ESBMC-Jimple: Verifying Kotlin Programs via Jimple
Intermediate Representation

Rafael Menezes
University of Manchester
United Kingdom

Rosiane de Freitas
Federal University of Amazonas
Brazil

ABSTRACT

We describe and evaluate the first model checker for verifying Kotlin
programs through the Jimple intermediate representation. The veri-
fier, named ESBMC-Jimple, is built on top of the Efficient SMT-based
Context-Bounded Model Checker (ESBMC). It uses the Soot frame-
work to obtain the Jimple IR, representing a simplified version of the
Kotlin source code, containing a maximum of three operands per
instruction. ESBMC-Jimple processes Kotlin source code together
with a model of the standard Kotlin libraries and checks a set of
safety properties. Experimental results show that ESBMC-Jimple
can correctly verify a set of Kotlin benchmarks from the literature;
it is competitive with state-of-the-art Java bytecode verifiers. A
demonstration is available at https://youtu.be/J6WhNfXv]Nc.

CCS CONCEPTS

« Theory of computation — Verification by model checking;
Software and its engineering — Formal software verification.

KEYWORDS
Formal Verification, Software Model Checking, Kotlin, Jimple.

ACM Reference Format:

Rafael Menezes, Daniel Moura, Helena Cavalcante, Rosiane de Freitas,
and Lucas Cordeiro*. 2022. ESBMC-Jimple: Verifying Kotlin Programs via
Jimple Intermediate Representation. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 22), July
18-22, 2022, Virtual, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3533767.3543294

1 INTRODUCTION

Kotlin is a multiplatform programming language [6] to provide a
more productive way to develop software on top of the JVM [7].
Kotlin adds functional programming features and safety checks; it
has full interoperability with JVM [6]. Google added support for

*Also with Federal University of Amazonas.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °22, July 18-22, 2022, Virtual, Republic of Korea

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9379-9/22/07...$15.00
https://doi.org/10.1145/3533767.3543294

Daniel Moura
Federal University of Amazonas
Brazil

Helena Cavalcante
Federal University of Amazonas
Brazil

Lucas Cordeiro”
University of Manchester
United Kingdom

Android Development using Kotlin, becoming one of the popular
choices among software developers [12]. However, as the Kotlin
programming language’s popularity grows, there is a clear need
for more associated verification tools to ensure its safety.

Bounded Model Checking (BMC) is a formal verification tech-
nique that can check implementation errors in software [4]. The
basic idea of the BMC technique is to check (the negation of) a
given property at a given depth. A significant strength of BMC
is that it analyzes only bounded program runs, thereby achieving
decidability. A notable example of a tool that implements BMC
is ESBMC [10], which is based on Satisfiability Modulo Theories
(SMT) solvers and checks safety properties such as arithmetic over-
flow, array bounds, pointer safety, and user-specified properties.
ESBMC uses its intermediate representation (IR) GOTO to analyze
programs, converting loop structures into the GOTO form and
supporting object-oriented programming (OOP) features.

We rely on the Jimple IR, a stackless 3-address IR with a set of
instructions from the Soot framework [13] to simplify the bytecode
analysis. As a result, ESBMC does not track a virtual table, and
neither maintains a stack [2], making the verification process more
straightforward. Since ESBMC verifies C/C++ [10, 11] programs,
a similar approach can be used when dealing with Jimple, as the
symbolic execution engine has the support for OOP features. Some
verifiers support Java bytecode verification (e.g., JBMC [5] and Jay-
Horn [9]). However, they have shortcomings when verifying Kotlin
because of limitations on absent models and assertions, e.g., array
initialization on Kotlin relies on its SDK for the implementation.

We describe the first model checker for Kotlin programs, ESBMC-
Jimple, which adds Jimple support to ESBMC to verify safety proper-
ties in Kotlin programs. Therefore, we can use ESBMC’s verification
strategies (e.g., incremental BMC and k-induction) and optimiza-
tions (e.g., program slicing) to enable the verification of Kotlin
programs that otherwise would exhaust the systems resources. To
evaluate ESBMC-Jimple, we developed a new set of benchmarks
for Kotlin analysis extracted from a Github repository [1] and also
by translating a subset of the SV-COMP benchmarks from Java
safety into Kotlin [3]. Our experimental evaluation has shown that
ESBMC-Jimple could correctly verify more Kotlin benchmarks than

JBMC [5], a native Java bytecode verifier.
2 TOOL DESCRIPTION

2.1 Architecture and Implementation

Fig. 1 illustrates the ESBMC-Jimple architecture. The flow starts
from a Kotlin file, compiled to Jimple (through Soot), and then
symbolically executed to produce a logical formula.

https://orcid.org/0000-0002-6102-4343
https://orcid.org/0000-0002-8116-268X
https://orcid.org/0000-0001-9632-3637
https://orcid.org/0000-0002-7608-2052
https://orcid.org/0000-0002-6235-4272
https://youtu.be/J6WhNfXvJNc
https://doi.org/10.1145/3533767.3543294
https://doi.org/10.1145/3533767.3543294

ISSTA °22, July 18-22, 2022, Virtual, Republic of Korea

[] Compiled to Jimple | Symbolic
Kt file Jimple Frontend Executwon_"

Logical Formula
Generator

Menezes et al.

Property
.Violaled_' Counterexample .
Decision
Procedure
\. Verification
Sucessful

Figure 1: Architectural overview of ESBMC with its extension (Jimple Frontend) for verifying Kotlin programs.

2.2 Jimple Convertion Methodology

To use the ESBMC symbolic execution, we convert the original
Jimple IR into GOTO, which is the IR used by ESBMC. It contains
instructions for function calls, assignments, declarations, exception
handling, and thread creation. For the Jimple IR support, a subset of
this language was used (Table 1). Further instructions are not used
yet (e.g., try/catch blocks), and some instructions are used internally
for analysis (e.g., assume and assert statements). Listing 1 shows
how a GOTO program is represented through named Functions,
which are implemented using Statements and Expressions.

Listing 1: GOTO grammar subset.

GOTO := Functions«

Functions = Statements» END_FUNCTION

Statements Var=Expr | assert Expression
goto Label |

Expression Var | Const | Var Expression

Expression + Expression |

Table 1: GOTO subset supported by ESBMC-Jimple.

Statement Description

ASSIGN(a, b) Assigns value of b into sym-
bol a.

DECL(a, t) Create a new valid memory
object for a of type t.

DEAD(a) Deletes the a memory object,

making it an invalid-object.
Calls function n with param-
eters.

FUNCTION_CALL(n, ...)

LABEL(L) Sets a label L in the code, this
label can be used for jumps.

GOTO(L) Goto a specific label L.

IF(e, L) Checks if a condition e is

true, and if it is goto label L.
SKIP Go to the next instruction.

RETURN(e?) Return to the latest FUNC-
TOIN_CALL with the op-
tional result e.

THROW(e) Throws an exception with

expression e.

The GOTO language uses Expressions. Those expressions range
from binary operations (e.g., add and subtraction) to dereferencing
operations (e.g., accessing a member of the struct). Since there is a

C frontend, the most needed expressions are implemented. The ex-
ceptions are the cmp operations that exist for Java-based languages,
implemented during the GOTO conversion as an expression (Expr).

2.2.1 Objects and Classes. Jimple contains OOP elements; every
file is defined via class members, which include fields and functions
that can be virtual or static. These members can be overridden dur-
ing inheritance; functions with the same name can have multiple
specializations by changing their parameters. To model classes, we
rely on a similar approach to verify C++ programs [11]. We map the
virtual fields into structs and the static fields into global variables
(within a scoped namespace). However, the GOTO language does
not support polymorphism and neither for function inside a struc-
ture. To solve this, we used the following approach. (1) Generate an
identifier for each function using its name and parameter types. A
function foo with return type int and parameter type of double is
renamed to foo_int_double. (2) Due to how Jimple handles func-
tions parameters, we convert each parameter as a global variable;
at the start of each function this value is then read. This operation
is marked as atomic for the GOTO flow. (3) For virtual functions,
we add an extra argument into the function: a pointer of its own
class. A virtual function bar () inside the class A would become
bar (Ax). This parameter behave as the this pointer of the object.

This approach simplifies the inheritance process as the inherited
classes have the same fields that can be used for access. Jimple IR
handles the virtual table, stating from which class of the inheritance
tree the method should be called. For the object memory model,
we use the one for C++ programs [10]. In this model, primitive
types are allocated into the stack; constructed objects (i.e., new
or newarray) use the heap concept. We do not model a garbage
collector; we assume that it will be valid for the entire verification
flow once something is allocated into the heap.

2.2.2 Jimple Convertion. The Jimple conversion begins with gen-
erating types for the classes; every class is converted into a struct
containing all its virtual fields. Each Jimple statement is converted
into an equivalent statement in GOTO for functions. Table 2 con-
tains the translations used for every Jimple statement; it makes
assumptions of previously conversions performed: DeclarationLists
(e.g., int a,b,c;) were converted into a multiple individual decla-
rations, at identifiers (e.g. @this, @param1) were injected properly.

2.2.3 lustrative Example. We use the example in Listing 2 to show
how the conversion process works. There exists a class named Foo,
which contains a mutable field member and the increment method,
which increments the member field. After the Jimple file is generated
via Soot [8], ESBMC can verify it by invoking:

esbmc <file>.jimple --k-induction --overflow-check

B W N =

~N N U R 0N =

ESBMC-Jimple: Verifying Kotlin Programs via Jimple Intermediate Representation

Table 2: Jimple statements translation in ESBMC-Jimple.

Jimple GOTO

declaration(a, t) DECL(a,t)

label(L) LABEL(L)

breakpoint SKIP

virtualinvoke(object, param- | FUNCTION_CALL(object,

eters parameters)

specialinvoke(object, param- | FUNCTION_CALL(object,

eters parameters)

staticinvoke(parameters) FUNCTION_CALL(parame-
ters)

return(e?) RETURN(e?)

v=e ASSIGN(uv, €)

if(e) goto L IF(e, L)

throw(e) THROW(e)

where <file>. jimple is the Jimple file to verify, --overflow-check
enables checking for signed integer overflows, and --k-induction
sets the k-induction as the proof rule. The full list of options can
be seen by using the flag --help.

Listing 2: Example of a Kotlin program that defines the Class
Foo used to illustrate the GOTO conversion.

class Foo(var member: Int) {
fun increment(N: Int): Int {
member = member + N
return member}}

Listing 3 contains the GOTO version of the increment function
in Listing 2. Here, we see the function name (as described in Subsec-
tion 2.2.1). Next, Jimple adds intermediate variables (e.g., r0, i0, i1).
The “at” identifiers, i.e., “@this” and “@parameter0” indicate the
object pointer to itself and the first function parameter, respectively.

Listing 3: Increment function from converted program.
The function is the result of the GOTO conversion of the
increment method of the Listing 2.

increment_2 (Foo:increment_2):
Foox r0;
signed int 10,
r0=(Foo+) @this;
i0=@parameter0; $il=r0->member;
$i2=$i1 + i0; r0->member=$i2;
$13=r0 ->member; RETURN: $i3

$i1, $i2, $i3;

ESBMC will unroll the program during the symbolic execu-
tion, converting it to an SSA form. In Listing 2, we can check the
increment function; we make its arguments non-deterministic.
The verification conditions are then encoded in the form of C A =P,
as shown in Listing 4:

Listing 4: Verification condition.

C := @this=nondet ()
A r0=@this A @parameter0O=nondet ()
A i0=@parameter0 A $il=r0->member
P := overflow ("+", i0, $il)

ISSTA °22, July 18-22, 2022, Virtual, Republic of Korea

C contains the assignments; both function arguments, i.e., @this
and @parameter® are set as nondeterministic. P is the property
that adding i0 with $i1 can not lead to an overflow.

3 EXPERIMENTAL EVALUATION

We evaluated ESBMC-Jimple using a benchmark suite and com-
pared its performance against JBMC [5] since it supports Java
Bytecode verification efficiently. Other tools were considered, Jay-
horn [9] and Joogie [2]. However, we could not use JayHorn for the
bytecode generated for Kotlin programs since it failed to parse the
input. Joogie does not support all properties under verification since
it does not model non-determinism; its latest release is from 2013.1
Tools, benchmarks, and results of our evaluation are available on a
supplementary web page https://doi.org/10.5281/zenodo.6514235.

Description of Benchmarks. We developed a small suite of bench-
marks for evaluating ESBMC-Jimple. These benchmarks contain
paths that can trigger bugs in Kotlin applications and paths with-
out property violations. They also include the following proper-
ties: reachability (an assert(false) must never be reached), over-
flows, and null-pointer exception. The benchmarks contain non-
deterministic behavior, modeled through the Java Random function.
Table 3 describes the benchmarks and their respective violations.

3.1 Objective and Setup
Our main experimental questions are:

EQ1 : (soundness) Can the tool prove (partial) correctness?

EQ2 : (performance) How long does ESBMC-Jimple take to ver-
ify a Koltin application?

EQ3 : (completeness) Can the tool correctly identify bugs in
Kotlin programs?

We set up the experiments on a Ubuntu 20.04 with 160 GB of
RAM running a 25-core Intel KVM CPU. If the tool could produce
a counterexample, it is manually tested on the benchmark. Impor-
tantly, all presented execution times are CPU times, i.e., only the
elapsed periods spent in the allocated CPUs, measured with the
times system call (POSIX system). Since neither ESBMC-Jimple nor
JBMC supports Kotlin input directly, we first compile the Kotlin
source file into Java Bytecode and then convert it back to Jimple.
Then, the Java Bytecode is given as input to JBMC; the Jimple is
given for the ESBMC-Jimple.

3.2 Results

Table 3 shows the results; ESBMC-Jimple could verify all bench-
marks originating from Kotlin programs correctly. Note that JBMC
was not developed for verifying Kotlin programs, which thus did
not handle some constructs correctly. For example, regarding the
overflow benchmarks (TC0 and TC1), ESBMC-Jimple could detect
the overflow in both cases; nondeterministic values were used for
the addition of positive numbers (i.e, X +Y > 0,VX > 0,Y > 0).
ESBMC-Jimple could produce a counterexample that led to the over-
flow. For TC2 and TC3, we use the same approach, but for negative
numbers (e, X +Y < 0,VX < 0,Y < 0), ESBMC-Jimple could also
produce counterexamples. However, JBMC was unable to identify
any violations in TC0-TC3.

!https://code.google.com/archive/p/joogie/downloads

https://doi.org/10.5281/zenodo.6514235
https://code.google.com/archive/p/joogie/downloads

ISSTA °22, July 18-22, 2022, Virtual, Republic of Korea

Division by zero benchmarks (TC4 and TC5) ensure that the
denominator of a division could never be zero. ESBMC-Jimple and
JBMC could correctly identify the flaws and produce the respective
counterexamples. Similarly, for array bounds check benchmarks
(TC6-TC9), ESBMC-Jimple and JBMC had the same outcome; they
could detect bounds violations for nondeterministic arrays origi-
nating from Kotlin programs. We also evaluated benchmarks with
user assertion violations (T10-TC15) and without violation (TC16-
TC20). ESBMC-Jimple could verify these benchmarks correctly, but
JBMC refuted the assertions, incorrectly triggering a violation for
all benchmarks stated as safe.

Both EQ1 and EQ3 can be confirmed through our experiments, as
ESBMC-Jimple could reason over the safety of Kotlin programs and
generate valid counterexamples that trigger the property violation.
Regarding performance (EQ2), due to ESBMC'’s efficient support
for bug finding and proof strategies (e.g., incremental BMC, k-
induction), ESBMC-Jimple could quickly refute safety properties or
prove (partial) correctness of Kotlin programs.

Table 3: Experimental results, where column “Found” in-
dicates whether a bug was detected, followed by a column
“CE” showing whether a counterexample was provided. The
bottom lines are the results summary (from top-bottom): per-
centage of correct verdicts, percentage of confirmed CE.

Benchmark JBMC ESBMC-Jimple
IDs Property Found | CE | Found CE
TCO0-1 Overflow No No Yes Yes
TC2-3 Underflow No No Yes Yes
TC4-5 Div-by-zero Yes Yes Yes Yes
TC6-9 | Out-of-bounds Yes Yes Yes Yes
TC10-15 | Assertion Fail Yes No Yes Yes
TC16-20 | No violation Yes N/A No N/A
Correct Results 57% 100%
Confirmed Results 38% 100%
Total CPU Time 3.563s 18.878s

3.3 Threats to Validity

Compilers and decompilers might introduce (or remove) bugs dur-
ing the translation. Our approach has three translations: (1) Kotlin
programs compiled into JVM; (2) Soot decompiling them into Jim-
ple; and (3) ESBMC translating Jimple onto GOTO. Any of those
phases can change the program’s semantic behavior. Additionally,
ESBMC-Jimple relies on operational models (OMs) to verify a pro-
gram; we developed the OM for a subset of Kotlin and Java standard
libraries. This subset was chosen based on features needed on the
evaluated benchmarks. Those OMs might approximate the original
program’s behavior, leading to an invalid program encoding. Lastly,
ESBMC-Jimple relies on the same memory model used for ESBMC’s
C/C++ analysis. This model can limit the behavior (e.g., garbage
collection) that a program can have.

4 RELATED WORK

Some tools also leverage Java verification using bytecode for the
analysis, mainly JBMC [5] and JayHorn [9]. JBMC is an extension to

Menezes et al.

CBMC that can verify Java bytecode. It has an architecture similar
to ESBMC-Jimple, having to translate Java Bytecode into a GOTO
program. JayHorn is a software verifier for Java bytecode that gener-
ates a set of constrained Horn clauses. The architecture of JayHorn
contains the Soot framework as its front-end, with transformation
validated with Randoop. It then uses a CHC solver to check the
safety of the input program. Unfortunately, both JBMC and JayHorn
have shortcomings (as seen in our experiments) when verifying
Kotlin code. Another similar work is Joogie [2], which translates
Jimple code into the Boogie language. Boogie is a description lan-
guage that can be translated into SMT formulas to be checked by
an SMT solver. Joogie focuses on verifying Java applications and
could verify real-world Java programs successfully.

5 CONCLUSIONS AND FUTURE WORK

We presented and evaluated ESBMC-Jimple, the first software model
checker for Kotlin applications, which relies on the Jimple IR from
the compiled Kotlin program and the ESBMC verification engine.
ESBMC-Jimple can handle various features from Kotlin, includ-
ing classes, inheritance, and polymorphism. Furthermore, ESBMC-
Jimple outperformed another state-of-the-art Java bytecode verifier
since it could detect and generate more real counterexamples for
the evaluated benchmarks. We will support exception handling,
more operational models for the Kotlin standard, and extend the
range of properties for future work.

ACKNOWLEDGMENTS

This research was partially sponsored by Motorola Mobility Comér-
cio de Produtos Eletronicos Ltda and Flextronics da Amazdnia Ltda,
according to Federal Law n° 8.387/1991, through agreement n°
004/2021, signed with ICOMP/UFAM.

REFERENCES

[1] The Algorithms. 2022. TheAlgorithms/Kotlin (Github repository). https:/github.
com/TheAlgorithms/Kotlin

[2] Stephan Arlt, Philipp Riimmer, and Martin Schaf. 2013. Joogie: From java through
jimple to boogie. In Proceedings of the 2Nd ACM SIGPLAN International Workshop
on State Of the Art in Java Program Analysis. 3-8.

[3] Dirk Beyer. 2022. Progress on software verification: SV-COMP 2022. In TACAS,
Vol. 13244. Springer Nature, 375.

[4] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al.
2018. Handbook of model checking. Vol. 10. Springer.

[5] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek
Trtik. 2018. JBMC: A bounded model checking tool for verifying Java bytecode.
In CAV. 183-190.

[6] Kotlin Foundation. 2022. Kotlin Language. https://kotlinlang.org/

[7] Bruno Goéis Mateus and Matias Martinez. 2019. An empirical study on quality of
Android applications written in Kotlin language. Empirical Software Engineering
24, 6 (2019), 3356-3393.

[8] Sable Research Group. 2022. Soot - A framework for analyzing and transforming
Java and Android applications. http://soot-oss.github.io/soot/

[9] Temesghen Kahsai, Philipp Riimmer, and Martin Schaf. 2019. JayHorn: A Java

Model Checker - (Competition Contribution). In TACAS (LNCS, Vol. 11429).

Springer, 214-218.

B. Fischer L. Cordeiro and J. MARQUES-SILVA. 2012. SMT-Based Bounded

Model Checking for Embedded ANSI-C Software. IEEE Transactions on Software

Engineering (TSE) 38 (2012), 957-974.

Felipe R Monteiro, Mikhail R Gadelha, and Lucas C Cordeiro. 2022. Model

checking C++ programs. STVR 32, 1 (2022), e1793.

[12] Victor Oliveira, Leopoldo Teixeira, and Felipe Ebert. 2020. On the Adoption of

Kotlin on Android Development: A Triangulation Study. In SANER. 206-216.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In

CASCON First Decade High Impact Papers. 214-224.

=
=

[11

[13

https://github.com/TheAlgorithms/Kotlin
https://github.com/TheAlgorithms/Kotlin
https://kotlinlang.org/
http://soot-oss.github.io/soot/

	Abstract
	1 Introduction
	2 Tool Description
	2.1 Architecture and Implementation
	2.2 Jimple Convertion Methodology

	3 Experimental Evaluation
	3.1 Objective and Setup
	3.2 Results
	3.3 Threats to Validity

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

