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Abstract

This paper describes three variants of a counterexample guided inductive
optimization (CEGIO) approach based on Satisfiability Modulo Theories (SMT)
solvers. In particular, CEGIO relies on iterative executions to constrain a
verification procedure, in order to perform inductive generalization, based on
counterexamples extracted from SMT solvers. CEGIO is able to successfully
optimize a wide range of functions, including non-linear and non-convex
optimization problems based on SMT solvers, in which data provided by
counterexamples are employed to guide the verification engine, thus reducing
the optimization domain. The present algorithms are evaluated using a large
set of benchmarks typically employed for evaluating optimization techniques.
Experimental results show the efficiency and effectiveness of the proposed
algorithms, which find the optimal solution in all evaluated benchmarks, while
traditional techniques are usually trapped by local minima.
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1. Introduction

Optimization is an important research topic in many fields, especially in
computer science and engineering [1]. Commonly, scientists and engineers have
to find parameters, which optimize the behavior of a given system or the value
of a given function (i.e., an optimal solution). Optimization characterizes and
distinguishes the engineering gaze over a problem; for this particular reason,
previous studies showed that optimization is one of the main differences
between engineering design and technological design [2].

Computer science and optimization maintain a symbiotic relationship.
Many important advances of computer science are based on optimization
theory. As example, planning and decidability problems (e.g., game theory [3]),
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resource allocation problems (e.g., hardware/software co-design [4]), and
computational estimation and approximation (e.g., numerical analysis [5])
represent important optimization applications. Conversely, computer science
plays an important role in recent optimization studies, developing efficient
algorithms and providing respective tools for supporting model management
and results analysis [6].

There are many optimization techniques described in the literature (e.g.,
simplex [7], gradient descent [8], and genetic algorithms [9]), which are suit-
able for different classes of optimization problems (e.g., linear or non-linear,
continuous or discrete, convex or non-convex, and single- or multi-objective).
These techniques are usually split into two main groups: deterministic and
stochastic optimization. Deterministic optimization is the classic approach for
optimization algorithms, which is based on calculus and algebra operators,
e.g., gradients and Hessians [10]. Stochastic optimization employs randomness
in the optima search procedure [10]. This paper presents a novel class of
search-based optimization algorithm that employs non-deterministic repre-
sentation of decision variables and constrains the state-space search based on
counterexamples produced by an SMT solver, in order to ensure the complete
global optimization without employing randomness. This class of techniques
is defined here as counterexample guided inductive optimization (CEGIO), which
is inspired by the syntax-guided synthesis (SyGuS) to perform inductive gener-
alization based on counterexamples provided by a verification oracle [11].

Particularly, a continuous non-convex optimization problem is one of the
most complex problems. As a result, several traditional methods (e.g., Newton-
Raphson [1] and Gradient Descent [8]) are inefficient to solve that specific class
of problems [1]. Various heuristics are developed for obtaining approximated
solutions to those problems; heuristics methods (e.g., ant colony [12] and genetic
algorithms [9]) offer faster solutions for complex problems, but they sacrifice
the system’s correctness and are easily trapped by local optimal solutions.

This paper presents a novel counterexample guided inductive optimization
technique based on SMT solvers, which is suitable for a wide variety of
functions, even for non-linear and non-convex functions, since most real-
world optimization problems are non-convex. The function evaluation and
the search for the optimal solution is performed by means of an iterative
execution of successive verifications based on counterexamples extracted from
SMT solvers. The counterexample provides new domain boundaries and
new optima candidates. In contrast to other heuristic methods (e.g., genetic
algorithms), which are usually employed for optimizing this class of function,
the present approaches always find the global optimal point.

This study extends the previous work of Araújo et al. [13] and presents three
variants of a counterexample guided inductive optimization approach based
on SMT solvers, which improve the technique performance for specific class
of functions. Furthermore, the experimental evaluation is largely expanded,
since the algorithms are executed for additional optimization problems and
the performance of each proposed algorithm is compared to six well-known
optimization techniques. The present CEGIO approaches are able to find the
correct global minima for 100% of the benchmarks, while other techniques are
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usually trapped by local minima, thus leading to incorrect solutions.

1.1. Contributions
Our main original contributions are:

• Novel counterexample guided inductive optimization approach. This
work describes three novel variants of a counterexample guided inductive
optimization approach based on SMT solvers: generalized, simplified,
and fast algorithms. The generalized algorithm can be used for any
constrained optimization problem and presents minor improvements w.r.t.
Araújo et al. [13]. The simplified algorithm is faster than the generalized
one and can be employed if information about the minima location
is provided, e.g., the cost function is semi-definite positive. The fast
algorithm presents a significant speed-up if compared to the generalized
and simplified ones, but it can only be employed for convex functions.

• Convergence Proofs. This paper presents proofs of convergence and com-
pleteness (omitted in Araújo et al. [13]) for the proposed counterexample
guided inductive optimization algorithms.

• SMT solvers performance comparison. The experiments are performed
with three different SMT solvers: Z3 [14], Boolector [15], and Math-
SAT [16]. The experimental results show that the solver choice can
heavily influence the method performance.

• Additional benchmarks. The benchmark suite is expanded to 30 opti-
mization functions extracted from the literature [17].

• Comparison with existing techniques. The proposed technique is com-
pared to genetic algorithm [9], particle swarm [18], pattern search [19],
simulated annealing [20], and nonlinear programming [21], which are
traditional optimization techniques employed for non-convex functions.

1.2. Availability of Data and Tools
Our experiments are based on a set of publicly available benchmarks. All

tools, benchmarks, and results of our evaluation are available on a supplemen-
tary web page http://esbmc.org/benchmarks/jscp2017.zip.

1.3. Outline
Section 2 discusses related studies. Section 3 provides an overview of opti-

mization problems and techniques, describes background on software model
checking, and error and accuracy problems due to numerical representation
by computers. Section 4 describes the generalized optimization algorithm and
its completeness proof. Futhermore, it describes the ANSI-C model developed
for optimization problems, which is suitable for the counterexample-guided
inductive optimization procedure. Section 5 describes two variants for the
generalized optimization algorithm: the simplified and the fast optimization
algorithm together with their respective completeness proofs. Section 6 reports
the experimental results for evaluating all proposed optimization algorithms,
while Section 8 concludes this work and proposes further studies.
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2. Related Work

SMT solvers have been widely applied to solve several types of verification,
synthesis, and optimization problems. They are typically used to check the
satisfiability of a logical formula, returning assignments to variables that
evaluate the formula to true, if it is satisfiable; otherwise, the formula is said to
be unsatisfiable. Nieuwenhuis and Oliveras [22] presented the first research
about the application of SMT to solve optimization problems, defining the
so-called Optimization Modulo Theories (OMT) based on arithmetic reasoning
and limited to booleand variables. More recently, Nadel and Ryvchin [23]
propose a different SMT-based optimization algorithm based on bit-vector
SMT theory, and so called Optimization modulo Bit-Vectors (OBV). Since then,
SMT solvers have been used to solve different optimization problems, e.g.,
minimize errors in linear fixed-point arithmetic computations in embedded
control software [24]; reduce the number of gates in FPGA digital circuits [25];
hardware/software partition in embedded systems to decide the most efficient
system implementation [26–28]; and schedule applications for a multi-processor
platform [29]. All those previous studies use SMT-based optimization over a
Boolean domain to find the best system configuration given a set of metrics. In
particular, in Cotton et al. [29] the problem is formulated as a multi-objective
optimization problem. Recently, Shoukry et al. [30] proposed a scalable solution
for synthesizing a digital controller and motion planning for under-actuated
robots from LTL specifications. Such solution is more flexible and allows
solving a wider variety of problems, but they are focused on optimization
problems that can be split into a Boolean part and other convex part.

In addition, there were advances in the development of different specialized
SMT solvers that employ generic optimization techniques to accelerate SMT
solving, e.g., the ABsolver [31], which is used for automatic analysis and
verification of hybrid-system and control-system. The ABsolver uses a non-
linear optimization tool for Boolean and polynomial arithmetic and a lazy
SMT procedure to perform a faster satisfiability checking. Similarly, CalCs [32]
is also an SMT solver that combines convex optimization and lazy SMT to
determine the satisfiability of conjunctions of convex non-linear constraints.
Recently, Shoukry et al. [33] show that a particular class of logic formulas
(named SMC formulas) generalizes a wide range of formulas over Boolean
and nonlinear real arithmetic, and propose the Satisfiability Modulo Convex
Optimization to solve satisfiability problems over SMC formulas. Our work
differs from those previous studies [31–33] since it does not focus on speeding
up SMT solvers, but it employs an SMT-based model-checking tool to guide
(via counterexample) an optimization search procedure in order to ensure the
global optimization.

Recently, νZ [34] extends the SMT solver Z3 for linear optimization prob-
lems; Li et al. proposed the SYMBA algorithm [35], which is an SMT-based
symbolic optimization algorithm that uses the theory of linear real arithmetic
and SMT solver as black box. Sebastiani and Trentin [36] present OptiMathSat,
which is an optimization tool that extends MathSAT5 SMT solver to allow
solving linear functions in the Boolean, rational, and integer domains or a com-
bination of them; in Sebastiani and Tomasi [37], the authors used a combination
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of SMT and LP techniques to minimize rational functions; the related work [38]
extends their work with linear arithmetic on the mixed integer/rational domain,
thus combining SMT, LP, and ILP techniques.

As an application example, Pavlinovic et al. [39] propose an approach which
considers all possible compiler error sources for statically typed functional
programming languages and reports the most useful one subject to some
usefulness criterion. The authors formulate this approach as an optimization
problem related to SMT and use νZ to compute an optimal error source in a
given ill-typed program. The approach described by Pavlinovic et al., which
uses MaxSMT solver νZ, shows a significant performance improvement if
compared to previous SMT encodings and localization algorithms.

Most previous studies related to SMT-based optimization can only solve
linear problems over integer, rational, and Boolean domains in specific cases,
leading to limitations in practical engineering applications. Only a few stud-
ies [30] are able to solve non-linear problems, but they are also constrained
to convex functions. In contrast, this paper proposes a novel counterexample
guided inductive optimization method based on SMT solvers to minimize
functions, linear or non-linear, convex or non-convex, continuous or discon-
tinuous. As a result, the proposed methods are able to solve optimization
problems directly on the rational domain with adjustable precision, without
using any other technique to assist the state-space search. Furthermore, our
proposed methods employ a model-checking tool to generate automatically
SMT formulas from an ANSI-C model of the optimization problem, which
makes the representation of problems for SMT solving easy for engineers.

3. Preliminaries

3.1. Optimization Problems Overview
Let f : X → R be a cost function, such that X ⊂ Rn represents the decision

variables vector x1, x2, ..., xn and f (x1, x2, ..., xn) ≡ f (x). Let Ω ⊂ X be a subset
settled by a set of constraints.

Definition 1. A multi-variable optimization problem consists in finding an optimal
vector x, which minimizes f in Ω.

According to Definition 1, an optimization problem can be written as

min f (x),
s.t. x ∈ Ω.

(1)

In particular, this optimization problem can be classified in different ways
w.r.t. constraints, decision variables domain, and nature of cost function f . All
optimization problems considered here are constrained, i.e., decision variables
are constrained by the subset Ω. The optimization problem domain X that
contains Ω can be the set of N, Z, Q, or R. Depending on the domain
and constraints, the optimization search-space can be small or large, which
influences the optimization algorithms performance.

The cost function can be classified as linear or non-linear; continuous,
discontinuous or discrete; convex or non-convex. Depending on the cost
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function nature, the optimization problem can be hard to solve, given the time
and memory resources [40]. Particularly, non-convex optimization problems
are the most difficult ones w.r.t. the cost function nature. A non-convex cost
function is a function whose epigraph is a non-convex set and consequently
presents various inflexion points that can trap the optimization algorithm to
a sub-optimal solution. A non-convex problem is necessarily a non-linear
problem and it can also be discontinuous. Depending on that classification,
some optimization techniques are unable to solve the optimization problem,
and some algorithms usually point to suboptimal solutions, i.e., a solution that
is not a global minimum of f , but it only locally minimizes f . Global optimal
solutions of the function f , aforementioned, can be defined as

Definition 2. A vector x∗ ∈ Ω is a global optimal solution of f in Ω iff f (x∗) ≤
f (x), ∀x ∈ Ω.

Global optimization is an old problem that remained marginal for a long
time period due to difficulties to deal with. Recently, several studies related to
global optimization came up, but the proposed solutions are very specific for a
particular class of problems [41]. An example of particular solution consists
in using differential calculus principles to optimize convex function. Several
non-convex functions are globally optimized by transforming the non-convex
problem into a set of convex problems [42]. A review about global optimization
techniques is provided in the related literature [43, 44].

3.2. Optimization Techniques

Different optimization problems offer different difficulties to their particular
solutions. Such complexity is mainly related to the ruggedness (e.g., continuity,
differentiability, and smoothness) and dimensionality of the problem (i.e., the
dimension, and for the finite case, the number of elements of Ω). Depending on
these factors, different optimization techniques can be more efficient to solve a
particular optimization problem. Generally, traditional optimization techniques
can be divided into two groups: deterministic and stochastic optimization.

The deterministic techniques employ a search engine, where each step is
directly and deterministically related to the previous steps [45]. In summary,
deterministic techniques can be gradient-based or enumerative search-based.
Gradient-based techniques search for points, where the gradient of cost func-
tion is null (∇ f (x) = 0), e.g., gradient-descent [46] and Newton’s optimiza-
tion [1]. Although they are fast and efficient, those techniques are unable to
solve non-convex or non-differentiable problems. Enumerative search-based
optimization consists in scanning the search-space by enumerating all possible
points and comparing cost function with best previous values, e.g., dynamic
programming, branch and bound [47], and pattern search [48].

Stochastic techniques employ randomness to avoid the local minima and
to ensure the global optimization; such techniques are usually based on meta-
heuristics [49]. This class of techniques has become very popular in the last
decades and has been used in all types of optimization problems. Among
those stochastic techniques, simulated annealing [20], particle swarm [18], and
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evolutionary algorithms (e.g., genetic algorithms [9]) are usually employed in
practice.

Recently, optimization techniques and tools that employ SMT solvers and
non-deterministic variables were applied to solve optimization problems [30–
32, 34–38, 50], which searches for the global optima in a search-space that
is symbolically defined and uses counterexamples produced by SMT solvers
to further constrain the search-space. The global optima is the set of values
for the decision variables that makes an optimization proposition satisfiable.
The technique presented here is the first optimization method based on SMT
solvers and inductive generalization described in the literature, which is able
to solve non-convex problems over R.

3.3. Model Checking

Model checking is an automated verification procedure to exhaustively
check all (reachable) system’s states [51]. The model checking procedure
typically consists of three steps: modeling, specification, and verification.

Modeling is the first step, where it converts the system to a formalism
that is accepted by a verifier. The modeling step usually requires the use of
an abstraction to eliminate irrelevant (or less) important system details [52].
The second step is the specification, which describes the system’s behavior
and the property to be checked. An important issue in the specification
is the correctness. Model checking provides ways to check whether a given
specification satisfies a system’s property, but it is difficult to determine whether
such specification covers all properties in which the system should satisfy.

Finally, the verification step checks whether a given property is satisfied
w.r.t. a given model, i.e., all relevant system states are checked to search for
any state that violates the verified property. In case of a property violation, the
verifier reports the system’s execution trace (counterexample), which contains
all steps from the (initial) state to the (bad) state that lead to the property viola-
tion. Errors could also occur due to incorrect system modeling or inadequate
specification, thus generating false verification results.

3.3.1. Bounded Model Checking (BMC)
BMC is an important verification technique, which has presented attractive

results over the last years [53]. BMC techniques based on Boolean Satisfiability
(SAT) [54] or Satisfiability Modulo Theories (SMT) [55] have been successfully
applied to verify single- and multi-threaded programs, and also to find subtle
bugs in real programs [56, 57]. BMC checks the satisfiability of the negation of
a given property at a given depth over a transition system M [54].

Definition 3. [54] – A set of formulas {p1, p2, ..., pn} is said to be satisfiable if there
is some structure A in which all its component formulas are true, i.e., {p1, p2, ..., pn}
is SAT iff A |= p1 ∧A |= p2...∧A |= pn.

Definition 4. [54] – Given a transition system M, a property φ, and a bound k;
BMC unrolls the system k times and translates it into a verification condition (VC) ψ,
which is satisfiable iff φ has a counterexample of depth less than or equal to k.
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In this study, the ESBMC tool [58] is used as verification engine, as it
represents one of the most efficient BMC tools that participated in the last
software verification competitions [53]. ESBMC finds property violations such
as pointer safety, array bounds, atomicity, overflows, deadlocks, data race, and
memory leaks in single- and multi-threaded C/C++ software. It also verifies
programs that make use of bit-level, pointers, structures, unions, fixed- and
floating-point arithmetic. Inside ESBMC, the associated problem is formulated
by constructing the following logical formula

ψk = I(S0) ∧
k∨

i=0

i−1∧
j=0

(γ(sj, sj+1) ∧ φ(si)) (2)

where φ is a property and S0 is a set of initial states of M, and γ(sj, sj+1) is
the transition relation of M between time steps j and j + 1. Hence, I(S0) ∧∧i−1

j=0 γ(sj, sj+1) represents the executions of a transition system M of length
i. The above VC ψ can be satisfied if and only if, for some i ≤ k there exists
a reachable state at time step i in which φ is violated. If the logical formula
(2) is satisfiable (i.e., returns true), then the SMT solver provides a satisfying
assignment (counterexample).

Definition 5. A counterexample for a property φ is a sequence s0, s1, . . . , si with
s0 ∈ S0, si ∈ Si, and γ (si, si+1) for i ≤ k that makes (2) satisfiable. If it is
unsatisfiable (i.e., returns false), then one can conclude that there is no error state in k
steps or less.

In addition to software verification, ESBMC has been applied to ensure
correctness of digital filters and controllers [59–61]. Recently, ESBMC has been
applied to optimize HW/SW co-design [26–28].

3.4. Error and Accuracy
Numbers stored in computers do not have infinite precision; instead, they

are represented by a fixed number of bits, i.e., binary digits. Computers
allow the programmer to choose different representations (or data types). In
particular, data types cannot only differ in the number of bits used, but also in
the more fundamental respect of whether the stored number is represented in
fixed- or floating-point format (e.g., float or double types).

3.4.1. Numerical Representation
Aforementioned, computers use basically two different ways of representing

a number, fixed- or floating-point. In a fixed-point representation, a number
is represented by three fixed parts: sign, integer part, and fractional part. For
instance, to store a number using a 32-bit format, 1 bit is reserved for the
sign, 15 bits for the integer part and 16 bits for the fractional part. Note that
for this case, 2−16 ≈ 0.00001526 is the gap between two adjacent fixed-point
numbers. Thus, a number whose representation exceeds 32 bits would be
stored inexactly.

A common problem in fixed-point representation is overflow, which occurs
when at some stage during processing binary arithmetic, a number outside the
finite range of representation is generated.
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Alternatively, there is the floating-point representation, where a number
is represented internally by a sign S (interpreted as plus or minus), an exact
integer exponent E, and an exactly representation binary mantissa M as

S×M× bE−e, (3)

where b is the representation base, which is usually b = 2 since multiplication
and division operations by 2 can be accomplished by left- or right-shift of the
bits; and e is the exponent bias, an fixed integer constant fixed for any machine
and representation, e.g., for 32-bit float values, the exponent is represented in
8 bits (e = 127) and for 64-bit double values, the exponent is represented in 11
bits (e = 1023).

For 32-bit representation, the smallest normalized positive number is
2−126 ≈ 1.18× 10−38, which is much less than in a fixed-point representa-
tion. Futhermore, the spacing between the floating-point numbers is not
uniform, as we move away from the origin, the spacing becomes less dense.

Most modern processors adopt the same floating-point data representation,
as specified by the IEEE standard 754-1985 [62]. The floating-point seems
more appropriate when you need a certain precision for the value. However,
when absolute precision is required, fixed-point represents a more appropriate
choice.

3.4.2. Roundoff and Truncation Errors
In general, the floating-point representation behaves very similar to real

numbers. However, there are many inconsistencies between the behavior of
floating-point numbers in base 2 and real numbers. The main causes of error
in the calculation of floating-point are: roundoff and truncation errors.

Arithmetic among numbers in floating-point representation is not exact,
even if the operands happen to be exactly represented, i.e., they have exact val-
ues in the form of Eq. (3). Machine accuracy, εm, is the smallest (in magnitude)
floating-point number, which must be added to the floating-point number
1.0 to produce a floating-point result different from 1.0. IEEE 754 standard
float has εm about 1.19× 10−7, while double has about 2.22× 10−16. The
machine accuracy is the fractional accuracy which floating-point numbers are
represented, corresponding to a change of one in the least significant bit of
the mantissa. Almost any arithmetic operation among floating-point numbers
should be considered as introducing an additional fractional error of at least
εm. This type of error is called roundoff error.

Roundoff error is a characteristic of computer hardware. There is another
kind of error that is a characteristic of the program or algorithm used, inde-
pendent on the hardware on which the program is executed. Many numerical
algorithms compute discrete approximations to some desired continuous quan-
tity. In these cases, there is an adjustable parameter; any practical calculation
is done with a finite, but sufficiently large, choice of that parameter. The
discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even
on a perfect computer that had an infinitely accurate representation and no
roundoff error.
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As a general rule, there is not much that a programmer can do about
roundoff error. However, truncation error is entirely under the control of the
programmer.

4. Counterexample Guided Inductive Optimization of Non-convex Func-
tion

4.1. Modeling Optimization Problems using a Software Model Checker

There are two important directives in the C/C++ programming language,
which can be used for modeling and controlling a verification process: ASSUME
and ASSERT. The ASSUME directive can define constraints over (non-deterministic)
variables, and the ASSERT directive is used to check system’s correctness w.r.t.
a given property. Using these two statements, any off-the-shelf C/C++ model
checker (e.g., CBMC [57], CPAChecker [63], and ESBMC [58]) can be applied to
check specific constraints in optimization problems, as described by Eq. (1).

Here, the verification process is iteratively repeated to solve an optimization
problem using intrinsic functions available in ESBMC (e.g., __ESBMC_assume
and __ESBMC_assert). We apply incremental BMC to efficiently prune the
state-space search based on counterexamples produced by an SMT solver. Note
that completeness is not an issue here (cf. Definitions 1 and 2) since our
optimization problems are represented by loop-free programs [64].

If the minimum candidate value of a function defined by Eq. (1) is given
( fc), then the ASSERT directive can be used to check the loptimal satisfiability as

loptimal ⇐⇒ f (x) ≥ fc. (4)

Note that if ¬loptimal is unsatisfiable, then fc is the function minimum;
otherwise, there is some state-space portion, defined by the problem constraints,
which violates the property.

Although, this seems simple, some problems arise due to finite-precision
arithmetic implemented by the verifiers. For instance, in ESBMC, the SMT
solvers Z3 and MathSAT support floating-point arithmetic, but Boolector only
supports fixed-point arithmetic. Thus, error and accuracy issues previously
described can occur. In order to avoid that, the literal loptimal is modified for
lsuboptimal given by Eq. (5) as

lsuboptimal ⇐⇒ f (x) > fc − δ, (5)

where δ must be sufficiently high to reduce the effects of roundoff and trun-
cation errors in the computations. By contrast, if ¬lsuboptimal is unsatisfiable,
then fc is not the function minimum, but it will be at one distance limited by
δ of the minimum value. As described in the following sections, δ can also
be used with the purpose of determining the minimum improvement at each
iteration in the cost function. The basic idea is to use the ability of verifiers to
check the satisfiability of a given property and then return a counterexample
that contains the error trace. Thus, through successive satisfiability checks
of the literal ¬lsuboptimal , we can guide the verification process to solve the
optimization problem given by Eq. (1).
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4.2. CEGIO: the Generalized Algorithm (CEGIO-G)
The generalized SMT-based optimization algorithm previously presented

by Araújo et al. [13] is able to find the global optima for any optimization
problem, given a precision for the respective decision variables. The execution
time of that algorithm depends on how the state-space search is restricted
and on the number of the solution decimal places. Specifically, the algorithm
presents a fixed-point solution with adjustable precision, i.e., the number of
decimal places can be defined.

However, this algorithm might take long for achieving the optimal solution
of unconstrained optimization problems with non-integer solutions, since it
depends on the aforementioned precision. Although this algorithm usually
produces a longer execution time than other traditional techniques, its error
rate is typically lower than other existing methods, once it is based on a
complete and sound verification procedure.

Alg. 1 shows an improved version of the algorithm presented by Araújo
et al. [13]; this algorithm is denoted here as “Generalized CEGIO algorithm”
(CEGIO-G). Note that Alg. 1 contains two nested loops, the outer (for) loop
is related to the desired precision and the inner (while) loop is related to the
verification process. This configuration speeds up the optimization problem
due to the complexity reduction if compared to the algorithm originally de-
scribed by Araújo et al. [13]. The CEGIO-G algorithm uses the manipulation of
fixed-point number precision to ensure the optimization convergence.

Alg. 1 has four inputs: a cost function f (x); the space for constraint set
Ω; a number of decimal places of decision variables η; and the minimum
improvement value for the candidate cost function δ; it also provides two
outputs: the decision variables vector x∗ and the cost function minimum value
f (x∗). After the variable initialization and declaration (lines 1-2 of Alg. 1),
the search domain Ωε is specified in line 4, which is defined by lower and
upper bounds of the auxiliary variables X. Note that they are declared as
non-deterministic integer variables; otherwise, if declared as non-deterministic
float variables, then the state-space search would considerably increase. Thus,
Omegaε limits are given by Eq. (6).

lim{Ωε} = lim{Ω} × 10ε (6)

The variable ε is used to handle the auxiliary variables and to obtain the
decision variables value, x, such that ε defines the number of decimal places of
x. An null value of ε results in integer solutions. Solutions with one decimal
place is obtained for ε = 1, two decimal places are achieved for ε = 2.

Initially, ε is equal to zero and must be updated at the end of the each
iteration of the outer (for) loop, such that it will increase the decision variables
domain by one decimal place in the next iteration of the loop. After the
problem constraint definition, the model for function f (x) is defined (in line 5),
considering the decision variables decimal places, i.e., x = X/10ε.

At each iteration of the inner (while) loop, the satisfiability of ¬lsuboptimal
given by Eq. (5) is checked. Before that, however, a new constraint is placed
on the state-space by taking into account the cost function value for each
region of the state-space (see line 8), i.e., there is no need for verifying values
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input : A cost function f (x), the space for constraint set Ω, a number of decimal
places of decision variables η, and the minimum improvement value of
the function δ

output : The optimal decision variable vector x∗, and the optimal function value
f (x∗)

1 Initialize f (0)c randomly and i = 0
2 Declare the auxiliary variables X as non-deterministic integer variables
3 for ε = 0→ η; ε ∈ Z do
4 Define bounds for X with the ASSUME directive, such that X ∈ Ωε

5 Describe a model for objective function f (x), where x = X/10ε

6 Do the auxiliary variable Check = TRUE
7 while Check do
8 Constrain f (x(i)) < f (i)c with the ASSUME directive
9 Verify the satisfiability of ¬lsuboptimal given by Eq. (5) with the ASSERT directive

10 if ¬lsuboptimal is satisfiable then
11 Update x∗ = x(i) and f (x∗) = f (x(i)) based on the counterexample
12 Do i = i + 1

13 Do f (i)c = f (x∗)− δ

14 end
15 else
16 Check = FALSE
17 end
18 end
19 end
20 return x∗ and f (x∗)

Algorithm 1: CEGIO-G: the generalized algorithm.
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greater than the minimum candidate value, since the algorithm searches for
the minimum value of the cost function. In this specific step, the search-space
is remodelled for the i-th precision and it employs previous results of the
optimization process.

The verification step is performed in lines 9-10, where the candidate function
f (i)c , i.e., f (x∗)− δ if i > 0, is analyzed by means of the satisfiability check of
¬lsuboptimal . If there is a f (x) ≤ f (i)c that violates the ASSERT directive, then the
decision variables vector and minimum value of cost function are updated
based on the counterexample, futhermore, the candidate function is updated,
f (i)c = f (x∗)− δ (line 13), after the increase of i, and the algorithm returns
to remodel the state-space again (line 8). Note that, delta define the least
improvement in the cost function w.r.t the previous iteration.

If the ASSERT directive is not violated, the last candidate fc is the minimum
value with the precision variable ε; thus, ε incremented from one in the for
loop to η, adding a decimal place to the optimization solution, and the outer
(for) loop is repeated. The algoritm concludes if the outer loop achieves the
limit defined by the input parameter η; thus it returns the optimal vector of
decision variables with η decimal places and the optimal value of the cost
function.

4.3. Proof of Convergence

A generic optimization problem described in the previous section is formal-
ized as follow: given a set Ω ⊂ Rn, determine x∗ ∈ Ω, such that, f (x∗) ∈ Φ
is the lowest value of the function f , i.e., min f (x), where Φ ⊂ R is the image
set of f (i.e., Φ = Im( f )). Our approach solves the optimization problem with
η decimal places, i.e., the solution x∗ is an element of the rational domain
Ωη ⊂ Ω such that Ωη = Ω ∩Θ, where Θ = {x ∈ Q|x = k× 10−η , ∀k ∈ Z}, i.e.,
Ωη is composed by rationals with η decimal places in Ω (e.g., Ω0 ⊂ Z). Thus,
x∗,η is the minimum of function f in Ωη with η decimal places.

Lemma 1. Let Φ be a finite set composed by all values f (x) < f (i)c , where f (i)c ∈ Φ
is any minimum candidate and x ∈ Ω. The literal ¬lsuboptimal (Eq. 5) is UNSAT iff

f (i)c holds the lowest values in Φ; otherwise, ¬lsuboptimal is SAT iff there exists any

x(i) ∈ Ω such that f (x(i)) < f (i)c .

Theorem 1. Let Φi be the i-th image set of the optimization problem constrained by
Φi = { f (x) < f (i)c }, where f (i)c = f (x∗,(i−1)) − δ, ∀i > 0, and Φ0 = Φ. There
exists an i∗ > 0, such that Φi∗ = ∅, and f (x∗) = f (i

∗)
c .

Proof. Initially, the minimum candidate f (0)c is chosen randomly from Φ0. Con-
sidering Lemma 1, if ¬loptimal is SAT, any f (x∗,(0)) (from the counterexample) is

adopted as next candidate solution, i.e., f (1)c = f (x∗,(0))− δ, and every element
from Φ1 is less than f (1)c . Similarly in the next iterations, while ¬loptimal is SAT,

f (i)c = f (x∗,(i−1))− δ, and every element from Φi is less than f (i)c , consequently,
the number of elements of Φi−1 is always less than that of Φi. Since Φ0 is finite,
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in the i∗-th iteration, Φi∗ will be empty and the ¬loptimal is UNSAT, which leads

to (Lemma 1) f (x∗) = f (i
∗)

c .

Theorem 1 provides sufficient conditions for the global minimization over
a finite set; it solves the optimization problem defined at the beginning of this
section, iff the search domain Ωη is finite. It is indeed finite, once it is defined
as an intersection between a bounded set (Ω) and a discrete set (Θ). Thus,
the CEGIO-G algorithm will always provide the minimum x∗ with η decimal
places.

4.4. Illustrative Example

The Ursem03’s function is employed to illustrate the present SMT-based op-
timization method for non-convex optimization problems [17]. The Ursem03’s
function is represented by a two-variables function with only one global mini-
mum in f (x1, x2) = −3, and has four regularly spaced local minima positioned
in a circumference, with the global minimum in the center. Ursem03’s function
is defined by Eq. (7); Fig. 1 shows its respective graphic.

f (x1, x2) = − sin
(

2.2πx1 −
π

2

) (2− |x1|)(3− |x1|)
4

− sin
(

2.2πx2 −
π

2

) (2− |x2|)(3− |x2|)
4

(7)

Figure 1: Ursem03’s function

4.4.1. Modeling
The modeling process defines constraints, i.e., Ω boundaries (cf. Section 3.1).

This step is important for reducing the state-space search and consequently for
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avoiding the state-space explosion by the underlying model-checking proce-
dure. Our verification engine is not efficient for unconstrained optimization;
fortunately, the verification time can be drastically reduced by means of a
suitable constraint choice. Consider the illustrative optimization problem given
by Eq. (8), which is related to the Ursem03’s function given in Eq. (7), where
the constraints are defined by half-closed intervals that lead to a large domain.

min f (x1, x2)
s.t. x1 ≥ 0,

x2 ≥ 0.
(8)

Note that inequalities x1 ≥ 0 and x2 ≥ 0 are pruning the state-space search
to the first quadrant; however, even so it produces a (huge) state-space to be
explored since x1 and x2 can assume values with very high modules. The
optimization problem given by Eq. (8) can be properly rewritten as Eq. (9) by
introducing new constraints. The boundaries are chosen based on the study
described by Jamil and Yang [17], which defines the domain in which the
optimization algorithms can evaluate the benchmark functions, including the
Ursem03’s function.

min f (x1, x2)
s.t. −2 ≤ x1 ≤ 2,

−2 ≤ x2 ≤ 2.
(9)

From the optimization problem definition given by Eq. (9), the modeling
step can be encoded, where decision variables are declared as non-deterministic
variables constrained by the ASSUME directive. In this case, −2 ≤ x1 ≤ 2 and
−2 ≤ x2 ≤ 2. Fig. 2 shows the respective C code for modeling Eq. (9). Note

1 # include " math2 . h"
2 f l o a t nondet_ f loa t ( ) ;
3 i n t main ( ) {
4 / / d e f i n e d e c i s i o n v a r i a b l e s
5 f l o a t x1 = nondet_ f loa t ( ) ;
6 f l o a t x2 = nondet_ f loa t ( ) ;
7 / / c o n s t r a i n t h e s t a t e−s p a c e s e a r c h
8 __ESBMC_assume ( ( x1>=−2) && ( x1 < = 2 ) ) ;
9 __ESBMC_assume ( ( x2>=−2) && ( x2 < = 2 ) ) ;

10 / / computing Ursem ’ s f u n c t i o n
11 f l o a t f o b j ;
12 f o b j = −s i n ( 2 . 2∗ pi∗x1−pi /2)∗(2− abs ( x1 ))(3− abs ( x1 ) ) / 4
13 −s in ( 2 . 2∗ pi∗x2−pi /2)∗(2− abs ( x2 ))(3− abs ( x2 ) ) / 4 ;
14 return 0 ;
15 }

Figure 2: C Code for the optimization problem given by Eq. (9).

that in Figure 2, the decision variables x1 and x2 are declared as floating-point
numbers initialized with non-deterministic values; we then constraint the
state-space search using assume statements. The objective function of Ursem‘s
function is then declared as described by Eq. 7.
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4.4.2. Specification
The next step of the proposed methodology is the specification, where

the system behavior and the property to be checked are described. For the
Ursem03’s function, the result of the specification step is the C program shown
in Fig. 3, which is iteratively checked by the underlying verifier.

Note that the decision variables are declared as integer type and their
initialization depends on a given precision p, which is iteratively adjusted once
the counterexample is produced by the SMT solver. Indeed, the C program
shown in Fig. 2 leads the verifier to produce a considerably large state-space
exploration, if the decision variables are declared as non-deterministic floating-
point type. In this study, decision variables are defined as non-deterministic
integers, thus discretizing and reducing the state-space exploration; however,
this also reduces the optimization process precision. In particular, the accuracy
requirement depends on the application and problem domain. A high accuracy
can be desirable in some particular applications. However, the proposed
optimization algorithms are able to optimize target functions for any desired
accuracy defined by the user, given the imposed time and memory limits.

To trade-off both precision and verification time, and also to maintain con-
vergence to an optimal solution, the underlying model-checking procedure has
to be iteratively invoked, in order to increase its precision for each successive
execution, as follows

p = 10ε. (10)

An integer variable p is created and iteratively adjusted, such that ε rep-
resents the amount of decimal places related to the decision variables, i.e.,
0 ≤ ε ≤ η, as discussed in Section 4.1. Additionally, a new constraint is
inserted; in particular, the new value of the objective function f (x(i)) at the i-th
must not be greater than the value obtained in the previous iteration f (x∗,(i−1)).
Initially, all elements in the state-space search Ω are candidates for optimal
points, and this constraint cutoffs several candidates on each iteration.

In addition, a property has to be specified to ensure convergence to the
minimum point on each iteration. This property specification is stated by
means of an assertion, which checks whether the literal ¬lsuboptimal given in
Eq. (5) is satisfiable for every value, f (x), remaining in the state-space search
(i.e., traversed from lowest to highest).

The verification procedure stops when the literal ¬lsuboptimal is unsatisfiable,
i.e., if there is any x(i) for which f (x(i)) ≤ fc; a counterexample shows such
x(i), converging iteratively f (x) from the optimal f (x∗). Fig. 3 shows the initial
specification for the optimization problem given by Eq. (9). The initial candidate
value of the objective function can be randomly initialized. For the example
shown in Fig. 3, f (0)c is arbitrarily initialized to 100, but the present optimization
algorithm works for any initial state, and for i > 0, f (i+1)

c = f (x∗,(i))− δ, as
specified in line 13 of the Alg. 1.

Note that, the code illustrated in Fig. 3 must be executed iteratively with
the aforementioned fc and p variables updated; this can be done by iteratively
rewriting that code by means of scripts.
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1 # include " math2 . h"
2 # define p 1 / / p r e c i s i o n v a r i a b l e
3 i n t nondet_int ( ) ;
4 f l o a t nondet_ f loa t ( ) ;
5 i n t main ( ) {
6 f l o a t f _ c = 1 0 0 ; / / c a n d i d a t e v a l u e o f o b j e c t i v e f u n c t i o n
7 i n t l im_inf_x1 = −2∗p ;
8 i n t lim_sup_x1 = 2∗p ;
9 i n t l im_inf_x2 = −2∗p ;

10 i n t lim_sup_x2 = 2∗p ;
11 i n t X1 = nondet_int ( ) ;
12 i n t X2 = nondet_int ( ) ;
13 f l o a t x1 = f l o a t nondet_ f loa t ( ) ;
14 f l o a t x2 = f l o a t nondet_ f loa t ( ) ;
15 __ESBMC_assume ( ( X1>=l im_inf_x1 ) && ( X1<=lim_sup_x1 ) ) ;
16 __ESBMC_assume ( ( X2>=l im_inf_x2 ) && ( X2<=lim_sup_x2 ) ) ;
17 __ESBMC_assume ( x1 = ( f l o a t ) X1/p ) ;
18 __ESBMC_assume ( x2 = ( f l o a t ) X2/p ) ;
19 f l o a t f o b j ;
20 f o b j = −s in2 ( 2 . 2∗ pi∗x1−pi /2)∗(2− abs2 ( x1 ))(3− abs2 ( x1 ) )/ 4
21 −s in2 ( 2 . 2∗ pi∗x2−pi /2)∗(2− abs2 ( x2 ))(3− abs2 ( x2 ) ) / 4 ;
22 / / c o n s t r a i n t o e x c l u d e f o b j > f _ c
23 __ESBMC_assume ( f o b j < f _ c ) ;
24 a s s e r t ( f o b j > f _ c ) ;
25 return 0 ;
26 }

Figure 3: C code after the specification of Eq. (9).

4.4.3. Verification
Finally, in the verification step, the C program shown in Fig. 3 is checked by

the verifier and a counterexample is returned with a set of decision variables
x, for which the objective function value converges to the optimal value. A
specified C program only returns a successful verification result if the previous
function value is the optimal point for that specific precision (defined by p),
i.e., f (i+1)

c = f (x∗,(i))− δ. For the example shown in Fig. 3, the verifier shows
a counterexample with the following decision variables: x1 = 2 and x2 = 0.
These decision variable are used to compute a new minimum candidate, note
that f (2, 0) = −1.5, which is the new minimum candidate solution provided
by this verification step. Naturally, it is less than the initial value (100), and this
verification can be repeated with the new value of f (i+1)

c , in order to obtain
an objective function value that is close to the optimal point on each iteration.
Note that the data provided by the counterexample is crucial for the algorithm
convergence and for the state-space search reduction.

4.4.4. Avoiding the Local Minima
As previously mentioned, an important feature of this proposed CEGIO

method is always to find the global minimum with precision of η decimal
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places (cf. Theorem 1). Many optimization algorithms might be trapped by
local minima and they might incorrectly solve optimization problems. However,
the present technique ensures the avoidance of those local minima, through
the satisfiability checking, which is performed by successive SMT queries. This
property is maintained for any class of functions and for any initial state.

Figures 4 and 5 show the aforementioned property of this algorithm,
comparing its performance to the genetic algorithm (GA). In those figures,
Ursem03’s function is adapted for a single-variable problem over x1, i.e., x2 is
considered fixed and equals to 0.0, and the respective function is reduced to
a plane crossing the global optimum in x1 = 0. The partial results after each
iteration are illustrated by the various marks in these graphs; for GA, we show
only the best result of each algorithm epoch. Note that the present method
does not present continuous trajectory from the initial point to the optimal
point; however, it always achieves the correct solution. Fig. 4 shows that both
techniques (GA and SMT) achieve the global optimum. However, Fig. 5 shows
that GA might be trapped by the local minimum for a different initial point.
In contrast, the proposed CEGIO method can be initialized further away from
the global minimum and as a result it can find the global minimum after some
iterations, as shown in Figures 4 and 5.
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Figure 4: Optimization trajectory of GA and SMT for a Ursem03’s plane in x2 = 0. Both
methods obtain the correct answer.

5. Counterexample Guided Inductive Optimization of Special Functions

This section presents two variants of the Counterexample Guided Inductive
Optimization (CEGIO) algorithm for global constrained optimization. A simpli-
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Figure 5: Optimization trajectory of GA and SMT for a Ursem03’s plane in x2 = 0. GA is
trapped by an local minimum, but SMT obtains the correct answer.

fied CEGIO algorithm (CEGIO-S) is explained in Subsection 5.1, while Subsec-
tion 5.2 presents the fast CEGIO algorithm (CEGIO-F) for convex optimization
problems. Additionally, a convergence proof of the CEGIO-F algorithm is
described in Subsection 5.2.2.

5.1. A Simplified Algorithm for CEGIO (CEGIO-S)
Alg. 1 is suitable for any class of functions, but there are some particular

functions that contain further knowledge about their behaviour (e.g., positive
semi-definite functions such as f (x) ≥ 0. Using that knowledge, Alg. 1 is
slightly modified for handling this particular class of functions. This algorithm
is named here as “Simplified CEGIO algorithm” (CEGIO-S) and it is presented
in Alg. 2.

Note that Alg. 2 contains three nested loops after the variable initialization
and declaration (lines 1-3), which is similar to the algorithm presented in [13].
In each execution of the outer loop (for) (lines 4-29), the bounds and precision
are updated accordingly. The main difference in this algorithm w.r.t the Alg. 1
is the presence of the condition in line 8, i.e., it is not necessary to generate
new checks if that condition does not hold, since the solution is already at the
minimum limit, i.e., f (x∗) = 0.

Furthermore, there is another inner (while) loop (lines 12-15), which is
responsible for generating multiple VCs through the ASSERT directive, using
the interval between fm and f (i)c . Note that this loop generates α + 1 VCs
through the step defined by γ in line 7.

These modifications allow Alg. 2 to converge faster than Alg. 1 for the
positive semi-definite or definite functions, since the chance of a check failure is
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input : A cost function f (x), the space for constraint set Ω, a number of decimal
places of decision variables η, the minimum improvement value of the
function δ, and a learning rate α

output : The optimal decision variable vector x∗, and the optimal value of
function f (x∗)

1 Initialize fm = 0

2 Initialize f (0)c randomly and i = 0
3 Declare the auxiliary variables X as non-deterministic integer variables
4 for ε = 0→ η; ε ∈ Z do
5 Define bounds for X with the ASSUME directive, such that X ∈ Ωε

6 Describe a model for objective function f (x), where x = X/10ε

7 Declare γ = ( f (x(i−1))− fm)/α

8 if ( f (i)c − fm > 10−5) then
9 Do the auxiliary variable Check = TRUE

10 while Check do
11 Constraint f (x(i)) < f (i−1)

c with the ASSUME directive

12 while ( fm ≤ f (i)c ) do
13 Verify the satisfiability of lsuboptimal given by Eq. (4) for each fm, with

the ASSERT directive
14 Do fm = fm + γ

15 end
16 if ¬lsuboptimal is satisfiable then
17 Update x∗ = x(i) and f (x∗) = f (x(i)) based on the counterexample
18 Do i = i + 1

19 Do f (i)c = f (x∗)− δ

20 end
21 else
22 Check = FALSE
23 end
24 end
25 end
26 else
27 break
28 end
29 end
30 return x∗ and f (x∗)

Algorithm 2: CEGIO-S: a simplified algorithm.

higher due to the larger number of properties. However, if α represents a large
number, then the respective algorithm would produce many VCs, which could
cause the opposite effect and even lead the verification process to exhaust the
memory.

5.2. Counterexample Guided Inductive Optimization of Convex Problems
Convex functions are an important class of functions commonly found in

many areas of mathematics, physics, and engineering [65]. A convex opti-
mization problem is similar to Eq. (1), where f (x) is a convex function, which
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satisfies Eq. (11) as

f (αx1 + βx2) ≤ α f (x1) + β f (x2) (11)

for all xi ∈ Rn, with i = 1, 2 and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.
Theorem 2 is an important theorem for convex optimization, which is used

by most convex optimization algorithms.

Theorem 2. A local minimum of a convex function f , on a convex subset, is always a
global minimum of f [66].

Here, Theorem 2 is used to ensure convergence of the CEGIO convex
optimization algorithm presented in Subsection 5.2.1.

5.2.1. Fast CEGIO (CEGIO-F)
Alg. 1 aforementioned evolves by increasing the precision of the decision

variables, i.e., in the first execution of its for loop, the obtained global minimum
is integer since ε = 0, called x∗,0. Alg. 3 is an improved algorithm of that Alg. 1
for application in convex functions. It will be denoted here as “Fast CEGIO
algorithm” (CEGIO-F).

Note that, the only difference of Alg. 1 is the insertion of line 13, which
updates limits of the set Ωε before of ε. For each execution of the for-loop,
the solution is optimal for precision ε. A new search domain Ωε ⊂ Ωη is
obtained from a CEGIO process over Ωε−1, for ε > 0, defining Ωε as follows:
Ωε = Ωη ∩ [x∗,ε−1 − p, x∗,ε−1 + p], where p is given by Eq. (10) e x∗,ε−1 is the
solution with ε− 1 decimal places.

5.2.2. Proof of Convergence for the Fast CEGIO Algorithm
The CEGIO-F algorithm computes iteratively for every Ωε, 0 < ε ≤ η.

Theorem 1 ensures the global minimization for any finite Ωε. The global
convergence of the CEGIO-F algorithm is ensured iff the minima of any Ωε−1

is inside Ωε. It holds for the generalized algorithm since Ω1 ⊂ Ω2... ⊂ Ωε−1 ⊂
Ωε. However, the CEGIO-F algorithm modifies Ωε boundaries using the
ε− 1-th solution, for ε > 0.

Lemma 2. Let f : Ωε → R be a convex function, as Ωε is a finite set, Theorem 1
ensures that the minimum, x∗,ε in Ωε is a local minimum for precision ε, where ε =
log p. In addition, as f is a convex function, any element x outside [x∗,ε− p, x∗,k + p]
has its image f (x) > f (x∗,ε) ensured by Eq. (11).

Lemma 2 ensures that the solution is a local minimum of f , and Theorem 2
ensures that it is a global minimum. As a result, bounds of Ωε can be updated
on each execution of the outer (for) loop; this modification considerably
reduces the state-space searched by the verifier, which consequently decreases
the algorithm execution time.

6. Experimental Evaluation

This section describes the experiments design, execution, and analysis
for the proposed CEGIO algorithms. We use the ESBMC tool as verification
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input : A cost function f (x), the space for constraint set Ω, and a desired
precision ε

output : The optimal decision variable vector x∗, and the optimal value of
function f (x∗)

1 Initialize f (0)c randomly and i = 0
2 Declare the auxiliary variables X as non-deterministic integer variables
3 for ε = 0→ η; ε ∈ Z do
4 Define bounds for X with the ASSUME directive, such that X ∈ Ωε

5 Describe a model for objective function f (x), where x = X/10ε

6 Do the auxiliary variable Check = TRUE
7 while Check do
8 Constrain f (x(i)) < f (i)c with the ASSUME directive
9 Verify the satisfiability of ¬lsuboptimal given by Eq. (5) with the ASSERT directive

10 if ¬lsuboptimal is satisfiable then
11 Update x∗ = x(i) and f (x∗) = f (x(i)) based on the counterexample
12 Do i = i + 1

13 Do f (i)c = f (x∗)− δ

14 end
15 else
16 Check = FALSE
17 end
18 end
19 Update limits of the set Ωε

20 end
21 return x∗ and f (x∗)

Algorithm 3: CEGIO-F: the fast algorithm.

engine to find the optimal solution for a particular class of functions. We also
compare the present approaches to other exisiting techniques, including genetic
algorithm, particle swarm, pattern search, simulated annealing, and nonlinear
programming. Preliminary results allowed us to improve the experimental
evaluation as follows.

(i) There are functions with multiplication operations and large inputs, which
lead to overflow in some particular benchmarks. Thus, the data-type
float is replaced by double in some particular functions to avoid over-
flow.

(ii) We over-approximate floats by fixed-point arithmetic for those solvers
that do not support floating-point arithmetic. In particular, this over-
approximation might introduce behavior that is not present in a real
implementation. However, we still aimed to exploit those SMT solvers
(with no support for floating-point arithmetic), in order to check the
feasibility of our approach, given that an encoding of the full floating-
point arithmetic into the BMC framework typically leads to large formulae
to be handled by the SAT solver after bit-blasting.

(iii) ESBMC uses different SMT solvers to perform program verification.
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Depending on the selected solver, the results, verification time, and
counterexamples can be different. This is observed in several stud-
ies [28, 59, 60, 67]; as a result, our evaluation here is also carried out
using different SMT solvers such as Boolector [15], Z3 [14], and Math-
SAT [16], in order to check whether a particular solver heavily influences
the performance of the CEGIO algorithms.

(iv) There are functions that present properties which permits the formulation
of invariants to prune the state-space search, e.g., functions that use abso-
lute value operators (or polynomial functions with even degree); those
functions will always present positive values. As a result, the optimiza-
tion processes can be simplified, reducing the search domain to positive
regions only. Such approach led to the development of Algorithm 2,
which aims to reduce the verification time.

All experiments are conducted on a otherwise idle computer equipped
with Intel Core i7-4790 CPU 3.60 GHz, with 16 GB of RAM, and Linux OS
Ubuntu 14.10. All presented execution times are CPU times, i.e., only time
periods spent in allocated CPUs, which were measured with the times system
call (POSIX system).

6.1. Experimental Objectives

The experiments aim to answer two research questions:

RQ1 (sanity check) what results do the proposed CEGIO algorithms obtain
when searching for the functions optimal solution?

RQ2 (performance) what is the proposed CEGIO algorithms performance if
compared to genetic algorithm, particle swarm, pattern search, simulated
annealing, and non-linear programming?

6.2. Description of Benchmarks

In order to answer these research questions, we consider 30 reference
functions of global optimization problems extracted from the literature [68];
all reference functions are multivariable with two decision variables. Those
functions present different formats, e.g., polynomials, sine, cosine, floor, sum,
square root; and can be continuous, differentiable, separable, non-separable,
scalable, non-scalable, uni-modal, and multi-modal. Note that the boundaries
of these global constrained optimization problems are literally extracted from
the literature [68]. Naturally, a large domain will penalize the proposed
method performance, but the global optimization accuracy still holds. In
real-world applications, the boundaries are very particular and depend on
each problem and application. In future, we intend to automatically extract
those boundaries using abstract interpretation based on interval, octagons, and
polyhedral constrains [69].

The employed benchmark suite is described in Table 1 as follows: bench-
mark name, domain, and global minimum, respectively. In order to perform
the experiments with three different CEGIO algorithms, generalized (Alg. 1),
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simplified (Alg. 2), and fast (Alg. 3), a set of programs were developed for
each function, taking into account each algorithm and varying the solver and
the data-type accordingly. For the experiment with the generalized algorithm,
all benchmarks are employed; for the simplified algorithm, 15 functions are
selected from the benchmark suite. By previous observation, we can affirm
that those 15 functions are semi-definite positive; lastly, we selected 10 convex
functions from the benchmark suite to evaluate the fast algorithm.

Table 1: Benchmark Suite for Global Optimization Problems. For all i = 1, 2.

# Benchmark Domain Global Minima
01 Engvall −10 ≤ xi ≤ 10 f (1, 0) = 0
02 Tsoulos −1 ≤ xi ≤ 1 f (0, 0) = −2
03 Zirilli −10 ≤ xi ≤ 10 f (1.046, 0) = −0.3523
04 Step 2 −100 ≤ xi ≤ 100 f (0, 0) = 0
05 Scahffer 4 −10 ≤ xi ≤ 10 f (0, 1.253) = 0.292
06 Adjiman −1 ≤ xi ≤ 2 f (2, 0.10578) = −2.02181
07 Cosine −1 ≤ xi ≤ 1 f (0, 0) = −0.2
08 S2 −5 ≤ xi ≤ 5 f (x1, 0.7) = 2
09 Styblinski Tang −5 ≤ xi ≤ 5 f (2.903, 2.903) = −78.332
10 Trecanni −5 ≤ xi ≤ 5 f ({0, 0}, {2, 0}) = 0
11 Ursem 1 −3 ≤ xi ≤ 3 f (1.697136, 0) = −4.8168

12 Branin RCOS −5 ≤ xi ≤ 15
f ({−π, 12.275}, {π, 2.275},
{3π, 2.425}) = 0.3978873

13 Wayburn Seader 2 −500 ≤ xi ≤ 500 f ({0.2, 1}, {0.425, 1}) = 0
14 Alpine 1 −10 ≤ xi ≤ 10 f (0, 0) = 0
15 Egg Crate −5 ≤ xi ≤ 5 f (0, 0) = 0
16 Himmeblau −5 ≤ xi ≤ 5 f (3, 2) = 0
17 Leon −2 ≤ xi ≤ 2 f (1, 1) = 0

18 Price 4 −10 ≤ xi ≤ 10
f {(0, 0), (2, 4),

(1.464,−2.506)} = 0
19 Schuwefel 2.25 −10 ≤ xi ≤ 10 f (1, 1) = 0
20 Sphere 0 ≤ xi ≤ 10 f (0, 0) = 0
21 Booth −10 ≤ xi ≤ 10 f (1, 3) = 0
22 Chung −10 ≤ xi ≤ 10 f (0, 0) = 0
23 Cube −10 ≤ xi ≤ 10 f (1, 1) = 0
24 Dixon & Price −10 ≤ xi ≤ 10 f (xi) = 0, xi = 2−((2i−2)/2i)

25 Power Sum −1 ≤ xi ≤ 1 f (0, 0) = 0
26 Schumer −10 ≤ xi ≤ 10 f (0, 0) = 0
27 Sum Square −10 ≤ xi ≤ 10 f (0, 0) = 0
28 Matyas −10 ≤ xi ≤ 10 f (0, 0) = 0
29 Rotated Ellipse −500 ≤ xi ≤ 500 f (0, 0) = 0
30 Zettl −5 ≤ xi ≤ 10 f (0.029, 0) = −0.0037

For the experiments execution with the proposed algorithms, random values
are generated, belonging to the solutions space of each function, and they are
used as initialization of the proposed algorithms, as described in Section 4.
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Table 2: Experimental Times Results with the Generic Algorithm (in seconds).

# Boolector Z3 MathSAT # Boolector Z3 MathSAT
1 1020 3653 662 16 4495 11320 10
2 305 9023 2865 17 269 1254 4
3 383 720 662 18 16049* 110591 6
4 3 1 11 19 2972 5489 7
5 6785 14738 33897 20 1 1 2
6 665 2969 19313 21 2660 972 5
7 393 2358 3678 22 839* 5812* 2
8 32 13 10 23 170779* 77684* 5
9 1330 19620 438 24 36337* 22626* 8

10 76 269 2876 25 3 40 4
11 808 645 11737 26 445 20 4
12 17458 25941 3245 27 41 1 3
13 33794* 36324 37 28 5945 5267 23
14 537 6788 590 29 1210 2741 16
15 5770 3565 500 30 271 611 11

The other optimization techniques used for comparison, had all benchmarks
performed by means of the Optimization Toolbox in MATLAB 2016b [70] with
the entire benchmark suite. The time presented in the following tables are
related to the average of 20 executions for each benchmark; the measuring unit
is always in seconds based on the CPU time.

6.3. Experimental Results

In the next subsections, we evaluate the proposed CEGIO algorithms per-
formance; we also compare them to other traditional techniques. All functions
in Table 1 were used for Alg. 1 experiments, functions (#13− #27) were used
for Alg. 2 experiments and functions (#21− #30) for Alg 3. Furthermore, for
all experiments, the minimum-improvement cost function value (δ) and the
precision of the decision variables are set to 10−4 and 10−3, respectively.

6.3.1. Generalized Algorithm (CEGIO-G) Evaluation
The experimental results presented in Table 2 are related to the performance

evaluation of the Generalized Algorithm (CEGIO-G) (cf. Alg. 1). Here, the CPU
time is measured in seconds to find the global minimum using the ESBMC tool
with a particular SMT solver. Each column of Table 2 is described as follows:
columns 1 and 5 are related to functions of the benchmark suite; columns 2
and 6 are related to the configuration of ESBMC with Boolector; columns 3 and
7 are related to ESBMC with Z3; and columns 4 and 8 are related to ESBMC
with MathSAT.

All benchmarks are employed for evaluating the generalized algorithm
performance. The correct global minima is found in all benchmarks using
different SMT solvers: MathSAT, Z3, and Boolector. For all evaluated bench-
marks, MathSAT is 4.6 and 3.7 times faster than Z3 and Boolector, respectively,
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although there are benchmarks in which MathSAT took longer, e.g., in Scahffer
(#5) and Adjiman (#6) functions. If we compare the performance of MathSAT
with other SMT solvers, we can also check that it is routinely faster than
Boolector and Z3, which performed better in 60% of the benchmarks, while for
Boolector in 30% and Z3 in 13% of all considered benchmarks. In particular, for
theSphere (#20) function, Boolector and Z3 performed similarly. Furthermore,
the MathSAT solver achieved the best overall performance, considering the
overall optimization time.

Initially, all experiments were performed using float-type variables, but
we noticed that there was either overflow in some particular benchmarks,
e.g., the Cube (#23) functions. It occurs due to truncation in some arithmetic
operations and series, e.g., sines and cosines, once the verification engine
employs fixed-point for computations. This might lead to a serious problem if
there are several operations being performed with very large inputs, in a way
that causes errors that can be propagated; those errors thus lead to incorrect
results. For this specific reason, we decided to use double-type variables for
these particular benchmarks to increase precision. We observed that the global
minimum value is always found using double precision, but it takes longer
than using float-type variables. The cells with asterisks in Table 2 identify the
benchmarks that we use double- instead of float-type.

Additionally, we observed that when the function has more than one global
minimum, e.g., Wayburn Seader 2 (#13), which has two for the decision variables
f {(0.2.1), (0.425, 1)}, the algorithm first finds the global minimum with the
decision variables of less precision, then in this case f (0.2, 1). Analyzing
Alg. 1, when an overall minimum value is found, the condition in line 10 is
not satisfied, since there is no candidate value less than the current one found;
thus, the precision is updated and the outer loop starts again. Even if there is
another overall minimum in this new precision, it will not be considered by
the ASSUME directive in line 8, since the decision variables define a δ-minor
candidate value due to the condition in line 13 of Alg. 1, which corresponds to
Eq. 5. In order to find the other global minimum, it would be required to limit
it with the ASSUME directive, thus disregarding the previous minimum.

6.3.2. Simplified Algorithm (CEGIO-S) Evaluation
The simplified algorithm (CEGIO-S) is applied to functions that contain

invariants about the global minimum, e.g., semi-definite positive functions,
where it is not needed to search for their minimum in the f negative values. For
instance, the Leon (#17) function presented in Eq. (12) has the global minimum
at f (1, 1) = 0 as follows

f (x1, x2) = 100(x2 − x1
2)2 + (1− x1)

2. (12)

By inspection it is possible to claim that there are no negative values for f (x).
Therefore, in order to effectively evaluate Alg 2, 15 benchmarks are selected,
functions #13− #27 in Table 1, which have modules or exponential pair, i.e.,
the lowest possible value to global minimum is a non-negative value. The
experiments are performed using the float data-type, and double as needed
to avoid overflow, using the same solvers as described in Subsection 6.3.1.
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In addition, after exhaustive evaluation with our benchmarks, the learning
rate, α, was fixed at 5 empirically for all functions evaluated by this algorithm.
According to the experimental results shown in Table 3, we confirmed that all
obtained results match those described in the literature [68].

Table 3: Experimental Results with the Simplified Algorithm (in seconds).

#
CEGIO-S CEGIO-G

Boolector Z3 MathSAT Boolector Z3 MathSAT
13 215 2446 30 33794* 36324 37
14 74 2 413 537 6788 590
15 34 2 240 5770 3565 500
16 1 1 6 4495 11320 10
17 1 <1 2 269 1254 4
18 <1 <1 5 16049* 110591 6
19 1 2 5 2972 5489 7
20 <1 <1 <1 1 1 2
21 <1 <1 1 2660 972 5
22 <1 <1 <1 839* 5812* 2
23 <1 <1 2 170779* 77684* 5
24 14 2 6 36337* 22626* 8
25 <1 <1 2 3 40 4
26 <1 <1 1 445 20 4
27 <1 <1 <1 41 1 3

Additionally, we can see that the simplified algorithm reduces the opti-
mization time considerably, with particular benchmarks reaching less than 1
second. However, the reduction with the MathSAT solver is less expressive
since it models float-type variables using floating-point arithmetic in both
CEGIO-S and CEGIO-G algorithms, while Boolector and Z3 uses fixed-point
arithmetic. We conclude that either our fast algorithm is suitable for fixed-point
architectures or MathSAT implements more aggressive simplifications than
Boolector and Z3 .

The purpose of this algorithm is to find the global minimum to reduce
the verification time, for functions that have invariants about the global mini-
mum. However, the simplified algorithm run-time might be longer than the
generalized one since it requires parameter settings according to the function.
As described in Subsection 5.1, in line 7 of Alg 2, we have the variable γ that
defines the state-space search segmentation; γ is obtained by the difference
of the current f (x) and the boundary that we know, divided by the variable
α (previously established). If we have a very large absolute value for α, then
we would have additional checks, thus creating many more properties to be
checked by the verifier (and thus leading it to longer verification times).

If we analyze S2 (#08) function in Eq. (13), then we can easily inspect that
there is no f (x) less than 2; in this case, therefore, in line 1 of Alg 2, one can
establish fm with the value 2. This slightly change in the initialization of fm in
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Alg 2 prunes the state-space search and the verification time accordingly.

f (x1, x2) = 2 + (x2 − 0.7)2 (13)

6.3.3. Fast Algorithm (CEGIO-F) Evaluation
The experimental results for the fast algorithm (CEGIO-F) are presented in

Table 4. This algorithm is applied to convex functions, where there is only a
global minimum; in particular, the state-space is reduced on each iteration of
the outer (for) loop in Alg 3, ensuring that the global minimum is in the new
(delimited) space, and then it performs a new search in that space to reduce
the overall optimization time.

In order to evaluate the effectiveness of Alg 3, we selected approximately
10 convex functions of the benchmark suite, functions #21− #30 in Table 1; we
also compare the fast algorithm (CEGIO-F) results with the generalized one
(CEGIO-G). We observed that there are significant performance improvements
if we compare CEGIO-F to CEGIO-G for convex function benchmarks, i.e.,
CEGIO-F algorithm is 1000 times faster using the SMT solver Boolector and 750
times faster using the SMT solver Z3 than the (original) CEGIO-G algorithm,
as shown in Table 4.

Table 4: Experimental Results with the Fast Algorithm (in seconds).

#
CEGIO-F CEGIO-G

Boolector Z3 Boolector Z3
21 <1 <1 2660 972
22 33* 26* 839* 5812*
23 43* 25 170779* 77684*
24 59* 10* 36337* 22626*
25 1 10 3 40
26 1 2 445 20
27 1 <1 41 1
28 7 2 5945 5267
29 2 1* 1210 2741
30 63* 76 271 611

6.3.4. Comparison to Other Traditional Techniques
In this section, our CEGIO algorithms are compared to other traditional

optimization techniques: genetic algorithm (GA), particle swarm (ParSwarm),
pattern search (PatSearch), simulated annealing (SA), and nonlinear program-
ming (NLP).

Table 5 describes the hit rates and the mean time for each function w.r.t. our
proposal (ESBMC) and other existing techniques (GA, ParSwarm, PatSearch,
SA, and NLP). An identification for each algorithm is defined: (1) Generalized,
(2) Simplified, and (3) Fast. All traditional optimization techniques are executed
20 times using MATLAB, for obtaining the correctness rate and the mean time
for each function. These techniques are also configured through the default
MATLAB settings.
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Our hit rate is omitted for the sake of space, but our algorithms have found
the correct global minima in 100% of the experiments, considering the precision
of 10−3 for decision variables, the same criterion was used for analysis Of the
other algorithms. The experiments show that our hit rate is superior than any
other optimization technique, although the optimization time is usually longer.

The other optimization techniques are very sensitive to non-convexity; for
this reason, they are usually trapped by local minima. The other optimization
techniques presented better performance in convex functions. Specifically, they
converge faster to the response and there are no local minimums that could
lead to incorrect results, whereas with the non-convex functions, their hit rate
is lower, precisely because there are local minimums.

29



Table 5: Experimental Results with the Traditional Techniques and our Best CEGIO Algorithm
(in seconds).

#
ESBMC GA ParSwarm PatSearch SA NLP

T R% T R% T R% T R% T R% T
1 661(1) 90 1 100 2 90 3 95 1 100 7
2 305(1) 100 9 95 1 100 3 75 9 0 6
3 383(1) 100 9 100 1 100 3 60 1 75 2
4 1(1) 0 9 0 1 0 2 0 8 0 1
5 6785(1) 30 1 15 <1 0 <1 0 2 0 <1
6 665(1) 0 10 100 1 0 4 80 2 95 2
7 393(1) 100 9 100 1 95 3 95 2 15 2
8 10(1) 65 <1 100 <1 100 <1 85 1 100 <1
9 438(1) 100 9 100 1 50 3 100 1 35 2
10 76(1) 0 9 0 1 0 3 0 1 0 2
11 645(1) 100 9 100 1 100 3 80 1 65 2
12 3245(1) 100 8 100 9 100 4 75 8 0 5
13 30(2) 100 1 95 1 100 3 100 1 100 2
14 2(2) 25 1 45 3 10 4 50 1 0 9
15 2(2) 100 9 100 1 70 3 100 1 25 2
16 1(2) 60 9 50 1 25 3 15 1 35 2
17 < 1(2) 90 1 75 2 0 7 10 1 100 4
18 < 1(2) 0 9 10 2 0 7 0 4 50 2
19 1(2) 100 1 95 1 100 3 100 1 100 2
20 < 1(2) 100 10 100 7 100 4 100 1 100 2
21 < 1(3) 100 10 100 2 100 6 95 1 100 2
22 26(3) 100 9 100 1 100 4 90 1 100 5
23 25(3) 20 1 30 3 0 8 10 2 100 7
24 10(3) 0 9 0 2 0 3 0 1 0 2
25 1(3) 100 9 100 1 100 3 50 1 100 2
26 1(3) 100 9 100 1 100 4 75 1 100 4
27 < 1(3) 100 9 100 1 100 4 100 1 100 2
28 2(3) 100 9 100 1 100 8 10 1 100 2
29 1(3) 100 9 100 2 100 7 100 1 100 2
30 63(3) 100 9 100 1 100 3 60 1 75 2

7. Additional Performance Issues

In the previous Section, the proposed algorithms were evaluated using a
large set of benchmarks, and presented competitive performance if compared
to traditional non-convex optimization techniques. However, some issues
related to the efficiency of the proposed algorithm must be discussed:

• the effect of a large amount of decision variables;

• the effect of the variation of minimum variation step;
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• the use of special trigonometric functions, e.g., sine and cosine.

7.1. Effects of varying the number of decision variables and the minimum variation
step

In Section 6, all the evaluated benchmarks were defined by two-dimensional
functions and by using minimum variation step (δ) of 10−4. In this subsection,
we will briefly discuss the effect of the variation of these characteristics in the
optimization time.

In order to exploit the effect of the variables number in the proposed
algorithms, the Styblinski-Tang (#09) function was chosen, which is given by
Eq. (14)

f (x1, x2, ..., xn) =
1
2

n

∑
i=2

(x4
i − 16x2

i + 5xi), (14)

where n is the number of decision variables.
The generalized algorithm (Alg. 1) and the MathSAT solver were used to

evaluate this particular non-convex function. We use the MathSAT solver since
it showed a better performance in previous experiments if compared to Z3 and
Boolector. In addition, the minimum improvement at each iteration in the cost
function, δ, varies from 10−1 to 10−4 and the number of variables from 2 to 10.
Figure 6 shows the optimization times for the described configurations.
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Figure 6: Effect on the number of decision variables to the optimization time, for different values
of δ.

Note that, the optimization time tends to increase if the number of variables
increases. Furthermore, the optimization time also tends to be longer if δ gets
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smaller. These results were expected once that the reduction of δ tends to
increase the number of algorithms iterations. Note that the worst case size of
the search space can be estimated (by analysis of the CEGIO-G, Algorithm 1)
at ∏k

i=1 ||Domain(xi)||.
The worst case of CEGIO-G can be evaluated through the previous estima-

tive, however, each algorithm step generally finishes before the exploration of
all the search domain once it stops when the ¬lsuboptimal (defined in Eq. (5))
is SAT. For this reason, even when the number of variables is increased and
the δ is decreased, the optimization time might reduce. Figure 6 shows that
there are cases where the optimization time decreases significantly with the
increasing of the number of variables.

7.2. Special Operations

Another important issue related to the efficiency of the proposed algorithms
is related to the implementation of mathematical functions and its relation
with optimization accuracy and time. In particular, the trigonometric functions,
e.g., sin() and cos(), in operations related to the cost function evaluation
of the optimization problem, require special treatment. SMT solvers do not
support this type of operations, however, we can use the math.h library of the
C programming language for this purpose, and the results of these operations
(performed via math.h implementation) are used to compute the cost function.
However, the use of the math.h library makes the SMT solver to solve a harder
verification condition, which usually results in a long optimization time and
efficiency loss. To avoid this problem, sin() and cos() functions have been
reimplemented in a library called math2.h, using a set of assumptions and
based on Taylor series [71]. Our implementation presents better performance
than the original functions of the math.h library if they performed in veri-
fication, while maintaining the required accuracy. All those reimplemented
functions have the precision of 10−6.

Note also that in all algorithms, the cost function is computed via the float
variable, x, which is defined as, x = X/10ε, then the manipulation of the
integer variable, X, to achieve the desired precision, does not influence in the
cost function calculation.

8. Conclusions

This paper presented three variants of a counterexample guided inductive
optimization approach for optimizing a wide range of functions based on
counterexamples extracted from SMT solvers. In particular, this work proposed
algorithms to perform inductive generalization based on counterexamples pro-
vided by a verification oracle for optimizing convex and non-convex functions
and also presented respective proofs for global convergence. Furthermore,
the present study provided an analysis about the influence of the solver and
data-types in the performance of the proposed algorithms.

All proposed algorithms were exhaustively evaluated using a large set
of public available benchmarks. We also evaluated the present algorithms
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performance using different SMT solvers and compared them to other state-
of-art optimization techniques (genetic algorithm, particle swarm, pattern
search, nonlinear programming, and simulated annealing). The counterex-
ample guided inductive optimization algorithms are able to find the global
optima in 100% of the benchmarks, and the optimization time is significantly
reduced if compared to Araújo et al. [13]. Traditional optimization techniques
are typically trapped by local minima and are unable to ensure the global
optimization, although they still present lower optimization times than the
proposed algorithms.

In contrast to previous optimization techniques, the present approaches
are suitable for every class of functions; they are also complete, providing an
improved accuracy compared to other existing traditional techniques. Future
studies include the application of the present approach to autonomous vehicles
navigation systems, enhancements in the model-checking procedure for reduc-
ing the verification time by means of multi-core verification [26] and invariant
generation [64, 72]. We also intend to improve the proposed algorithms as
follows: i) implement δ to be computed dynamically, since it is currently fixed
in the proposed algorithm, especially for Alg. 2, which depends on a dynamic
learning rate (α); ii) implementing heuristic to reduce the optimization time;
iii) use powers of 2 instead of powers of 10 in divisions for space discretization,
thus improving the numerical performance. Finally, we intend to extend all
present approaches for multi-objective optimization problems.
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