbolic context.

154 Chapter 7 Conclusions

7.2 Future Work Directions

Conceptually, software debugging can be divided into three main steps: fault detec-

tion, fault localization and fault correction. In order to detect faults in multi-threaded

software, all possible thread interleavings must be systematically explored, which is par-

ticularly difficult for traditional testing. Fault localization (and thus correction) is in

general a very time-consuming process in software development, which becomes even

worse for multi-threaded software mainly due to the non-determinism of the thread

interleavings. A number of different approaches have been proposed in the literature

to localize faults in software systems, including, for example, slicing, mutation testing,

trace-based analysis, delta-debugging, model-based debugging and model checking (for a

recent survey we refer the reader to [122]). Apart from these approaches, the debugging

time can be substantially reduced if an automatic method is used to localize faults in

multi-threaded software. As future work, we thus intend to develop a new method for

fault localization in multi-threaded C programs using model checking. In particular,

we intend to extend the sequential fault localization method proposed by Griesmayer

et al. [81] to localise faults in multi-threaded programs and thus evaluate this approach

with industrial benchmarks using our ESBMC model checker.

We also intend to investigate the application of Craig interpolation [125] and the lazy

abstraction paradigm [127] to the verification of multi-threaded software. However, dif-

ferently from [127], we intend to use Craig interpolation to derive thread invariants and

not just for unfolding sequential programs. The interpolation-based model checking

algorithm [125] described in Subsection 2.2.3.1 requires an unfolding of the entire pro-

gram up to some bound k. In contrast to [125], we would like to use a lazy abstraction

method (similar to [127]) so that we can apply the SMT solvers to individual program

paths in order to reduce the burden on the solver. In order to achieve this goal, we would

have to refine the model using interpolants derived from refuting program paths. This

would avoid the high cost of computing the predicate image operator (as described in

Subsection 2.2.3.1), allowing us to improve substantially the performance of the model

checker.

Another direction of future work we intend to pursue is to investigate the problem of veri-

fying real-time software using SMT techniques. Most model checkers (e.g., UPPAL [113],

TSMV [120] and NuSMV [38]) that reason about timing properties in real-time systems

consider that the model is expressed as a timed automata (TA) and they use explicit

state-space exploration or BDD-based model checking techniques. To the best of our

knowledge, there is only one paper that considers the verification of real-time systems

using SMT techniques for checking the satisfiability of the generated formula, which is

described by Xu [181]. Xu applies his method to verify liveness and timing properties of

the form F m..nφ (where m and n represent upper and lower time bounds respectively)

in these two models, Fischer’s Protocol and the Bridge-crossing problem [181]. However,

Chapter 7 Conclusions 155

Xu does not support directly real-time software and considers that in the model each

transition takes unit time for execution. This assumption is not realistic because for

embedded real-time systems, we need mechanisms to assign values to each transition so

that these values are the estimated worst-case execution times (WCET) of the respective

transition on the selected processor.

7.3 Concluding Remarks

Embedded computer systems are used in a wide range of sophisticated applications,

such as mobile phones or set-top boxes providing internet connectivity. The functional-

ity demanded in such applications has increased significantly and an increasing number

of functions are implemented in software rather than hardware. Multi-core processors

with scalable shared memory have thus become popular in embedded systems. In turn,

the verification of the software design and the correctness of its multi-threaded im-

plementations has become increasingly difficult. This thesis, in particular, proposed a

comprehensive and implemented SMT-based bounded model checking procedure to rea-

son accurately and effectively about single- and multi-threaded software in embedded

systems by exploiting SMT solvers in order to prune the property and data dependent

search space and to remove interleavings that are not relevant by analyzing the proof of

unsatisfiability. However, the development of reliable embedded software is a complex

problem [100] and software verification for embedded systems is still in its infancy since

it has been little explored by the research community. Tools for model checking software

are still under heavy development, as observed recently by [81]. Therefore, the develop-

ment of software model checkers based on SMT techniques is still a fertile research area

that should be further explored.

Appendix A

ESBMC plug-in

This appendix describes the Eclipse plug-in for ESBMC in order to assist the verification

engineer when using the ESBMC model checker. The main ESBMC plug-in window

consists of five tabs that allow you to set the different run-time options of the ESBMC

model checker. This plug-in was developed with the help of Qiang Li during his summer

internship.

The ESBMC plug-in is developed in Eclipse Helios [87], release 3.6 with the Java Run-

Time Environment (JRE) 1.6 running on a Linux operating system. This appendix

describes only the main features of the ESBMC plug-in. For further information (e.g.,

how to install, how to use, and how to uninstall the ESBMC plug-in), we refer the reader

to the user manual of the ESBMC plug-in available on-line at [52].

A.1 Front-end Options

Figure A.1 shows the options available in the ESBMC front-end, which are described as

follows:

• Use current file: You can analyze the file that is open in your current editor.

If you want to analyze other files located in your file system, then uncheck the

box Use current file and click on Browse to choose the program that you want to

analyze. If your application consists of more than a single C program, then you

can specify them as a sequence (e.g., /home/esbmc/file1.c file2.c).

• Set include path: You can set the include path, which contains the .h files, by

clicking on the Browse button.

• Define preprocessor macro: You can define C preprocessor macro in this text

area by just providing the name without # as directives.

157

158 Appendix A ESBMC plug-in

Figure A.1: Front-end options.

• Program, loop, claim and VCs: You can choose the options to show the

preprocessed program, all the claims (or properties) given as assertions by the

designers as well as a range of language-specific safety (such as the absence of

arithmetic under- and overflow, out-of-bounds array indexing, or nil-pointer deref-

erencing), show the verifications conditions that are generated during BMC, the

identification of the loops in the program, the expressions of the program in single

static assignment (SSA) form, and the documentation (in Latex) of the generated

claims. However, note that all these options are mutually exclusive, because they

produce an output to the same (Console) view, i.e., you can visualize one of them

on each time.

• Machine word length: You can set your machine word length, the default is 32.

• Disable built-in abstract C library: The C programs usually use functions

of the ANSI-C library (e.g., strcmp, printf), which contain information that are

irrelevant from the verification point of view. We thus provide an abstract ANSI-C

library implemented internally in the model checker, which comprises a small set

of the functions. If you do not want to use the built-in ANSI-C library, then you

should select this option.

• Read goto program instead of source code: This option allows you to

model check the goto programs (i.e., control-flow graphs) generated by the goto-cc

Appendix A ESBMC plug-in 159

tool [179].

A.2 BMC Options

The BMC options of the ESBMC plug-in are shown in Figure A.2. It consists of the

following options:

Figure A.2: BMC options.

• Set function name: You can set the main function name here.

• Only check specific claim: You can check for a specific claim, so please input

the number of the identification of the claim.

• Limit search depth: You can limit search depth, so please input an integer

number.

• Unwind times: Set the unwind bound in here, the default is 2. You have to

provide an integer number.

• Unwind given loop times: This option allows you to unwind a specific loop in

your program. Here, you should provide the identification of the loop.

160 Appendix A ESBMC plug-in

• Do not generate unwinding assertions: If you do not want to check that

you have unrolled enough the loops in your program, then you should select this

option.

• Do not remove unused equations: If it is unchecked, unused equations are

removed automatically during the symbolic execution.

A.3 SMT Solver Configuration

The solver configuration options tab is shown in Figure A.3. It consists of the following

options:

Figure A.3: SMT Solver Configuration.

• SMT solvers: If you choose the first one, the model checker will use BOOLEC-

TOR with bit-vector arithmetic as a decision procedure to model check your pro-

gram. The second option is to use Z3 with bit-vector arithmetic, and the third

ESBMC is Z3 with integer/real arithmetic. The last option, which is the default

option, will determine the best solver and encoding to be used according to the

verification conditions that are generated from your C program.

• Instantiation: You can choose either eager or lazy instantiation to solve the SMT

instances with Z3 (lazy is the default option).

Appendix A ESBMC plug-in 161

A.4 Property Check

You can select which safety properties you want to check in your single-threaded program

as show in Figure A.4. This tab consists of the following options:

Figure A.4: Property check.

• Ignore assertions: This option ignores all assertions in your C program.

• Do not do array bounds check: This option does not allow ESBMC to generate

verification conditions related to checking out-of-bounds array indexing.

• Do not do division by zero check: This option does not allow ESBMC to

generate verification conditions related to checking division by zero in arithmetic

expressions.

• Do not do pointer check: This option does not allow ESBMC to generate

verification conditions related to checking nil-pointer dereferencing.

• Enable arithmetic over- and underflow check: This option does not allow

ESBMC to generate verification conditions related to checking arithmetic over-

and underflow.

162 Appendix A ESBMC plug-in

A.5 Concurrency Check

You can select which approaches and properties you want in order to verify in your

multi-threaded program as shown in Figure A.5.

Figure A.5: Concurrency check.

• Limit the number of context switches: Limit the number of context switches al-

lowed per each thread. You have to provide an integer number here.

• Use schedule recording approach: This option allows ESBMC to encode all possible

interleavings into one single formula and then exploit the high speed of the SMT

solvers.

• Use under-approximation and winding approach: This option allows ESBMC to

check models with an increasing set of allowed interleavings.

• Limit the number of assumptions: If you choose Use under-approximation and

winding approach, then you can limit the number of assumptions in the UW

approach. You have to provide an integer number in the text area.

• Enable global and local deadlock check with mutex: This option checks whether

all threads wait for a mutex (global deadlock) or whether some of the threads form

a waiting cycle (local deadlock).

Appendix A ESBMC plug-in 163

• Enable data races check: This option checks whether multiple threads perform

unsynchronized accesses to shared data.

• Do not do lock acquisition ordering check: This option checks for unintended

sequence of lock and unlock operations among the threads.

• Enable atomicity violation check at visible assignments: This option allows ES-

BMC to break visible statements to check if a region of code executes atomically.

• Enable context switch before control flow tests: This option allows ESBMC to

simulate the effect of a context switch right after a visible test by hoisting the test

out of the conditional, and assigning its result to a new auxiliary variable.

A.6 Counterexample, Property Violation, and Claim Views

In order to model check your C program, you should click on the Save and Check button

as shown in Figure A.1, or click on Verify Current File menu item or simply type the

shortcut CTRL+ALT+C. When the verification fails (i.e., the property does not hold

in the program), you can see details of the property violation and counterexample (or

trace to reproduce the violation) in the corresponding views as shown in the bottom of

Figure A.6.

Figure A.6: Counterexample view.

If you double click on the variable name in the counterexample view, then you go directly

to the corresponding line in the program where the error is located. The property

164 Appendix A ESBMC plug-in

violation and claim views work in the same way as in the counterexample view, i.e., you

should click in one line of the table in order to go directly to the corresponding line in

the program. If you need to obtain more information about the results of other options

of the ESBMC model checker (e.g., show program only, show loops), then you can easily

visualize them in the Eclipse console.

Appendix B

Static Analysis Benchmarks

This appendix expands the experimental results that we presented in Table 3.3 of Chap-

ter 3 by providing details of the verification time for the considered static analysis

benchmarks.

All experiments were conducted on an otherwise idle Intel Xeon 5160, 3GHz server with

4 GB of RAM running Linux OS. For all benchmarks, the time limit has been set to

3600 seconds for each individual property. All times given are wall clock time in seconds

as measured by the unix time command through a single execution.

We invoked ESBMC by setting the file name, the unwinding bound and enabling the

arithmetic under- and overflow check as well as string abstraction (i.e., esbmc file

--unwind B --overflow-check --string-abstraction).

B.1 EUREKA Suite

Table B.1 shows the results of applying ESBMC to the verification of the programs from

the EUREKA suite. Note that the EUREKA suite only contains correct programs and

ESBMC is able to verify all properties.

B.2 POWERSTONE Suite

Table B.2 shows the results of applying ESBMC to the verification of the programs

from the PowerStone suite. Note that that the lines that are marked as bold indicate

undiscovered bugs that ESBMC was able to find.

165

166 Appendix B Static Analysis Benchmarks

Time Properties

Module L B P Solver Total Passed Violated Fail

1 EUREKA bf20 49 21 41 0.06 1 41 0 0

2 EUREKA BubbleSort 305 141 160 125.98 335 160 0 0

3 EUREKA Prim 79 9 41 0.15 1 41 0 0

4 EUREKA SelectionSort 309 141 156 12.63 155 156 0 0

5 EUREKA StrCmp 14 1000 6 32 35 6 0 0

6 EUREKA SumArray 12 1000 7 9 10 7 0 0

7 EUREKA MinMax 19 1000 9 2 6 9 0 0

- Total 787 - 420 181.82 543 420 0 0

Table B.1: Results of applying ESBMC to the verification of the benchmarks from
the EUREKA suite.

Time Properties

Module L B P Solver Total Passed Violated Fail

1 POWERSTONE adpcm 473 55 545 199.35 263 545 0 0

2 POWERSTONE bcnt 83 17 157 1.14 1 157 0 0

3 POWERSTONE blit 95 1025 133 11.34 17 126 12 0

4 POWERSTONE compress 565 120 367 312.29 318 367 0 0

5 POWERSTONE cr 99 257 22 0.25 8 22 0 0

6 POWERSTONE engine 291 2 295 0.05 1 295 0 0

7 POWERSTONE fir 116 34 124 0.36 3 124 0 0

8 POWERSTONE g3fax 606 2 143 47.69 48 143 0 0

9 POWERSTONE jpeg 529 5 245 155.3 157 245 0 0

- Total 2857 - 2031 728 816 2019 12 0

Table B.2: Results of applying ESBMC to the verification of the benchmarks from
the PowerStone suite.

B.3 NECLA Suite

Table B.3 shows the results of applying ESBMC to the verification of the correct pro-

grams from the NECLA benchmarks. Note that ESBMC finds three property violations

in two programs (ex13 and ex28) from Table B.3, which have been confirmed as true

faults by the benchmark creators [97].

Table B.4 shows the results of applying ESBMC to the verification of the bad programs

from the NECLA benchmarks. Note that ESBMC was able to verify two programs

(ex25 and ex40) from Table B.4 that did not contain any seeded errors; the benchmark

creators confirmed that these two programs were misclassified and subsequently changed

the error seeding [97].

Appendix B Static Analysis Benchmarks 167

Time Properties

Module L B P Solver Total Passed Violated Fail

1 NEC.ex10 72 17 10 0.02 1 10 0 0

2 NEC.ex11 24 1000 3 17.14 30 3 0 0

3 NEC.ex13 9 33 2 0 1 1 1 0

4 NEC.ex14 15 11 5 0 1 5 0 0

5 NEC.ex15 34 2 5 0 1 5 0 0

6 NEC.ex16 34 10000 4 1.47 6 4 0 0

7 NEC.ex17 44 101 14 0.01 1 14 0 0

8 NEC.ex19 28 10 2 0.02 1 2 0 0

9 NEC.ex1 22 513 10 0.27 3 10 0 0

10 NEC.ex21 25 1024 6 0.02 1 6 0 0

11 NEC.ex22 38 51 9 0.01 1 9 0 0

12 NEC.ex23 20 37 1 0.01 1 1 0 0

13 NEC.ex24 78 1000 37 0.11 0.64 37 0 0

14 NEC.ex28 12 101 11 0.01 1 9 2 0

15 NEC.ex29 47 101 32 0.01 1 32 0 0

16 NEC.ex2 39 1025 4 12.21 19 4 0 0

17 NEC.ex30 45 101 16 1.16 3 16 0 0

18 NEC.ex31 13 8 6 0.02 1 6 0 0

19 NEC.ex32 26 1001 4 0.16 1 4 0 0

20 NEC.ex33 35 100 13 0 1 13 0 0

21 NEC.ex34 24 10 7 0.01 1 7 0 0

22 NEC.ex37 26 10 5 0 1 1 0 0

23 NEC.ex38 25 201 16 0 1 16 0 0

24 NEC.ex39 26 100 4 1.1 1 4 0 0

25 NEC.ex42 32 40 12 63.05 87 12 0 0

26 NEC.ex49 15 100 2 0.12 1 2 0 0

27 NEC.ex5 17 100 6 0 1 6 0 0

28 NEC.ex6 20 100 0 1 0 0 0 0

29 NEC.ex7 27 100 3 0.16 1 3 0 0

30 NEC.ex8 19 100 5 0.37 1 5 0 0

- Total 891 - 254 98 172 212 3 0

Table B.3: Results of applying ESBMC to the verification of the correct benchmarks
from the NECLA suite.

B.4 SNU-RT Suite

Table B.5 shows the results of applying ESBMC to the verification of the programs from

the SNU-RT suite. Note that ESBMC finds array bounds violations and overflows in

arithmetic expressions in four of the SNU-RT benchmarks (crc nondet, fibcall nondet,

insertsort nondet and jfdctint det); we confirmed by inspection that these are indeed

faults.

168 Appendix B Static Analysis Benchmarks

Time Properties

Module L B P Solver Total Passed Violated Fail

1 NEC.ex12 23 21 4 0 1 3 1 0

2 NEC.ex20 32 10 12 0.01 1 12 0 0

3 NEC.ex25 26 101 7 0.07 2 7 0 0

4 NEC.ex26 29 101 11 0.09 1 9 2 0

5 NEC.ex27 39 101 9 0.03 1 7 2 0

6 NEC.ex3 25 11 4 0 1 3 1 0

7 NEC.ex40 19 101 9 0.54 1 9 0 0

8 NEC.ex41 22 10 10 32.05 32 6 4 0

9 NEC.ex4 15 1000 6 0.01 1 4 2 0

10 NEC.ex43 112 21 40 4.709 6 27 13 0

- Total 342 - 112 37 47 87 25 0

Table B.4: Results of applying ESBMC to the verification of the bad benchmarks
from the NECLA suite.

Time Properties

Module L B P Solver Total Passed Violated Fail

1 SNU.bs det 114 16 11 0.001 1 11 0 0

2 SNU.bs nondet 120 16 12 0.071 9 12 0 0

3 SNU.crc det 125 257 18 0.082 8 18 0 0

4 SNU crc nondet 126 257 13 0.29 7 12 1 0

5 SNU.fft1 det 218 9 72 0.004 1 72 0 0

6 SNU.fft1k nondet 158 0 39 0.763 50 39 0 0

7 SNU.fibcall det 83 10000 2 0.005 1 2 0 0

8 SNU fibcall nondet 84 10000 2 0 157 0 2 0

9 SNU.fir det 314 34 25 0.361 3 25 0 0

10 SNU.fir nondet 316 34 25 0.326 2 25 0 0

11 SNU.insertsort det 86 12 17 0.557 1 17 0 0

12 SNU.insertsort nondet 94 12 20 4.981 5 14 6 0

13 SNU.jfdctint det 374 65 331 0.471 2 311 20 0

14 SNU.lms det 258 202 35 4.358 297 35 0 0

15 SNU.lms nondet 256 202 35 2.488 21 35 0 0

16 SNU.ludcmp det 144 144 88 0.042 1 88 0 0

17 SNU.matmul det 81 6 31 0.055 1 31 0 0

18 SNU.qurt det 164 20 8 0.139 1 8 0 0

19 SNU.select nondet 117 1 42 0.001 1 42 0 0

20 SNU.sqrt det 88 20 2 0.002 1 2 0 0

- Total 3320 - 828 15 570 799 29 0

Table B.5: Results of applying ESBMC to the verification of the benchmarks from
the SNU-RT suite.

Appendix B Static Analysis Benchmarks 169

B.5 VERISEC Suite

Tables B.6, B.7 and B.8 shows the results of applying ESBMC to the verification of

the correct programs from the VERISEC suite. ESBMC finds 15 property violations in

nine programs (see programs 67-73, 75 and 76), which have also been confirmed by the

benchmark creators [36].

Tables B.9, B.10 and B.11 shows the results of applying ESBMC to the verification of

the bad programs from the VERISEC suite.

170
A

p
p
en

d
ix

B
S
ta

tic
A

n
a
ly

sis
B

en
ch

m
a
rk

s

Time Properties
Module L B P Solver Total Passed Violated Fail

1 VERISEC.ok apache full-ok 58 5 42 0.05 1 42 0 0
2 VERISEC.ok apache full-ptr-ok 57 5 37 0.05 1 37 0 0
3 VERISEC.ok apache simp2-ok 43 5 24 0.03 1 24 0 0
4 VERISEC.ok apache simp3-ok 55 5 40 0.04 1 40 0 0
5 VERISEC.ok apache strncmp-ok 41 5 25 0.03 1 25 0 0
6 VERISEC.ok bind expands-vars-ok 89 1 29 0.01 1 29 0 0
7 VERISEC.ok gxine simp-ok 31 5 15 0 1 15 0 0
8 VERISEC.ok libgd gd-no-entities-ok 117 3 30 0.08 1 30 0 0
9 VERISEC.ok libgd gd-simp-ok 95 3 28 0.05 1 28 0 0
10 VERISEC.ok MADWiFi no-sprintf-ok 53 3 19 0 1 14 0 0
11 VERISEC.ok NetBSD-libc anyMeta-int-ok 50 10 12 0.83 2 12 0 0
12 VERISEC.ok NetBSD-libc anyMeta-ptr-ok 52 10 11 0.74 2 11 0 0
13 VERISEC.ok NetBSD-libc bounds-ok 17 0 2 0 1 2 0 0
14 VERISEC.ok NetBSD-libc glob2-int-ok 91 12 28 11.69 19 28 0 0
15 VERISEC.ok NetBSD-libc glob2-ptr-ok 92 12 27 21.19 29 27 0 0
16 VERISEC.ok NetBSD-libc loop-int-ok 39 4 6 0.01 1 6 0 0
17 VERISEC.ok NetBSD-libc loop-ok 24 4 3 0 1 3 0 0
18 VERISEC.ok NetBSD-libc loop-ptr-ok 39 4 5 0 1 5 0 0
19 VERISEC.ok NetBSD-libc noAnyMeta-int-ok 43 10 10 2.06 3 10 0 0
20 VERISEC.ok NetBSD-libc noAnyMeta-ptr-ok 45 10 9 0.63 2 9 0 0
21 VERISEC.ok OpenSER cases1-stripFullBoth-arr-inlined-ok 60 10 43 4.04 5 43 0 0
22 VERISEC.ok OpenSER cases1-stripFullBoth-arr-ok 59 10 38 3.35 4 38 0 0
23 VERISEC.ok OpenSER cases1-stripFullEnd-arr-inlined-ok 54 9 35 0.24 1 35 0 0
24 VERISEC.ok OpenSER cases1-stripFullEnd-arr-ok 53 10 30 0.16 1 30 0 0
25 VERISEC.ok OpenSER cases1-stripFullStart-arr-inlined-ok 56 10 35 1.77 3 35 0 0
26 VERISEC.ok OpenSER cases1-stripFullStart-arr-ok 55 10 30 1.7 2 30 0 0
27 VERISEC.ok OpenSER cases1-stripNone-arr-inlined-ok 50 10 27 0.08 1 27 0 0
28 VERISEC.ok OpenSER cases1-stripNone-arr-ok 49 10 22 0.05 1 22 0 0
29 VERISEC.ok OpenSER cases1-stripSpacesBoth-arr-inlined-ok 56 10 0 1 0 0 0
30 VERISEC.ok OpenSER cases1-stripSpacesBoth-arr-ok 55 10 28 1.38 2 28 0 0

Table B.6: Results of applying ESBMC to the verification of the correct benchmarks from the VERISEC suite - Part I.

A
p
p
en

d
ix

B
S
ta

tic
A

n
a
ly

sis
B

en
ch

m
a
rk

s
171

Time Properties
Module L B P Solver Total Passed Violated Fail

31 VERISEC.ok OpenSER cases1-stripSpacesEnd-arr-inlined-ok 53 10 30 0.13 1 30 0 0
32 VERISEC.ok OpenSER cases1-stripSpacesEnd-arr-ok 52 10 25 0.1 1 25 0 0
33 VERISEC.ok OpenSER cases1-stripSpacesStart-arr-inlined-ok 53 10 30 1.16 2 30 0 0
34 VERISEC.ok OpenSER cases1-stripSpacesStart-arr-ok 52 10 25 0.93 2 25 0 0
35 VERISEC.ok OpenSER cases2-stripFullBoth-arr-inlined-ok 63 10 45 7.54 9 45 0 0
36 VERISEC.ok OpenSER cases2-stripFullBoth-arr-ok 62 10 40 6.05 7 40 0 0
37 VERISEC.ok OpenSER cases2-stripFullEnd-arr-inlined-ok 57 10 37 0.66 1 37 0 0
38 VERISEC.ok OpenSER cases2-stripFullEnd-arr-ok 56 10 32 0.36 1 32 0 0
39 VERISEC.ok OpenSER cases2-stripFullStart-arr-inlined-ok 59 10 37 3.25 5 37 0 0
40 VERISEC.ok OpenSER cases2-stripFullStart-arr-ok 58 10 32 2.39 3 32 0 0
41 VERISEC.ok OpenSER cases2-stripNone-arr-inlined-ok 53 10 29 0.13 1 29 0 0
42 VERISEC.ok OpenSER cases2-stripNone-arr-ok 52 10 24 0.07 1 24 0 0
43 VERISEC.ok OpenSER cases2-stripSpacesBoth-arr-inlined-ok 59 10 35 4.01 5 35 0 0
44 VERISEC.ok OpenSER cases2-stripSpacesBoth-arr-ok 58 10 30 2.7 4 30 0 0
45 VERISEC.ok OpenSER cases2-stripSpacesEnd-arr-inlined-ok 56 10 32 0.49 1 32 0 0
46 VERISEC.ok OpenSER cases2-stripSpacesEnd-arr-ok 55 10 27 0.18 1 27 0 0
47 VERISEC.ok OpenSER cases2-stripSpacesStart-arr-inlined-ok 56 10 32 2.16 3 32 0 0
48 VERISEC.ok OpenSER cases2-stripSpacesStart-arr-ok 55 10 27 1.55 2 27 0 0
49 VERISEC.ok OpenSER cases3-stripFullBoth-arr-inlined-ok 66 10 47 7.11 8 47 0 0
50 VERISEC.ok OpenSER cases3-stripFullBoth-arr-ok 65 10 42 6.52 8 42 0 0
51 VERISEC.ok OpenSER cases3-stripFullEnd-arr-inlined-ok 60 10 39 0.75 1 39 0 0
52 VERISEC.ok OpenSER cases3-stripFullEnd-arr-ok 59 10 34 0.55 1 34 0 0
53 VERISEC.ok OpenSER cases3-stripFullStart-arr-inlined-ok 62 10 39 4.08 5 39 0 0
54 VERISEC.ok OpenSER cases3-stripFullStart-arr-ok 61 10 34 3.4 4 34 0 0
55 VERISEC.ok OpenSER cases3-stripNone-arr-inlined-ok 56 10 31 0.26 1 31 0 0
56 VERISEC.ok OpenSER cases3-stripNone-arr-ok 55 10 26 0.16 1 26 0 0
57 VERISEC.ok OpenSER cases3-stripSpacesBoth-arr-inlined-ok 62 10 37 4.32 5 37 0 0
58 VERISEC.ok OpenSER cases3-stripSpacesBoth-arr-ok 61 10 32 3.15 4 32 0 0
59 VERISEC.ok OpenSER cases3-stripSpacesEnd-arr-inlined-ok 59 10 34 0.53 1 34 0 0
60 VERISEC.ok OpenSER cases3-stripSpacesEnd-arr-ok 58 10 29 0.33 1 29 0 0

Table B.7: Results of applying ESBMC to the verification of the correct benchmarks from the VERISEC suite - Part II.

172
A

p
p
en

d
ix

B
S
ta

tic
A

n
a
ly

sis
B

en
ch

m
a
rk

s

Time Properties

Module L B P Solver Total Passed Violated Fail

61 VERISEC.ok OpenSER cases3-stripSpacesStart-arr-inlined-ok 59 10 34 2.15 3 34 0 0

62 VERISEC.ok OpenSER cases3-stripSpacesStart-arr-ok 58 10 29 1.79 3 29 0 0

63 VERISEC.ok samba simp-ok 22 1 2 0 1 2 0 0

64 VERISEC.ok sendmail both-ok 78 5 38 0.42 1 38 0 0

65 VERISEC.ok sendmail close-angle-ptr-no-test-ok 44 3 8 0.01 1 8 0 0

66 VERISEC.ok sendmail inner-ok 39 4 13 0 1 13 0 0

67 VERISEC.ok sendmail mime7to8-arr-one-char-heavy-test-ok 48 10 15 0.29 1 14 1 0

68 VERISEC.ok sendmail mime7to8-arr-one-char-med-test-ok 46 10 15 0.17 1 14 1 0

69 VERISEC.ok sendmail mime7to8-arr-one-char-no-test-ok 31 10 7 0.01 1 6 1 0

70 VERISEC.ok sendmail mime7to8-arr-three-chars-med-test-ok 94 10 41 1.1 1 38 3 0

71 VERISEC.ok sendmail mime7to8-ptr-one-char-heavy-test-ok 46 10 17 0.43 1 16 1 0

72 VERISEC.ok sendmail mime7to8-ptr-three-chars-med-test-ok 86 10 45 4.36 4 42 3 0

73 VERISEC.ok sendmail mime7to8-ptr-three-chars-no-test-ok 48 10 18 0.14 1 15 3 0

74 VERISEC.ok sendmail outer-ok 47 4 17 0.02 1 17 0 0

75 VERISEC.ok sendmail prescan-arr-med-test-ok 86 5 21 0.06 1 20 1 0

76 VERISEC.ok sendmail prescan-arr-min-test-ok 92 5 21 0.05 1 20 1 0

77 VERISEC.ok sendmail tTflag-arr-one-loop-ok 23 11 7 0.01 1 7 0 0

78 VERISEC.ok SpamAssassin loop-ok 45 7 33 1.94 3 33 0 0

79 VERISEC.wu-ftpd simple-ok 54 4 18 0 1 18 0 0

80 VERISEC.wu-ftpd strcpy-strcat-ok 64 5 32 0.01 1 32 0 0

- Total 4521 - 2114 128 211 2094 15 0

Table B.8: Results of applying ESBMC to the verification of the correct benchmarks from the VERISEC suite - Part III.

A
p
p
en

d
ix

B
S
ta

tic
A

n
a
ly

sis
B

en
ch

m
a
rk

s
173

Time Properties
Module L B P Solver Total Passed Violated Fail

1 VERISEC.apache full-bad 58 5 39 0.07 1 38 1 0
2 VERISEC.apache full-ptr-bad 57 5 34 0.08 1 33 1 0
3 VERISEC.apache simp2-bad 43 5 21 0.03 1 20 1 0
4 VERISEC.apache simp3-bad 55 5 37 0.07 1 36 1 0
5 VERISEC.apache strncmp-bad 41 5 22 0.03 1 21 1 0
6 VERISEC.bind expands-vars-bad 82 1 28 0.01 1 27 1 0
7 VERISEC.cases2 stripSpacesEnd-arr-inlined-bad 53 10 29 0.16 1 26 3 0
8 VERISEC.gxine simp-bad 31 5 10 0 1 9 1 0
9 VERISEC.libgd gd-no-entities-bad 120 3 28 0.12 1 25 3 0
10 VERISEC.libgd gd-simp-bad 98 3 26 0.07 1 23 3 0
11 VERISEC.MADWiFi no-sprintf-bad 52 3 18 0 1 13 5 0
12 VERISEC.NetBSD-libc anyMeta-int-bad 50 10 12 0.84 2 7 5 0
13 VERISEC.NetBSD-libc anyMeta-ptr-bad 52 10 11 0.74 1 6 5 0
14 VERISEC.NetBSD-libc bounds-bad 17 0 2 0 1 1 1 0
15 VERISEC.NetBSD-libc glob2-int-bad 91 12 28 19.98 27 16 12 0
16 VERISEC.NetBSD-libc glob2-ptr-bad 92 12 27 16.48 24 15 12 0
17 VERISEC.NetBSD-libc loop-bad 24 4 3 0.01 1 2 1 0
18 VERISEC.NetBSD-libc loop-int-bad 39 4 6 0.01 1 4 2 0
19 VERISEC.NetBSD-libc loop-ptr-bad 39 4 5 0.01 1 3 2 0
20 VERISEC.NetBSD-libc noAnyMeta-int-bad 43 10 10 2.53 4 8 2 0
21 VERISEC.NetBSD-libc noAnyMeta-ptr-bad 45 10 9 0.63 1 5 4 0
22 VERISEC.OpenSER cases1-stripFullBoth-arr-bad 56 10 35 1.29 2 34 1 0
23 VERISEC.OpenSER cases1-stripFullBoth-arr-inlined-bad 57 10 40 1.51 3 37 3 0
24 VERISEC.OpenSER cases1-stripFullEnd-arr-bad 50 10 27 0.12 1 26 1 0
25 VERISEC.OpenSER cases1-stripFullEnd-arr-inlined-bad 51 9 32 0.16 1 29 3 0
26 VERISEC.OpenSER cases1-stripFullStart-arr-bad 52 10 27 1.02 2 26 1 0
27 VERISEC.OpenSER cases1-stripFullStart-arr-inlined-bad 53 10 32 1.25 2 29 3 0
28 VERISEC.OpenSER cases1-stripNone-arr-bad 46 10 19 0.05 1 18 1 0
29 VERISEC.OpenSER cases1-stripNone-arr-inlined-bad 47 10 24 0.08 1 21 3 0
30 VERISEC.OpenSER cases1-stripSpacesBoth-arr-bad 52 10 25 0.87 2 24 1 0

Table B.9: Results of applying ESBMC to the verification of the bad benchmarks from the VERISEC suite - Part I.

174
A

p
p
en

d
ix

B
S
ta

tic
A

n
a
ly

sis
B

en
ch

m
a
rk

s

Time Properties
Module L B P Solver Total Passed Violated Fail

31 VERISEC.OpenSER cases1-stripSpacesBoth-arr-inlined-bad 53 10 30 1.13 2 27 3 0
32 VERISEC.OpenSER cases1-stripSpacesEnd-arr-bad 49 10 22 0.08 1 21 1 0
33 VERISEC.OpenSER cases1-stripSpacesEnd-arr-inlined-bad 50 10 27 0.12 1 24 3 0
34 VERISEC.OpenSER cases1-stripSpacesStart-arr-bad 49 10 22 0.76 2 21 1 0
35 VERISEC.OpenSER cases1-stripSpacesStart-arr-inlined-bad 50 10 27 0.91 2 24 3 0
36 VERISEC.OpenSER cases2-stripFullBoth-arr-bad 59 10 37 1.72 3 36 1 0
37 VERISEC.OpenSER cases2-stripFullBoth-arr-inlined-bad 60 10 42 1.55 2 39 3 0
38 VERISEC.OpenSER cases2-stripFullEnd-arr-bad 53 10 29 0.15 1 28 1 0
39 VERISEC.OpenSER cases2-stripFullEnd-arr-inlined-bad 54 10 34 0.22 1 31 3 0
40 VERISEC.OpenSER cases2-stripFullStart-arr-bad 55 10 29 1.42 2 28 1 0
41 VERISEC.OpenSER cases2-stripFullStart-arr-inlined-bad 56 10 34 1.43 2 31 3 0
42 VERISEC.OpenSER cases2-stripNone-arr-bad 49 10 21 0.05 1 20 1 0
43 VERISEC.OpenSER cases2-stripNone-arr-inlined-bad 50 10 26 0.09 1 23 3 0
44 VERISEC.OpenSER cases2-stripSpacesBoth-arr-bad 55 10 27 0.99 2 26 1 0
45 VERISEC.OpenSER cases2-stripSpacesBoth-arr-inlined-bad 56 10 32 1.11 2 29 3 0
46 VERISEC.OpenSER cases2-stripSpacesEnd-arr-bad 52 10 24 0.11 1 23 1 0
47 VERISEC.OpenSER cases2-stripSpacesEnd-arr-inlined-bad 54 10 29 0.16 1 26 3 0
48 VERISEC.OpenSER cases2-stripSpacesStart-arr-bad 52 10 24 0.79 1 23 1 0
49 VERISEC.OpenSER cases2-stripSpacesStart-arr-inlined-bad 53 10 29 1.02 2 26 3 0
50 VERISEC.OpenSER cases3-stripFullBoth-arr-bad 62 10 39 1.9 3 38 1 0
51 VERISEC.OpenSER cases3-stripFullBoth-arr-inlined-bad 63 10 44 2.51 4 41 3 0
52 VERISEC.OpenSER cases3-stripFullEnd-arr-bad 56 10 31 0.28 1 30 1 0
53 VERISEC.OpenSER cases3-stripFullEnd-arr-inlined-bad 57 10 36 0.41 1 33 3 0
54 VERISEC.OpenSER cases3-stripFullStart-arr-bad 58 10 31 1.84 3 30 1 0
55 VERISEC.OpenSER cases3-stripFullStart-arr-inlined-bad 59 10 36 1.74 2 33 3 0
56 VERISEC.OpenSER cases3-stripNone-arr-bad 52 10 23 0.14 1 22 1 0
57 VERISEC.OpenSER cases3-stripNone-arr-inlined-bad 53 10 28 0.21 1 25 3 0
58 VERISEC.OpenSER cases3-stripSpacesBoth-arr-bad 58 10 29 1.3 3 28 1 0
59 VERISEC.OpenSER cases3-stripSpacesBoth-arr-inlined-bad 59 10 34 1.5 3 31 3 0
60 VERISEC.OpenSER cases3-stripSpacesEnd-arr-bad 55 10 26 0.24 1 25 1 0

Table B.10: Results of applying ESBMC to the verification of the bad benchmarks from the VERISEC suite - Part II.

A
p
p
en

d
ix

B
S
ta

tic
A

n
a
ly

sis
B

en
ch

m
a
rk

s
175

Time Properties

Module L B P Solver Total Passed Violated Fail

61 VERISEC.OpenSER cases3-stripSpacesEnd-arr-inlined-bad 56 10 31 0.3 1 28 3 0

62 VERISEC.OpenSER cases3-stripSpacesStart-arr-bad 55 10 26 1.11 1 25 1 0

63 VERISEC.OpenSER cases3-stripSpacesStart-arr-inlined-bad 56 10 31 1.29 3 28 3 0

64 VERISEC.samba simp-bad 22 1 4 0 1 4 1 0

65 VERISEC.sendmail both-bad 44 5 15 0.03 1 13 2 0

66 VERISEC.sendmail close-angle-ptr-no-test-bad 45 3 8 0.01 1 7 1 0

67 VERISEC.sendmail inner-bad 37 4 9 0 1 8 1 0

68 VERISEC.sendmail mime7to8-arr-one-char-heavy-test-bad 48 10 15 0.22 1 12 3 0

69 VERISEC.sendmail mime7to8-arr-one-char-med-test-bad 46 10 15 0.18 1 10 5 0

70 VERISEC.sendmail mime7to8-arr-one-char-no-test-bad 29 10 7 0.02 1 4 3 0

71 VERISEC.sendmail mime7to8-arr-three-chars-med-test-bad 94 10 41 2.97 3 32 9 0

72 VERISEC.sendmail mime7to8-ptr-one-char-heavy-test-bad 46 10 14 0.45 1 11 3 0

73 VERISEC.sendmail mime7to8-ptr-three-chars-med-test-bad 86 10 36 4.14 5 25 11 0

74 VERISEC.sendmail mime7to8-ptr-three-chars-no-test-bad 42 10 15 0.05 1 8 7 0

75 VERISEC.sendmail outer-bad 43 4 15 0.02 1 15 1 0

76 VERISEC.sendmail prescan-arr-med-test-bad 86 5 21 0.06 1 20 1 0

77 VERISEC.sendmail prescan-arr-min-test-bad 83 5 21 0.05 1 20 1 0

78 VERISEC.sendmail tTflag-arr-one-loop-bad 23 11 9 0.22 1 6 3 0

79 VERISEC.sendmail util-bad 136 30 33 39.67 52 26 7 0

80 VERISEC.SpamAssassin loop-bad 45 7 33 2.58 3 32 1 0

81 VERISEC.wu-ftpd simple-bad 53 4 14 0 1 13 1 0

82 VERISEC.wu-ftpd small-invalid 44 4 14 0 1 10 4 0

83 VERISEC.wu-ftpd strcpy-strcat-bad 63 5 29 0.02 1 27 2 0

- Total 4569 - 2024 127 226 1808 216 0

Table B.11: Results of applying ESBMC to the verification of the bad benchmarks from the VERISEC suite - Part III.

176 Appendix B Static Analysis Benchmarks

B.6 WCET Suite

Table B.12 shows the results of applying ESBMC to the verification of the programs

from the WCET suite. Note that ESBMC finds four property violations in two programs

(duff nondet and st), which we inspected manually.

Time Properties

Module L B P Solver Total Passed Violated Fail

1 WCET.cnt 133 11 27 0.144 1 27 0 0

2 WCET.cover 238 121 196 0.067 1 196 0 0

3 WCET.duff det 86 101 39 0.026 1 39 0 0

4 WCET.duff nondet 86 101 38 0.052 1 37 1 0

5 WCET.expint 157 101 33 0.016 1 33 0 0

6 WCET.fdct 238 9 314 0.091 1 314 0 0

7 WCET.ns det 531 6 22 0.012 2 22 0 0

8 WCET.ns nondet 531 6 22 5.296 14 22 0 0

9 WCET.statemate 1273 3 6 0.25 1 6 0 0

10 WCET.st 157 1001 29 1.332 50 26 3 0

- Total 3430 - 726 7 73 722 4 0

Table B.12: Results of applying ESBMC to the verification of the benchmarks from
the WCET suite.

Appendix C

Functions of the Pthread Library

ESBMC is able to model check multi-threaded programs that use some functions of the

POSIX Pthread Library [135]. This appendix thus describes the main functions of the

Pthread library that we support.

• pthread create(): This function creates a new thread.

• pthread exit(): This function terminates the calling thread.

• pthread mutex init(): This function initializes the mutex that is used for per-

forming synchronization among the threads.

• pthread mutex lock(): This function locks the mutex if it is unlocked; otherwise

it blocks the current thread until the mutex is released and can then be locked

successfully again.

• pthread mutex unlock(): This function unlocks the mutex that was locked

previously by the same thread.

• pthread rwlock init(): This function initializes the read-write lock object, which

allows concurrent read access to an object but requires exclusive access for write

operations.

• pthread rwlock trywrlock(), pthread rwlock wrlock(): These functions locks

a read-write lock object for writing.

• pthread rwlock unlock(): This function unlocks a read-write lock object.

• pthread cond init(): This function initializes the condition variable.

• pthread cond wait(): This function is used to block the thread on a condition

variable and the blocked thread is awakened only if another thread calls signal or

broadcast.

177

178 Appendix C Functions of the Pthread Library

• pthread cond signal(): If there are several threads that are blocked on a con-

dition variable, then this function unblocks at least one of them (but there is no

guarantee of which one will be woken up due to the scheduling policy).

• pthread cond broadcast(): This function unblocks all threads currently blocked

on the specified condition variable.

• pthread cond destroy(): This function destroys the given condition variable,

i.e., the object becomes uninitialized.

Appendix D

Counterexample

This appendix shows the counterexample that is generated for the multi-threaded pro-

gram shown in Figure 4.17.

Counterexample:

State 1 file /usr/include/time.h line 275 thread 0

--

__tzname={ NULL, NULL }

State 2 file /usr/include/time.h line 276 thread 0

--

__daylight=0 (00000000000000000000000000000000)

State 3 file /usr/include/time.h line 277 thread 0

--

__timezone=0 (00000000000000000000000000000000)

State 4 file /usr/include/time.h line 282 thread 0

--

tzname={ NULL, NULL }

State 5 file <builtin-library> line 41 function pthread_mutex_lock thread 0

--

<built-in-library>::pthread_mutex_lock::1::unlocked=TRUE

State 6 file <builtin-library> line 42 function pthread_mutex_lock thread 0

--

<built-in-library>::pthread_mutex_lock::1::deadlock_mutex=FALSE

State 7 file <builtin-library> line 43 function pthread_mutex_lock thread 0

--

trds_in_run=0 (00000000000000000000000000000000)

State 8 file <builtin-library> line 43 function pthread_mutex_lock thread 0

--

trds_count=0 (00000000000000000000000000000000)

State 9 file <builtin-library> line 43 function pthread_mutex_lock thread 0

179

180 Appendix D Counterexample

--

count_lock=0 (00000000000000000000000000000000)

State 10 file carter01_bad.c line 2 thread 0

--

m={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 11 file carter01_bad.c line 2 thread 0

--

l={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 12 file carter01_bad.c line 3 thread 0

--

A=0 (00000000000000000000000000000000)

State 13 file carter01_bad.c line 3 thread 0

--

B=0 (00000000000000000000000000000000)

State 14 file <builtin-library> line 316 function pthread_cond_wait thread 0

--

count_wait=0 (00000000000000000000000000000000)

State 15 file <builtin-library> line 317 function pthread_cond_wait thread 0

--

<built-in-library>::pthread_cond_wait::1::deadlock_wait=FALSE

State 16 file <built-in> line 12 thread 0

--

__ESBMC_alloc=(assignment removed)

State 17 file <built-in> line 13 thread 0

--

__ESBMC_alloc_size=(assignment removed)

State 18 file <built-in> line 19 thread 0

--

__ESBMC_rounding_mode=0 (00000000000000000000000000000000)

State 21 file carter01_bad.c line 31 function main thread 0

--

<built-in-library>::pthread_mutex_init::mutex=&m

State 22 file carter01_bad.c line 31 function main thread 0

--

<built-in-library>::pthread_mutex_init::mutexattr=NULL

State 23 file carter01_bad.c line 31 function main thread 0

--

m={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 24 file carter01_bad.c line 31 function main thread 0

--

Appendix D Counterexample 181

m={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 25 file carter01_bad.c line 31 function main thread 0

--

m={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 28 file carter01_bad.c line 32 function main thread 0

--

<built-in-library>::pthread_mutex_init::mutex=&l

State 29 file carter01_bad.c line 32 function main thread 0

--

<built-in-library>::pthread_mutex_init::mutexattr=NULL

State 30 file carter01_bad.c line 32 function main thread 0

--

l={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 31 file carter01_bad.c line 32 function main thread 0

--

l={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 32 file carter01_bad.c line 32 function main thread 0

--

l={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 51 file carter01_bad.c line 5 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::mutex=&m

State 52 file carter01_bad.c line 5 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::1::unlocked=TRUE

State 54 file carter01_bad.c line 5 function t1 thread 1

--

m={ .__data={ .__lock=1, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 59 file carter01_bad.c line 6 function t1 thread 1

--

A=1 (00000000000000000000000000000001)

State 62 file carter01_bad.c line 7 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::mutex=&l

State 63 file carter01_bad.c line 7 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::1::unlocked=TRUE

182 Appendix D Counterexample

State 65 file carter01_bad.c line 7 function t1 thread 1

--

l={ .__data={ .__lock=1, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 71 file carter01_bad.c line 8 function t1 thread 1

--

<built-in-library>::pthread_mutex_unlock::mutex=&m

State 72 file carter01_bad.c line 8 function t1 thread 1

--

m={ .__data={ .__lock=0, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 75 file carter01_bad.c line 10 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::mutex=&m

State 79 file carter01_bad.c line 16 function t2 thread 2

--

<built-in-library>::pthread_mutex_lock::mutex=&m

State 80 file carter01_bad.c line 16 function t2 thread 2

--

<built-in-library>::pthread_mutex_lock::1::unlocked=TRUE

State 82 file carter01_bad.c line 16 function t2 thread 2

--

m={ .__data={ .__lock=1, .__count=0, .__owner=0, .__kind=0, .__nusers=0,

.__list={ .__next=NULL }, .__spins=0 } }

State 87 file carter01_bad.c line 17 function t2 thread 2

--

B=1 (00000000000000000000000000000001)

State 90 file carter01_bad.c line 18 function t2 thread 2

--

<built-in-library>::pthread_mutex_lock::mutex=&l

State 91 file carter01_bad.c line 10 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::1::unlocked=FALSE

State 93 file carter01_bad.c line 10 function t1 thread 1

--

count_lock=1 (00000000000000000000000000000001)

State 96 file carter01_bad.c line 10 function t1 thread 1

--

<built-in-library>::pthread_mutex_lock::1::deadlock_mutex=FALSE

State 105 file carter01_bad.c line 18 function t2 thread 2

--

<built-in-library>::pthread_mutex_lock::1::unlocked=FALSE

State 107 file carter01_bad.c line 18 function t2 thread 2

Appendix D Counterexample 183

--

count_lock=2 (00000000000000000000000000000010)

State 110 file carter01_bad.c line 18 function t2 thread 2

--

<built-in-library>::pthread_mutex_lock::1::deadlock_mutex=TRUE

Violated property:

file carter01_bad.c line 18 function t2

deadlock detected with mutex lock

!deadlock_mutex

References

[1] The economic impact of inadequate infrastructure for software testing. Technical

Planning Report 02-3, National Institute of Standards and Technology, 2002.

[2] MiBench Version 1.0. http://www.eecs.umich.edu/mibench/, 2009.

[3] Common vulnerabilities and exposures. In http://cve.mitre.org/, 2010.

[4] Advanced Linux Sound Architecture. http://www.alsa-project.org/, 2011.

[5] DirectFB. http://directfb.org/, 2011.

[6] Television with Linux. http://www.linuxtv.org/, 2011.

[7] Accellera. Property Specification Language (Reference Manual). Available at

http://www.eda.org/vfv/docs/PSL-v1.1.pdf, 2004.

[8] Torben Amtoft and Anindya Banerjee. Verification condition generation for con-

ditional information flow. In FMSE, pages 2–11, 2007.

[9] Andrew W. Appel. Modern Compiler Implementation in C: Basic Techniques.

Cambridge University Press, New York, NY, USA, 1997.

[10] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model

checking of software using SMT solvers instead of SAT solvers. In SPIN, LNCS

3925, pages 146–162, 2006.

[11] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model

checking of software using SMT solvers instead of SAT solvers. Int. J. Softw. Tools

Technol. Transf., 11(1):69–83, 2009.

[12] Domagoj Babić. Exploiting Structure for Scalable Software Verification. PhD

thesis, University of British Columbia, Vancouver, Canada, 2008.

[13] Domagoj Babić and Alan J. Hu. Calysto: Scalable and Precise Extended Static

Checking. In ICSE, pages 211–220, 2008.

[14] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT

Press, 2008.

185

186 REFERENCES

[15] Subhashini Balakrishnan and Sofiene Tahar. On the formal verification of embed-

ded software using multiway decision graphs. Technical Report TR-402, Concordia

University, Montreal, Canada, 1997.

[16] Thomas Ball and Sriram K. Rajamani. SLIC: A Specification Language for In-

terface Checking (of C). Technical Report MSR-TR-2001-21, Microsoft Research,

2001.

[17] Michael Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs 0002, K. Rus-

tan M. Leino, Wolfram Schulte, and Herman Venter. The Spec# Programming

System: Challenges and Directions. In VSTTE, LNCS 4171, pages 144–152, 2005.

[18] Michael Barnett and K. Rustan M. Leino. To goto where no statement has gone

before. In VSTTE, LNCS 6217, pages 157–168, 2010.

[19] Clark Barrett, Leonardo de Moura, and Aaron Stump SMT-COMP: Satisfiability

Modulo Theories Competition. In CAV, LNCS 3576, pages 20–23, 2005.

[20] Clark Barrett and Cesare Tinelli. CVC3. In CAV, LNCS 4590, pages 298–302,

2007.

[21] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The

software model checker BLAST. STTT, 9(5-6):505–525, 2007.

[22] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schup-

pan. Linear encodings of bounded LTL model checking. CoRR, abs/cs/0611029,

2006.

[23] Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.

[24] Armin Biere. Bounded model checking. In Handbook of Satisfiability, pages 457–

481. 2009.

[25] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic

model checking without BDDs. In TACAS, LNCS 1579, pages 193–207, 1999.

[26] Nikolaj Bjørner and Leonardo de Moura. Z310: Applications, enablers, challenges

and directions. In Sixth International Workshop on Constraints in Formal Verifi-

cation, 2009.

[27] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,

Ziyad Hanna, Zurab Khasidashvili, Amit Palti, and Roberto Sebastiani. Encoding

RTL constructs for MathSAT: a preliminary report. Electr. Notes Theor. Comput.

Sci., 144(2):3–14, 2006.

[28] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A. Junttila,

Peter van Rossum, Stephan Schulz, and Roberto Sebastiani. An incremental and

layered procedure for the satisfiability of linear arithmetic logic. In TACAS, LNCS

3440, pages 317–333, 2005.

REFERENCES 187

[29] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision

Procedures with Applications to Verification. Springer-Verlag New York, Inc., Se-

caucus, NJ, USA, 2007.

[30] Daniel Brand. Verification of large synthesized designs. In ICCAD, pages 534–537,

1993.

[31] Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for

bit-vectors and arrays. In TACAS, LNCS 5505, pages 174–177, 2009.

[32] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and

Roberto Sebastiani. The MathSAT 4 SMT solver. In CAV, LNCS 5123, pages

299–303, 2008.

[33] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and

L. J. Hwang. Symbolic model checking: 1020 states and beyond. In LICS, pages

428–439, 1990.

[34] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer

for finding dynamic programming errors. Softw. Pract. Exper., 30:775–802, June

2000.

[35] Sagar Chaki, Edmund M. Clarke, Alex Groce, and Ofer Strichman. Predicate

abstraction with minimum predicates. In CHARME, LNCS 2860, pages 19–34,

2003.

[36] Marsha Chechik. Personal communication. 2011.

[37] Alonzo Church. A note on the entscheidungsproblem. Journal of Symbolic Logic,

1:40-41, 1936.

[38] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.

NuSMV: A new symbolic model verifier. In CAV, LNCS 1633, pages 495–499,

1999.

[39] Alessandro Cimatti, Andrea Micheli, Iman Narasamdya, and Marco Roveri. Veri-

fying SystemC: a software model checking approach. In FMCAD, 2010.

[40] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT

Publishers, 2000.

[41] Edmund M. Clarke and Daniel Kroening. Hardware verification using ANSI-C

programs as a reference. In ASP-DAC, pages 308–311, 2003.

[42] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-

C programs. In TACAS, LNCS 2988, pages 168–176, 2004.

188 REFERENCES

[43] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Pred-

icate abstraction of ANSI–C programs using SAT. Formal Methods in System

Design, 25:105–127, 2004.

[44] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SA-

TABS: SAT-based predicate abstraction for ANSI-C. In TACAS 2005, LNCS 3440,

pages 570–574, 2005.

[45] Edmund M. Clarke, Daniel Kroening, Ofer Strichman, and Joel Ouaknine. Com-

pleteness and complexity of bounded model checking. In VMCAI, LNCS 2937,

pages 85–96, 2004.

[46] Edmund M. Clarke. SAT-based counterexample guided abstraction refinement in

model checking. In CADE, LNCS 2741, page 1, 2003.

[47] Edmund M. Clarke, Anubhav Gupta, Himanshu Jain, and Helmut Veith. Model

checking: Back and forth between hardware and software. In VSTTE, pages 251–

255, 2005.

[48] James A. Clause and Alessandro Orso. Leakpoint: pinpointing the causes of

memory leaks. In ICSE (1), pages 515–524, 2010.

[49] Byron Cook, Daniel Kroening, and Natasha Sharygina. Cogent: Accurate theorem

proving for program verification. In CAV, LNCS 3576, pages 296–300, 2005.

[50] Lucas Cordeiro and Bernd Fischer. Bounded model checking of multi-threaded

software using smt solvers. In Presentation-only paper at 8th International Work-

shop on Satisfiability Modulo Theories (SMT) at FLoC, Edinburgh, Scotland, 2010.

[51] Lucas Cordeiro, Raimundo Barreto, Rafael Barcelos, Meuse Oliveira, Vicente Lu-

cena Jr., and Paulo Maciel. Txm: An agile hw/sw development methodology

for building medical devices. In ACM SIGSOFT Software Engineering Notes.,

32(6):32, 2007.

[52] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. Efficient SMT-based

Bounded Model Checker (ESBMC). users.ecs.soton.ac.uk/lcc08r/esbmc, 2009.

[53] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. SMT-based bounded

model checking for embedded ANSI-C software. In ASE, pages 137–148, 2009.

[54] Lucas Cordeiro, Bernd Fischer, and João Marques-Silva. Continuous verification

of large embedded software using SMT-based bounded model checking. In ECBS,

pages 160–169, 2010.

[55] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. The MIT Press, 2001.

REFERENCES 189

[56] Leonardo de Moura and Nikolaj Bjørner. Proofs and refutations, and Z3. In LPAR

Workshops, 2008.

[57] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,

LNCS 4963, pages 337–340, 2008.

[58] Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories: An appe-

tizer. In SBMF, LNCS 5902, pages 23–36, 2009.

[59] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for

bounded model checking over infinite domains. In CADE, LNCS 2392, pages 438–

455, 2002.

[60] Eva Dejnozkova and Petr Dokladal. Asynchronous multi-core architecture for

level set methods. In International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), pages 1–4, 2004.

[61] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey

Zheltov, and Stanislav Bratanov. Automated, scalable debugging of MPI programs

with intel R©message checker. In SE-HPCS, pages 78–82, 2005.

[62] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for

program checking. J. ACM, 52(3):365–473, 2005.

[63] Alastair Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic analysis

of scratch-pad memory code for heterogeneous multicore processors. In TACAS,

LNCS 6015, pages 280–295, 2010.

[64] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated

techniques for formal software verification. IEEE Trans. on CAD of Integrated

Circuits and Systems, 27(7):1165–1178, 2008.

[65] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tool paper,

http://yices.csl.sri.com/documentation.shtml, 2009.

[66] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.

Electr. Notes Theor. Comput. Sci., 89(4), 2003.

[67] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. In

PLDI, pages 219–232, 2000.

[68] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for

model checking software. In POPL, pages 110–121, 2005.

[69] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for java. In PLDI, pages 234–

245, 2002.

190 REFERENCES

[70] Martin Fowler. Continuous Integration. ThoughtWorks. http://martinfowler.com,

2006.

[71] Malay K. Ganai and Aarti Gupta. Accelerating high-level bounded model checking.

In ICCAD, pages 794–801, 2006.

[72] Malay K. Ganai and Aarti Gupta. Completeness in SMT-based BMC for software

programs. In DATE, pages 831–836, 2008.

[73] Malay K. Ganai and Aarti Gupta. Efficient modeling of concurrent systems in

BMC. In SPIN, LNCS 5156, pages 114–133, 2008.

[74] Naghmeh Ghafari, Alan Hu, and Zvonimir Rakamaric. Context-bounded trans-

lations for concurrent software: An empirical evaluation. In SPIN, LNCS 6349,

pages 227–244, 2010.

[75] Patrice Godefroid. Partial-order Methods for the Verification of Concurrent Sys-

tems: An Approach to the State-explosion Problem. University of Liege, PhD

thesis, 1995.

[76] Patrice Godefroid, Jonathan de Halleux, Aditya V. Nori, Sriram K. Rajamani,

Wolfram Schulte, Nikolai Tillmann, and Michael Y. Levin. Automating software

testing using program analysis. IEEE Software, 25(5):30–37, 2008.

[77] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated

random testing. In PLDI, pages 213–223, 2005.

[78] Benny Godlin and Ofer Strichman. Regression verification. In DAC, pages 466–

471, 2009.

[79] H. Goldstein. Checking the play in plug-and-play. Spectrum, IEEE, 39(6):50–55,

2002.

[80] David Gries and Gary Levin. Assignment and procedure call proof rules. ACM

Trans. Program. Lang. Syst., 2(4):564–579, 1980.

[81] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. Fault localization using

a model checker. Softw. Test., Verif. Reliab., 20(2):149–173, 2010.

[82] Alex Groce, Klaus Havelund, and Margaret H. Smith. From scripts to specifica-

tions: the evolution of a flight software testing effort. In ICSE (2), pages 129–138,

2010.

[83] Formal Methods Group. SymC. http://www-ti.informatik.uni-

tuebingen.de/ fmg/symc/, 2008.

[84] Orna Grumberg, Flavio Lerda, Ofer Strichman, and Michael Theobald. Proof-

guided underapproximation-widening for multi-process systems. In POPL, pages

122–131, 2005.

REFERENCES 191

[85] Elsa L. Gunter and Doron Peled. Model checking, testing and verification working

together. Formal Asp. Comput., 17(2):201–221, 2005.

[86] Sumit Gupta. High Level Synthesis Benchmarks Suite.

http://mesl.ucsd.edu/spark/benchmarks.shtml, 2009.

[87] Eclipse Helios. Eclipse IDE for C/C++ developers, 2010.

[88] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Dirk Beyer. BLAST:

Berkeley Lazy Abstraction Software Verification Tool. http://mtc.epfl.ch/software-

tools/blast/, 2009.

[89] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-

modular abstraction refinement. In CAV, LNCS 2725, pages 262–274, 2003.

[90] Gerard J. Holzmann. The model checker Spin. IEEE Trans. Software Eng.,

23(5):279–295, 1997.

[91] Gerard J. Holzmann. The Spin Model Checker - Primer and Reference Manual.

Addison-Wesley, 2003.

[92] Gerard J. Holzmann and Dragan Bosnacki. The design of a multicore extension

of the Spin model checker. IEEE Trans. Software Eng., 33(10):659–674, 2007.

[93] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Tackling large verification

problems with the Swarm tool. In SPIN, LNCS 5156, pages 134–143, 2008.

[94] Michael Huth and Mark Ryan Logic in Computer Science: modelling and reasoning

about systems. Cambridge University Press, 2004.

[95] ISO. ISO/IEC 9899:1999: Programming languages C. International Organization

for Standardization, 1999.

[96] Franjo Ivancic, Ilya Shlyakhter, Aarti Gupta, and Malay K. Ganai Model checking

C programs using F-SOFT. ICCD, pages 297–308, 2005.

[97] Franjo Ivancic. Personal communication. 2011.

[98] Paul B. Jackson, Bill J. Ellis, and Kathleen Sharp. Using SMT solvers to verify

high-integrity programs. In AFM, pages 60–68, 2007.

[99] Paul B. Jackson and Grant Olney Passmore. Proving SPARK Verification Condi-

tions with SMT solvers. Technical Report, University of Edinburgh, 2009.

[100] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.

Surv., 41(4), 2009.

[101] Bengt Jonsson and Yih-Kuen Tsay. Assumption/guarantee specifications in linear-

time temporal logic. Theor. Comput. Sci., 167(1&2):47–72, 1996.

192 REFERENCES

[102] Vineet Kahlon, Sriram Sankaranarayanan, and Aarti Gupta. Semantic reduction

of thread interleavings in concurrent programs. In TACAS, LNCS 5505, pages

124–138, 2009.

[103] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction:

An optimal symbolic partial order reduction technique. In CAV, LNCS 5643, pages

398–413, 2009.

[104] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, 2002.

[105] Daniel Kroening. Personal communication. 2009.

[106] Daniel Kroening, Edmund Clarke, and Karen Yorav. Behavioral consistency of

C and Verilog programs using bounded model checking. In DAC 2003, pages

368–371, 2003.

[107] Daniel Kroening, Edmund Clarke, and Karen Yorav. Behavioral consistency of C

and Verilog programs using bounded model checking. In Technical Report, CMU-

CS-03-126, 2003.

[108] Daniel Kroening and Sanjit A. Seshia. Formal verification at higher levels of

abstraction. In ICCAD, pages 572–578, 2007.

[109] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point

of View. Springer Publishing Company, Incorporated, 2008.

[110] Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David Lie. A buffer overflow

benchmark for software model checkers. In ASE, pages 389–392, 2007.

[111] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. Static and precise

detection of concurrency errors in systems code using SMT solvers. In CAV, LNCS

5643, pages 509–524, 2009.

[112] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context

bound to sequential analysis. Formal Methods in System Design, 35(1):73–97,

2009.

[113] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.

STTT, 1(1-2):134–152, 1997.

[114] D. Lettnin, P. K. Nalla, J. Ruf, R. Weiss, A. Braun, J. Gerlach, T. Kropf, and

W. Rosenstiel. Semiformal verification of temporal properties in embedded soft-

ware. GI/ITG/GMM Workshop, Methoden und Beschreibungssprachen zur Mod-

ellierung und Verifikation von Schaltungen und Systemen, Erlangen, Germany,

2007.

REFERENCES 193

[115] Djones Lettnin, Pradeep Kumar Nalla, Jörg Behrend, Jürgen Ruf, Joachim Ger-

lach, Thomas Kropf, Wolfgang Rosenstiel, Volker Schönknecht, and Stephan Re-

itemeyer. Semiformal verification of temporal properties in automotive hardware

dependent software. In DATE, pages 1214–1217, 2009.

[116] Sung-Soo Lim. SNU Real-Time Benchmarks Suite.

http://archi.snu.ac.kr/realtime/benchmark/, 2009.

[117] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug characteristics. SIGARCH

Comput. Archit. News, 36(1):329–339, 2008.

[118] James R. Lyle and David W. Binkley. Program slicing in the presence of pointers.

In Third Annual Software Engineering Research Forum, pages 11–12, 1993.

[119] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE, pages

416–426, 2007.

[120] Nicolas Markey and Ph. Schnoebelen. Symbolic model checking for simply-timed

systems. In FORMATS/FTRTFT, pages 102–117, 2004.

[121] Takeshi Matsumoto, Hiroshi Saito, and Masahiro Fujita. Equivalence checking of

C programs by locally performing symbolic simulation on dependence graphs. In

ISQED, pages 370–375, 2006.

[122] Wolfgang Mayer and Markus Stumptner. Evaluating models for model-based de-

bugging. In ASE, pages 128–137, 2008.

[123] John McCarthy. Towards a mathematical science of computation. In In IFIP,

pages 21–28, 1962.

[124] Kenneth L. McMillan. The Cadence SMV Model Checker.

http://www.kenmcmil.com/smv.html, 2010.

[125] Kenneth L. McMillan. Interpolation and sat-based model checking. In CAV, LNCS

2725, pages 1–13, 2003.

[126] Kenneth L. McMillan. Applications of craig interpolants in model checking. In

TACAS, LNCS 3440, pages 1–12, 2005.

[127] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV, LNCS 4144,

pages 123–136, 2006.

[128] Kenneth L. McMillan. Interpolants and symbolic model checking. In VMCAI,

LNCS 4349, pages 89–90, 2007.

[129] Kenneth L. McMillan and Nina Amla. Automatic abstraction without counterex-

amples. In TACAS, LNCS 2619, pages 2–17, 2003.

194 REFERENCES

[130] Elliott Mendelson. Introduction to Mathematical Logic. Chapman & Hall/CRC,

2009.

[131] José Vander Meulen and Charles Pecheur. Combining partial order reduction with

bounded model checking. In Communicating Process Architectures (CPA), pages

29–48, 2009.

[132] Jeremy Morse. Kerberos Git. https://www.studentrobotics.org/trac/wiki/Kerberos/Git,

2011.

[133] Mohammad Reza Mousavi and Michel Reniers. A congruence rule format with

universal quantification. Electron. Notes Theor. Comput. Sci., 192(1):109–124,

2007.

[134] Steven S. Muchnick. Advanced compiler design and implementation. Morgan

Kaufmann Publishers Inc., 1997.

[135] Frank Mueller. A library implementation of posix threads under unix. In USENIX,

pages 29–41, 1993.

[136] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic

testing of multithreaded programs. In PLDI, pages 446–455, 2007.

[137] Madanlal Musuvathi and Shaz Qadeer. Fair stateless model checking. In PLDI,

pages 362–371, 2008.

[138] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing

heisenbugs in concurrent programs. In OSDI, pages 267–280, 2008.

[139] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detec-

tion. In POPL, pages 327–338, 2007.

[140] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. Cil:

Intermediate language and tools for analysis and transformation of C programs.

In CC, LNCS 2304, pages 213–228, 2002.

[141] NXP. High definition IP and hybrid DTV set-top box STB225.

http://www.nxp.com/, 2009.

[142] Tom Ostrand. Siemens Corporate Research. http://sir.unl.edu/portal/, 2010.

[143] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann

Publishers, 2011.

[144] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon: fault local-

ization in concurrent programs. In ICSE (1), pages 245–254, 2010.

REFERENCES 195

[145] Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and multi-

variate polynominals. In ICICS, LNCS 1334, pages 356–368. Springer, 1997.

[146] Doron Peled. All from one, one for all: on model checking using representatives.

In CAV, LNCS 697, pages 409–423, 1993.

[147] Doron Peled. Model checking and testing combined. In ICALP, LNCS 2719, pages

47–63, 2003.

[148] Lorenzo Platania. Eureka Benchmark Suite. http://www.ai-

lab.it/eureka/bmc.html, 2009.

[149] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in

SAT-based formal verification. STTT, 7(2):156–173, 2005.

[150] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent

software. In TACAS, LNCS 3440, pages 93–107, 2005.

[151] Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential. In PLDI,

pages 14–24, 2004.

[152] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent

programs. In CAV, LNCS 3576, pages 82–97, 2005.

[153] Muralikrishna Ramanathan. flex. http://sir.unl.edu/portal/, 2010.

[154] John A. Robinson. A machine-oriented logic based on the resolution principle. J.

ACM, 12:23–41, January 1965.

[155] Michiel Ronsse and Koen De Bosschere. Recplay: a fully integrated practical

record/replay system. ACM Trans. Comput. Syst., 17(2):133–152, 1999.

[156] Neha Rungta and Eric G. Mercer. Clash of the titans: tools and techniques for

hunting bugs in concurrent programs. In PADTAD, pages 1–10, 2009.

[157] Sriram Sankaranarayanan. NECLA Static Analysis Benchmarks. http://www.nec-

labs.com/research/system/, 2009.

[158] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. Eraser: a dynamic data race detector for multithreaded programs.

ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[159] Jeff Scott, Lea Hwang Lee, Ann Chin, John Arends, and Bill Moyer. Designing

the low-power m*core architecture. In ICCD, pages 94–101, 1999.

[160] Koushik Sen. Concolic testing. In ASE, pages 571–572. ACM, 2007.

[161] Koushik Sen. Race directed random testing of concurrent programs. SIGPLAN

Not., 43(6):11–21, 2008.

196 REFERENCES

[162] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties

using induction and a SAT-solver. In FMCAD, LNCS 1954, pages 108–125, 2000.

[163] Joao P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm

for satisfiability. In ICCAD, pages 220–227, 1996.

[164] SMT-LIB. The Satisfiability Modulo Theories Library.

http://combination.cs.uiowa.edu/smtlib, 2009.

[165] Fabio Somenzi and Roderick Bloem. Efficient buechi automata from LTL formulae.

In CAV, LNCS 1855, page 247263, 2000.

[166] Ian Sommerville. Software Engineering. Pearson Education Limited, 2007.

[167] Ofer Strichman. Regression verification: Proving the equivalence of similar pro-

grams. In CAV, LNCS 5643, page 63, 2009.

[168] Aaron Stump and Morgan Deters. Satisfiability Modulo Theories Competition.

http://www.smtcomp.org/, 2010.

[169] Andrew S. Tanenbaum. Computer networks: 4th edition. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 2002.

[170] Olivier Thiry and Luc J. Claesen A formal verification technique for embedded

software. ICCD, pages 352–357, 1996.

[171] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-

bounded concurrent reachability to sequential reachability. In CAV, LNCS 5643,

pages 477–492, 2009.

[172] G. S. Tseitin. On the complexity of derivation in propositional calculus. In In

J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Classical

Papers on Computational Logic 1967-1970.

[173] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In

Logics for Concurrency: Structure versus Automata, LNCS 1043, pages 238–266,

1996.

[174] Alberto L. Sangiovanni-Vincentelli, Luca P. Carloni, Fernando De Bernardinis,

and Marco Sgroi. Benefits and challenges for platform-based design. DAC, pages

409–414, 2004.

[175] Nguyen Le Vinh. The Flasher Manager Application.

http://users.polytech.unice.fr/ rueher/Benchs/FM/, 2010.

[176] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio

Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–232, 2003.

REFERENCES 197

[177] Chao Wang, Rhishikesh Limaye, Malay K. Ganai, and Aarti Gupta. Trace-based

symbolic analysis for atomicity violations. In TACAS, LNCS 6015, pages 328–342,

2010.

[178] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial

order reduction. In TACAS, LNCS 4963, pages 382–396, 2008.

[179] Christoph M. Wintersteiger. Compiling GOTO-Programs.

http://www.cprover.org/goto-cc/, 2009.

[180] Yichen Xie and Alex Aiken. Scalable error detection using Boolean satisfiability.

SIGPLAN Not., pages 351–363, 2005.

[181] Liang Xu. SMT-based bounded model checking for real-time systems. In QSIC,

pages 120–125, 2008.

[182] Yu Yang. Inspect: A Framework for Dynamic Verification of Multithreaded C

Programs. http://www.cs.utah.edu/ yuyang/inspect/, 2010.

[183] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert Kirby. Runtime

model checking of multithreaded C/C++ programs. In Technical Report, UUCS-

07-008, 2007.

[184] Aleks Zaks, Ilya Shlyakhter, Franjo Ivancic, Srihari Cadambi, Zijiang Yang, Malay

Ganai, Aarti Gupta, and Pranav Ashar. Using range analysis for software veri-

fication. In 4th International Workshop on Software Verification and Validation,

2006.

[185] C. Pǎsǎreanu, P. Mehlitz, D. Bushnell, G. Burlet. Combining unit-level symbolic

execution and system-level concrete execution for testing nasa software In ISSTA,

pages 15–26, 2008.

