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Abstract

We describe a new approach to localize faults in concurrent programs, which
is based on bounded model checking and sequentialization techniques. The
main novelty is the idea of reproducing a faulty behavior, in a sequential ver-
sion of a concurrent program. In order to pinpoint faulty lines, we analyze
counterexamples generated by a model checker, to the new instrumented
sequential program, and search for a diagnostic value, which corresponds
to actual lines in a program. This approach is useful to improve debug-
ging processes for concurrent programs, since it tells which line should be
corrected and what values lead to a successful execution. We implemented
this approach as a code-to-code transformation from concurrent into non-
deterministic sequential programs, which are used as inputs to existing veri-
fication tools. Experimental results show that our approach is effective and
capable of identifying faults in our benchmark set, which was extracted from

the SV-COMP 2016 suite.

Keywords: Concurrent Software, Bounded Model Checking, Fault
Localization, Non-determinism, Sequentialization

1. Introduction

Discovering errors in software is an activity that needs to be performed
at the early stages of development processes, so that costs are reduced and,
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in some cases, lives are saved [I]. Several methods have been proposed, in
order to find errors in software, such as testing [2] and model-based meth-
ods [3] 4[5, 6L [7, 8, [9]. More deeply, when an error is found, its cause needs to
be tracked inside source code files, which is one of the most time-consuming
activities in program debugging [10]. Nonetheless, when it comes to concur-
rent programs, asserting their correctness turns out to be complex, since the
number of possible interleavings can exponentially grow, with the number of
threads and statements, and finding errors then becomes an exhausting task
to developers. It is worth noticing that, in the worst case, faulty lines may
not even be identified.

In this study, we describe a method to localize faults in concurrent C
programs, based on the method initially proposed by Griesmayer et al. [11],
which consists in using non-determinism, in a sequential program, to find
values for a successful program run, thus correcting original errors. It is based
on sequentialization, which is an approach proposed by Qadeer et al. [12] that
employs verification tools originally developed for sequential programs, in
order to check safety properties in concurrent programs, and bounded model
checking (BMC), which is a technique introduced by Biere et al. [13], as an
approach to bound the search for counterexamples through a depth k, thus
producing formulae that are easier to be solved.

In our prior work [I4], we extended the method described by Griesmayer
et al. [11], with the goal of finding faults in concurrent programs, translated
concurrent statements to sequential ones, and applied ESBMC [I5] as our
BMC tool. Here, we continue this work and improve our methodology to
precisely model concurrent programs. In summary, we extend our sequen-
tialized Pthread library [16] model, mainly regarding mutex type modeling,
address benchmarks with deadlocks, and expand Grismayer’s method, in or-
der to diagnose bad formulated assertions. We also use Lazy-CSeq [17], as
another BMC tool, which aims to improve our effectiveness in handling con-
current programs. Finally, we exploit more benchmarks, in order to evaluate
our method and point out its advantages and disadvantages.

1.1. Awvailability of Data and Tools

Our experiments are based on a set of publicly available benchmarks. All
tools, benchmarks, and results of our evaluation are available on a supple-
mentary web page http://esbmc.org/benchmarks/ejss2016.zip.
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1.2. Organization of this Work

The remainder of this paper is organized as follows. Section [2| describes
background theories and concepts used in this work. Section |3 is the main
section of this paper, where we detail our approach to localize faults in con-
current C programs. Section [4] provides experimental results, analysis, and
discussions, while related work is briefly described in section [5] Finally, sec-
tion [6] summarizes the main obtained results and highlights future work.

2. Background

In this section, we discuss the verification process of the two model check-
ing tools used in our work, show how counterexamples can provide useful in-
formation to characterize faults, and then demonstrate a method to localize
faults in sequential programs.

2.1. Pthread Library

We have to model concurrent statements of a program P to correspond-
ing sequential statements, in order to simulate its original behavior in a se-
quential approach. Such a transformation is focused on the C programming
language, since our focus is on concurrent C programs, and, in particular,
the UNIX environment. In that programming language and its environ-
ment, threads are defined through the Portable Operating System Interface
(POSIX) standard and are called POSIX Threads (Pthread), as implemented
in the pthread library [16]. Regarding pthread library statements, we model
thread creation, termination, and synchronization. In particular, our focus is
on mutexes and conditionals, since they are the structures where the majority
of concurrent bugs occur [18]. Besides, since our method reproduces a faulty
behavior of a concurrent program and not all possible executions, thread
creation and termination can be abstracted as the beginning and the end of
the thread function execution, respectively [19]. Therefore, we currently do
not support thread cancelling and joining.

2.2. ESBMC

In ESBMC, the program to be verified is modeled as a state transi-
tion system M = (S, R, sg), which is extracted from its control-flow graph
(CFG) [20, 21]. S represents the set of states, R C S x S represents the set
of transitions (i.e., pairs of states specifying how the system can jump from
state s; to state s;11), and sg C S represents the set of initial states. A state
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s € S consists in values of the associated program counter pc and all program
variables, and an initial state sy assigns the initial program location of the
related CFG to pc. We identify each transition v = (s;, s;41) € R between
two states s; and s;,1, with a logical formula ~(s;, s;+1) that captures the
constraints on the corresponding values of the program counter and other
program variables.

Given the transition system M, a safety property ¢, a context bound C,
and a bound k, ESBMC builds a reachability tree (RT) that represents the
program unfolding for C, k, and ¢ [19, 22]. We then derive a verification
condition (VC) 9] for each given interleaving (or computation path) m =
{v1, ..., vx}, which is given by the following logical formula

const/rgints
kil property
i =1(sp) A \/ /\ V(855 $j+1) A 9(s:), (1)
=0 7=0

where I characterizes the set of initial states M and 7(s;, s;41) is the relation
of M between time steps j and j + 1. Hence, I(sg) A \/;;0 v(s;, Sj4+1) repre-
sents executions of M of length 7 and ] can be satisfied if and only if, for
some ¢ < k, there exists a reachable state along 7, at time step ¢, in which ¢
is violated. v} is a quantifier-free formula in a decidable subset of first-order
logic, which is checked for satisfiability by an SMT solver. If 9] is satisfiable,
then ¢ is violated along m and the SMT solver provides a satisfying assign-
ment, from which we can extract values of program variables to construct a
counterexample. The latter, regarding a property ¢, is a sequence of states
S0y 81 -y Sk, With so € Sp, sp € S, and y(s;, si41) for 0 < i < k. If ¢f is
unsatisfiable, we can conclude that no error state is reachable in k steps or
less, along 7. Finally, we can define ¢, = A_ 4] and use it to check all paths.
Nonetheless, ESBMC combines symbolic model checking with explicit state
space exploration; in particular, it explicitly explores the possible interleav-
ings (up to the given context bound), while symbolically treating each one.
ESBMC implements different variations of this approach, which differ in the
way they exploit the RT. The most effective variation simply transverses the
RT depth-first and calls the single-threaded BMC procedure on the inter-
leaving, whenever it reaches an RT leaf node, and stops when a bug is found
or all possible RT interleavings were systematically explored.
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2.3. Lazy-CSeq

Lazy-CSeq is a code-to-code transformation tool based on Lazy Sequen-
tialization techniques, initially introduced by La Torre et al. [23] for non-
deterministically sequentializing concurrent C programs, which re-uses exist-
ing BMC tools as backends, in order to find code violations [I7]. Its main idea
is to pre-process a concurrent program and convert it into a non-deterministic
sequential one, with the goal of simplifying verification tasks.

In Lazy-CSeq, a program P is sequentialized w.r.t. a number of rounds
K and a depth bound k. In particular, each thread is simulated as a func-
tion and the main one of the sequentialized program P;? is responsible for
scheduling each simulated thread, by using a lazy approach and a round-robin
scheduling schema. This process reduces the non-determinism present in a
program, which reduces the amount of possible interleavings, but leads to
efficient verification tasks. Finally, it model checks P ? in an existing BMC
tool (similar to the description in [2.2)), such as ESBMC [15] and CBMC [24],
which states whether a given program is safe or not. Lazy-CSeq is also able
to provide a counterexample to unsafe programs; however, developers have
only made that available when using CBMC [24] as backend.

2.4. Using Counterexamples to Localize Faults

In model checking, the most essential activity, with respect to fault local-
ization, is to generate a counterexample, which is produced when a program
does not satisfy a given specification. A counterexample does not merely
provide information about the cause-effect relation of a given violation, but
it can also assist in fault localization, as mentioned by Clarke et al. [25], 26].
Nonetheless, actual faulty lines may not be easily identified, given the mas-
sive amount of information that is obtained from a counterexample.

Several methods have been proposed, in order to localize possible fault
causes, using counterexamples. Ball et al. [27] introduced an approach that
tries to isolate possible causes of counterexamples, generated by the SLAM
model checker [28]. Its main idea is that potential faulty lines can be isolated
by comparing transitions among obtained counterexamples and successful
traces, since the ones not present in correct traces are potential causes of er-
rors. Groce et al. [29], in turn, state that if a counterexample exists, a similar
but successful trace also exists and can be obtained using BMC techniques.
This way, program elements related to a given violation are suggested by
the minimal differences between that counterexample and a successful trace,
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which is known as the Java Pathfinder approach [30] and can also provide ex-
ecution paths that lead to error states, regarding concurrent programs (e.g.,
data race). The key concept of the approach described by Groce et al. [31]
is similar to the latter and uses alignment constraints to associate states, in
a counterexample, with corresponding states in a successful trace, which are
generated by a constraint solver. The mentioned states are abstract states
over predicates, which represent concrete states in a trace. By using distance
metric properties, constraints can be applied to represent program execu-
tions, and non-matching constraints that represent concrete states possibly
lead to faults. Additionally, if a distance metric property is not satisfied, a
counterexample is generated by the respective BMC tool [31].

2.5. Fault Localization in Sequential Programs

Griesmayer et al. [11] proposed a method based on BMC techniques,
which can directly identify potential faults in programs. In particular, that
method uses additional numerical variables, e.g. diag elements, in order to
pinpoint faulty lines, in a given program.

Each line of a program, representing a statement S, is transformed into
a logic version of such statement, while the value held by S is either non-
deterministically chosen by a model checker (if the value of diag is the same
as the one representing the line related to statement S) or the one originally
specified. If a model checker identifies a diag value, by correcting this line in
the original program, such fault can be avoided. In the case of multiple diag
values, correcting the associated lines lead to a successful program execution.
In order to find the full set of lines that cause faulty behavior in a program,
a new specification] can be added to its source code, which is then rerun
by a model checker. This process is repeatedly executed until no more diag
values are obtained, i.e., the run succeeds [32].

In order to illustrate how this method works, one may consider the fol-
lowing digital controller based on the function for motion with constant ac-
celeration [33], as shown in Eq. , whose behavior is defined in Eq. (3| (the
values were arbitrarily assigned).

s(t) = at® /2 + vot + so [33] (2)

lassume(diag '= a)



o(t) =12 — 3t +2 (3)

A model in the C language of the controller is addressed in Fig. [I}

1| #include <stdio.h>
2| #include <assert.h>
3

4| #define C_0 2

5| #define C_1 O

6| #define C_2 O

7| #define C_3 2

8

9l const int A = 1;

10| const int B = -2; // Incorrect modeling
11| const int C = 2;

Jun
N

int controller (int t) {
int output = A *x t *x t + B *x t + C;
return output;

= e
[SL I V]

16| >

17

18| int main () {

19 assert (controller (0) == C_0 &&
20 controller (1) == C_1 &&
21 controller (2) == C_2 &&
22 controller(3) == C_3);

[
w

return O;

}

N
=

Figure 1: Sequential code of a trivial controller.

One may notice that the model is not in conformity with the given equa-
tion, in particular, the B term is assigned with the value of —2 instead of
—3. Thus, the assertion is expected to fail while executing the program in a

s model checker, as shown in Fig. [2|

(...

2| Violated property:
3 file model.c line 19 function main
4 assertion
5 FALSE

6

7

VERIFICATION FAILED

Figure 2: Counterexample trace to the model.
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By using ESMBC as the model checker, a non-deterministic instrumented
program is obtained, as in Fig. After executing the program, the diag
values from Fig. [4] are obtained.

#include <stdio.h>
#include <assert.h>
#define C_0 2

#define C_1
#define C_2
#define C_3
const int A

N oo

1;

const int B = -2;

const int C = 2;

int nondet (int i) {
int ret;
__ESBMC_assume (ret != i);
return ret;

}

int controller (int t) {
int diag = nondet (0);

© 00 N O U RAE W N =

e e e e
o Ut s W N = O

17 int ta = (diag == 1 ? nondet(A) : A) x*

18 t * t;

19 int tb = (diag == 2 ? nondet(B) : B) * t;
20 int tc = (diag == 3 7 nondet(C) : C);

[V
frt

int output = ta + tb + tc;
return output;
}

int main() {

NN
=W N

25 __ESBMC_assume (controller (0) == C_0 &&
26 controller (1) == C_1 &&
27 controller (2) == C_2 &&
28 controller (3) == C_3);

[
©

assert (0);
return O;

}

w W
= O

Figure 3: Instrumented sequential code with the described method applied.

According to the counterexample obtained using ESBMC, it is possible to
notice that the value of diag is 2 in three cases and a signed integer in another
case. Therefore, the problem is indeed in the calculation of the second term.
The complete counterexample shows that the assignment needed for repairing
the faulty behavior is —3, which can be done and followed by a rerun of the
model checker.

After correcting the mentioned fault, the verified code in Fig. [5] is exe-
cuted in ESBMC and the lines in Fig. [0] are obtained, meaning that there
are no left faults. In digital controllers, it is of great importance that models
are precisely specified, in order to avoid faults while operating in real en-



griesmayer::
griesmayer:
griesmayer:

=W N =

griesmayer:

controller::1::diag=-2012462479 (-2012462479)
:controller::1::diag=2 (2)
:controller::1::diag=2 (2)
:controller::1::diag=2 (2)

Figure 4: Faulty lines obtained by the program execution

#define C_O
#define C_1
#define C_2
#define C_3
const int A

© 0 N O U W N

const int C

= e
N = O

}

e e
© 0 N O G W

return O;

}

[V
[=}

#include <stdio.h>
#include <assert.h>

const int B =

int controller (int t) {
int output
return output;

int main() {
assert (controller (0)

== C_0 &&
controller (1) == C_1 &&
controller (2) == C_2 &&
controller (3) == C_3);

2

"N oo

1;
_3;
2;

A x t xt + B *x t + C;

Figure 5: Repaired sequential code.

vironment, since they can lead to unexpected behaviors and even damages,

190
the method proposed
sequential program.

which increases the associated costs. Finally, it was possible to observe how

by Griesmayer et al. [I1I] works, when applied to a

1| griesmayer::controller::
2| griesmayer::controller::
3| griesmayer::controller::
4| griesmayer::controller::

R e e

::diag=-934770697 (-934770697)
:diag=-1 (-1)
::diag=-1 (-1)
:diag=-1 (-1)

Figure 6: Faulty lines obtained by the program execution

3. A Method for Concurrent Programs

In this section, we fully describe our method to localize faults in concur-
s rent C programs. First, we show a motivating example, in order to describe

9
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our approach, and discuss pre-fault localization steps using BMC. Then, the
employed transformation rules are tackled, with the goal of sequentializing a
concurrent program. Finally, we reason about the fault localization process,
in the transformed concurrent program.

3.1. Illustrative Example

We use a simple concurrent program, which is shown Fig. [7] in order to
illustrate our approach [19]. It has two shared variables, i.e., mutexes mutex
and lock, which are used to synchronize threads A and B. The main function
initializes each thread’s integer counter and spawns two threads, executing
threadA and threadB functions, respectively. Each thread function acquires
mutex, increments its counter (A_count or B_count), checks if it is possible
to acquire lock (if its counter equals one), releases mutex, tries to acquire
mutex right after, decrements its counter, checks if it is possible to release
lock (if its counter equals zero), and finally releases mutex. Since we do
not have any assertions, we should not have any other types of violation,
but concurrent errors. Nonetheless, one may notice that we are using local
variables to control access between two different threads to the mutex lock.
Assuming that context switches might occur at any line of the program, it
is likely that one specific execution leads to a deadlock error. For instance,
the following execution leads to a deadlock: thread A executes until line 5,
acquiring mutex lock, thread B then starts executing, but when it tries to
acquire mutex lock, a classic deadlock condition is presented, since mutexes
lock and mutex cannot be released by their respective threads, so that the
other one can proceed execution.

The translated code is shown in Fig.|8| Here, we added non-deterministic
assignments to variables, in order to find not only lines that are related to
faults in the program, but also what assignments can correct them. We
also added a sequential framework that simulates the faulty behavior of the
original program, according to the counterexample obtained by the model
checker. When this new instrumented program is run in a model checker, it
produces a counterexample that contains which lines cause the faulty behav-
ior and what assignments can be done to produce a successful run. Therefore,
our methodology ultimately enables developers to pinpoint what faults are
presented in a given program and how they can be fixed.

10
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1| void *threadA(void *arg) {

2 pthread_mutex_lock (&mutex) ;

3 ++A_count;

4 if (A_count == 1) pthread_mutex_lock(&lock);
5 pthread_mutex_unlock (&mutex);

6 pthread_mutex_lock (&mutex) ;

7 --A_count;

8 if (A_count == 0) pthread_mutex_unlock (&lock);
9 pthread_mutex_unlock (&mutex) ;

10| }

11| void *threadB(void xarg) {

12 pthread_mutex_lock (&mutex);

13 ++B_count;

14 if (B_count == 1) pthread_mutex_lock(&lock);
15 pthread_mutex_unlock (&mutex);

16 pthread_mutex_lock (&mutex);

17 --B_count;

18 if (B_count == 0) pthread_mutex_unlock(&lock);
19 pthread_mutex_unlock (&mutex);

20| }

21| int main() {

22 pthread_t A, B;

23 A_count = 0; B_count = 0;

24 pthread_create (&A, NULL, threadA, NULL);

25 pthread_create (&B, NULL, threadB, NULL);

26 pthread_join (A, NULL);

27 pthread_join(B, NULL);

28 return EXIT_SUCCESS;

29| }

Figure 7: Illustrative example.

3.2. Method Overview

Here, we briefly describe our present method, as shown in Fig. [, and
a more detailed explanation is addressed in the following sections. Given a
concurrent program P, we first check whether it presents a failing execution
w.r.t. a specific interleaving. In order to accomplish that, we run P in a
model checker twice: the first run checks deadlocks and the second one is in
charge of verifying other types of violations, such as lock acquisition errors, di-
vision by zero, pointer safety, arithmetic overflow, and out-of-bounds arrays.
We cannot verify it only once because model checkers usually separate this
verification, i.e., one needs to add a command line option to enable deadlock
check and ignore violations due to assertions. If we obtain a counterexample
from this step, we can proceed with our method. Then, the next step defines
our transformation rules, which are sequential statements that will replace
the original concurrent ones, and a sequential framework, which aims to
simulate the concurrent execution of the failed interleaving. The third step

11
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int non_det (), diag;
int A_count, B_count;
h_mutex mutex, lock;
void A_1(void x*arg) {
int t; cs cs;
lock (&mutex,
t = A_count;
A_count = (diag == 10 7 non
if ((diag == 11 ? non_det ()
unlock (&mutex, &cs, 1, 12);

&cs, 1, 9);

}

void A_2(void *arg) {
int t; cs cs;
lock (&mutex,
t = A_count;
A_count = (diag == 14 7 non
if ((diag == 15 ? non_det ()
unlock (&mutex, &cs, 1, 16);

&cs, 1, 13);

}

void B_1(void *arg) {
int t; cs cs;
lock (&mutex,
t = B_count;
B_count = (diag =
if ((diag == 22 7

&cs, 2, 20);

= 21 ? non
non_det ()

}

void B_2(void x*arg) { ... }

_det ()

A_count)

_det ()

A_count) == 0)

_det ()

B_count)

t + 1);
1)

t - 1);

t + 1);
1)

lock (&lock,

unlock (&lock,

lock (&lock,

&cs,

1,

&cs,

&cs, 2,

1,

11);

15);

22);

(a) Translated code part 1

#define NCS 4
int cs[] = {11, 21,
int main() {
int i;
diag = non_det ();
for (i = 0; i < NCS;
switch (cs[il) {
case 1: {
case 11: {
A_count = 0

31, 22};

i++) {

}
} break;
case 2: {
case 21: {
A_1(NULL);
}
case 22: {
A_2(NULL);
}
} break;
case 3: {
case 31: {
B_1(NULL);
}
} break;
}
}

assert (0);

; B_count

if (cs[i]

if (cs[i]

if (cs[i]

= 0; if (cs[il

21) break;

22) break;

31) break;

11) break;

19
12

(b) Translated code part 2

Figure 8: The porposed method applied to the example given in Fig. @
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consists in using Griesmayer’s method [11] to instrument assignments and
expressions, in order to pinpoint faulty program locations and statements.
Such an instrumented program can then be run, using a model checker, and
it is now possible to collect faulty lines, until the associated verification does
not produce different elements. In Fig. [9] this iteration is described in the
relation between steps 3, 4, and the check for new counterexamples, in order
to decide whether a new faulty line was found. Finally, we have faulty lines
and the assignments needed to produce a successful execution of P.

- deadlock property violation o
- no violation found

Step 1.A: Safe
Check for deadlocks - use a sequential framework
No - transform pthread statements
Step 2:
Concurrent software Yes !
/ Counterexample? Define
- at least one transformation rules
- concurrent_code.c violation found
Step 1.B:
Check for other \ 4
errors
- add specification Step 3:

- other properties
violations

to skip previous
found line

Code
transformation

Yes

- ESBMC
- Lazy-CSeq

- faulty lines ‘

Step 4:
Set of faults <« Counterexample? < Verify using a
/ ; No BMC tool

Figure 9: The proposed method for fault localization, in concurrent software.

3.3. Using BMC to Assist in Fault Localization

As one can notice, we use BMC techniques to assist our proposed method
in localizing faults. First, we must show that the concurrent program under
verification presents a faulty execution under some specific interleaving, i.e.,
when it is run in a model checker, it produces a counterexample. Second, it
is necessary to extract context switch information from the obtained coun-
terexample, in order to model a sequential program with the same aspects
of the original one.

3.8.1. Asserting Unsafety of Concurrent Programs

In order to apply our methodology, we must assert the unsafety of the
concurrent program P under verification. That can be accomplished with,
at least, one violated property (deadlock, assertion, lock acquisition error,

13
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division by zero, pointer safety, arithmetic overflow, and/or out-of-bounds
array) and its counterexample (see Section for more details), which can
be obtained by verifying P in a BMC tool twice. If a counterexample for
P cannot be found, we either increase the bound k (limited by computer
resources) or claim that P is safe up to the bound k& (P does not have any
faults), i.e., we check whether loops have been fully unrolled and whether
the safety property holds in all states reachable within k iterations.

3.3.2. Extracting Context Switch Information from Counterezamples

With a counterexample C., for P, we must extract context switch infor-
mation, in order to further use it in finding a sequential program FP.,, which
reproduces the same faulty behavior of P.

Such information can be obtained by assuming that C., is composed
by a set of states sg, s1, ..., Sk, where each one (s;) contains a line [, and a
thread T,, to which such state belongs. Annotating the tuple (7,, l5;), where
T, # T,,,, gives the context switches occurred in P, w.r.t. a given faulty
behavior. For instance, regarding Fig. [7] the context switch information
obtained from its counterexample is C'S = [(0, 27), (1,5), (2, 14), (1, 6)], where
thread 0 represents the main function, thread 1 represents thread A, and
thread 2 represents thread B.

3.4. Sequentializing Concurrent Programs

In order to localize faults in a concurrent program, we first sequentialize
it, which aims to obtain lines related to a fault, by simulating the faulty
execution and the assignments needed to repair it. Indeed, that can be
achieved by modeling Pthread synchronization primitives, through a frame-
work to simulate a concurrent execution (w.r.t. to the failed interleaving),
and finally applying a sequential fault localization method.

3.4.1. Modeling Pthread Synchronization Primitives

For the sake of sequentialization, we must model originally concurrent
statements, in order to obtain a sequential version of them and still keep
their functionality. First, a struct is used to represent a context switch and
thread_ID and program line are stored, which are identifiers to the thread
and the program line, respectively, where the context switch occurred. This
struct is named cs and is defined as in Fig. [10}

Then, another struct is implemented, in order to represent a pthread mutex_t.

We store status, which is an identifier to state whether such mutex is ac-
quired or not, and last_cs, which identifies the thread and the program
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1| typedef struct context_switch {
2 int thread_ID;

3 int program_line;

4|} cs;

Figure 10: Struct to represent a context switch.

where an acquisition or release of such mutex occurred. This struct is
named mutex and is defined as in Fig. [11]

typedef struct mutex {
int status;
cs last_cs;

} mutex;

=W N =

Figure 11: Implementation for pthread mutex_t.

It is also necessary to provide implementations for mutex manipulation,
which are the acquisition of a mutex, i.e., pthread mutex_lock, and the
release of a mutex, i.e., pthread mutex unlock. The acquisition function
has 4 arguments, which are m (the mutex a thread is trying to acquire), cs
(a context switch variable), id (an identifier to the thread which called the
acquisition function), and line (an identifier to the program line where this
function was called from). The release function also has 4 arguments, which
are m (the mutex in which a thread is trying to release) cs (a context switch
variable), id (an identifier to the thread which called the release function),
and line (an identifier to the program line where this function was called
from). The acquisition function is named lock and is defined as in Fig. [14]
while the release function is named unlock and is defined as in Fig.

Conditionals are implemented in pthread, as shown in Fig. [12} however,
in order to simulate the same behavior, we do not need to stop an execu-
tion. Since we are simulating only a faulty behavior, the necessary condi-
tion is already satisfied. So, we basically represent a pthread cond t vari-
able as an integer one and pthread cond_signal and pthread cond_signal
assign 0 and 1 to it, respectively. In Fig. the usual implementation
of conditionals is described and Fig. presents how they are modeled in
the presented methodology. Regarding other pthread statements, such as
pthread create, pthread exit, and pthread_join, they are further dis-
cussed in section [3.4.2]
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1| pthread_cond_t c;

2 .

3 pthread_cond_signal (&c, &m);
4| ...

5| while (!'condition) {

6 pthread_cond_wait (&c, &m);
7}

Figure 12: Standard usage of conditionals.

int c;
c = 0;
while (!condition) {

c = 1;
break;

0 N O U W N =

Figure 13: Implementation for conditionals.

Table |1l summarizes all rules employed to transform concurrent programs
into sequential ones. Column “#7” represents the two groups of program
statements, i.e., (1) regular and (2) concurrent, column “Code fragment”
shows the code to be transformed, and columns “No deadlock” and “Dead-
lock” tell what transformation rule must be performed, in case of a program
that presents or not a deadlock, respectively.

3.4.2. Adding a Framework

A framework provides the same execution sequence as in the original
program. It consists basically in writing each thread code inside a case
statement, whose execution sequence is specified in cs. Such a framework is
used as the basic structure for new sequential versions, in order to simulate
the faulty behavior of concurrent programs, and Fig. shows how it is
encoded.

As one can notice, the mentioned framework provides new fixed positions,
for each part of the original code, and Table[2|shows the relation between new
positions and code-fragment types, i.e., it summarizes how the new sequential
code is structured. In particular, global elements, global variables, header
file declarations, and other types of global declarations are placed before the
sequential code’s main function. The body of main, in the original code, is
placed between the statement case 1 and its respective break command, the
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us  body of the first thread is placed between case 2 and its respective break
command, and so on. This process is repeated until there are no more threads
to be inserted into the sequential code version.
passed to the original program’s main function are all passed to the sequential
version’s main. In cases where threads are partially executed and a context
0 switch occurs, i.e., another thread is executed or a previous thread continues
to execute from where it stopped, the respective code pieces are inserted into
each case inside the outer N'* case (which represents the N** thread), in
such a way that the execution order remains the same. The counterexample
obtained from the model checker is fundamental to the framework, since it
35 shows not only the context-switches inside a program, but also the number

void lock(mutex *m,
cs *cs,
int id,
int line) {
int status = m->status;
if (status == 1) {
__VERIFIER_error ();
} else {
cs->thread_ID = id;
cs->program_line = line;
m->status = 1;
m->last_cs.thread_ID = cs->thread_ID;
m->last_cs.program_line = cs->program_line;

Figure 14: Implementation for pthread mutex_lock.

void unlock (mutex *m,
cs *cs,
int id,
int line) {
if (m->status == 1 &&
m->last_cs.thread_ID == id) {
cs->thread_ID = id;
cs->program_line = line;
m->status = 0;
m->last_cs.thread_ID = cs->thread_ID;
m->last_cs.program_line = cs->program_line;
} else {
__VERIFIER_error ();
}

Figure 15: Implementation for pthread mutex_unlock.
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Table 1: Rules to transform concurrent programs

pthread_attr_t
pthread_cond_attr_t
pthread create
pthread_join
pthread_exit
pthread mutex_t
pthread mutex_lock
pthread mutex_unlock
pthread_cond_t
pthread_cond_wait
pthread_cond_signal

M A ™" ™ A ™ A N N M

# Code fragment No deadlock Deadlock
Variable declaration No changes No changes
Expression Unwind Unwind
Statement No changes No changes
pthread._t

A DN N N ™

Mutex variable is declared
Lock is called using variable
Unlock is called using variable
Conditional variable is declared
Wait is called using variable
Signal is called using variable

of threads spawned during a faulty execution.

Table 2: Relation between positions and codes

Code Fragment Type
in the Original Code

Position in the

New Sequential Code

global elements

before line 1

main function body

between “case 1”7 and “break”

thread body n

between

“case n + 1”7 and “break”

In order to maintain the same execution order found in the original pro-

gram, order-control switching is required. A fixed context-order switching,
from a counterexample generated for a concurrent program, can be copied to
a new sequential one by controlling case and conditional statements?, in the
framework switch statement, and, in general, adding context-switching order
control to a new sequential program can be divided into two steps. In order
to show a simple example, it is assumed that there are less than 10 context
switches, in each thread (VNy;, V; < 10), a counterexample, given by a BMC

2if (cs[i]) == Y) break;, where Y represents the number of the context switch
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1| #define NCS X

2l int cs[] = {...};

3| int main(int argc, char xargv[]) {
4 int i;

5 for(i = 0; i < NCS; i++) {
6 switch(cs[i]) {

7 case 1:

8 case 11: { ... }
9

10 case 20: { ... }
11 break;

12 case 2:

13 case 21: { ... }
14 .

15 case 30: { ... }
16 break;

17 case 3:

18 case 31: { ... }
19 .

20 case 40: { ... }
21 break;

22 Ce

23 default:

24 break;

25 }

26 ¥

27 return 1;

28| }

Figure 16: The standard framework to sequentialize a concurrent program.

tool, N context switches, and, from those, N;y occur in the main function,
Ny occur in thread 1, Ny in thread 2, and so on (Ny + ... + Ny, = N).

The first step consists in acquiring information from counterexamples
generated by a BMC tool, i.e., the total number of context switches in the
original program and in each thread, the order of all context switches in
the entire program and also in a single thread, and the corresponding po-
sition where a context switch occurred. With such data, it is possible to
add the previously referred conditional statements for maintaining the same
execution order of the original program, so that when a line is executed, the
sequential code executes the next case statement, which represents the next
thread in a original source code excerpt.

One can notice that if there are iteration statements in the original con-
current program, a global variable named loopcounter is added for each
one. Besides, a statement to increment the value of loopcounter is also
added to the end of each loop body. This newly added global variable is used
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as a condition to directly control the validity of break statements, so that
when a context switch occurs, inside a loop, the value held by loopcounter
must also be used in the respective statement break, in order to maintain
the original program execution sequence.

The second step consists in modifying values related to cs, in such a
way that the execution order is kept, in a new sequential program. By
changing lines 1 and 2, in Fig. according to a specific number of context
switches and their execution order, it is possible to guarantee the original
execution order, given that a switch statement (line 6) selects which piece
of code (representing threads from the original program) is executed, based
on cs[i]. It is worth noticing that the process of obtaining context-switches
from a counterexample is fully automatic, but the sequential code generation
is semi-automatic.

For instance, in Fig. [7], the execution order is thread 0, thread 1, thread
2, and finally thread 1 (this information was obtained by analyzing the coun-
terexample generated by a BMC tool, as described in section . The cs
array will hold 11, 21, 31, and 22, meaning that the first case will be exe-
cuted, then the first inner case inside the second one, the third, and, finally,
the second inner case inside the second one.

3.4.3. Applying a Sequential Fault Localization Method

Finally, the method described by Griesmayer [I1] is applied. We simply
convert every assignment in P to a non-deterministic version of it, whose
value is chosen by the BMC tool and is then related to a diagnostic variable,
i.e., diag. This way, if a counterexample is provided for P, there are
diag variables in this trace, which can compose the set of faulty lines in P.
Correcting those lines then lead to a successful execution of P.

For instance, in Fig. [7, our methodology identifies lines that increment
counters A and B and also provides assignments to them, in order to repair the
program fault. In particular, changing the assignments for one of the counters
enables the other thread to acquire and release one of the shared mutex freely,
which then fixes the deadlock. It is important to stress out that this is only
a possible fix, since this change leads to a successful program execution.
Other fixes are also possible, such as a rearrangement of mutex acquisition
and release orders or the addition of join statements between thread calls;
however, here we do not explore them, since they are not possible to be
achieved by only changing assignments to variables, in the original program.
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4. Experimental Evaluation

Here, the conducted experiments are discussed. We start by briefly de-
scribing the experimental objectives and later discuss the experimental setup
and the employed benchmarks. Then, we move to the experimental results
and lead a structured discussion, by describing advantages and disadvantages
of the proposed methodology.

4.1. Ezxperimental Objectives

Using the proposed benchmarks, our experimental evaluation aims to:

1. Show that our methodology can be applied to reason about concurrent
C programs, regarding fault localization;

2. Evaluate the elapsed time, when executing the model checker, in order
to verify the instrumented code generated by our methodology.

4.2. Experimental Setup

In order to verify and validate the proposed method, we used ESBMC
v3.0.0, allied to the SMT solver Boolector [34], and Lazy-CSeq v1.1, with
CBMC [24] v5.3 (backend). All experiments were conducted on an otherwise
idle Intel Core i7 — 4500 1.8Ghz processor, with 8 GB of RAM and running
Fedora 24 (64-bits operating system).

The benchmarks in Table [3| include the same programs used for evalu-
ating ESBMC, regarding concurrent C programs [19], and other that were
extracted from the concurrency suite of SV-COMP 2016, which are avail-
able on the ESBMC Websitdﬂ. account_bad.c is a program that represents
basic operations in bank accounts: deposit, withdraw, and current balance,
with a mutex to control them. arithmetic_prog_bad.c is a basic producer
and consumer program, using mutex and conditional variables for synchro-
nizing operations. carter_bad.c is a program extracted from a database ap-
plication, which uses mutex to synchronize threads. circular_buf fer_bad.c
simulates a buffer, using shared variables to synchronize receive and send
operations. queue_bad.c is a program that simulates a data-queue struc-
ture. sync01_bad.c and sync02_bad.c are producer and consumer programs:
the former never consumes data and the latter initializes a shared variable
with some (arbitrary) data. token_ring_bad.c propagates values through

3http://esbmc.org/benchmarks/ejss2016.zip
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shared variables and checks whether they are equivalent, through different
threads. twostage_bad.c simulates a great number of threads running si-
multaneously, and wronglock_bad.c simulates a large number of producer
threads and the propagation of their respective values to other threads.
race — 1_1 — join_true — unreach — call.c is a program that tests race con-
ditions in a shared variable, using a mutex to synchronize access to such.
bigshot_p_false — unreach — call.c is a program that allocates and copies
data to a string pointer, in two different threads, and ultimately asserts if
the pointer was operated as expected. fib_bench_false — unreach — call.c
and fib_bench_longer_false —unreach — call.c are programs that loop a pre-
defined number of times and increment two shared variables, without a mu-
tex for synchronizing access, and then assert whether one of them reached
some specific value or not. lazy0l_false — unreach — call.c uses a mutex
to control summation operations over a shared variable and then checks its
value. stateful01_false—unreach— call.c uses two different shared variables
guarded by two different mutexes, performs arithmetic operations in them,
and checks their final value. qw2004_false — unreach — call.c tests non-
guarded arithmetic operations over shared variables. Finally, half_sync.c and
no_sync.c share a counter to increase its value and check a property without
fully synchronizing threads.

The experimental evaluation procedure can be split into three different
steps. First, it is necessary to obtain a counterexample for a given program. If
the result given by ESBMC/Lazy-CSeq is verification failed, then the bench-
mark is unsafe, i.e., it presents a deadlock, assertion, lock acquisition error,
division by zero, pointer safety, arithmetic overflow, and/or out-of-bounds
array violation, and we can translate this faulty behavior into a sequential
program that simulates such an execution. In the second step, it is neces-
sary to extract context-switch information, 7.e., number of context-switches
(statements where context-switches occurred) and the number of running
threads, through the method presented in section 3, which is achieved by re-
moving the --deadlock-check option in the issued ESBMC command linef]
(in case of Lazy-CSeq, removing the --deadlock option from the command
lineﬂ will produce the expected result), and parsing the generated counterex-

4esbmc  --no-bounds-check --no-pointer-check --no-div-by-zero-check
--no-slice --deadlock-check --boolector <file>
5cseq --deadlock --cex —-rounds 5 -i <file>
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ample. In the third step, the original program is transformed into a sequential
one, with the information obtained from steps 1 and 2, by applying the rules
in section and the method proposed by Griesmayer et al. [I1]. Finally,
the sequential version of a program can then be verified in ESBMC, by us-
ing a command line* without the -—deadlock-check option, changing the
specified file, and applying the same strategy demonstrated in section

4.3. Ezxperimental Results

Table |3 summarizes the experimental results. F describes the name of
the benchmark, L represents the number of code lines, T is the number of
threads, D identifies whether a deadlock occurred (if its value is 1), FE is
the amount of errors found during the fault-localization process, that is, the
number of different diag values retrieved by ESBMC/Lazy-CSeq, AE is the
number of actual errors, R stands for the actual result (1 if the information
retrieved by ESBMC/Lazy-CSeq is helpful), and, finally, VT is the time that
ESBMC/Lazy-CSeq took to verify the benchmark.

The verification of account_bad.c presented 3 different diag values, which
are in different code parts; however, they ultimately identified the actual
fault in the original program, which was a bad assertion.

The 7 diagnosed values regarding circular_buffer_bad.c led to a bad asser-
tion in the program, which is related to a loop. This way, the diag values
indicate this loop.

When checking arithmetic_prog_bad.c, the proposed methodology informed
2 different diag values, which address a loop in thread 2 of this program,
meaning that the fault is in that specific loop.

The analysis of queue_bad.c presented 4 errors. The identified faults are
related to flags providing access control to a shared variable and a loop where
they are changed, that is, the problem lies again on bad handling.

sync02_bad.c presented 2 different values, related to a consumer thread
in the original program, whose lines are related to a deadlock present in this
benchmark.

carter_bad.c, token_ring_bad.c, twostage_bad.c, and wronglock_bad.c pre-
sented 1 faulty line when diagnosing each sequentialized program. In the
first, the proposed methodology was able to find an assignment to a shared
variable that fixes the deadlock present in this program. In the second, the
diagnosed value leads to a bad formulated boolean expression in the assertion.
The third was diagnosed with a faulty line that points to a bad formulated
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Table 3: Experiment results

F L |T D|FE/AE| VT | R

account_bad.c 491210 3/3 0.102 | 1
arithmetic_prog_bad.c 8 | 2|1 2/2 0.130 | 1
carter_bad.c 43 | 4|1 1/1 0.289 | 1
circular_buffer_bad.c 109 2|0 77 0.227 | 1
queue_bad.c 153120 4/4 0934 | 1
sync01_bad.c 64 | 2 | 1 1/0 0.451 | 0
sync02_bad.c 39 |21 2/2 0.116 | 1
token_ring_bad.c 5 | 4]0 1/1 0.307 | 1
twostage_bad.c 1281 9|0 1/1 0284 | 1
wronglock_bad.c 1111710 1/1 0.310 | 1
race-1_1-join_true-unreach-call.c 38 1110 1/1 0399 | 1
bigshot_p_false-unreach-call.c 35 210 2/2 10.724 | 1
fib_bench_false-unreach-call.c 4 1210 2/2 8.966 | 1
fib_bench_longer_false-unreach-call.c | 44 | 2 | 0 2/2 11.147 | 1
lazy01_false-unreach-call.c 51 1 3]0 1/1 0.259 | 1
stateful01_false-unreach-call.c 56 | 2|0 2/2 0.264 | 1
qw2004_false-unreach-call.c 60 | 1|0 1/1 0.250 | 1
half_sync.c 22 1210 1/0 0322 | 0

no_sync.c 211210 1/0 0.320 | O

assertion and, finally, the forth referred benchmark contains a bad formulated
assertion, which the methodology was able to pinpoint.

The methodology was able to inform 1 different faulty line for race-1_1-
join_true-unreach-call.c, which led to a bad formulated assertion in the pro-
gram, and changing the value in the comparison would produce a successful
execution of the program.

Benchmarks bigshot_p_false-unreach-call.c, fib_bench_false-unreach-call.c,
and fib_bench_longer_false-unreach-call.c were diagnosed with 2 errors. In
the first one, the obtained faulty lines refer to an assertion, meaning that
a boolean expression is not true under a specified interleaving. The other
two benchmarks are essentially the same, differing only in a value evaluated
in an assertion. The associated faulty lines are also related to such, since
the values used in the mentioned comparisons might be different from the
expected ones.
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lazy01_false-unreach-call.c and qw2004_false-unreach-call.c presented 1 er-
ror each. In both, those errors are related to assertions, meaning that the
associated expressions should be evaluated with different values.

stateful01_false-unreach-call.c was diagnosed with 2 faults that lead to
expressions in assertions. Thus, in order to produce a successful execution
of the program, we must change the adopted values.

Although sync01_bad.c presented no errors, it was diagnosed with one
fault. Indeed, ESBMC found a diag with value 0, which is particularly odd,
since there is no line 0. Besides, even after adding an assertion, ESBMC
still diagnoses 0. Indeed, it has synchronization problems, but the proposed
method was unable to provide useful information. Furthermore, this bench-
marks presents a deadlock related to its conditionals, which our methodology
does not currently model.

The main cases where our methodology failed were half_sync.c and no_sync.c.

Even though ESBMC provided reasonable diag values, they do not lead to
the actual faults, since applying the proposed repair does not fix the input
program and such a procedure instead causes different error paths. The faults
in these programs are related to thread synchronization, i.e., the property is
validated by the model checker before other threads finish execution. More-
over, the lack of proper pthread_join calls leads to these synchronization
faults, which are currently not supported by the proposed approach.

According to the results shown in Table [3] one can note that the pro-
posed methodology was able to find faults (useful information) in 16 out
of 19 benchmarks, which amounts to 84.21%. Note that benchmarks whose
verification failed and, consequently, from which no counterexample was able
to be obtained are also included into this evaluation. The methodology itself
showed to be useful in diagnosing data race violations, since most of the used
benchmarks presented a fault related to that problem; however, the proposed
method needs to be improved, in order to verify deadlocks in a more efficient
way, loop transformations also need a significant work, so that threads in-
terleaving inside loops can be better represented, and also a proper model of
joining threads still needs to be proposed, so that synchronization problems
are fully covered.

With respect to the verification time of instrumented sequential programs,
in the majority of benchmarks it is less than 2 seconds. That occurs because
our methodology provides a pruned and sequentialized version of the concur-
rent program, and also with few sources of non-determinism, i.e., basically
the diag values, which leads to a small overhead in the model checker. In 3
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benchmarks, however, we obtained significantly higher verification times, 5
to 6 times more than usual. The execution of the model checker was analyzed
and, in those cases, the SMT solver took longer than expected to reason about
the SMT formula for the program, possibly due to the non-determinism in
diag.

Regarding benchmarks in which no useful information was obtained, that
leads to the conclusion that improved grammar and rules are needed, in or-
der to localize faults. Apart from that, the experimental results showed the
feasibility of the proposed methodology for localizing violations, in concur-
rent C programs, since ESBMC and Lazy-CSeq are able to provide helpful
diagnosis information regarding potential faults.

4.4. Comparison With Other Fault Localization Techniques

Spectrum-based fault localization (SBFL) approaches, such as the one
proposed by Jones et al. [35], try to identify suspicious code blocks, i.e., the
ones that are executed when a failed test case is run and lead to program
faults. On the one hand, SBFL techniques do not perform complex semantic
analysis on a program, since suspiciousness scores are calculated using only
information provided from the test suite execution. On the other hand, the
accuracy of SBFL approaches is often below desired, when addressing large
real-world programs [36].

Mutant-based fault localization (MBFL) approaches, such as the one that
Hong et al. [36] presented, also try to find suspicious code blocks, but they
generate mutants for such blocks and re-execute test cases: if a mutant code
block is killed, then the related code block has a higher suspiciousness score.
This mutation schema usually outperforms SBFL approaches [36], but it also
takes longer to provide useful results, since there are a variety of possible
mutants for each code expression.

Given the current knowledge in fault localization, there is no other fault
localization technique that addresses the problem using model checking coun-
terexamples and works on concurrent programs. Therefore, we were unable
to compare our method directly with the SBFL and MBFL approaches since
we would need to re-implement them to handle C programs based on the
Pthread-library, which could introduce errors and inconclusive results.

4.5. Scalability

Our methodology relies entirely on model checking techniques and a fail-
ing program execution, i.e., a counterexample provided by a model checker,

26



605

610

615

620

625

630

635

640

in order to localize faults in concurrent programs. Thus, we state that our
methodology is scalable as long as the model checker used to apply it is scal-
able and can successfully provide a counterexample for the program under
verification.

Currently, model checkers are scalable to handle large concurrent pro-
grams [37]. Primarily, model checkers tried to model concurrent programs
in their natural states, by modeling concurrent execution and statements,
but this approach usually faced the space-state explosion problem. Then,
researches came up with different approaches, in order to scale model check-
ing w.r.t. concurrent programs. As one example, Lazy-CSeq [I7] is able to
find violations in extensive test suites, such as the SV-Comp concurrency
suite, containing errors of different natures, and it has also been rewarded as
one of the most efficient model checkers to address concurrency, in SV-Comp
editions.

4.6. Applying the Proposed Approach in Practice

In order to evaluate how our methodology improves the overall debug-
ging time, we have conducted a simple experiment with 6 developers, with
different experience levels. We asked them to debug account_bad.c the way
they would normally perform such task. Then, we explained our approach
steps, asked them to debug the same program using our methodology, and
annotated the elapsed time for each one. It is worth noticing that the vol-
unteers did not have any prior knowledge about our approach and each one
was independently contacted and evaluated.

A summary of the obtained results is available in Table [4, where Job de-
scription represents the level of experience of each developer, Non-assisted
debugging time represents the time, in minutes, that each developer took
to find an error in the input program, and, finally, Assisted debugging
time represents the time, in minutes, that each developer took to find an
error, using our methodology.

Although the group of volunteers was not large and no previous familiarity
with the proposed error was evaluated, as well as their practical experience
in debugging, it seems that there is a trend towards a reduction in the asso-
ciated elapsed time needed for identifying the existing error, when verifying
the chosen program, along with a smaller difference regarding the experience
level of each developer. The main cause is that intuition and experience are
replaced by our methodology, which consists of providing a failing trace for
the given program and then applying the sequentialization framework, in
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Table 4: Measuring the benefits of our methodology in practice.

Job Non-assisted Assisted

description debbuging time | debugging time
Senior Developer A 13.20 2.50
Senior Developer B 14.00 2.75

Developer A 19.50 3.20

Developer B 20.00 3.00
Junior Developer A 38.30 5.10
Junior Developer B 41.20 4.25

order to detect which lines need repair. As a consequence, the fault local-
ization task became a systematic process composed by the following steps:
obtainment of a counterexample, creation of an equivalent non-deterministic
instrumented sequential code, and extraction of faulty lines from the new
counterexample.

4.7. Final Considerations

The employed benchmarks basically present one type of error: deadlock,
assertion, lock acquisition, division by zero, pointer safety, arithmetic over-
flow, or out-of-bounds array. Therefore, we applied different rules, depending
on the detected fault. Fig.|17|shows a summary of all obtained results, which
show that the proposed methodology gives useful information about failing
traces, w.r.t. the error present in the benchmark, in 84.21% of the adopted
benchmarks, besides identifying what lines are related to the associated fault
and what values can be assigned to produce a successful execution. Regard-
ing all the adopted benchmarks, our methodology was not able to diagnose
fault lines in three of them, which was possibly due to our modeling of the
C concurrent library, since those benchmarks presented deadlocks and syn-
chronization problems.

Fig. [18] shows a summary of the verification time needed by each bench-
mark. Thirteen programs took less than 2 seconds, in order to reason about
the existing faults and the associated assignments for producing a success-
ful execution, three programs were not correctly verified, with associated
verification times lower than 2 seconds, and, finally, three benchmarks took
about 4 to 5 times longer to produce a useful result. Regarding the lat-
ter, by analyzing the trace provided by the model checker, we found that
the bottleneck was the SMT solver, possibly due to the amount of sources
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Figure 17: Summary of verification results

of non-determinism present in those benchmarks. Nonetheless, the overall
verification time is still short, if compared with what can be obtained with
non-assisted program debugging [3].

In summary, the presented results show that the proposed methodology
is suitable for localizing faults, in concurrent C programs, and that the re-
lated verification time necessary to produce a successful program execution
is short. Therefore, our methodology can be useful in assisting developers
when debugging programs.

5. Related Work

Tomasco et al. [38] reported an approach that uses a technique called
memory unwinding (MU), which means that operations are written to a
shared memory, in order to symbolically verify concurrent programs that use
shared memory and dynamic thread creation. First, a sequence of writes,
i.e., a possible MU, is arbitrarily defined and then all program executions
compatible with this definition are simulated. In each attempt, the main
idea is to sequentialize a concurrent program, w.r.t. MU rules, and then use
model checking in the new code, bounded by the total number of write opera-
tions to the shared memory and using an existing sequential verification tool.
If an error is not found in the defined MU, a new one is generated and the
simulation process is performed again, until an error is found or all possible
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Figure 18: Summary of the results of all benchmarks

interleavings are explored. The approach described by the authors is effec-
tive to verify concurrent programs, using a sequentialization algorithm that
operates in a greedy approach [39] and uses the notion of memory unwind-
ing. The modeling of Pthread library [16] primitives is fully done; however,
memory dynamic allocation is still limited. Even though the results of that
paper show that the implemented algorithm in the MU-CSeq tool was able
to find all defects in the concurrency suite of the International Competition
on Software Verification 2015, it can only assure whether an error exists or
not, but it is not able to easily pinpoint lines that need repairs.

Cordeiro et al. [19] describe three approaches (lazy, schedule recording,
and underapproximation and widening) to verify concurrent programs, using
the ESBMC [I5] model checker, which is based on SMT. The first approach
generates all possible interleavings and calls the SMT solver, in each one
of them, the second encodes all possible interleavings, in a single formula,
and explores the solver’s speed, and the third one reduces the state space,
by abstracting the number of interleavings from the unsatisfiability proofs
generated by an SMT solver. By modeling the synchronization primitives of
the Pthread library [16], ESBMC creates an instrumented program, w.r.t.
the original one, and uses model checking, bounded by the number of con-
text switches in the new program version, which aims to find an error or
explore all possible interleavings. According to the experimental results, this
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work showed itself useful to handle concurrent programs, by finding not only
atomicity and order violation errors, but also global and local deadlocks.
Among the three proposed approaches, the lazy approach proved itself to be
the most efficient, given that it was able to verify all the proposed programs.
Nonetheless, a model checker can state whether an error exists or not and,
but it cannot directly pinpoint where such a fault is located.

Jones et al. [35] presented an approach to assist in fault localization, using
the visualization of test information. The idea is to run a test suite and color
program statements related to successful and failed test cases, in such a way
that developers are able to inspect program executions, reason about program
statements related to faulty behaviors, and, possibly, identify faults. The
authors also describe the developed technique, named TARANTULA, which
uses the visualization technique, and show that their technique is useful to
assist in program debugging, by enabling a global perspective instead of only
a local one, as a traditional debugger offers. However, as one may notice,
such an approach is not completely automatic, since an iterative execution
of a program and its related test cases is still required. Faulty lines can be
marked as safe, with respect to a test case, and the provided results are not
so useful when a program presents multiple faults.

Cleve et al. [7] discuss an approach to localize faults in programs, by using
search in space (i.e., program states) and in time (i.e., cause transitions,
which are moments in time where a variable is no longer the cause of a
fault and another one starts to be). The comparison among program states
in successful executions and failed ones was essential to find locations where
cause transitions occur, since they are not only good repair locations, but also
point to defects that cause failures. Besides, it is possible to identify code
pieces that result in problems. Such a technique was applied to an open-
source debugging tool, ASKIGOR [40] and, according to the results presented
by the mentioned authors, it showed itself to be more useful than other
methods introduced at that time. Even though those points are in fact
helpful, a test suite with a high code coverage rate is still needed, since that
technique relies on those inputs to localize faults and it is still necessary to
precisely choose the state search in space and time, so that a fault can be
indeed found.

Birch et al. [41] presented an algorithm to fast model-based fault local-
ization, which executes a test suite and, with the use of symbolic execution
methods, automatically identifies a small subset of program locations where
repairs are needed, based on failed test cases. The algorithm uses time limits
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to improve its speed, in such a way that if a test case takes longer than ex-
cepted, the current execution is postponed and another one takes its place.
Such a process improves the overall performance of this technique, because a
list of possible locations where repairs are needed is kept and the postpone-
ment of the analysis of a given test case can be eventually productive, since
more information about a program can be obtained through the analysis of
other test cases. The algorithm presented in that paper showed itself to be
efficient and optimized for handling extensive unit test suites, since it is able
to delay the search for faults based on a given test case, if it takes longer
than expected. Regarding the symbolic execution of the original program
model, the authors used KLEE [42] and ESBMC [15]. Even though the men-
tioned approach narrows the state space search, it still depends entirely on
a well-formed test suite, that is, if the input suite does not cover the faulty
program location, the algorithm will not find such faults.

Griesmayer et al. [11] proposed a method to localize faults in ANSI-C pro-
grams. Given an application, a specification, and a counterexample, which
is used to show that the specification is not satisfied, i.e., that a fault ex-
ists, the authors use them to create an extended version of such program.
The associated inputs are fixed w.r.t. the values in the counterexample and
introduce abnormal predicates for each program component, which gener-
ates an instrumented version of the original code. Program variables are
non-deterministically modeled, in such a way that they satisfy the original
specification of a program. The instrumented program counterexample holds
lines that lead to a fault and whose values are necessary, in order to produce
a successful program execution. A good aspect of such a method is the fact
that the counterexamples generated by the model checker not only point to
faulty lines in a program, but also to the assignment of program inputs, in
order to correct such fault. A downside of it is that the method only works
in standard ANSI-C programs, i.e., procedural /sequential programs and the
conversion, unwinding, and program internal representation generation time
lead to greater fault localization time.

Park et al. [43] present a dynamic fault localization method to localize
root causes of concurrency defects and a prototype implementation of that
technique, named FALCON. Using dynamic pattern detection and statistic
fault localization, FALCON is able to show the existence of defects in concur-
rent programs, from atomicity to order violation bugs, and assists developers
to fix faults in code. This technique uses data provided by test cases applied
to the program under verification and tries to find predefined shared memory
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access patterns, which are later statistically organized, in such a way that
it prioritizes which are the possible existing faults, in a program. According
to the empirical study conducted by the authors, that technique seemed to
be effective in handling atomicity and order violations, in concurrent pro-
grams, and showed itself to be efficient, in terms of used space and time.
Nonetheless, that approach was developed to handle only Java programs and
depends on test cases to search for faulty patterns, and, in the referred work,
the authors only evaluated the tool with one test input and multiple program
executions.

Jose et al. [44] discuss an algorithm to localize error causes, considering a
reduction to the maximum satisfiability (SAT) problem (MAX-SAT), which
shows the maximum number of clauses in a boolean formula that an assign-
ment can simultaneously satisfy. The key idea is to combine a boolean trace
formula and an unsatisfiable formula, both w.r.t. the program unwinding
and a failed program execution, and then use MAX-SAT to find the maxi-
mum set of clauses that can be satisfied at the same time, in that formula.
The complement of the set returned by the MAX-SAT solver holds program
locations that lead to an error; this way, by correcting those locations, it
is possible to obtain a non-failing program execution w.r.t. the given test
case. The presented algorithm is able to localize faulty lines and the authors
also conducted experiments to suggest repairs to arithmetic assignments and
change comparison operators, in the input program. Even though this ap-
proach is useful to localize faulty lines, it still relies on a failing test case and
it only works in procedural /sequential ANSI-C software.

Hong et al. [36] proposed a mutation-based fault localization technique
for multilingual programs, i.e., programs written in more than one language
that provide interfaces for communication, named MUSEUM. The authors
have developed a new set of mutation operators that, along with conven-
tional ones, are able to locate faulty statements in all employed benchmarks,
which improves the accuracy when fiding multilingual faults. Thus, by us-
ing this extended set of mutant operators and appropriate suspiciousness
metrics, MUSEUM is able to identify bugs in JNI programs. The empirical
evaluation shows that MUSEUM is more precise and accurate than state-
of-the-art spectrum-based fault localization techniques. Nevertheless, the
proposed technique needs at least one failing test case and it has not been
evaluated in concurrent programs yet.

Papadakis et al. [45] present a fault localization approach based on mu-
tation analysis, named Metallaxis. The approach consists in using mutants
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and associating them with potential faulty program locations, and as mutants
are killed (mainly by failing test cases), such are essentially good indications
about faulty locations in a program. Moreover, the presented approach takes
advantage of a higher number of test cases to rank mutated statements, w.r.t.
their suspiciousness score, which leads to program faults. According to exper-
imental data, Metallaxis is substantially more effective than statement-based
approaches, even when mutation cost-reduction techniques (e.g., mutation
sampling) are used. Metallaxis locates faults effectively and, since it works
on a test suite, it can be used while testing to locate potential program
faults. The approach shows itself superior to statement-based approaches;
however, it still relies on an extensive test suite and it is only evaluated in
procedural /sequential ANSI-C software.

The main differences between our approach to the ones discussed in this
section are:

e Our method only requires a program’s source code, where, in other
methods, more information needs to be provided by the user, such as a
failing test case, since in our method we are able to extract the needed
counterexample from the model checker;

e [t works with concurrent C programs, which are widely used in embed-
ded systems, since their faulty behavior is reproduced by the sequen-
tialization scheme;

e [t provides a sequentialization method to reproduce the faulty behavior
in a original program, which leads to fast diagnosis regarding faults;

e We are able to provide assignments to obtain a successful execution
of a program, which assists not only in fault localization, but also in
repairs;

e Our methodology extracts additional information, i.e., a counterexam-
ple from the program’s source code, whereas other approaches require
additional data;

e And, we can pinpoint faulty lines, whereas most approaches only verify
the program safety.
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6. Conclusion

A novel method for localizing faults in concurrent C programs, using
code transformation and BMC techniques, was proposed. It is based on the
approach introduced by Griesmayer et al. [11] and an specific extension to
handle concurrent programs, which is useful for embedded systems.

Regarding the experimental results, the proposed methodology was able
to identify potential faults in concurrent software, 84.21% of the chosen
benchmarks, while failed to obtain useful faulty lines for three of the adopted
benchmarks. Indeed, one of them presented a deadlock and the other two
failed due to thread synchronization problems, which claims for a deeper in-
vestigation, in order to provide improvements regarding modeling approaches
for C concurrent synchronization primitives. Nonetheless, our method is use-
ful to reason about concurrent programs that present faults related to bad
formulated assertions and deadlocks, which makes it interesting for assisting
developers to find assignments that lead to successful program executions
and, consequently, minimizes program debugging effort.

When comparing with other approaches, our method is able to localize
faults in concurrent programs using only the program’s source code, instead
of a failing trace and a test suite. It is also able to not only pinpoint faulty
lines, but also provide possible repairs to produce a successful program exe-
cution.

We provided a well-structured methodology that can be included in other
frameworks or tuned to specific applications. Also, even though we evaluated
it using only two model checkers, it can be applied to any model checker that
handles concurrent programs. Thus, it is flexible to reason about concurrent
programs, in different scenarios.

As future work, new rules for code transformation and also an improved
grammar will be developed, in order to increase the methodology accuracy.
A more sophisticated fault repair mechanism will be developed, in particular
regarding fixing deadlocks and synchronization problems, in order to provide
even more useful correction suggestions. Additionally, an Eclipse plug-in will
be developed for automating the fault diagnosis process, during development
processes.
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