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Abstract We describe and evaluate a novel approach to formally verify
whether a digital control system meets specifications related to step-response
parameters. In particular, we obtain a state feedback controller designed for
a system represented by a state-space model. Then we analyze whether its
required specifications regarding settling time and maximum overshoot are
met, using both open- and closed-loop forms and considering finite word-length
(FWL) effects for the latter. We developed our verification approaches inside
DSVerifier, which is a verification tool that employs bounded (and unbounded)
model checking based on satisfiability modulo theories. Thus, DSVerifier checks
performance requirements of digital control systems considering fragility, such
as round-off and numerical quantization errors. Our approaches were also
evaluated over a set of standard control-system benchmarks extracted from
the control literature. Experimental results show that DSVerifier can check
settling-time and overshoot in control systems suffering from FWL effects,
while other existing approaches routinely ignore those issues.
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1 Introduction

A digital control system consists of sensors, controlled systems, control al-
gorithms, and actuators, which together seek to maintain the behavior of a
plant’s (controlled system) variables under control, i.e., they ensure the de-
sired transient- and steady-state responses [10]. The development of digital
controllers is a crucial task in control engineering since they are routinely used
for many different applications, which range from industrial plants to smart
cities.

Digital control theory aims at preserving some properties based on discrete-
time models, e.g., stability and robustness [7], which are necessary for the
correct operation of real plants through a digital controller. Controlling contin-
uous systems using digital controllers raises problems typical of hybrid systems.
Besides, round-off and quantization of measurements and coefficients in digital
control systems, due to finite word length (FWL) implementations, can lead to
overflow, limit-cycle oscillation, and poles and zeros sensitivity, which might
cause system instability and performance degradation [18,2]. Indeed, that kind
of sensitivity is called fragility [20] and its investigation is worth to ensure com-
pliance with functional requirements, in real-world applications. In literature,
some related studies consider fragility on control system implementations, e.g.,
Istepanian and Whidborne [18] reported some of the main results regarding
fragility analysis, in digital control systems.

In the past years, some initiatives using formal verification applied to
dynamic control systems have been developed. For instance, Bessa et al. [2,4]
presented a verification method to determine uncertain linear-system stability
regarding digital controllers, taking into account implementation aspects. Wang
et al. [31] extended traditional verification techniques for digital controller
implementation, with the goal of addressing validation of robustness at both
model and code level. Chaves et al. [3] explored a behavior-modeling approach
and developed models for digital controllers implemented with fixed-point
arithmetic, where effects, such as overflow and limit-cycle oscillations, were
checked, which resulted in the correct operation or at least guidelines for system
redesign.

Yordanov et al. [32] considered small perturbations in inputs of a dynamic
system to synthesize a feedback control strategy for a discrete-time piecewise
affine (PWA) system from a specification given as a linear temporal logic (LTL)
formula over an arbitrary set of linear predicates over system’s state variables.
Lahijanian et al. [22] proposed model checking algorithms based on probabilistic
computation tree logic. The authors check the state reachability and safety of
discrete-time stochastic systems. Also, Sadraddini and Belta [27] used signal
temporal logic (STL) formulas to specify properties on discrete-time positive
monotone systems and then synthesize robust model predictive controllers,
while guaranteeing that STL specifications are met. Nilsson et al. [24] applied
formal methods to adaptive cruise control and performed the synthesis of
controllers that are correct-by-construction.
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Step-response parameters, e.g., required settling-time and overshoot speci-
fications [10], are commonly used for specifying control systems, in order to
indicate that closed-loop entities are safe, concerning those performance speci-
fications. Nonetheless, there exist a few related studies that tackle performance
parameters with formal methods. In that sense, Gross et al. presented an
approach for formalizing common requirements for spacecraft attitude-control
systems, where settling-times are checked through hypothesis testing [13]. Ad-
ditionally, Jin et al. proposed a framework based on formal methods, to capture
requirements from closed-loop models of industrial-scale control systems, includ-
ing settling-time and overshoot [19]. Indeed, given that disturbances or changes
in inputs may lead to transient oscillations in regulated outputs, the latter must
be in the settling-time region, i.e., an area specifying the tolerated deviations
from a given reference, within a specified settling-time, and overshoots are
lower than a maximum required value [19]. It is worth mentioning that FWL
effects have a significant impact on system behavior [18]; however, to the best
of our knowledge, there exists no application of formal verification techniques
to check non-fragile satisfaction of step-response specifications.

Thus, this work presents a formal technique for settling-time and overshoot
verification, in digital control-systems and regarding realizations in fixed-point
representations, which was implemented in a model checker named as DSVeri-
fier. Indeed, the latter has been evolved and is now capable of checking many
properties in digital systems, including digital filters, digital controllers, and
closed-loop systems [6]. In summary, simulations with restricted numerical for-
mats for a given system are run, while considering system-design requirements
as properties to be verified by a formal method.

FWL effects and their influence on digital control-system stability were
already investigated by Bessa et al. [2], while the present work tackles controller-
fragility consequences regarding performance. Moreover, stability is not the
only issue to be considered, given that performance aspects are also important.
In fact, control systems are now being employed in many different areas, such
as aerial vehicles [13] and biomedical engineering [16,30], whose behavior may
be compromised by implementation issues. For instance, long settling-times
have the potential to cause loss of stability or even result in structural damages
in UAVs, while overshoot events may result in unexpectedly large amounts of
medicament being administrated to patients, which must be avoided during
design phases.

Contributions. This paper makes the following original contributions:

– We propose a novel approach for automatic verification of performance
specifications (settling-time and overshoot) of digital linear time-invariant
systems while considering system fragility in the fixed-point representation
of state-feedback controllers. In particular, we use invariants [23] to check
whether given settling-time specifications are met;

– Experimental results show that our approach can efficiently check settling-
time and overshoot specifications, in control applications under FWL effects.



4 Thiago Cavalcante et al.

Outline. Section 2 presents related studies. Section 3, in turn, describes funda-
mental concepts about digital controllers, along with implementation aspects.
In Section 4, the settling-time invariant for formal verification is presented.
Section 5 is concerned with verifying non-fragile settling-time requirements,
while section 6 covers the verification of non-fragile maximum overshoot require-
ments. Section 7 tackles the performed verification experiments and discusses
the obtained results. Finally, Section 9 concludes this work and proposes future
research topics.

2 Related Work

Currently, some studies address problems related to control-system verification,
whether in continuous or discrete-time and also considering some requirements,
such as stability; however, the focus of our work lies on discrete-time systems.
Also, most studies deal with verification of different control-system requirements,
while the present research tackles only verification of performance requirements,
which promptly indicates its importance and novelty.

2.1 Verification of Closed-loop Control Systems

Bessa et al. [2] presented a verification methodology to formally determine
uncertain stability of digital controllers, w.r.t. implementation aspects. Specifi-
cally, that verification approach was implemented in DSVerifier [17], which is a
verification tool that uses bounded model checking (BMC) based on satisfiabil-
ity modulo theories (SMT) to verify digital control systems while considering
uncertainty, plants, and finite word length (FWL) effects on digital-controller
implementations. As a consequence, it indeed checks the robust “non-fragile”
stability of a given closed-loop system. That proposed verification methodology
was evaluated with non-fragile control examples found in the corresponding
literature, which showed it could predict fragility problems in robust controllers,
regarding their stability and considering FWL effects. Nonetheless, that study
concerns only stability verification, while performance aspects, which are of
utmost importance when designing controllers, were left out.

Wang et al. [31] presented an approach to verify control-system robustness,
at coding and modeling levels, which is based on invariant computation in
discrete system dynamics. By using semi-definite programming (SDP) solvers,
a Lyapunov-based function is synthesized, thereby capturing vector margins of
closed-loop linear systems. Such a numerical invariant expressed through system
state variables is compatible with code analysis and allows its validation in
code artifacts. That automatic analysis extends verification techniques focused
on controller implementations, thus addressing validation of robustness in both
model and code levels. It was implemented in a tool that analyzes discrete
single-input single-output (SISO) systems and generates super-approximations
of phase and gain margins. Once again, this study employs verification through
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a code-level approach, while considering effects caused by fixed-point arithmetic;
however, it does not take into account performance aspects in controllers.

Gross et al. [13] proposed an approach to formalize common spacecraft
attitude control system requirements, such as actuator limits, display error,
reachability, deviation, settling time, rise time, and overshoot. Those authors
used formal methods, more specifically model verification and hypothesis test-
ing, to verify the performance requirements of spacecraft attitude control
systems. That study evaluates such systems and verifies whether they meet
requirements over the continuous-time domain. Although the initial intention
was to determine whether attitude control designs for spacecraft met system
requirements, discrete-time systems were not tackled. In particular, imple-
mentation aspects were not considered, and the resulting non-linear motion
equations proved to be very complicated for solvers since only some aspects
were analyzed; however, digital-controller performance aspects were considered,
such as pointing accuracy, pointing range, slew rate, overshoot, and settling
time. Indeed, although even settling-time and overshoot were considered, FWL
effects were not taken into account, and the approach presented here is more
generic.

Guéguen and Zaytoon [14] presented a basic overview regarding verification
of hybrid systems and stated that, in such a context, the available approaches
traditionally verify three kinds of properties: safety ones, which express unau-
thorized configurations to be avoided during system evolution; liveliness ones,
which describe the probability or likelihood of certain necessary system evolu-
tions; and timeliness ones, which express limits regarding temporal distance of
certain characteristic events or evolutions. One may notably notice that they
do not consider FWL effects or tackle implementation aspects, as done in the
present article and constitute the core of the methodology proposed here.

Chaves et al. [5] describe a verification procedure for digital systems with
uncertainties, based on software model checking and satisfiability modulo theo-
ries, which can check robust stability of closed-loop control systems concerning
FWL effects. In particular, they describe verification algorithms to check for
limit-cycle oscillations (LCOs), output quantization error, and robust non-
fragile stability on common closed-loop associations of digital control systems
(i.e., series and feedback). In particular, their work takes into account FWL
effects, which is great, given its importance when such systems are implemented
in the real world; however, step-response performance requirements of digital
control systems are not verified. In that sense, there is some complementarity
between that work and the present one, which has already inspired future
studies.

Araiza-Illan et al. [1] introduce a formal verification methodology for high-
level properties of control systems, such as stability, feedback gain, and robust-
ness, with theorem proving, using the Why3 tool [9]. The evaluated systems
are represented as Simulink® models and three main validation steps were sug-
gested: definition properties of interest over the signals in a model; automatic
translation into Why3; and automatic property verification in Why3. Indeed,
that approach is interesting for analyzing control systems; however, it does not
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take into account FWL effects and performance state-feedback control-system
properties.

As one may notice, the literature elements gathered here show the impor-
tance of the proposed methodology, as it fills in a gap regarding requirements
and restricted implementations. Besides, the approach developed here has the
potential to devise a new class of controller verifiers, which can validate imple-
mentations regarding design-requirement evaluation over final implementations,
still in development phases.

2.2 Synthesis of Digital Control Systems

Yordanov et al. [32] presented a computational framework for automatic syn-
thesis of a feedback control strategy for discrete-time systems; more precisely,
piecewise affine (PWA) systems, which for short are defined by partitioning
extended state-input spaces into polyhedral regions and associating each one
with a different affine state update equation [8], from a given specification
as a linear temporal logic (LTL) over an arbitrary set of linear predicates
in system state variables. Such an approach consists of defining appropriate
partitions for state and input spaces and then constructing a finite abstraction
of the system, in the form of a control transition system. Then, by taking
advantage of ideas and verification techniques of LTL models and Rabin games,
the respective authors developed an algorithm to generate a control strategy
for finite abstraction. The resulting approach ensures that a control strategy,
generated for a finite control system, can be easily transformed into a control
strategy for the first PWA system. Although proven to be correct, the overall
solution is conservative and computationally expensive. Additionally, while
succeeding in synthesizing controllers, it fails to consider relevant aspects in
digital-controller designs, such as performance and effects of controller fragility,
when implemented in microprocessors.

Sadraddini and Belta [26] developed a method to control discrete-time
systems with constant parameters, which are initially unknown from LTL
specifications. Those authors used notions of parametric and adaptive transition
systems (non-deterministic) and formal methods tools to compute adaptive
control strategies for finite systems. Although traditional adaptive-control
strategies are not employed, an approach that is corrected by construction
is used, which does not require a reference model and can handle a much
more comprehensive range of systems and specifications. However, it does not
take into account aspects of system performance nor considers step responses,
as well as leaves aside implementation aspects, such as FWL effects. As the
majority of applications of formal methods, their results suffer from high
computational complexity; as discussed in this particular study, the number
of states in resulting adaptive transition systems (ATSs) can be vast. Finally,
the construction of finite quotients for infinite systems is computationally
challenging.
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2.3 Optimization of Controllers

Hassani and Lee [15] presented a generic multi-objective design paradigm that
uses quantum particle swarm optimization (QPSO) to decide the optimal
configuration of an LQR controller for a given problem, considering a set
of competing objectives. There exist three main contributions introduced in
that study: (1) the standard QPSO algorithm is reinforced with an informed
initialization scheme based on simulated annealing and Gaussian neighborhood
selection, (2) it is also augmented with a local search strategy that integrates
the advantages of the memetic algorithm in conventional QPSO, and, finally, (3)
it also introduces an aggregate dynamic weighting criterion that dynamically
combines soft and hard constraints with control objectives, to provide a set of
optimal Pareto solutions, which allows it to choose a target solution based on
practical preferences. The mentioned study is very promising since it verifies
some performance specifications, such as settling time and overshoot, in control
systems. Apart from that, the entire analysis considers controllers in continuous-
time. As it does not work directly with digital control systems, this approach
does not take into account its implementation aspects in microprocessors. It is
then unable to generate controllers that, when implemented in those platforms,
behave as designed, since they may suffer from FWL effects. The present paper
tackles some aspects that many of those studies already address; however, it
also covers all of these aspects at the same time, such as analysis in discrete-
time systems, performance requirements of control systems (settling time and
overshoot), and implementation aspects (FWL effects).

One may also notice that the problem of digital-controller verification
is pertinent since this process is of paramount importance in design phases.
Verification of digital controllers is regarded as a complex problem and it is
also difficult to be understood because many studies try to solve it in different
ways and take into account different factors. The main advantages of the
proposed methodology, when comparing with the other schemes presented here,
can be listed as follows:

– It works with discrete-time control systems, which is effectively used when
implementing on an embedded microprocessor platform;

– It verifies controllers and considers performance requirements (settling time
and overshoot);

– Implementation aspects are considered, since FWL effects, for example, can
lead to faults.

Table 1 present a brief comparison between the proposed method and the
selected related studies. The performance-requirement support described in
Table 1 considers settling time and overshoot. One may notice that, regarding
the studies presented here, no one covers discrete-time systems. Besides, there is
a lack of studies regarding the verification of performance requirements. Finally,
another gap is related to considering aspects of controller implementations,
more specifically, FWL effects, because a few of them indeed deal with such an
issue.
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Table 1: Related work comparison

Related

works

Discrete-time

system

support

Performance

requirement

support

Consider

FWL

effects
Bessa et al. (2017) X X
Wang et al. (2016) X

Yordanov et al. (2012) X
Sadraddini and Belta (2017) X

Gross et al. (2017) X
Guéguen and Zaytoon (2004) X

Chaves et al. (2019) X X
Araiza-Illan et al. (2014) X
Hassani and Lee (2016) X

The proposed work X X X

3 Preliminaries

3.1 Digital Dynamic Systems

Let Ω be an n-th order single-input single-output (SISO) linear time-invariant
(LTI) digital dynamic state-feedback control system represented as

Ω :


x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

u(k) = r(k)−Kx(k)

, (1)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and D ∈ R are the state-space
realization matrices (A,B,C,D) of Ω, K ∈ R1×n is a digital state-feedback
controller, u(k) ∈ R is a control signal, y(k) ∈ R is a system’s output signal,
r(k) ∈ R is a control system’s reference signal, and x(k) ∈ Rn is a state signal
vector. Ω is an open-loop system, if there exists no feedback signal, i.e., K = 0.
The spectrum S = {λ1, λ2, ..., λn} of Ω is the set of its eigenvalues [7], i.e., λi,
for i = 1, ..., n, are the roots of Ω’s characteristic equation

det(Āλ− I) = 0, (2)

where I is the identity matrix and Ā = A − BK. Fig. 1 illustrates the step
response of a discrete system, where Lupp and Llow define the settling time
region Π, and yss, Mp, ks and kr (cf. Section 5) are its steady-state value,
maximum overshoot, settling time, i.e., the time required for a signal to remain
within p% of its final value, and the reach time, i.e., the sample where the
system’s response reaches the settling-time region for the first time, respectively.

In addition, the output of a discrete system given by Franklin et al. [10] as

y(k) = CAkx(0) +

k−1∑
m=0

(CAk−m−1Bu(m)) +Du(k), (3)

which can be rewritten as y(k) = ys(k)+yh(k), where ys and yh are its particular
and homogeneous solutions, respectively, and the former is computed when
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Figure 1: Step response of a discrete-time system.

time tends to infinite. If a system is stable, its exponential becomes very small
at infinite and we only have what we call yss. As a consequence, it coincides
with a particular solution, if the input is a unit step, i.e., u(k) = 1,∀k ≥ 0.
Finally, its solution is [10]

y(k) = yss +

ni∑
i=1

λki

mj∑
j=1

Cijk
j−1 , (4)

where ni is the number of non repeated poles, mj is the multiplicity of the j-th
pole, and Cij is a constant for each member of the summation. Nonetheless,
in Eq. (4), we have made a generalization, thus including eigenvalues with
multiplicity greater than 1. Finally, yss is described as [10]

yss = C(I −A)−1B +D. (5)

We also want to find an invariant for settling-time verification. In partic-
ular, we aim to find a mapping φ of a given collection M , which consists of
mathematical objects endowed with a fixed equivalence relation ρ, into another
collection N of mathematical objects that is constant on the equivalence classes
of M , concerning ρ (more precisely, that is an invariant of the equivalence
relation ρ on M). If X is an object in M , then one can often say that φ(M) is
an invariant of X [28].

3.2 FWL Effects in Digital State-Feedback Control Systems

We typically design control systems with high-precision poles, zeros, and
variables (e.g., double-precision floating-point arithmetic). However, when
implemented, system parameters and signal variables are often represented
with limited word-length (e.g., fixed- or floating-point arithmetic), through
hardware registers, which gives rise to FWL effects due to truncation and
round-off errors, in control software [18].
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The static state-feedback controller matrix K (see Eq. 1) of a digital system
is heavily affected by FWL effects, which can compromise some system proper-
ties and must be handled during design phases. FWL effects on coefficients are
described as

FWL〈I,F 〉[·] : Rm×n → Rm×nQ , (6)

where Rm×nQ is the discrete set of matrices m × n composed by elements of

Rm×n, which can be represented in the fixed-point format 〈I, F 〉, i.e., I and F
are the number of bits of integer and fractional parts, respectively.

As only K is digital and implemented with fixed-point arithmetic, whose
coefficients are subject to FWL effects, a different n-th order digital state-space
dynamic system with state feedback controller ΩFWL then arises, whose control
signal is u(k) = r(k)−KFWLx(k), where the matrix KFWL := FWL〈I;F 〉[K]
is the controller matrix suffering from FWL effects. As a consequence, such
FWL effects can influence step-response parameters of a system, which may
then fail to meet design specifications.

3.3 Verifying Settling-Time and Maximum Overshoot

DSVerifier is a digital system verification tool that uses the Efficient SMT-Based
Context-Bounded Model Checker (ESBMC) [11] as its main verification engine.
It receives a digital system specification, computes the maximum and minimum
representable numbers for a chosen FWL format, and then, during verification,
checks whether all required parameters were correctly provided. DSVerifier
uses BMC based on SMT and also implements an efficient k -induction proof
rule [11]. Currently, DSVerifier supports stability, limit cycle, quantization
error, settling-time, and overshoot, for closed-loop systems suffering from FWL
effects, and, also, overflow and minimum phase, for open-loop ones [2]. The
proposed method for verifying settling-times was implemented in DSVerifier,
as illustrated in Fig. 2. The settling time ts is the amount of time required for
a signal to remain within 2% of its final value, for all future times, which is
also sometimes defined as reaching 1% or 5% of that [10]

DSVerifier

stability

overflow

limit-cycle
minimum-phase

quantization error

timing constraints

robust stability C
Parser

GOTO
Program

GOTO
Symex

SMT Solver
(Boolector)

Initialization Validation Instrumentation

Digital System
Specification

Settling-Time
OvershootInserted

ESBMC - Efficient SMT Context-Bounded Model Checker

Figure 2: Settling-time and overshoot verification procedure implemented in
DSVerifier.
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On the one hand, we must use the following command-line, if DSVerifier is
configured for checking settling-time: “dsverifier specsFile.ss --property

SETTLING TIME”. In addition, a system and its required settling-time must
be specified in file specsFile.ss, as shown in Fig. 3, where tsr is the re-
quired settling-time to be verified, ts is the adopted sampling time, and
p is the settling-time region percentage. On the other hand, if we verify
overshoot, the command-line would change to “dsverifier specsFile.ss

--property OVERSHOOT”, where we only need to define, in the specification file
specsFile.ss, the parameter POr, which is the required percentage overshoot.

implementation 〈16, 16〉
range [1,1]
states = 4;
inputs = 1;
outputs = 1;
A = [-0.5,0.6,0.0,0.0;-0.6,-0.5,0.0,0.0;
B = [0.0;0.0;2.5;1.0]
C = [0.0,2.6,0.5,1.2]
D = [0.0]
x0 = [0.0;0.0;0.0;0.0]
inputs = [1.0]
tsr = 30.0;
POr = 10
ts = 0.5;
p = 5.0;
K = [0.0,12.6,4.5,1.2]

Figure 3: A digital-system specification for DSVerifier.

4 Settling-Time Invariant for Formal Verification

In this study, we aim to check whether a given digital control system meets a
required settling-time and, as a consequence, we need to model its behavior.
In that sense, let S1 = {|λ1|, |λ2|, . . . , |λn|} be the set of absolute values of
eigenvalues of Ā in system Ω and λ is the spectral radius of Ā, i.e., λ = max(S1).

We can now define a heuristic function, which was developed in the present
work and represents the output response of the system Ω̄ (heuristic system), as

y(k) = yss + cλ
k
, (7)

where c is a constant that makes y(k) enter the settling-time region. Indeed, the
heuristic function above uses the slowest eigenvalue λ̄ of Ā (largest eigenvalue,
in terms of absolute value), which is called spectral radius of Ā, thus ensuring
that Ω̄ always reaches the settling-time region after Ω.

It is worth noticing that Eq. (7) is similar to the response of a 1st order
system, where its particular solution is the constant yss and its homogeneous
solution is the exponential with λ̄ as base, in a power of sample k, as stated by
Franklin, Powell, and Workman [10]. Therefore, we can say that this function
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is an approximation of the original system by a 1st order one, as we will show
in our experimental results described in Section 7.

Equation (7) holds by definition, as we propose a signal with that structure
(see Eq. (4)), and, given that we use the spectral radius of A as exponential base,
the behavior of that response (ȳ(k)) is always slower than y(k), which is the
base for settling-time analysis. Also, Eq. (7) is an exponential that converges

to yss. As a result, we would be able to compute the instant k̂, where a given
response enters a settling-time region. k̂ is a worst-case estimation and, if it is
lower than a required settling-time, the verified system will be able to meet a
settling-time requirement. As a result, we can use k̂ as an invariant value, in
this work, to help verify settling-time.

In summary, we can find a heuristic function based on the largest eigenvalue
of Ω and then check the moment it enters a settling-time region because if that
happens before the required settling-time, that is also true for Ω. To perform
settling-time verification, we indicate a Π region employing a percentage p,
usually 2% or 5%, so its upper (Lupp) and lower (Llow) limits are described as

Lupp =
(

1 +
p

100

)
yss (8)

and

Llow =
(

1− p

100

)
yss, (9)

respectively. The instant k̂ when a system enters its settling-time region can
be found by simply making (7) equal to (8), due to the form of the curve in
(7), which results in

k̂ = dlogλ

( p

100c
yss

)
e. (10)

By approximating Ω (4) with Ω̄ (7), we can apply a point of Ω to Ω̄, in
this case, the point where the maximum peak is located (kp,yp), in order to
obtain

c̄ =
yp − yss

λ̄kp
. (11)

The estimation of (kp,yp) will be further discussed along this work, specifi-
cally in Algorithm 3.

5 Verifying Non-fragile Settling-Time Requirements

Our methodology, which is illustrated in Fig. 4, provides settling-time verifi-
cation in open- and closed-loop systems; however, the former do not present
controllers and, consequently, FWL effects are not taken into account for them.
Its first step consists in obtaining the necessary input parameters, i.e., state-
space matrices A, B, C, and D and a system’s input u, which is followed by the
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digital controller design, if a closed-loop system is considered (Step 2). Then,
an FWL implementation is chosen, when in closed-loop (Step 3), which is
followed by definition of required settling-time tsr, percentage p of settling-time
region, and sampling time Ts (Step 4). This way, we have the specification file
(SpecsFile.ss) and we first verify system stability. After that, steps A to E are
executed (if a resulting system is stable), i.e., computation of FWL controller,
if closed-loop is chosen (Step A), and steady-state value (yss), as described in
Eq. (5) (Step B), estimation of the largest peak-values of the system’s output
(yp) and sample kp corresponding to yp (Step C), and, finally, computation of

λ (Step D), c and k̂ (Step E).

Get andc

Checking

Checking
System’s
Stability

VERIFICATION LEVEL

USER LEVEL
Step 1 Step 2 Step 3 Step 4

Step AStep BStep CStep DStep E

Determine model
Design digital

controller
Define

implementation

Define
requirements

SpecsFile.ss

Compute a
FWL controllerCompute yss

Get y , k and kp p rGet λ

YES

NO

FAILED Verify

Settling
Time

Overshoot

SUCCESS

Figure 4: The proposed verification method for settling-time and overshoot.

The proposed procedure for verifying settling-time, which is described in
Algorithm 1, consists of first checking if all system eigenvalues are real or yp

is in the settling-time region and, if this is true, k̂ gets kr, the latter being
computed with Algorithm 2. Then, if ksr is lower than k̂, the verification fails
and, if not, it is successful; we check if the estimated k̂ is lower than the
required settling-time ksr = tsr

Ts
, which can also be checked through k̂×Ts ≤ tsr

(as used in Algorithm 1). If that is the case, we can assure that the output
signal is within Π (see Section 4) after tsr and, as a consequence, the associated
verification is already successful; otherwise, we still need to check if y remains
within Π from ksr to k̂ and, if the latter is not true for any sample y, the
resulting verification fails. Algorithm 3 describes a procedure for estimating yp

and kp, which are used in Step C of our verification methodology (cf. Fig. 4).
This algorithm was developed in a way to facilitate the verification of settling
time in digital control systems by an invariant based on eigenvalue analysis.
With the use of an invariant, we do not need to try to calculate the settling time
directly, which would be computationally weak since we would calculate the
output for each sample to find the settling time. However, we easily calculate k̂
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(10) to verify whether a given control system meets the required settling time
by using that invariant in the verification process described in Algorithm 1.

Algorithm 1 Verify Settling Time

1: procedure checkSettlingTime()
2: if yp ⊂ Π then

3: k̂ ← kr
4: else
5: k ← tsr

Ts

6: k̂ ← dlogλ
( p
100cyss

)
e (Eq. 10)

7: if k > k̂ then
8: return Verification Successful
9: else

10: while k ≤ k̂ do
11: if y(k) < Llow or y(k) > Lupp then
12: return Verification Failed
13: increment k
14: return Verification Successful
15: if tsr < k̂ × Ts then
16: return Verification Failed
17: else
18: return Verification Successful

Algorithm 2 Procedure to find the instant kr

1: procedure
2: while y(k) 6⊂ Π do
3: increment k
4: kr ← k

To provide a deeper understanding of the proposed methodology, a simple
example will be presented. One can suppose that we have a system

Ω :


x(k + 1) =

1.5 1.0 0.0

0.0 1.5 1.0

0.0 0.0 1.5

x(k) +

−0.4

2.5

−0.8

u(k)

y(k) =
[
0.0 2.6 0.0

]
x(k) + [0]u(k)

u(k) = r(k)−Kx(k)

, (12)

where r(k) = u−1 is the unit step, and we analyze it according to our approach.
This way, Step 1 is ready and Step 2 is then considered, where a controller
matrix K is not defined, due to open-loop operation. Consequently, an FWL
implementation (Step 3) is not provided either. Next, the desired requirements
are defined, that is, tsr = 10s, p = 5 and Ts = 0.5s, in Step 4, through a
specification file SpecsFile.ss.

Finally, given that open-loop operation was considered, this system is evalu-
ated with “dsverifier SpecsFile.ss --property SETTLING TIME”. Steps
A to E of the proposed methodology are automatically performed by DSVer-
ifier, which considers an open-loop implementation, and, as a consequence, “



Formal Non-fragile Verification of Step Response Requirements 15

Algorithm 3 Estimation of yp and kp

1: procedure estimate maxPeak value()
2: yp ← y(k)
3: lastGrad← 1
4: loop
5: if |y(k + 1)| > |y(k)| then
6: gradient = (gradient > 0)?(gradient+ 1) : 1
7: if |y(k + 1)|! = |y(k)| then
8: firstGradSample = y(k + 1)
9: firstGradSampleIdx = k + 1

10: else
11: gradient = (gradient < 0)?(gradient− 1) : −1

12: if (lastGrad > 0) and (gradient < 0) then
13: if |firstGradSample| <= |kp| then
14: increment numBadPeaks
15: if numBadPeaks > 2 then
16: exit(loop)
17: else
18: yp = firstGradSample
19: kp = firstGradSampleIdx

20: else if (grad > 10) and (|(y(k + 1)− yss)/yss| < 0.001) then
21: if |yss| > |yp| then
22: yp = yss
23: kp = 0

24: exit(loop)

25: lastGrad = grad
26: increment k

Verification FAILED” is returned, because the evaluated system is unstable,
since its eigenvalues are greater than 1 (λ = 1.5, due to Eq. (2)). One may no-
tice that the proposed method first checks whether a system is stable, between
Steps A and B.

As the chosen system is unstable, we can go back to Step 2 and de-
sign a controller to stabilize it and satisfy the required settling time, by
using pole assignment [7]. In that case, we used K = [−0.7351 − 5.0045 −
18.5371] in SpecsFile.ss and ran this experiment again, with “--closed-loop”
and still without FWL effects (--no-fwl), which results in “Verification
SUCCESSFUL”, as can be seen in Fig. 5(a), where the step response does not

leave the Π region between ksr and k̂.

Finally, this experiment can consider FWL effects. That is accomplished
by using format 〈4, 4〉, controller matrix KFWL = [−0.6875 − 5.0 − 18.5],
and omitting --no-fwl (Step A), which results in “Verification FAILED”,
as shown in Fig. 5(b), where the system becomes unstable. It is worth noticing
that gain K in SpecsFile.ss is not modified and KFWL is internally computed
by DSVerifier.

To evaluate other formats, 〈8, 8〉 and 〈16, 16〉 are considered, in Step 2. As
a consequence, KFWL = [−0.7344 − 5.0039 − 18.5352] with “Verification
FAILED”, because the step response left the settling-time region between ksr

and k̂, and KFWL = [−0.7351 − 5.0045 − 18.5370] with “Verification
SUCCESSFUL”, because the step response did not leave the settling-time region
between ksr and k̂, are respectively obtained, as can be seen in Figures 5(c)
and (d).
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Figure 5: Settling-time verification for the example system, (a) without FWL
effects and with formats (b) 〈4, 4〉, (c) 〈8, 8〉, and (d) 〈16, 16〉.

As one may notice, the number of bits heavily influences settling-times in
real implementations due to FWL effects. In addition, “Verification FAILED”
was obtained for an intermediate format 〈8, 8〉, while it was successful with
〈16, 16〉. Indeed, given that the resulting settling-time is mostly dependent on
the fastest natural response and its damping ratio [10], the interaction between
them after quantization may cause such behavior, which further reinforces the
use of the proposed methodology, during design phases.

Fig. 5(a) shows that ksr = tsr/Ts = 20 is less than the calculated k̂ = 37
and, as a consequence, for this required settling-time, the mentioned system is
already in the settling time region, so that settling-time is doable in that case.
Finally, the same reasoning is valid for Fig. 5(b), (c), and (d).

6 Verifying Non-fragile Maximum Overshoot Requirements

The maximum overshoot is the maximum transient value that exceeds yss, i.e.,
Mp = yp − yss. Then, the percentage overshoot is computed as follows

PO = 100× Mp = yp − yss

yss
, (13)

where yp can be obtained from Algorithm 3.
Fig. 4 illustrates the overshoot verification methodology step by step in

DSVerifier. Firstly, we must determine the control system’s model (Step 1)
and design a controller, for closed-loop systems (Step 2). After that, we then
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define a chosen FWL implementation (Step 3), and, in Step 4, the overshoot
specification to be verified is informed. Next, SpecsFile.ss is created, which
then enables the system’s stability check and, finally, overshoot verification. The
overshoot verification consists of checking whether the computed percentage
overshoot (PO) is less than the required percentage overshoot (POr). If that
is true, it returns “Verification SUCCESSFUL”; otherwise, “Verification
FAILED” is output, as described in Algorithm 4.

Algorithm 4 Verify Overshoot

1: procedure checkOvershoot(yss, POr)
2: yp ← estimate maxPeak value()

3: PO ← yp−yss
yss

4: if PO > POr then
5: return Verification Failed
6: return Verification Successful

With the goal of deeper understanding regarding our overshoot verification
approach, we can analyze the example illustrated in Eq. (12), by following the
steps in Fig. 4. This way, Step 1 is ready and Step 2 is then considered, where
a controller matrix K is not defined, due to open-loop operation. Consequently,
an FWL implementation (Step 3) is not provided either. Next, the desired
requirements are defined, such as POr = 9, in Step 4, using a specification file
SpecsFile.ss.

Given that open-loop was considered, this system is evaluated with the fol-
lowing command “dsverifier SpecsFile.ss --property OVERSHOOT” and,
as a consequence, “Verification FAILED” is returned, because the evaluated
system is unstable and, consequently, there exists no need to check overshoot.
One may notice that the proposed method always checks whether a system is
stable.

As the chosen system is unstable, we can go back to Step 2 and design a
controller aiming to stabilize it and satisfy the required percentage overshoot
(POr), by using pole assignment [7]. In that case, we use the same controller
matrix K = [−0.7351 −5.0045 −18.5371] in SpecsFile.ss, as in the example
explained in Section 5, since that controller was designed to satisfy both proper-
ties (settling-time and overshoot). Next, we run this experiment again, but now
with option “--closed-loop” and still without FWL effects (--no-fwl), which
results in Verification SUCCESSFUL, since DSVerifier returned PO = 2.6228
that is less than POr = 9.

Finally, this experiment can consider FWL effects. That is accomplished by
using format 〈4, 4〉, controller matrix KFWL = [−0.6875 − 5.0 − 18.5], and
omitting --no-fwl (Step A), which results in “Verification FAILED”, due
to the fact that the system is still unstable.

To evaluate other formats, 〈8, 8〉 and 〈16, 16〉 were considered, in Step 2.
As a consequence, 〈8, 8〉 (KFWL = [−0.7344 − 5.0039 − 18.5352]) resulted
in “Verification SUCCESSFUL”, given that DSVerifier returned PO = 1.6153,
which is lower than POr = 9, and 〈16, 16〉 (KFWL = [−0.7351 − 5.0045 −
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18.5370]) resulted in “Verification SUCCESSFUL”, because our methodology
provided PO = 2.6253, which is again lower than the required value.

One may notice that the number of bits heavily influences a controller
design and, consequently, all properties tackled during design phases are also
modified, due to changes in coefficients and computation results. In particular,
settling-time and overshoot were affected in different ways, which means that
if a property fails, the others may not, as can be seen for format 〈8, 8〉.

7 Experimental Evaluation

7.1 Description of the Benchmarks

In this section, the control-system benchmarks used to evaluate the proposed
approach are described. In particular, the benchmarks used in this work are
available at https://goo.gl/fSwVVb and provide information about state-
space matrices A, B, and C, in Jordan form [7], controller matrix K, required
settling-time tsr, and required percentage overshoot POr. All benchmarks
present state-space matrix D = [0] and were chosen because they tackle
different scenarios regarding eigenvalues of A. There exist systems of 2nd, 3rd,
4th and 5th order, with the same, different, real, and complex eigenvalues (cf.
Section 3.1). Additionally, two of them are real-world examples: the 15th one
represents an actual DC motor physical plant and the 16th one describes a
magnetic levitation physical plant. Also, benchmark 17 is a 17th order system
based on the one provided by Tran, Nguyen, and Johnson [29], which was
discretized. The benchmarks used in our study do not contain multiple-input
multiple-output (MIMO) systems since the proposed methodology can check
only SISO ones.

There exist 17 experiments in an open-loop configuration, 17 in closed-loop
without FWL effects, and 51 in closed-loop with FWL effects, for 8, 16, and
32 bits, which amounts to 255 verification tasks for each property, that is,
settling-time and overshoot.

Availability of Data and Tools. All tools, benchmarks, and results regarding
evaluations are available at https://goo.gl/fSwVVb.

7.2 Experimental Objectives and Setup

By using the state-space models presented in Section 7.1, our evaluation has
the following experimental goal (EG): does our verification approach produce
results that are confirmed outside our model (soundness)? All experiments
with DSVerifier v2.0.3 were conducted on an otherwise idle Intel Core i7-2600
3.40 GHz processor, with 32 GB of RAM and running Linux Mint OS. No
time limit has been set.
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7.3 Numerical Results

Table 2 shows settling-time and overshoot verification results for the benchmarks
described in Section 7.1. In particular, experiments were conducted in three
different types of system: open-loop, closed-loop without FWL effects, and
closed-loop with FWL effects, in digital controllers with sampling time Ts = 0.5s.
Basically, those experiments checked whether the required parameters (tsr and
POr), which are provided in our benchmarks at https://goo.gl/fSwVVb,
were met by a given control system, according to the methodology described
in Sections 5 and 6. Table 2 also shows columns with verification results for
settling-time (ST) and overshoot (OS), including FWL effects (〈4, 4〉, 〈8, 8〉
and 〈16, 16〉).

Benchmark Settling-Time Verification Overshoot Verification
# tsr(s) POr OL CL 〈4, 4〉 〈8, 8〉 〈16, 16〉 OL CL 〈4, 4〉 〈8, 8〉 〈16, 16〉
1 2.5 5 F S S S S F S S S S
2 3.5 5 F S F S S F S F S S
3 4.5 30 F S S F S S S S S S
4 5.5 20 F S F F S F S F S S
5 3.0 5 F S S S S F S S S S
6 5.0 30 F S F S S F S F S S
7 10.0 4 F S F F S F S F F S
8 1.5 8 F S F F S F S F S S
9 2.0 8 F S S S S F S S S S
10 5.0 30 F S F S S S S S S S
11 10.0 18 F S F F S F S F F S
12 8.0 10 F S F S S F S F S S
13 10.0 9 F S F F S F S F S S
14 10.0 2 F S S F S F S S F S
15 6.5 5 F S S S S S S S S S
16 10.5 8 F S F F S F S F F S
17 27.0 1 S S F F S F S F F S
S = Success, F = Fail, OL = open-loop, CL = closed-loop without FWL verification

Table 2: Settling-time and overshoot verification results considering open- and
closed-loop, the latter being with and without FWL formats.

In the experiments in closed-loop configuration and without FWL effects,
one can notice that all of them produced VERIFICATION SUCCESSFUL, as ex-
pected because we designed suitable controllers, to satisfy both properties.
These results reflect the fact that the original systems under verification meet
the required settling-time tsr, since the designed digital controllers respect the
chosen specifications and use high precision. At the same time, the same occurs
for the required percentage overshoot POr. However, regarding experiments in
closed-loop configuration with FWL effects, one may notice that the number
of bits in an FWL format has great influence in results (e.g., benchmarks 11,
for 〈4, 4〉 and 〈8, 8〉, and 14, for 〈8, 8〉).

It is interesting to notice that, in benchmark 4, the verification procedure
failed for closed-loop with FWL effects, when using format 〈4, 4〉 and for both
properties (ST and OS), as we can see in Fig. 6(a). Indeed, that happened since
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the resulting system became unstable. However, when we look at the results
for FWL effects with a precision of 16 bits (〈8, 8〉), the verification procedure
only failed for settling-time, while produced VERIFICATION SUCCESSFUL for
overshoot (its maximum overshoot is lower than the required), as one can
notice in Fig. 6(b). In addition, for format 〈16, 16〉, the proposed methodology
produced VERIFICATION SUCCESSFUL for both properties. Specifically, regard-
ing settling-time verification, the system output y remained in the settling-time
region between samples ksr and k̂ and, for overshoot verification, PO = 2.483,
which is lower than POr = 20, as one can notice in Fig. 6(c).

For the benchmarks used in this work, looking at Table 2, we can separate
those results into 8 groups: G1 = {1, 5, 9 and 15}, G2 = {2, 6 and 12}, G3 = {3},
G4 = {4, 8, 13}, G5 = {7, 11, 16}, G6 = {10}, G7 = {14} and G8 = {17}. G1 is
composed of systems that were not sensible to FWL effects, regarding any of
the verified properties (ST and OS). G2, in turn, is the group where its systems
failed only for 〈4, 4〉 FWL format, for both properties (ST and OS). Indeed,
they can be regarded as traditional cases, where increasing the number of bits
in a chosen representation produces correct results. G3 consists of a system
that failed only for settling-time with 〈4, 4〉 FWL format, which shows some
independence in the way the verified properties are affected by FWL effects.
In G4, those systems failed for both properties using FWL format 〈4, 4〉 and
just for settling-time, when applying 〈8, 8〉. As one may notice, that reinforces
independence between properties and also suggests that it may be easier to meet
overshoot requirements than settling-time ones when dealing with precision
issues, even with a reasonable number of bits allocated for a representation. G5
is composed by systems that fail for both properties in FWL formats 〈4, 4〉 and
〈8, 8〉, which is solved only by applying the maximum number of bits considered
in the experiments performed here. G6 includes only benchmark 10, which
fails for settling-time verification using FWL format 〈4, 4〉. Also, in G7, the
proposed verification fails for both properties with FWL format 〈8, 8〉. The
latter is very interesting, given that it had already been successful for format
〈4, 4〉. Finally, in G8, open-loop only failed for overshoot; as a consequence, a
controller was designed to meet the requirements for both settling-time and
overshoot. It does not fail for both requirements, with no FWL effects; however,
when FWL effects come into place, it fails for formats 〈4, 4〉 and 〈8, 8〉, for both
requirements. Indeed, it reveals that step-response parameters are not simply
and only affected by the number of bits, but also depend on interactions among
other properties also influenced by word precision.

As a general conclusion regarding the experiments performed here, we were
able to notice a trend towards failing when implementing with a lower number
of bits, as can be seen for experiments with benchmarks 2, 4, 6, 7, 8, 10, 11,
12, 13, 14 and 17, which leads to the use of as many bits as allowed by a given
architecture. However, there exist also experiments where failures were obtained
for an intermediate format, which happened with benchmarks 3 and 14. Indeed,
as already mentioned in Section 5, resulting settling-times and percentage
overshoot depend on the interaction among quantized parameters, such as
natural frequencies and damping ratio, which may produce such unexpected
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Figure 6: Settling-time verification for benchmark 4, in closed-loop with FWL
formats (a) 〈4, 4〉, (b) 〈8, 8〉, and (c) 〈16, 16〉.

results and claims for a verification methodology that takes it into account.
Besides, no failure was noticed for the highest number of bits considered in
the mentioned experiments, as one could expect, which further reinforces the
intuition that a high number of bits is preferable.

There exists a last impressive result for settling-time verification: when a
given system fails for this requirement, it does not mean it will fail for overshoot
too, as we can see in Table 2 (groups G3, G4, and G6). Indeed, given that they
present some degree of decoupling, that is possible.
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Finally, Table 3, in turn, shows how FWL effects affect benchmark 7’s
poles (eigenvalues) and, consequently, controller K. As the number of bits in
the chosen FWL format is increased, the closer KFWL gets to K, which also
happens to the associated eigenvalues.

As one can see in Table 2, our methodology can verify systems implemented
in a real platform (microcontrollers), by taking FWL effects into account in
its controllers, to verify designed properties, which other existing approaches
usually ignore. In summary, the presented results show that a system designed
for respecting strictly defined properties, when tested with high precision, may
fail, when FWL effects take place.

In summary, the results of this experimental assessment show that digital
control systems may present fragile performance, concerning settling-time and
overshoot. Although a greater number of bits often avoids this problem, our
proposed formal settling-time and overshoot verification methodologies showed
that, sometimes, an implementation with a lower number of bits does not
violate those properties, which means that cheaper practical systems may be
achieved.

Answering our main experimental question, we were indeed able to ver-
ify all results provided by our methodology implemented in DSVerifier. In
particular, we have evaluated the same benchmarks used in this work in
Matlab® and then graphically verified each behavior, as we can check online
at https://goo.gl/fSwVVb. We performed this evaluation through resulting
graphs and m-files.

K Eigenvalues

closed-loop [14.8068 − 5.2354 4.9214 − 8.8323]
0.8624± 0.1155i,

0.1496, 0.1353

closed-loop-fwl-8b [14.7500 − 5.1875 4.8750 − 8.8125]
0.2845± 0.4363i,
1.5730, −0.0421

closed-loop-fwl-16b [14.8047 − 5.2344 4.9180 − 8.8320]
1.0530, 0.6038
0.2953, 0.0655

closed-loop-fwl-32b [14.8068 − 5.2354 4.9214 − 8.8323]
0.8624± 0.1157i,

0.1494, 0.1355

Table 3: Controller K and eigenvalues of benchmark 7, with FWL effects.

7.3.1 Case Study - Ball and Beam

An interesting application, with the potential to clarify some aspects of the
proposed verification methods, is a ball-and-beam system, where a ball is
allowed to roll along a beam, as illustrated in Figure 7. A lever arm is attached
to one end of a beam, a servo gear to the other one, and, when the latter turns
by an angle θ, the former changes the beam’s angle by α, while gravity causes
the ball to roll along with it. The model of this system is described as
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where x =
[
rb ṙb α α̇

]T
, m = 0.11kg, R = 1.5cm, J = 9.99e−6kg.cm2, and

rb(cm) are the ball’s mass, radius, moment of inertia, and position coordinate,
respectively, g = 980cm/s2 is the gravitational acceleration, and α is the beam’s
angle coordinate.

In this case study, our goal is to check if a derived digital control system
behaves in the same way as its continuous-time counterpart. In particular,
we will verify if the required settling-time tsr satisfies the system given in
(14), which must first be discretized, to be checked by DSVerifier. Besides, a
discrete-time controller K must be designed, which is carried out by generating
continuous-time system poles able to lead to tsr. Finally, those are discretized
with z = est and used in the pole placement technique to create K. As a result,
we obtain
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Figure 7: Setup of ball and beam system.
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In summary, a discrete-time static state-feedback controller with gain K is
used for a continuous-time plant with zero-order holder (ZOH), as described
by the block diagram illustrated in Figure 7, with tsr = 3s. As a result, that
system can now be checked by DSVerifier, whose results for closed-loop without
FWL effects, with 8-, 16-, and 32-bit FWL formats, at different sampling times
Ts, can be seen in Table 4. Finally, the mentioned system can be simulated to
check the obtained results, which was done with Ts = 0.1s and Matlab®, as
illustrated in Figure 7. Moreover, it is worth noticing that there is no stationary
error, due to the gain for compensating the reference, which can be seen in
the same figure. One may notice that the associated m-files can be found at
https://goo.gl/fSwVVb. The obtained results are shown in Figure 8 and one
may notice that they match what was reported by DSVerifier. Figures 8(a)
and (d) show that tsr = 3s is achievable for that system, i.e., the output signal
is restricted to the required settling-time region, as we can see in the zoomed
stretch, if a format with 32 bits is used; however, shorter formats are unsuitable,
as shown in Figures 8(b) and (c). Indeed, that was previously detected by
DSVerifier, as one can see in Table 4.

Ts(s) closed-loop closed-loop-fwl-8b closed-loop-fwl-16b closed-loop-fwl-32b
0.1 S F F S
0.15 S F F S
0.2 S F F S
0.25 S F S S

Table 4: Use case results in DSVerifier, a ball-and-beam system.

We have used different sampling times, as reported in Table 4. One may
notice further that, as long as we increase the sampling time, the chance to fail
is smaller, as we observed in the simulation with closed-loop and FWL format
〈4, 4〉.

7.4 Threats to Validity

We have shown a favorable assessment of our method, over a set of digital-
control systems (see online at https://goo.gl/fSwVVb), by considering stable
and unstable eigenvalues in open- and closed-loop configurations, the latter
being with and without FWL effects. Nonetheless, those benchmarks are limited
within the scope of this paper and the proposed method’s performance needs
to be further assessed on a more extensive set of real-world systems.

Additionally, our approach for verification of settling-time and overshoot is
only interesting for deterministic systems, from which we know all numerical
values regarding controllers, in advance. This way, it is not prepared to work
with systems with parametric uncertainties. Additionally, nonlinear systems
are not addressed here. Our approaches were developed to help build LTI
systems, which are indeed valid to get conclusions about the latter, for small
perturbations.
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Figure 8: Analysis on the continuous-time plant at Ts = 0.1s, for closed-loop
with no FWL (a) and FWL formats 〈4, 4〉 (b), 〈8, 8〉 (c), and 〈16, 16〉 (d).

One may notice that our evaluation method focuses on discrete-time LTI
systems, as can be seen throughout this text. As a consequence, our evaluation
of discrete-time models is sound and related properties, such as superposition,
hold as long as discretization is carried out properly. Hybrid systems are
treated as discrete and the nonlinearities related to the interaction between
continuous and discrete dynamics are not directly tackled: our focus is about
the effects of digital implementations of dynamical controllers, in closed-loop
performance. Our proposed method is not inherently linked to specific responses
but checks outputs as systems properties instead, which consists of a more
generic approach.

8 Brief Discussion Regarding Methodology Use, Contributions,
Fragility and Parametric Errors

Currently, verification procedures for the design requirements of digital control
systems do not take into account the influence of FWL effects on digital
controllers. In practical scenarios, some developments present test phases,
which usually tackle a system model with an arbitrary numerical format, to
validate a future deployment. However, when a real implementation is carried
out, tests on a target platform may review FWL effects and fragility issues,
which then triggers a new phase for additional development or bug-fixing
procedures. In that sense, the proposed work and other related studies available
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in Section 2 devise a new paradigm for control-system design, which now
includes a test phase during development and aims to minimize rework after
implementing a given system in a real platform. Besides, the main obtained
benefit is cost and time reduction in digital control-system development, due to
minimization of additional development, bug-fixing, and even testing, given that
the proposed methodology is fully automatic based on efficient model-checking
procedures [12,21].

In particular, our settling time verification approach is different from tradi-
tional methods. In order to verify that a digital controller applied to a physical
plant meets a specific required settling time, our methodology does not need
to perform various successive iterations for computing the settling time of a
system under consideration. Instead, it uses an invariant (k̂) that is obtained
through a heuristic function. This specific function is based on the spectral
radius of a system, thus ensuring that it will enter the settling time region
always after an original system’s output response.

Here, we assumed that a discrete-time linear time-invariant (LTI) model
of a system accurately represents its dynamics, i.e., this study does not take
into account the influence of parametric errors and variations (uncertainty).
Indeed, its primary purpose is to investigate the effect of controller fragility,
i.e., variations on a controller’s coefficients due to implementations restricted
by fixed-point representations, in control system’s performance specifications,
i.e., settling time and overshoot, and in compliance concerning step-response
design requirements.

That being said, it is worth noticing that verification of robust fragility is
also a very relevant topic, since parametric uncertainties may affect verification
results and the fragility issue can modify robustness properties. Besides, such
effects were already studied by Bessa et al. [2], for the problem of non-fragile
robust stability of LTI systems. In that study, both parametric uncertainties
and FWL effects were considered, when investigating the stability of closed-
loop control systems with digital controllers implemented in fixed-point and
represented through transfer functions; however, performance aspects were
not considered. In the present manuscript, the problem of fragility for digital
implementations is also tackled regarding state-space representations of LTI
systems, which was not considered by Bessa et al. [2]. In particular, to the
best of our knowledge, this article is the first work that investigates fragility
regarding digital control system performance, in compliance with step-response
design specifications.

Although a joint robustness and fragility investigation is not addressed
here, given that it goes beyond the initial scope of this article, it should be
investigated in further work. Such a result would enhance synthesis procedures
and also verification steps of digital control systems, with the potential to
produce extremely robust systems for practical applications, which could
already be assured in development phases.

Finally, as one may notice, the proposed methodology is a novelty and,
together with those other studies in Section 2, may constitute a toolbox for
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a broader test phase regarding digital control-systems to anticipate problems
related to restricted implementations and fragility.

9 Conclusions

New methods for verifying settling-time and overshoot requirements, in digital-
control systems, are described and evaluated, by considering FWL effects in
fixed-point digital controllers and taking into account the fragility problem
concerning performance requirements. Prior studies proposed to verify digital-
system properties, such as stability and limit-cycle, even considering FWL
effects in implementations of digital controllers. However, the present work
proposes performance-requirement (settling-time and maximum overshoot)
verification algorithms implemented with a tool based on a formal method
(DSVerifier).

The detailed experimental results (see Section 7.3) show that the proposed
methods are efficient and effective when verifying fragility of closed-loop systems
with or without FWL effects, in fixed-point digital controllers. Additionally, we
have noticed that our methodology can be useful to check if a given required
settling-time satisfies a given system, without explicitly calculating that, by
using an invariant. Equation (7) is essential as an initial and fast check since it
indicates an early settling-time region positioning. Also, if that does not hold,
further verification is performed directly with output samples, as described
in Algorithm 1. As a consequence, Equation (7) has the potential to reduce
computation, by avoiding exhaustive exploration of system outputs.

For future work, we will introduce non-deterministic performance veri-
fication, to enable formal verification concerning parametric uncertainties.
Additionally, given that we employ state-space representations, MIMO systems
can already be tackled. More specifically, our methods are based on an analysis
of the spectral radius of A so that it can be used with MIMO systems as well,
but, at this moment, we did not prepare DSVerifier to support that kind of
system. Besides, we will include robust and non-fragile performance verification
and synthesis, thereby taking into account the influence of parametric errors
and variations. Finally, further work will also tackle fragility investigation over
specialized state-space realizations and inclusion of integrators into closed-loops
to ensure step reference tracking [25].
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