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ABSTRACT
This paper presents ESBMC-CHERI – the first bounded model

checker capable of formally verifying C programs for CHERI-enabled

platforms. CHERI provides run-time protection for the memory-

unsafe programming languages such as C/C++ at the hardware

level. At the same time, it introduces new semantics to C pro-

grams, making some safe C programs cause hardware exceptions

on CHERI-extended platforms. Hence, it is crucial to detect mem-

ory safety violations and compatibility issues ahead of compila-

tion. However, there are no current verification tools for reason-

ing over CHERI-C programs. We demonstrate the work under-

taken towards implementing support for CHERI-C in our state-of-

the-art bounded model checker ESBMC and the plans for future

work and extensive evaluation of ESBMC-CHERI. The ESBMC-

CHERI demonstration and the source code are available at https:

//github.com/esbmc/esbmc/tree/cheri-clang.

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion.
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1 INTRODUCTION
Memory safety issues remain the main (~70%) source of security

vulnerabilities [10] in software. To combat these vulnerabilities in

legacy systems, the Digital Security by Design (DSbD) project
1
has

introduced a new hardware-based protection architecture called

CHERI [20]. It provides runtime protection (via raising hardware

interrupts on unsafe behavior) that prevents such vulnerabilities

from being exploited. This setup means that we still want to re-

move memory safety vulnerabilities from code but are protected if

we do not. One successful technique for detecting memory safety

vulnerabilities is bounded model checking [2]. However, such tools

cannot be immediately applied to code compiled for CHERI as this

architecture modifies the runtime system. This paper describes our

efforts to extend the ESBMC [5, 7] model checker so that it can be

applied directly to C code targeting the CHERI platform.

Capability Hardware Enhanced RISC Instructions (CHERI) pro-

vides an extended set of instructions for RISC architecture [23]. The

CHERI model implements memory access via hardware capabili-

ties - tokens restricting access to a particular region of the virtual

address space. These capabilities are used to directly extend C/C++

with so-called ‘fat pointers’ (referred to as capabilities) for provid-
ing memory protection at the hardware level [20]. From being a

theoretical and a software-emulated technology, CHERI has now

been realised as the ARM Morello
2
system-on-a-chip development

board featuring a CHERI-extended ARMv8-A processor.

DSbD is a £187m project with a cross-cutting collection of indus-

trial and research partners. Recently, £7.9m was invested in enrich-

ing the software ecosystem for ARM Morello hardware
3
targeting

many ambitious projects (e.g., adapting a complete desktop envi-

ronment containing over 60 million lines of code to Morello [19]).

Even with this growing industrial user base, until now, there have

been no verification tools available for formal reasoning about C

programs written for capability platforms. Furthermore, existing

tools cannot directly handle such programs as CHERI capabilities

introduce new semantics to C programs (explained below). Hence,

it is essential to be proactive in developing verification tools for

capability C code to cope with the upcoming demand.

Although CHERI capabilities provide memory safety at the hard-

ware level, they establish the last line of defense. In other words,

1
https://www.dsbd.tech/about/

2
https://www.arm.com/architecture/cpu/morello

3
https://www.ukri.org/news/developing-a-software-ecosystem-for-a-more-secure-

digital-future/
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they ensure the program crashes safely if a safety violation is de-

tected. Such crashes should still be avoided in practice. At the same

time, the runtime protection introduced by CHERI reduces the set

of allowed executions, i.e., there are safe C programs that produce

hardware exceptions when compiled as CHERI-C programs, which

poses a software portability issue between the platforms. Moreover,

CHERI capabilities do not yet protect against some known classes

of vulnerabilities. For instance, the support for temporal memory

safety (e.g., use after free, dangling pointers) is implemented at a

software level (as an extension of the CheriBSD virtual-memory

subsystem) [21]. Detecting the above issues statically is crucial for

preventing the unsafe and/or undesired behavior in the programs

running on capability hardware.

We are addressing this problem by implementing ESBMC-CHERI

– an extension that enables CHERI-C support in our state-of-the-art

model checker ESBMC [5, 7]. ESBMC is a powerful context-bounded

model checker for verifying single- and multi-threaded C/C++ pro-

grams for various code safety violations (e.g., buffer overflows, dan-

gling pointers, arithmetic overflows) and user-defined assertions.

ESBMC has found bugs in real-world software (e.g., libSPDM , snif-

fer application [12], embedded software from NEC Corporation [5]).

ESBMC’s modular structure allows relatively easy adaptations of

new programming languages [16, 11]. Moreover, ESBMC has been

achieving high positions in SV-COMP
4
and Test-COMP

5
– the two

major software verification and testing competitions for programs

– accumulating over 25 awards over the past 10 years.

In ESBMC-CHERI, we lay down the groundwork for the incre-

mental extension of ESBMC towards verifying C programs for

capability platforms [23]. Namely, we introduce a capability-aware

memory model into ESBMC, integrate the CHERI clang front-end,

and implement a computational model for CHERI-C API.

2 CHERI MODEL

pointer address (64 bits)

063
permissions (15 bits) reserved base and bounds (41 bits)

Figure 1: CHERI 128-bit compressed capability.

CHERI introduces architectural capabilities encoding informa-

tion such as the pointer’s address, the object size, and the base

address. Furthermore, unlike traditional fat pointers, they store

information about the access permissions for the addressed region

and some additional metadata. This information is used for var-

ious checks (e.g., the pointer’s bounds, the permission rights) at

the hardware level upon every memory access. A hardware ex-

ception is triggered if a violation is detected. In practice, CHERI

uses compressed capabilities to reduce the performance overheads

and the increased memory consumption. Thus, CHERI capabilities

are compressed down to double the size of machine word size (i.e.,

128 bits for 64-bit platforms) [22]. However, due to the applied

compression, not all memory bounds can be precisely encoded for

larger allocations which means that some safe (in the context of

4
https://ssvlab.github.io/esbmc/sv-comp.html

5
https://ssvlab.github.io/esbmc/test-comp.html

non-capability platforms) C programs might produce hardware ex-

ceptions on CHERI platforms. Figure 1 demonstrates the in-memory

representation of a 128-bit CHERI capability. Additionally, each ca-

pability is associated with a validity tag – a single unforgeable

bit living in unaddressable memory (i.e., tagged memory) and de-

termining whether the capability is derived from an addressable

memory location.

CHERI provides support to two different capability models: a

pure-capability and a hybrid model [20]. The former treats all C/C++

pointers as capabilities. At the same time, the latter allows the co-

existence of capabilities and regular pointers via additional com-

piler infrastructure that can be used to specify capability operations,

which are translated into the CHERI extended ISA instructions [23].

In addition, CHERI platforms provide a C API to manipulate and

query capabilities (e.g., cheri_setbounds(c,n) derives from c a
new capability allowing access only to the n bytes starting at c’s
address, if this is a subset of c’s permissions). Listing 1 shows a

hybrid CHERI-C program, which will result in a hardware excep-

tion during execution on a CHERI platform as b-1 evaluates to a
capability pointing outside of b’s original bounds. This means that

an actual execution never reaches line 8. ESBMC-CHERI finds this

safety violation and reports an assertion failure in line 6. More hy-

brid CHERI-C examples supported by ESBMC-CHERI are available

at the GitHub repository.

Listing 1: CHERI-C code example
1 #include <cheri/cheric.h>

2 void main(void) {

3 int n = nondet_uint () % 1024; // models user input

4 char a[n+1], *__capability b = cheri_ptr(a, n+1);

5 b[n] = 17; // succeeds

6 char *__capability c = cheri_setbounds(b-1, n);

7 /* ... */

8 memset_c(c, 42, n); // like memset () for capabilities

9 }

3 ESBMC ARCHITECTURE
ESBMC transforms a given C program using a Clang-based [8] front-

end into an intermediate representation in the GOTO language [4],

which is symbolically executed to produce logical formulae (see

Figure 2). These formulae are passed to one or more specified SMT

solvers producing the verification result: either all properties hold

in the given program up to the given execution depth 𝑘 , or one of

the properties has been violated.

ESBMC can identify various spatial and temporal memory safety

violations (e.g., buffer overflows, dangling pointers, memory leaks)

in C programs and verify user-defined assertions. Moreover, ESBMC

provides computational models (i.e., “approximations” implemented

in C and/or using ESBMC intrinsic functions) for external libraries

if their C source code is unavailable. For example, ESBMC models

standard C library functions such as memset, memcpy, malloc, free.
Table 1 presents the extensions (with their corresponding im-

plementation progress) we identified to be essential for enabling

hybrid CHERI-C support in ESBMC. They can be briefly divided

into three independent packages (highlighted in Figure 2): 1) in-

tegrating the CHERI-clang compiler into ESBMC’s front-end, 2)

extending the ESBMC memory model with CHERI capabilities and

https://ssvlab.github.io/esbmc/sv-comp.html
https://ssvlab.github.io/esbmc/test-comp.html
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Figure 2: ESBMC architecture. The blocks with different background colours represent the standard ESBMC modules (grey), the
CHERI-C extensions to ESBMC (blue) and the input/output blocks (white).

3) implementing the operational model for the CHERI API functions.

These are described in the following sections.

Extension feature Progress

Integration of CHERI-Clang front-end 75%

New types ([u]intcap_t and *__capability) 75%

CHERI-C API 50%

Cross-platform verification 100%

Pointer/integer casts 75%

Tagged memory support 0%

Internal representation of unions 100%

Bit-precise reasoning 100%

Table 1: List of necessary extensions (with their implementa-
tion status) to ESBMC for enabling hybrid CHERI-C support.

3.1 CHERI memory model in ESBMC
Implementing support for the CHERI memory model in ESBMC

encompasses the following three steps: a) adding optional capability

annotations to ESBMC’s internal pointer representation, splitting

addresses into those that represent capabilities and those that do

not, b) introducing a new symbol representing the tagged memory

containing the CHERI validity tags for allocated objects (i.e., those

that may have their address taken), and updating it depending

on the type of underlying assignments in the given program, and

c) encoding the bounds and permission checks by constraints as

required by the CHERI-enabled target platform (Morello, RISC-V

or MIPS).

The ESBMC memory model is comprised of a collection of typed

symbols (including invalid and NULL symbols). The symbols are

uniquely identified during each step of the program’s symbolic

execution. Static and stack variables are represented as symbols of

the corresponding type. At the same time, the dynamically allocated

objects (e.g., via malloc) are stored as pointers to a symbolic array

of bytes. ESBMC also uses these arrays to track allocations sizes

and whether the dynamically allocated objects are still valid, or

the underlying memory has been free’d (for identifying dangling

pointers and memory leaks).

Pointer dereferencing is performed in multiple stages. Firstly,

ESBMC performs a value set analysis to identify all possible targets

for the dereferenced pointer. Secondly, ESBMC introduces bounds

and temporal validity constraints for each identified target. Finally,

ESBMC encodes the symbolic addresses of the potentially addressed

objects and the corresponding constraints into a logical formula.

We extend ESBMC’s memory model with capabilities by mod-

elling them as tuples (obj_id, offset,metadata, tag) where metadata

contains the (optionally compressed) in-memory representation of

the additional information stored in CHERI capabilities (Figure 1).

3.2 Modelling CHERI-C API in ESBMC
Operational model for CHERI-C API. The CHERI-C API con-

sists of about 50 public functions and macros intended to examine,

modify and obtain capabilities. In CHERI-BSD [6] many are imple-

mented by intrinsics understood by the CHERI-Clang compiler. As

CHERI-enabled ESBMC leverages the same frontend, the current

approach to modelling these intrinsics consists of formulating in

ESBMC’s operational model the semantics formally specified in the

SAIL language [1] for the instructions generated by Clang, includ-

ing conditions for hardware exceptions. This has been done for 8

intrinsics and the main functionality for examining capabilities.

Modified union representation. The extensive use of unions to
access the individual fields shown in Figure 1 in the operational

model of the CHERI-C API required reworking their internal repre-

sentation in ESBMC. Specifically, instead of symbolically reasoning

about their in-memory layout via byte arrays, they now provide di-

rect access to the symbolic representation of its constituting types.

While byte arrays did allow byte-level manipulations of unions

via, e.g., memset to be expressed more naturally, they also suffered

from repeated conversion from/to the in-memory representation of

larger and especially structured members of unions such as CHERI

capabilities in the operational model.

Bit-precise reasoning. Enabling bit-precise reasoning is another

requirement for ESBMC since the CHERI-C API operational model

extensively uses bit fields (e.g. function cheri_length_get in List-

ing 1). In ESBMC any object created dynamically (e.g., via malloc)
is converted into an array of byte symbols (the smallest memory

unit within the ESBMC IR), which means that all struct and union
members not aligned to a byte cannot be uniquely addressed by

their offsets (e.g., offsets of 1 and 7 bits will address the same byte
symbol). This is resolved by applying masking and bit-shifting to

the bytes fully containing the corresponding bit field.

Pure-capability CHERI-C support. The hybrid CHERI-C mode

allows a co-existence of capabilities and standard pointers in pro-

grams, while in pure-capability mode all pointers are transparently

treated as capabilities with the set of permissions and bounds de-

termined by the compiler. In our extension of ESBMC we can now
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express and reason about operations involving either capabilities

or plain pointers simultaneously. Compiler-generated metadata for

the former (e.g., when taking addresses of static or stack variables)

is modelled in ESBMC using functionality from the CHERI-C API.

Thus, support of pure-capability mode we get ‘for free’ from full

support of the hybrid mode just by internally translating pointers

to capabilities throughout.

4 RELATEDWORK
ESBMC-CHERI is the first tool for formally verifying C programs

for CHERI capability platforms.

CHERI can be compared to work which aims to extend C with

fat pointers to obtain a memory safe variant of C. Two notable

works here are CCured [15], CheckedC [18] which transform C

programs into ‘safe’ versions, which would allow verified C code

to be lifted to verified memory-safe C code but with the additional

runtime overhead required to make such checks in software. An-

other set of approaches are dynamic analysis tools that perform

instrumentation at the IR level (e.g. SoftBoundCETS [14, 13] and

AddressSanitizer [17]) or source code level (e.g. MoveC [3]) to track

pointers’ metadata (e.g., base, bound) using shadow space inspired

mechanisms (instead of fat pointers).

CHERI is a next generation of development of these ideas, pro-

viding hardware support for capabilities, which is essential for their

adoption in practice. There is a large stack of formal development

for CHERI capability-enabled architecture, starting with formaliz-

ing ISA [1] to formally extending semantics of C with capabilities

which is done in the Cerberus project [9]. Our work is built on top

of these developments. At the same time, our work has a different

angle to formalizing CHERI-C as we are aiming at automatically

verifying end-user programs and ensuring their correct functioning

on capability hardware. We suggest that the extensions presented

in this paper can be adapted for implementing CHERI-C support in

any bounded model checker with similar structure to ESBMC.

5 DISCUSSION AND FUTUREWORK
In this work we presented ESBMC-CHERI – an extension to ES-

BMC for verifying C programs for the CHERI capability hardware.

We outlined the required extensions to the standard ESBMC: the

integration of the CHERI-Clang front-end into ESBMC, the exten-

sion of the ESBMC memory model with CHERI capabilities and the

implementation of CHERI-C API.

The next steps along the proposed extension scheme (as shown

in Table 1) for ESBMC are: 1) implementing tagged memory, 2)

completing the implementation of CHERI-C API, 3) completing the

pure-capability CHERI-C support.

As soon as the above steps are finished, we will evaluate ESBMC-

CHERI via, firstly, benchmarking on a set of over 15k C programs

(hand-crafted or extracted from the real software) taken from SV-

COMP. These programswill be interpreted as pure-capability CHERI-

C programs and may exhibit different behaviour from standard

C. Secondly, we will leverage the aforementioned DSbD software

ecosystem to produce a set of industrially-relevant case studies.

This evaluation of ESBMC-CHERI will be aimed at: 1) determining

the scope of C programs that can be handled by ESBMC-CHERI,

2) identifying safe C programs that become unsafe or crash when

executed on the CHERI-extended platform, and 3) determining

how ESBMC-CHERI can be used to help the software developers

adapting or writing new software to CHERI-enabled platforms.

ACKNOWLEDGMENT
The work in this paper is partially funded by the EPSRC grant

EP/V000497/1. The data supporting this work are openly available

from the GitHub repository at https://github.com/esbmc/esbmc/

tree/cheri-clang.

REFERENCES
[1] Alasdair Armstrong et al. 2019. ISA semantics for ARMv8-A, RISC-V, and

CHERI-MIPS. In Proceedings of the 46th ACM SIGPLAN Symposium on Principles
of Programming Languages. Proc. ACM Program. Lang. 3, POPL, Article 71.

[2] Armin Biere. 2009. Bounded model checking. In Handbook of Satisfiability,
457–481.

[3] Zhe Chen et al. 2019. Detecting memory errors at runtime with source-level

instrumentation. In Proceedings of the 28th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, 341–351.

[4] Edmund Clarke et al. 2004. A tool for checking ANSI-C programs. In Tools
and Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 168–176.

[5] Lucas C. Cordeiro et al. 2012. SMT-based bounded model checking for em-

bedded ANSI-C software. IEEE Transactions on Software Engineering, 38, 4,
957–974.

[6] Brooks Davis et al. 2019. CheriABI: enforcing valid pointer provenance and

minimizing pointer privilege in the POSIX C run-time environment. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019, Providence,
RI, USA, April 13-17, 2019. Iris Bahar et al., editors. ACM, 379–393.

[7] Mikhail Y. R. Gadelha et al. 2018. ESBMC 5.0: an industrial-strength C model

checker. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering ASE. ACM, 888–891.

[8] Chris Lattner et al. 2004. LLVM: a compilation framework for lifelong program

analysis and transformation. In CGO. San Jose, CA, USA, 75–88.

[9] KayvanMemarian et al. 2019. Exploring C semantics and pointer provenance. In

Proceedings of the 46th ACM SIGPLAN Symposium on Principles of Programming
Languages. Proc. ACM Program. Lang. 3, POPL, Article 67.

[10] Matt Miller. 2019. Trends and challenges in the vulnerability mitigation land-

scape. In USENIX Association, Santa Clara, CA.

[11] Felipe R. Monteiro et al. 2017. Bounded model checking of C++ programs based

on the qt cross-platform framework. Softw. Test. Verification Reliab., 27, 3.
[12] Felipe R. Monteiro et al. 2022. Model checking C++ programs. Softw. Test.

Verification Reliab., 32, 1.
[13] Santosh Nagarakatte et al. 2010. Cets: compiler enforced temporal safety for c.

SIGPLAN Not., 45, 8, 31–40.
[14] Santosh Nagarakatte et al. 2009. Softbound: highly compatible and complete

spatial memory safety for c. SIGPLAN Not., 44, 6, 245–258.
[15] George C Necula et al. 2002. Ccured: type-safe retrofitting of legacy code.

In In 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 128–139.

[16] Phillipe A. Pereira et al. 2016. Verifying CUDA programs using SMT-based

context-bounded model checking. In Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, Pisa, Italy, April 4-8, 2016. Sascha Ossowski,

editor. ACM, 1648–1653.

[17] Konstantin Serebryany et al. 2012. Addresssanitizer: a fast address sanity

checker. In 2012 USENIX Annual Tech. Conf. (ATC’12), 309–318.
[18] David Tarditi et al. 2018. Checked c: making c safe by extension. In IEEE

Cybersecurity Development Conference 2018 (SecDev). IEEE, 53–60.
[19] Robert N. M. Watson et al. 2021. Assessing the Viability of an Open Source

CHERI Desktop Software Ecosystem. Technical report. Capabilities Limited.

[20] Robert N.M.Watson et al. 2015. CHERI: A hybrid capability-system architecture

for scalable software compartmentalization. In 2015 IEEE Symposium on Security
and Privacy, 20–37.

[21] Nathaniel Wesley Filardo et al. 2020. Cornucopia: temporal safety for CHERI

heaps. In 2020 IEEE Symposium on Security and Privacy (SP), 608–625.
[22] Jonathan Woodruff et al. 2019. CHERI concentrate: practical compressed capa-

bilities. IEEE Transactions on Computers, 68, 10, 1455–1469.
[23] Jonathan Woodruff et al. 2014. The CHERI capability model: Revisiting RISC

in an age of risk. In ACM/IEEE 41st Int. Symposium on Computer Architecture
(ISCA), 457–468.

https://github.com/esbmc/esbmc/tree/cheri-clang
https://github.com/esbmc/esbmc/tree/cheri-clang

	Abstract
	1 Introduction
	2 CHERI model
	3 ESBMC architecture
	3.1 CHERI memory model in ESBMC
	3.2 Modelling CHERI-C API in ESBMC

	4 Related Work
	5 Discussion and Future Work

