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ABSTRACT
A MATLAB toolbox is presented, with the goal of checking oc-
currences of design errors typically found in fixed-point digital
systems, considering finite word-length effects. In particular, the
present toolbox works as a front-end to a recently introduced ver-
ification tool, known as Digital-System Verifier (DSVerifier), and
checks overflow, limit cycle, quantization, stability, and minimum
phase errors in digital systems represented by transfer-function
and state-space equations. It provides a command-line version with
simplified access to specific functionality and a graphical-user inter-
face, which was developed as a MATLAB application. The resulting
toolbox enables application of verification to real-world systems
by control engineers.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Em-
bedded systems; • Software and its engineering→Model check-
ing; Formal methods; • Theory of computation → Verification
by model checking;
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1 INTRODUCTION
Digital systems (e.g., filters and controllers) are used in a wide
variety of applications, owing to advantages over their analog coun-
terparts, such as reliability, flexibility and cost. Nonetheless, there
are disadvantages: since they are normally implemented in micro-
processors, errors might be introduced, due to quantization and
related round-off effects [6].
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Hardware choices, structure representations (e.g., direct forms)
and implementation features (e.g., fixed-point arithmetic) can influ-
ence the precision and performance of a given digital system [2].
Additionally, such implementations are particularly susceptible to
finite word-length (FWL) effects, e.g., overflows, limit cycles and
poles/zeros sensitivity, which have the potential to reduce reliabil-
ity and efficiency. Previous studies have shown that FWL effects
might affect the efficiency, performance and stability of control
systems [8, 11, 12]. Thus, it is important to detect such errors and
ideally prove safety of the implementations w.r.t. FWL effects.

The Digital-System Verifier (DSVerifier) [7] is a model checker
based on Boolean Satisfiability (SAT) and Satisfiability Modulo The-
ories (SMT). DSVerifier checks specific properties related to over-
flow, limit cycle, stability and minimum-phase in digital-system
implementations and also supports the verification of robust stabil-
ity, considering parametric uncertainties for closed-loop systems
represented by transfer functions [3]. Recently, DSVerifier was
extended to support state-space systems to verify violations in
stability, controllability, observability and quantization-error prop-
erties [10]. Although those contributions are important advances
in formal verification of digital systems, they do not integrate with
tools such as MATLAB [13], which are usually employed in the
design of digital filters and controllers.

Currently, there are several toolboxes in MATLAB that facilitate
digital system design [13]. For instance, the fixed-point designer
toolbox provides data-types and tools for developing fixed-point
digital systems. There are also other modules with different ob-
jectives, such as optimization, control systems and digital signal
processing. In particular, users could employ formal verification
methods to identify errors and generate test vectors for reproduc-
ing failures. In that sense, Simulink Design Verifier [13] employs
formal methods to identify hidden design errors, without extensive
simulation runs; it detects blocks that result in integer overflow,
dead logic, array access, division by zero and requirement viola-
tions. Additionally, it is possible to use tools for detecting errors
in C/C++ code, through Polyspace Bug Finder [13]. Nonetheless,
both tools are unable to automatically detect specific errors related
to digital system design (e.g., limit cycle, stability and minimum-
phase), unless an engineer provides additional assertions. Finally,
the mentioned tools do not consider FWL effects during verification
and also, there is no MATLAB toolbox for verifying digital systems
using symbolic model checking based on SAT and SMT solvers.

The present paper addresses this problem and describes a MAT-
LAB toolbox for DSVerifier,1 known as DSVerifier Toolbox, which
applies SAT- and SMT-based model checking to digital systems [7],
in MATLAB’s environment. The main advantage regarding the use
of a MATLAB toolbox lies in designing digital systems in MATLAB
1Available at http://www.dsverifier.org
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and then promptly verifying their desired properties. Additionally,
when using DSVerifier Toolbox, an engineer is able to design a digi-
tal system with MATLAB, through transfer-function or state-space
representations, consider low-level systems parameters (numeri-
cal format), define realization forms (delta and direct forms) and
evaluate different overflow modes (wrap-around or saturate mode).
Finally, if a verification procedure fails, DSVerifier Toolbox returns
a counterexample in a “.MAT” file, which exploits a given violation,
considering inputs, initial states and outputs, in order to reproduce
a particular counterexample.

2 VERIFYING DIGITAL SYSTEMS WITH
DSVERIFIER TOOLBOX

2.1 DSVerifier Toolbox Architecture
The proposed verification methodology is based on DSVerifier [7]
and can be split into four main steps, as illustrated in Fig. 1.

Figure 1: DSVerifier Toolbox’s Verification Methodology.

In step 1, a digital system is designed, with any design technique
or tool. Implementation features are defined in step 2, i.e., the FWL
format that includes the number of bits in the integer and frac-
tional parts, dynamic range and realization form (direct or delta).
Here, DSVerifier formulates a FWL function FWL[·] : Pn → Pn ,
where Pn is a space of polynomials of n-th order, to reproduce the
effects of the chosen FWL format over the coefficients of a digital
system. For instance, FWL[B (z)] and FWL[A(z)] represent the
denominator and numerator polynomials B (z) and A(z) of a trans-
fer function with FWL effects used to compute round-off effects
in digital systems. Those definitions are then passed to DSVerifier,
along with hardware specifications, verification parameters and
properties to be checked.

In particular, with respect to open-loop systems in transfer-
function representation, DSVerifier supports verification of over-
flow (we check whether a sum or product exceeds the number
representation), stability and minimum-phase (we check whether
the system poles and zeros are inside the unitary circle), limit cycle
(we check whether there are persistent oscillations in the output of

a system with constant input or zero input) and quantization error
(we check whether the output error in digital systems implementa-
tion will be within admissible range), while it provides verification
for stability, controllability (we check whether the system states
can be changed by changing the system input), observability (we
check whether the value of the initial state can be determined
from the system output) and quantization properties, in state-space
representation. Regarding closed-loop systems represented by a
controller and a plant, in transfer function form, DSVerifier is able
to verify stability, quantization error and limit-cycle, while it checks
stability, controllability, observability and quantization error when
state-space equations are employed.

Once the configuration has been set up in step 3, the verification
process is then started in step 4, with the chosen back-end model
checker: CBMC [9] or ESBMC [5] can be used to verify the gen-
erated C code. DSVerifier then checks the desired properties and
returns “successful” if there is no property violation in the proposed
implementation, or “failed” together with a counterexample, which
contains inputs and states that lead the system under evaluation
to a given property violation. In the latter case, the provided coun-
terexample supports the fixes to the implementation parameters
and the design. Realization, representation and FWL format can be
re-chosen to avoid further errors. This process is repeated until a
digital controller implementation does not present any failure.

DSVerifier Toolbox uses bounded model checking (BMC) as veri-
fication engine [5, 9]. The basic idea of BMC is to check the negation
of a given property ϕ at a given depth k . Thus, overflow, limit cycle
and quantization errors, in transfer-function representation, and
quantization error verification, when employing a state-space rep-
resentation, must be unrolled k times to find violations; the verifica-
tion result is sound for executions of up to k steps. By contrast, prop-
erties such as stability and minimum-phase, in transfer-function
representation, and controllability, stability and observability, in
state-space representation, do not depend on the system inputs
and thus do not require a bound k (verification is complete and
sound) [2, 3, 10].

Note that the verification methodology is split into two main
stages: manual (user) and automated (toolbox) procedures. In the
former, the user manually performs steps 1 to 3, which are the same
tasks performed by DSVerifier. Note further that all those specifi-
cations are provided as parameters and translated into a specific
format in the automated procedures performed by the toolbox, as
illustrated in Fig. 1. In particular, the DSVerifier Toolbox’s auto-
mated engine (steps A to C) receives a digital system specification
(as parameters) and verifies the desired property ϕ. In step A, an
intermediate ANSI-C code for the desired implementation is gener-
ated, based on parameters that are then translated into a specific
format (in MATLAB) and parsed, while the respective BMC tool is
set and all requirements are configured in step B. Finally, in step C ,
the resulting ANSI-C code is passed to the verifier. If any violation
is found, then DSVerifier reports a counterexample, which con-
tains system inputs that lead to a failure; otherwise, it returns a
successful verification. In particular, in case of a failure, the pro-
posed DSVerifier Toolbox receives a counterexample and generates
a corresponding “.MAT’ file.

The main development challenge related to DSVerifier Tool-
box is the represention of the control system models. In particu-
lar, our implementation consists of 2000 lines of code related to
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MATLAB scripts to soundly represent the control system mod-
els, considering FWL effects. In addition, there are 250 lines of
code to parse MATLAB functions and there are approximately
1000 benchmarks to ensure the DSVerifier Toolbox’s regression.
All those artifacts together with documentation and videos are
available in a public github repository, which is located at https:
//github.com/ssvlab/dsverifier/tree/master/toolbox-dsverifier.

2.2 DSVerifier Toolbox Features
DSVerifier Toolbox’s features can be described as follows:

(1) Digital-system representation: DSVerifier Toolbox han-
dles digital systems represented by transfer-function and
state-space representations (cf. step 1 of Fig. 1).

(2) Realization: DSVerifier Toolbox performs the verification
of direct-form I (DFI), direct-form II (DFII) and transposed
direct-form II (TDFII), and also delta direct-form I (DDFI),
delta direct-form II (DDFII) and delta transposed direct-form
II (TDDFII) (cf. step 2 of Fig. 1).

(3) Open-loop systems:DSVerifier Toolbox verifies, for transfer-
function representation, stability, overflow, minimum phase,
limit-cycle and quantization error, while in state-space rep-
resentation, it verifies stability, quantization error, observ-
ability and controllability properties (cf. step 3 of Fig. 1).

(4) Closed-loop systems: DSVerifier Toolbox verifies stabil-
ity, limit-cycle and quantization error in transfer-function
representation, while for state-space systems, all properties
mentioned for open-loop systems are checked, via state feed-
back matrix (cf. step 3 of Fig. 1).

(5) BMC tools: DSVerifier Toolbox handles the verification for
digital-systems using CBMC [9] or ESBMC [5] as back-end,
to perform the symbolic verification (cf. step 3 of Fig. 1).

2.3 DSVerifier Toolbox Usage
In order to explain the DSVerifier Toolbox’s workflow, the following
second-order controller represented by a transfer-function H (z) =
B (z )
A(Z ) (cf. section 2) for an AC motor plant is used

H (z ) =
z3 − 2.819z2 + 2.6370z − 0.8187
z3 − 1.97z2 + 1.033z − 0.06068

. (1)

2.3.1 Command Line Version. Users must provide a digital sys-
tem described as aMATLAB system using a tf (for transfer-function)
or an ss (for state-space) command (cf. step 1 of Fig. 1). DSVerifier
Toolbox is then invoked to check the digital system representa-
tion and the desired property (cf. steps 2 and 3 of Fig. 1). Table 1
summarizes the DSVerifier Toolbox’s commands that perform the
proposed automatic verification and the required parameters for
each property (cf. step 4 of Fig. 1). In Table 1, system represents
the digital system in transfer-function or state-space format, intbits
is the integer part, fracbits is the fractional part, max and min are
the maximum and minimum dynamic range, respectively, bound
is the k bound to be employed during verification, cmode is the
connection mode, for closed-loop systems in transfer-function (se-
ries or feedback), and error is the maximum possible value in the
quantization error check. Additionally, optional parameters can
be included, such as overflow mode, rounding mode, BMC tool,

Figure 2: GUI Application for Transfer-Function Verifica-
tion, in Closed-Loop Format.

solver, quantization error mode and delta coefficient (for delta re-
alization).2 All available functions w.r.t. DSVerifier Toolbox have
been exhaustively tested and experimental results are available
online.3

2.3.2 GUI Application Version. A graphical user interface ap-
plication was developed (Fig. 2), in order to favor digital-system
verification in MATLAB, besides improving usability and, conse-
quently, attractingmore digital-system engineers. Users can provide
all required parameters for digital-system verification: specification,
target implementation and properties to be checked.

2.4 Illustrative Example
To illustrate the DSVerifier Toolbox’s usage, Fig. 3 shows the sta-
bility verification for the digital system specified in Eq. 1, where
“num” and “den” represent the numerator A(z) and denominator
B (z), resp., using a dynamic range [−1, 1] and a fixed-point format
⟨2, 13⟩, i.e., 2 bits for the integer part and 13 for the fractional one.

>> num = [ 1 . 0 0 0 0 −2 .8190 2 . 6 3 7 0 − 0 . 8 1 8 7 ] ;
>> den = [ 1 . 0 0 0 0 −1 .9700 1 . 0 3 3 0 − 0 . 0 6 0 7 ] ;
>> system = t f ( num , den , 0 . 0 0 1 ) ;
>> v e r i f y S t a b i l i t y ( system , 2 , 1 3 , 1 , − 1 ) ;
>> VERIFICATION SUCCESSFUL

Figure 3: Verifying stability for Eq. 1 in MATLAB, with a
fixed-point format ⟨2, 13⟩.

If the fixed-point format is changed to ⟨12, 3⟩, for the same sys-
tem described in Eq. 1, the verification indicates a failure, i.e., a
digital system is unstable, as shown in Fig. 4, which indicates that
DSVerifier Toolbox can correctly verify digital systems with differ-
ent implementations.

After verifying that the adopted digital system is unstable with
format ⟨12, 3⟩, the respective failed verification result can be con-
firmed by reproducing the counterexample generated by DSVerifier
2All functions implemented in DSVerifier Toolbox are detailed in the Toolbox’s Docu-
mentation.
3http://www.dsverifier.org/benchmarks
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Table 1: DSVerifier Toolbox’s commands and parameters used during verification procedures.

Verification Command system intbits fracbits max min bound cmode error
verifyStability x x x x x
verifyOverflow x x x x x x
verifyError x x x x x x x
verifyMinimumPhase x x x x x
verifyLimitCycle x x x x x x
verifyClosedStability x x x x x x
verifyClosedQuantizationError x x x x x x x x
verifyClosedLimitCycle x x x x x x x
verifyStateSpaceStabiltiy x x x
verifyStateSpaceControllability x x x
verifyStateSpaceObservability x x x
verifyStateSpaceQuantizationError x x x x x

>> v e r i f y S t a b i l i t y ( system , 1 2 , 3 , 1 , − 1 ) ;
>> VERIFICATION FAILED

Figure 4: Verifying stability for Eq. 1 in MATLAB, with a
fixed-point format ⟨12, 3⟩.

Toolbox. In particular, we compute the roots of FWL[A(z)], in
order to check stability. If any root has modulus equal or greater
than one, then the system is unstable; otherwise, it is stable. When
applying FWL[H (z)], with the first case (i.e., ⟨2, 13⟩) and comput-
ing the denominator roots of FWL[H (z)], we obtain the following
set of poles: I = {0.9629, 0.9400, 0.0672}, from which we can con-
clude that all poles are inside the unit circle. This means that the
mentioned system is stable, if the numeric representation ⟨2, 13⟩ is
used; however, when applying FWL[H (z)] to the second case (i.e.,
⟨12, 3⟩) and then computing the denominator roots of FWL[H (z)],
the following set of poles is obtained: J = {1.3090, 0.5000, 0.1910},
where set J has one root with modulus greater than one, which
confirms that using ⟨12, 3⟩ format the verified system becomes un-
stable. The stability for the digital systems described above could
be indeed observed through the associated step response for both
cases, as shown in Fig. 5. In subfigure 5(a), the step response shows
that the digital system is stable, while in 5(b) it is unstable.

3 CONCLUSION
DSVerifier Toolbox is able to verify dynamic digital-systems (con-
trollers or filters) designed inMATLAB given as transfer-function or
state-space representations in open- or closed-loop form. We have
shown that using different numerical representations for a digital
controller can yield different verification results. In particular, we
demonstrated that the choice of representation has the potential to
cause instability and then compromises the entire system. Given
the current literature in formal verification, there is no other MAT-
LAB toolbox for verifying specific properties of digital systems
while taking into account implementation aspects. As future work,
DSVerifier Toolbox will perform verification for robust stability and
be combined with DSValidator [4].
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