
Multi-Core Model Checking and Maximum
Satisfiability Applied to Hardware-Software
Partitioning

Alessandro Bezerra Trindade*, Renato de Faria
Degelo, Edilson Galvão dos Santos Junior,
Hussama Ibrahim Ismail, Helder Cruz da Silva
and Lucas Carvalho Cordeiro
Federal University of Amazonas
Av. Rodrigo Otávio, 3000, Campus Universitário, Manaus, Brazil, ZIP 69077-000
E-mail: alessandro.b.trindade@gmail.com*
E-mail: rdegelo@gmail.com
E-mail: esj.galvao@gmail.com
E-mail: hussamaismail@gmail.com
E-mail: helder@ufam.edu.br
E-mail: lucascordeiro@ufam.edu.br
* Corresponding author

Abstract: Bounded Model Checking (BMC) based on Satisfiability Modulo Theories
(SMT) is well known by its capability to verify software. However, its use as optimization
tool, to solve hardware and software (HW-SW) partitioning problem, is something new.
In particular, its integration with the Maximum Satisfiability solver νZ tool, which
provides a portfolio of approaches for solving linear optimization problems over SMT
formulas, is unprecedented. We present new alternative approaches to solve the HW-SW
partitioning problem. First, we use SMT-based BMC in conjunction with a multi-core
support using Open Multi-Processing to create four variants to solve the partitioning
problem. The multi-core SMT-based BMC approaches allow initializing many verification
instances based on the number of available processing cores, where each instance checks
a different optimum value until the optimization problem is satisfied. Additionally, we
integrate the νZ into the BMC, making it as a specialized solution for optimization in a
single-core environment. We implement all five approaches on top of the Efficient SMT-
Based Context-Bounded Model Checker (ESBMC) and compare them to a state-of-the-art
optimization tool. Experimental results show that there is no single optimization tool
to solve all HW-SW partitioning benchmarks, but based on medium-size benchmarks,
ESBMC-νZ had better performance.

Keywords: hardware-software co-design, hardware-software partitioning, optimization,
model checking, multi-core, maximum satisfiability.

Reference to this paper should be made as follows: Trindade, A.B., Degelo, R.F.,
Santos Junior, E.G., Ismail, H.I., Silva, H.C., and Cordeiro, L.C. (2016) ‘Multi-Core
Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning’,
International Journal of Embedded Systems, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Alessandro Bezerra Trindade received the B.Sc. and M.Sc. degrees
in electrical engineering from the Federal University of Amazonas (UFAM), in 1995 and
2015, respectively. Currently, he is pursuing his PhD in informatics at UFAM.

Renato de Faria Degelo, received his software analysis and development technologist
degree in 2011 from Uninorte and is pursuing his M.Sc. at UFAM. Currently, he is a
software engineer at Samsung Institute (SIDIA).

Edilson Galvo dos Santos Junior, received his computer engineering degree in 2015 from
Foundation Center for Analysis, Research and Technological Innovation (FUCAPI) and
is pursuing his M.Sc. at UFAM. Currently, he is a software engineer at SIDIA.

Hussama Ibrahim Ismail holds a B.Sc. degree in computer engineering from FUCAPI
in 2013 and a M.Sc. degree in Electrical Engineering from UFAM in 2015. His current
research interests are formal methods and embedded systems.

Helder Cruz da Silva received the B.Sc. degree and the M.Sc. from the Federal University
of Uberlndia (UFU), in 1998 and 2001, respectively. He received the Ph.D. degree from
University of Minho in 2013. Currently, he is an assistant professor at UFAM.

Lucas Carvalho Cordeiro received the Ph.D. degree from the University of Southampton
in 2011. From 2009 to 2016, he was an adjunct professor at UFAM (he is currently in
unpaid leave). Since 2016, he is a researcher at the University of Oxford.

International Journal of Embedded Systems, Vol. x, No. x, 2016 2 , Vol. x, No. x, 2016 2

1 Introduction

Nowadays, with the tight development time of embedded
systems, the design phase plays an important role. At
early stages, the design is split into separated flows:
hardware (HW) and software (SW). The partitioning
decision process, which deals with decisions upon
which parts of the application have to be designed in
hardware and which one in software, must be supported
by any well-structured methodology. If there is no
methodology support, a number of issues, e.g., design
flow interruptions, redesigns, and undesired iterations
might affect the overall development process, the quality,
as well as the final system life-cycle.

Since the first decade of 2000s, two main paths have
been tracked to solve the HW-SW partitioning problem:
to find the exact solution of a optimization problem, as
presented by Mann et al. (2007); and to use heuristics to
speed up performance time, as presented by Arato et al.
(2003) and Arato et al. (2005). It is worth mentioning
that using heuristics the final solution is not necessarily
an optimal global solution.

There is also the effort to create a hardware-software
(HW/SW) co-simulation environment in order to help
designers obtain an appropriate HW/SW partitioning
that satisfy specified tradeoffs, as described by Jan et al.
(2005) and by Hau and Khalil-Hani (2009).

In terms of SMT-based verification, most related
studies are restricted to present the model, its
modification to specific programming languages (e.g.,
C/C++ and Java), and the application to multi-thread
algorithms or to embedded systems to check for program
correctness. In Ramalho et al. (2013) it presents a
bounded model checker for C++ programs, which is an
evolution of dealing with C programs, and Cordeiro et
al. (2012) use ESBMC for embedded ANSI-C software.
In Trindade and Cordeiro (2015), and Trindade et
al. (2015) it was proven that it is possible to use
ESBMC to solve HW-SW partitioning in a single- and
multi-core way, but the former has performance issues
that were improved by the latter, which used only a
sequential search to perform multi-core model checking.
There are related studies focused on decreasing the
verification time of model checkers by applying Swarm
Verification, as mentioned in Holzmann et al. (2011), and
modifications of internal search engines to add support
for parallelism, as presented by Holzmann (2012), but
there is still the need for initiatives related to parallel
SMT solving, as described by Wintersteiger et al. (2009).

Recently, the SMT solver Z3 has been extended to
pose and solve optimization problems modulo theories,
as presented by Bjorner et al. (2015). In particular,
νZ tool offers substantial performance improvement in
optimization problems, as described by Bjorner and
Phan (2014). Additionally, as an application example,
Pavlinovi et al. (2015) propose an approach which
considers all possible compiler error sources for statically
typed functional programming languages and reports the

most useful one subject to some usefulness criterion. The
authors formulate this alternative single-core approach
as an optimization problem related to SMT and use νZ
to compute an optimal error source in a given ill-typed
program.

1.1 Contributions

Here, we apply SMT-based verification methods to the
HW-SW partition problem in three different ways using
a multi-core ESBMC approach with OpenMP: ESBMC-
SS using a sequential-search (SS), ESBMC-PS using a
parallel-search (PS), and ESBMC-PB using a binary-
search (BS). Our experimental results are compared
to ILP (integer linear programming) and GA (generic
algorithms) in a multi-core version, and also to νZ,
which supports only a single-core approach, as described
by Bjorner et al. (2015). The ILP and GA algorithms are
implemented with the optimization toolbox of Matlab,
as described in MathWorks (2013), while νZ is a built-
in tool to the SMT solver Z3. All multi-core ESBMC
approaches, together with νZ, are implemented with the
ESBMC tool. To the best of our knowledge, this is the
first work to use a multi-core SMT-based verification
and a MaxSMT solver to check for HW-SW partitioning
problems in embedded systems.

1.2 Availability of Data and Tools

Our experiments are based on a set of publicly
available benchmarks. All tools, benchmarks,
and results of our evaluation are available on a
supplementary web page http://esbmc.org and
http://esbmc.org/benchmarks.

1.3 Organization of this Work

This article is organized as follows: Section 2 gives a
background on optimization techniques, νZ, ESBMC,
and OpenMP tools. Section 3 describes the informal and
formal mathematical modeling. The SMT-based BMC
method is presented in Section 4, and in particular,
Section 4.4 presents the partitioning model using νZ.
In Section 5, we show the experimental results using
several embedded systems applications. We conclude and
describe future work in Section 6.

2 Preliminaries

The HW-SW partitioning problem is typically
represented as a set of constraints and an objective
function in linear programming. We describe the linear
programming problem and present related tools that
are used to model and solve the HW-SW partitioning
problem.

Copyright c© 2008 Inderscience Enterprises Ltd.

Copyright c© 2009 Inderscience Enterprises Ltd.

Multi-Core Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning 3

2.1 Optimization

Optimization is the act of obtaining the best result
(i.e., the optimal solution) under given circumstances
as defined in Rao (2009). There is no single method
available for efficiently solving all optimization problems,
as described by Rao (2009). The most well-known
technique is linear programming, which is a method
applicable for the solution of problems in which the
objective function and the constraints appear as linear
functions of the decision variables. A particular case of
linear programming is ILP, in which the variables can
assume just integer values. Eq. (1) shows a typical linear
programming problem, where A and b are vectors from
the objective function, while Aeq and beq are matrices
that describe the linear equality constraints

minf tx such that =

A.x ≤ b,
Aeq.x = beq,

x ≥ 0.

(1)

Here, we refer to the relevant work of Mann et
al. (2007) in optimization, who modified a branch-
and-bound algorithm to speed up the execution time.
Sapienza et al. (2013) used multiple criteria decision
analysis to solve the HW-SW partitioning problem.

In some cases, the time to find a solution using
ILP is impractical. Even with the use of powerful
computers, a problem can take hours before an optimal
solution is reached. If the optimization problem is
complex, some heuristics can be used to solve the
same problem faster, as described by Rao (2009), e.g.,
those used in the GA. The only drawback is that the
found solution may not be the global minimum or
maximum. As relevant studies, Jianget al. (2010) used
a GA mixed with simulated annealing and Huong and
Binh (2012) designed a modified Pareto optimization
using GA. In the other hand, there is some research
done to reduce the complexity of computation in order
to improve the performance of some techniques, as
described by Boucheneb and Hadjidj (2006).

Alternatively, tools such as ESBMC and νZ can be
used to solve optimization problems so that the global
minimum or maximum solution is found, as described
by Trindade and Cordeiro (2015) and Bjorner et al.
(2015). The following sections describe the main features
of ESBMC and νZ tools.

2.2 Bounded Model Checking with ESBMC

Among recent model checking techniques, there is
one that combines model checking with satisability
solving. This technique, known as bounded model
checking (BMC), does a very fast exploration of the
state space, and for specific types of problems, it
offers large performance improvements over previous
approaches, as presented by Biere et al. (2009). In
particular, BMC based on Boolean Satisfiability (SAT)

has been introduced as a complementary technique to
binary decision diagrams for alleviating the state-space
explosion problem, as described by Clarke et al. (2001).

The basic idea of BMC is to check the negation of
a given property at a given depth: given a transition
system M , a property φ, and a bound k, BMC unrolls
the system k times and translates it into a verification
condition (VC) ψ such that ψ is satisfiable if and only
if φ has a counterexample of depth k or less, as defined
in Biere et al. (2009). To cope with increasing software
complexity, SMT solvers can be used as back-ends for
solving the generated VCs, as presented by Ganai and
Gupta (2006), Armando et al. (2009), Cordeiro et al.
(2012).

In this study, however, ESBMC has been used as
a BMC tool to solve HW-SW partitioning problems,
as mentioned in Cordeiro et al. (2012). In particular,
there are two directives in ESBMC that can be used
to guide it to solve an optimization problem: ASSUME
and ASSERT. The directive ASSUME is responsible for
ensuring the compliance of constraints (software costs),
and the directive ASSERT controls the halt condition
(minimum hardware cost). Then, with some C/C++
code, it is possible to guide ESBMC to solve optimization
problems.

2.2.1 ESBMC Architecture

Fig. 1 shows the ESBMC architecture, which consists
of the C/C++ parser, GOTO Program, GOTO Symex,
and SMT solver, as described by Cordeiro et al. (2012).
In particular, ESBMC compiles C/C++ code into
equivalent GOTO-programs (i.e., control-flow graphs)
using a gcc-compliant style. GOTO-programs can then
be processed by the symbolic execution engine, called
GOTO Symex, where two recursive functions compute
the constraints (C) and properties (P); finally, it
generates two sets of equations (i.e., C ∧ ¬P), which are
checked for satisfiability by an SMT solver.

The main factor for ESBMC to use only a single-core
relies on its back-end (i.e., SMT Solver). Currently, the
SMT solvers supported by ESBMC are: Z3, as presented
by Moura and Bjorner (2008); Boolector, as mentioned
in Brummayer and Biere (2009); MathSAT, as presented
by Barrett et al. (2011); CVC4, as presented by Bozzano
et al. (2005); and Yices, as presented by Dutertre (2014).
Most of them do provide neither multi-threaded support
nor a parallel version to solve the generated SMT
equations.

2.3 OpenMP

The OpenMP is a set of directives for parallel
programming that augments C/C++ and Fortran
languages, as defined in Muller (2002). OpenMP
supports most processor architectures and operating
systems, e.g., Solaris, AIX, HP-UX, Linux, Mac OS
X, and Windows. OpenMP uses a portable and very
robust model to facilitate the development of parallel
applications for a variety of platforms.

4 A. Trindade et al.

Figure 1 ESBMC architecture.

C/C++
code

C
Parser

GOTO
Program

control-flowscan

typecheck graph

GOTO
Symex

symbolic
execution

SMT
Solver

equations

C∧¬P

Verification
Successful

Verification
Failed

In particular, OpenMP uses the fork-join model
of parallel execution, as mentioned in Muller (2002).
The main thread executes the sequential parts of the
program; if a parallel region is encountered, then it
forks a team of worker threads. After the parallel region
finishes (i.e., the API waits until all threads terminate),
then the main procedure returns to the single-threaded
execution mode, as presented by Wu et al. (2014).

The most basic directive of OpenMP is the “#pragma
omp parallel for”, which parallelizes the enclosing loop;
a basic OpenMP example is shown below:

Figure 2 OpenMP basic Example.

1 int k ;
2 #pragma omp p a r a l l e l for
3 for (k = 0 ; k < 10 ; k++)
4 a [k] = 2∗k ;

In the above example, the for loop is executed in
parallel. Each iteration of the loop is executed in a
separated thread; and each thread may use an idle
processor. There is also a way to specify critical regions,
which is a code block that is guaranteed to be executed
by a single thread at a time. To create a critical region,
the “#pragma omp critical” directive is routinely used.

2.4 Solving Optimization Problems with νZ

In this study, the SMT solver Z3 is used to check for
the satisfiability of formulas generated from the HW-SW
partitioning problem, as presented by Bjorner and Phan
(2014). In particular, we exploit the use of MaxSMT
solver νZ, which is implemented on top of the SMT
solver Z3, in order to solve optimization problems; the νZ
main function is to optimize objective functions, which
formulate optimized criteria, within the logical context
of constraints. νZ also includes an incremental version
of the Maximum Resiliency (MaxRes), as mentioned
in Paci et al. (2008), in order to achieve Maximum
Satisfiability (MaxSAT), as defined in Narodytska and
Bacchus (2014) and a Simplex to solve numbers without
defined patterns.

In νZ, MaxSAT is responsible for the restrictions,
while OptSMT optimizes linear arithmetic objectives,
as presented by Bjorner et al. (2015). In summary, νZ
provides three main functions that extend Z3 for solving
optimization problems, which are: maximize, minimize,
and assert-soft.

• maximize(T) this function instructs the solver
that a given variable T should be maximized, which
includes real, integer, or bit-vector variables.

• minimize(T) this function instructs the solver
that a given variable T should be minimized; the
accepted types are the same as maximize function.

• Assert-Soft F : weight n the function assert-
soft adds a restriction to F , which can also add a
weight n; the default value is 1.

As an example, one can optimize (K +W), which is
subject to restrictions in (K < 2) and (W −K < 1). The
expected result of this optimization problem described
in the code below is 2. Indeed, the model generated by
νZ shows that K = 1 and W = 1.

Figure 3 OpenMP basic Example.

1 (Declare−Const K Int)
2 (Declare−Const W Int)
3 (a s s e r t (< K 2))
4 (a s s e r t (< (− W K) 1))
5 (maximize (+ K W))
6 (check−sa t)

Fig. 4 shows the νZ architecture. Initially, the
SMT formula with objectives is converted to 0−
1 constraints, which leads to a Pseudo-Boolean
Optimization (PBO), as mentioned in Barth and
Putnam (1995) and Manquinho and Marques-Silva
(1995). If there are many objective functions, νZ invokes
OptSAT for arithmetic or MaxSAT for soft constraints.
For constraints using real values, νZ combines linear
arithmetic objectives and uses only one instance of
OptSMT. When “soft constrains” is used in the mode
“lexicographic”, νZ invokes MaxSAT using multiple calls
for its engine.

Figure 4 νZ architecture extracted from Bjorner et al.
(2015).

Z3 is available for platforms in C, C++, Java, .NET,
and Python; it is possible to download Z3 with νZ from
its github repository in Microsoft Research (2015). In
this work, the python API is used to formulate HW-SW
partitioning problems using the νZ tool.

Multi-Core Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning 5

3 Mathematical modeling

The mathematical modeling of the HW-SW partitioning
problem was taken from Arato et al. (2003) and Mann
et al. (2007).

3.1 Informal Model (or Assumptions)

The informal model can be described by five
characteristics. First, there is only one software context,
i.e., there is just one general-purpose processor, and
there is only one hardware context. The system’s
components must be mapped to either one of these
two contexts. Second, the software implementation
of a component is associated with a software cost,
which is the execution time of the component. Third,
the hardware implementation of a component has a
hardware cost, which can be area, heat dissipation,
or energy consumption; the decision is typically made
by the engineer or from the project requirement.
Fourth, based on the assumption that hardware is
significantly faster than software, the execution time
of the components in hardware is considered to be
zero. Finally, if two components are mapped to the
same context, then there is no communication overhead
between them; otherwise, there is an overhead. The
consequence of these assumptions is that scheduling
does not need to be addressed in this study. Hardware
components do not need scheduling, because the
execution time is assumed to be zero. Since there is
only one processor, software components do not need
to be scheduled as well. Therefore, the focus is only on
the partitioning problem. That configuration describes
a first-generation co-design, with a simplified HW-SW
model, where the focus is on bipartitioning, as presented
by Teich (2012).

3.2 Formal Model

A directed simple graph G = (V,E), called the task
graph of the system, is given. Where the vertices
V = {V1, V2, . . . , Vn} represent the nodes that are the
components of the system that will be partitioned. The
edges E represent communication between components.
Additionally, each node Vi has a cost h(Vi) (or hi) of
hardware if implemented in hardware and a cost s(Vi)
(or si) of software if implemented in software. Finally,
c(Vi, Vj) represents the communication cost between Vi
and Vj if they are implemented in different contexts
(hardware or software).

P is called a hardware-software partition if it is a
bipartition of V : P = (Vh, Vs), where Vh ∪ Vs = V and
Vh ∩ Vs = 0. The crossing edges are Ep = {(Vi, Vj) : Vi ∈
Vs, Vj ∈ Vh or Vi ∈ Vh, Vj ∈ Vs, Arato et al. (2003). The
hardware cost of P is given in Eq. (2)

Hp = ΣVi∈Vh
hi, (2)

and the software cost of P (i.e., software cost of the
nodes and the communication cost) is given in Eq. (3)

Sp = ΣVi∈Vs si + Σ(Vi,Vj)∈ Ep
c(Vi, Vj). (3)

In particular, different optimization (and decision)
problems can be defined for partitioning HW-SW, as
described by Arato et al. (2003). In this paper, however,
the focus is on systems with hard real-time constraints:
S0 is given (initial cost of software), i.e., the objective
is to find a P HW-SW partitioning so that Sp ≤ S0

and Hp is minimal, which is thus related. Therefore, the
objective function is:

minimize hx. (4)

Consequently, the constraints can be reformulated
based on Equations (1) and (3) as:

s (1− x) + c|Ex| ≤ S0, (5)

x ∈ {0, 1}n, (6)

where h, s and c are the vectors representing the cost
functions, E is the transposed incidence matrix of G
(indicating which edges cross the boundary between the
contexts of hardware and software), n is the number of
nodes, and x represents the decision variable (a binary
vector indicating the partition: 1 if the node is realized
in hardware and 0 if the node is realized in software).
Concerning the complexity of this problem, Arato et
al. (2003) demonstrate that it is NP-Hard, as defined
in Cormen et al. (2009).

4 Analysis of the partitioning problem

As computer hardware architecture moves from single-
to multi-core, and more recently to heterogeneous
computing as described by Mittal et al. (2015), parallel
programming environments should be exploited to take
advantage of the ability to run several threads on
different processing cores. This section describes the
verification algorithm using sequential ESBMC, followed
by three multi-core model checking algorithms and the
integration of the MaxSMT solver νZ into ESBMC, in
order to speed up the HW-SW partitioning verification.
HW-SW partitioning using ILP-based and Genetic
Algorithms are also explained.

4.1 Partitioning problem using ILP-based,Genetic
Algorithms

The ILP and GA were taken from our previous studies,
from Trindade and Cordeiro (2015) and Trindade et al.
(2015). Both use slack variables in order to eliminate
the modulus operator of Eq. (5) and consequently to use
commercial tools. However, GA had improvements from

6 A. Trindade et al.

the parameters of related studies to increase the solution
accuracy without producing timeout. The tuning was
performed by empirical tests and resulted in changing of
three parameters, which are passed to the function ga
of MATLAB, as mentioned in MathWorks (2013): the
population size was set from 300 to 500, the Elite count
changed from 2 (default value) to 50, and the number
of generations changed from 100 ∗NumberOfV ariables
(default) to 75. All ILP and GA parameters were
presented and discussed in Trindade and Cordeiro (2015)
and Trindade et al. (2015). In particular, the ILP and
GA algorithms were chosen since they were also used in
another related work, as Arato et al. (2003) and Mann et
al. (2007), thus facilitating the comparison to the present
techniques (that we propose in this paper).

4.2 Verification Algorithm using Sequential
ESBMC

Figure 5 shows ESBMC pseudocode with the same
constraints and conditions placed on ILP and GA. Two
values must be controlled to obtain the results and to
perform the optimization. One is the initial software
cost, as defined in Section 3.2. The other is the halting
condition (code violation) that stops the algorithm.

Note that, as defined by the formal model, there is an
index for each decision variable, indicated by the letter
“i”, which ranges from 0 to the number of nodes of the
(particular) problem to be solved.

The ESBMC algorithm starts with the declarations of
hardware, software, and communication costs. S0 must
also be defined, as the transposed incidence matrix (used
in Eq. (5)) and the identity matrix (necessary to work
with the matrices), as typically done in MATLAB. Here,
matrices A and b are generated. At that point, the
ESBMC algorithm starts to differ from ILP and GA
presented in Trindade and Cordeiro (2015).

Figure 5 Pseudocode describing sequential ESBMC.

1 I n i t i a l i z e v a r i a b l e s
2 Declare number o f nodes and edges
3 Declare the maximum hardware co s t (Hmax)
4 Declare hardware co s t o f each node as array (h)
5 Declare so f tware co s t o f each node as array (s)
6 Declare communication co s t o f each edge (c)
7 Declare the i n i t i a l sw co s t o f (S0)
8 Declare t ransposed in c i d enc e matrix graph G(E)
9 Def ine the d e c i s i o n v a r i a b l e s (xi) as Boolean

10 main {
11 For T ipH = 0 to Hmax do {
12 Populate xi with non−d e t e rm i n i s t i c va lue s
13 Calcu la te si(1− xi) + c|Exi| and s t o r e in va r i ab l e
14 Requirement en fo rced by assume(v a r i a b l e ≤ S0)
15 Calcu la te Hp co s t based on value o f xi

16 Vio l a t i on check with assert (Hp > TipH)
17 }
18 }

It is possible to instruct ESBMC with which type
of values the variables must be evaluated. Therefore,
there is a declaration to populate all decision variables
x with non-deterministic Boolean values. As a result,

the Boolean value that is assigned to each decision
variable xi is actually selected by the SMT Solver,
during its solving phase, which checks once all possible
combinations to yield a feasible solution, e.g., by
handling the terms in the given background theory using
a decision procedure, as described by Moura and Bjorner
(2008); Brummayer and Biere (2009). If this is achieved,
then the ASSUME directive ensures the compliance of
the constraint A.x ≤ b.

A loop controls the cost of hardware hint, starting
with zero and reaching the maximum value, considering
the case where all nodes are partitioned to hardware
(which is represented byHmax). To every performed test,
the hardware hint is compared to the feasible solution.
This is accomplished by an ASSERT statement at the
end of the algorithm; a predicate that controls the
halt condition (a true-false statement). If the predicate
is false, then the optimization is concluded, i.e., the
solution is found.

The ASSERT statement tests the objective function,
i.e., the hardware cost, and will stop if the hardware
cost found is lower than or equal to the optimal
solution. However, if ASSERT returns a true condition,
i.e., the hardware cost is higher than the optimal
solution, then the model-checking algorithm restarts and
a new possible solution is generated and tested until
the ASSERT generates a false condition. When the
false condition occurs, the verification is concluded and
ESBMC presents the counterexample that caused the
condition to be broken. That is the point in which the
solution is presented (minimum HW cost).

In the ESBMC algorithm, there is no need for adding
slack variables in Eq. (5), which reduces the number of
variables to be solved if compared to ILP and GA.

4.3 Multi-core ESBMC

4.3.1 Multi-core ESBMC with OpenMP (ESBMC-
SS)

Typically, ESBMC verification runs are performed only
in a single-core. If the processor provides n processing
cores, only one is used for the verification and the others
remain idle. Thus, there is a significant unused hardware
resource during this process.

To optimize the CPU resources utilization without
modifying the underlying SMT solver, the Open Multi-
Processing (OpenMP) library, as described in Dagum
and Menon (1998), is used in this present work as a front-
end for ESBMC. Fig. 6 shows our first approach called
ESBMC sequential-search “ESBMC-SS”.

ESBMC-SS obtains the problem specification
represented by an ANSI-C program. The HW-SW
partitioning is violated, when the correct optimum
value parameter (represented by TipH ∈ N) is reached;
ESBMC-SS starts a parallel region with different
instances of ESBMC, based on the number of available
processing cores. All these ESBMC instances run
independently of each other, as shown in Fig. 6. Note

Multi-Core Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning 7

Figure 6 ESBMC-SS approach.

ESBMC-SS

OpenMP

ESBMC
Instance 1

ESBMC
Instance N

ESBMC
Instance 3

ESBMC
Instance 2

fork

join

TipH = 1 TipH = 2 TipH = 3 TipH = N

property

 violation?

NoYes

shows TipH value

...

problem specification

that there is no shared-memory (or message-passing)
mechanism among threads. In particular, different
threads are managed by the OpenMP API, which is
responsible for managing the thread life-cycle: start,
running, and dead states, using different values as
condition. After executing N instances, if there is no
code violation, then ESBMC-SS starts new instances
again; this represents a sequential-search on a multi-core
environment. During the parallel region execution, if a
violation is found in any running thread, then it presents
a counterexample with the violation condition and the
verification time. If all threads of the batch processing
are terminated, then ESBMC-SS finishes its execution.

4.3.2 Multi-core ESBMC with OpenMP using
Workers (ESBMC-PS)

The previous parallelization is implemented by
continuously forking ESBMC instances in a sequential
manner until the first violation is found. However, since
OpenMP only returns from a parallelized loop, when
every forked thread finishes, some processing cores could
remain idle for some time period.

In contrast to ESBMC-SS, where a new block of
threads will be executed only if all threads in the
previous execution were concluded, ESBMC-PS aims
at removing the idle time from the parallel loops, by
creating workers inside threads so that the next step
is immediately executed, if there is a processing core
available, as shown in Fig. 7. Note that there is no
communication among workers, but each worker notifies
the controller if a violation is found for its TipH value.

4.3.3 Multi-core ESBMC with OpenMP using
Binary Search (ESBMC-PB)

The most optimized approach applies a parallelized
binary-search to reduce the amount of steps to be
executed in order to find the optimal solution. A

Figure 7 ESBMC-PS approach.

Critical Section

APV = Any Property Violation

ESBMC-PS

OpenMP

Worker
Core N

Worker
Core 3

Worker
Core 2

fork

join

...

problem specification

Last TipH +1

ESBMC
Instance

APV

shows TipH value

controller is designed to return the step to be executed
so that the number of verification runs are substantially
reduced. The parallelized binary search accomplishes
this by splitting the domain of possible values into
intervals and then by returning the middle of the largest
interval so that two new intervals are created.

Figure 8 ESBMC-PB approach.

ESBMC
Instance

Last TipH +1

Worker
Core 2

...

ESBMC Instance

Worker Core 1

Parallel
Controler

Calc. Next
Step

Worker
Core N

...

Worker
Core 3

...

Worker
Core 2

...

APV

fork

join

problem specification

ESBMC-PB

OpenMP

Critical Section

APV = Any Property Violation

shows TipH value

...

As an example, given a problem of domain from 1 to
20 (see Fig. 9), we firstly create an initial interval from 1
to 20. When the next available core requests a step to be
executed, the controller obtains the largest interval, i.e.,
[1, 20], divides it by two, which creates two new intervals
(i.e., [1, 9] and [11, 20]), and returns the middle of the
original interval (i.e., 10). The controller also checks
whether an interval has less than two elements to avoid
creating empty or invalid intervals.

Note that there might gaps between steps, which are
produced by the customized binary-search. For instance,

8 A. Trindade et al.

Figure 9 Binary step calculation.

in the example shown in Fig. 9, if step 10 returns false,
then one can conclude that all steps after 10 is false
as well. However, if the same step 10 returns true, we
can assume that all steps before 10 is true as well. As a
result, an auxiliary method to remove unnecessary steps
is implemented in the controller by removing or shrinking
existing intervals. This approach leads to a high impact
in the verification time. However, if a step is running
and is not needed anymore, the worker kills the forked
process and starts a new one.

Algorithm in Figure 10 describes how the customized
binary search calculates and returns the step to be
executed. Note that the algorithm is called from each
worker in order to get the next step to execute if it
exists; otherwise, either zero or a negative number is
returned. Furthermore, this algorithm is synchronized,
which ensures a unique step value for a worker request.
From lines 4 to 9, the algorithm finds the largest interval.
Then, from line 10 the largest interval is removed and
the median is calculated in line 11. After that, two new
intervals are created, the left-side (in line 14) and the
right-side (in line 18). At the end, the median is returned.

Figure 10 Steps calculation using intervals.

1 GetNextStep (){
2 int largestChunk = −1;
3 chunk l a r g e s t ;
4 for each (chunk in chunks){
5 i f (chunk . r i g h t − chunk . l e f t > largestChunk){
6 largestChunk = chunk . r i g h t − chunk . l e f t ;
7 l a r g e s t = chunk ;
8 }
9 }

10 chunks . remove (l a r g e s t) ;
11 int median = l a r g e s t . l e f t +
12 f l o o r ((l a r g e s t . r i g h t − l a r g e s t . l e f t) / 2) ;
13 i f (median > 0){
14 i f (l a r g e s t . r i g h t − l a r g e s t . l e f t > 1)
15 chunks . add (
16 new chunk (l a r g e s t . l e f t , median − 1)
17) ;
18 i f (l a r g e s t . r i g h t != l a r g e s t . l e f t)
19 chunks . add (
20 new chunk (median + 1 , l a r g e s t . r i g h t)
21) ;
22 }
23 return median ;
24 }

Algorithm of Figure 11 describes how the worker
starts and monitors ESBMC instances. The algorithm
starts by retrieving the step to be executed from the
controller (line 1), then initiates the ESBMC instance
and obtains the process id from the forked process (line
2). While the step is being executed, the controller checks
whether this step is still needed (line 4); otherwise, the

ESBMC instance is killed (line 5) and the worker is free
to initiate another step. Note that there is no interchange
communication among workers, but they are responsible
for notifying the controller if a given violation is found.

Figure 11 Worker sample.

1 s tep = c o n t r o l l e r . GetNextStep () ;
2 int pid = ExecuteStep (s tep) ;
3 while (isRunning (pid)){
4 i f (! c o n t r o l l e r . isNeeded (s tep))
5 k i l l (pid) ;
6 }

4.3.4 Time Complexity of ESBMC-SS, ESBMC-
PS, and ESBMC-PB

With respect to the time complexity of ESBMC-SS,
ESBMC-PS, and ESBMC-PB algorithms, they can all be
described in two parts, which include the parallelism and
the optimization solving. In the first part, the ESBMC-
SS, ESBMC-PS, and ESBMC-PB time complexity is
considered to be linear (i.e., they are denoted by
O(n)), taking into account a sequential time since each
algorithm runs all possible solutions at once. However,
each execution instance of ESBMC-SS, ESBMC-PS, and
ESBMC-PB solves a specific optimization problem that
is considered to be NP-Hard, as described by Arato
et al. (2003). Thus, even a parallel execution being
implemented, including (possible) overheads due to the
use of the OpenMP library, the time complexity of
ESBMC-SS, ESBMC-PS, and ESBMC-PB is still NP-
Hard.

4.4 Analysis of the partitioning problem using νZ
(ESBMC-νZ)

Algorithm of Figure 12 encodes the objective function
and constraints related to the HW-SW partitioning
problem using νZ functions, as described in Bjorner and
Phan (2014). A νZ logical context must firstly be created
(line 2), in order to add constraints and to check whether
a given model exists to the constraints set. Note that
the number of nodes and edges, software, hardware, and
communications costs as well as the incidence matrix E
must also be declared.

The arithmetic expressions from lines 10 to 12
represent the constraints described in Eq. (5). Here,
variable SC refers to the software cost, while CMC
denotes the communication cost. In line 12, the Fobj
(objective function) is declared, which denotes the
product between the hardware cost and the decision
variables vector, which contains only Boolean values.
Fobj should be minimized to obtain the optimal
hardware solution. To achieve this, two constraints are
imposed to ESBMC-νZ: the first one refers to the sum of
the software and communication costs, where the result
should be less than S0; and the second one instructs
to ESBMC-νZ that Fobj should be minimized. Finally,
the model is checked by ESBMC-νZ and if there is a

Multi-Core Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning 9

solution that meets the constraints, then the Fobj value
is provided.

Figure 12 Pseudocode describing ESBMC-νZ.

1 − I n i t i a l i z e Var i ab l e s
2 Create vZ context
3 Create binary vec to r (x)
4 Declare number o f nodes , edges and S0

5 Declare hardware co s t o f each node as array (h)
6 Declare so f tware co s t o f each node as array (s)
7 Declare communication co s t o f each edge (c)
8 Declare t ransposed in c i d enc e matrix graph G(E)
9 −Arithmet ic Expres s ions

10 SC = s(1−x)
11 CMC = c ∗ |EX |
12 Fobj = x [i] ∗ h [i]
13 −Assert Const ra in t s
14 Add con s t r a i n t s (SF + CMC <= S0)
15 Add con s t r a i n t s to minimize Fobj
16 Check Model
17 Print Result

In general, it is worth mentioning that the complexity
for ESBMC-SS, ESBMC-PS, and ESBMC-PB in a
sequential time are linear (i.e., O(n)), that is because
each algorithm runs all the possible solutions once.
However, each execution runs an optimization problem,
which is solved by the model checker, that is NP-Hard
as described by Arato et al. (2003). Thus, even a parallel
time being considered, including possible overheads in
OpenMP, the general complexity is simplified by NP-
Hard.

5 Experimental Evaluation

This section is split into three parts. The setup
is described in Section 5.1, while Section 5.2
describes all benchmarks that were used for performing
the experimental evaluation. Section 5.3 reports a
comparison among MATLAB, ESBMC, ESBMC-SS,
ESBMC-PS, ESBMC-PB, and ESBMC-νZ using a set of
standard HW-SW partitioning benchmarks, as presented
by Mann et al. (2007).

5.1 Experimental Setup

ESBMC v2.0 running on a 64-bit Ubuntu 14.04.1
LTS operating system was used. A parallel approach
of the ESBMC-SS, ESBMC-PS, ESBMC-PB were
implemented in C++11. Version 2.0.1 of Boolector SMT-
solver, as described in Brummayer and Biere (2009)
(freely available) was used as the default solver for
ESBMC. ESBMC-νZ as a built-in tool to Z3 was
also used, as presented in Bjorner and Phan (2014).
For ILP and GA formulations, MATLAB R2013a from
MathWorks with Parallel Computing Toolbox was used,
as described in MathWorks (2013). MATLAB is a
dynamically typed high-level language, known as the
state-of-the-art mathematical software, as described
in Tranquillo (2011) and is widely used by the
engineering community, as described in Hong and Cai
(2010).

Note that the experimental results presented here
depend on the computer’s processor and memory, the
version of each tool (MATLAB and ESBMC), and
the partitioning problem to be solved. Additionally,
any change from MATLAB to another tool or to
GA/ILP libraries for different programming languages
can influence the measured time of the algorithms.

All experiments were conducted on an otherwise idle
Intel Core i7-2600 (8-cores), with 3.4 GHz and 24 GB of
RAM, running Ubuntu 64-bits. Each time was measured
3 times (average taken). Empirical tests performed
by the authors demonstrated that a higher number
of measurements, for each technique, did not produce
significant differences in the experimental results (which
were always below 10% and mostly around 3%).

Based on the mean, standard deviation and tolerance
interval to each set of time sample, it was obtained a
confidence level of 91.7% to ESBMC (sequential, SS,
PB, and νZ), 95.9% to ESBMC-PS, and 92.0% to ILP
and GA. A timeout condition (TO) is reached when
the verification time is longer than 3600 seconds. A
memory-out (MO) occurs when the tool reaches 15 GB
of memory. The TO was defined based on previous
empirical tests as well, where a larger TO (e.g., 5000
seconds) did not produce substantial differences in the
experimental results.

5.2 Description of Benchmarks

Table 1 Description of Benchmarks.

Name Nodes Edges Description

CRC32 25 32

32-bit cyclic redundancy
check, as presented
by Guthaus et al. (2011)

Patricia 21 48
Routine to insert values in
Patricia Tree, as presented
by Guthaus et al. (2011)

Dijkstra 26 69
Computer shortest paths
in a graph, as presented
by Guthaus et al. (2011)

Clustering 150 331
Image segmentation
algorithm in a medical
application

RC6 329 448
RC6 cryptography graph
algorithm

Fuzzy 261 422
Clustering algorithm based
on fuzzy logic

Mars 417 600 MARS cipher from IBM
algorithm

To perform the experiments, some benchmarks
provided by Mann et al. (2007) were used, as shown in
Table 1. The nodes in the graphs correspond to high-
level language instructions. Software and communication
costs are time dimensional, i.e., software execution time
and communication time; and hardware costs represent

10 A. Trindade et al.

the occupied area. The first three benchmarks are
extracted from MiBench, as presented by Guthaus et al.
(2011). The fuzzy benchmark was created and presented
by Mann et al. (2007) and is a significantly large
benchmark. And also from Mann et al. (2007), were
used RC6 and Mars as very complex benchmarks to
test the limits of each technique. Note that we used
the same number (and types) of benchmarks that were
previously used in the literature, in order to enable a fair
comparison to other existing techniques presented in this
study.

5.3 Experimental Results

Table 2 shows the experimental results using Matlab
(ILP and GA) and ESBMC (ESBMC-SS, ESBMC-
PS, ESBMC-PB, ESBMC-νZ) tools. The number of
nodes, edges, and the initial software cost (S0) are
given to each benchmark. Hp and Sp represent the
results of partitioning process for each technique, i.e., the
optimized value of partitioned hardware and software.
T(s) means the average time taken from the experiments.
Particularly about GA there is an additional row
informing how far from the exact answer is the found
solution.

As observed in the experimental evaluation, there
is no single tool for efficiently solving all HW-
SW partitioning benchmarks. In particular, the best
(proposed) solution is ESBMC-νZ, which solves 4 out
of 7 benchmarks; ESBMC-νZ is faster than ILP in all
supported benchmarks (i.e., CRC32, Patricia, Dijkstra,
Clustering), but it returns three TOs (timeouts) related
to RC6, Fuzzy and Mars benchmarks.

In contrast to ESBMC-νZ, ILP solves 5 out of 7
benchmarks. When ILP produces a result, it provides
the optimal solution. On the one hand, ILP execution
time is slower than νZ in all benchmarks, which are
supported by ESBMC-νZ. On the other hand, ILP is
faster than ESBMC-SS, ESBMC-PS, and ESBMC-PB in
all benchmarks, except for the clustering.

Note further that all multi-core ESBMC
implementations produce better results than
the sequential one. In particular, ESBMC-PB
implementation outperforms all other multi-core
ESBMC approaches, where its performance improves as
the number of nodes and edges increase. One notable
case is the clustering benchmark, when verified by
ESBMC-PB, it executes 3 times faster than ILP and
2.5 times slower than ESBMC-νZ. However, when the
amount of nodes is around 30, ESBMC-PB does not
outperform ESBMC-νZ and ILP tools. When analyzing
all benchmarks, ESBMC-PB produces TO for RC6,
Fuzzy, and Mars; however, the results are still promising
if we take into consideration that νZ and Matlab
are state-of-the-art tools with respect to optimization
problems.

Regarding the amount of MOs, the sequential
ESBMC approach has to explore all (possible) states
until it finds the HW-SW partitioning solution; it starts

from an extreme, where all variables are selected as
software, and then incrementally tests one by one to
check whether a given node will be implemented in
software or in hardware. In contrast, all multi-core
ESBMC approaches and ESBMC-νZ, are (heuristically)
optimized to reach faster the HW/SW partitioning
solution than the sequential one, without the need for
exploring all states as the sequential ESBMC approach
does. As a result, if the HW/SW partitioning problem
grows in complexity, then the sequential ESBMC
approach tends to easily reach MO due to the state-space
explosion problem.

The only technique that is able to solve all
benchmarks is GA; however, its precision is not
satisfactory since it produces an error rate between
−37.6% and 29.0%.

Note that RC6 produced timeouts for all
implementations of ESBMC; GA did not produce
the correct answer, and ILP solves correctly most
benchmarks, except for Mars and Fuzzy, which produced
timeouts and memory-outs in all tools that aim to find
the exact solution. No tool was capable to solve Mars in
less than 3600 seconds, while GA solved all benchmarks,
but mostly incorrectly.

The clustering benchmark seems to be the limit to
test the ESBMC (described) implementations; although
more benchmarks with similar complexity to clustering
should be included in future work for a more precise
conclusion. Note, however, that more than 150 nodes
lead to TO and MO. ILP shows robustness and produces
results even for a high number of nodes and edges, but
limited to RC6 benchmark with 329 nodes.

6 Conclusions

We presented five approaches to solve the HW-SW
partitioning problem and compared them to other state-
of-the-art techniques. Experimental results showed that
for a number of nodes larger than 300, the best solution
for the HW-SW partitioning problem is ILP. Below that
limit of nodes, the best solution turns out to be ESBMC-
νZ since its execution time is 4.3 to 7.5 times faster than
ILP, faster than any other ESBMC approach (until 462
times faster) and its result is precise (when compared to
GA). ESBMC-PB is a viable alternative for a number
of nodes lower than 150. GA had an intermediate result
in terms of performance, but the error presented from
exact solution made it not acceptable to that kind of
application.

If considering off-the-shelf tools, as MATLAB to ILP
and GA, the coding is simpler. ESBMC and νZ have
BSD-Style and MIT licenses, respectively and can be
downloaded and used for free. Similarly, it is also possible
to use free GA and ILP libraries (BSD-Style and MIT
licenses) for different programing languages.

Experimental results also pointed to an improvement
of ESBMC, when using a parallel approach. The fastest
ESBMC approach is ESBMC-PB, which produces good
results for an intermediate amount of edges and nodes.

Multi-Core Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning 11

Table 2 Experimental results of the HW-SW partitioning benchmarks.

C
R
C
3
2

P
a
tr
ic
ia

D
ij
k
st
ra

C
lu
st
e
ri
n
g

R
C
6

F
u
z
z
y

M
a
rs

Nodes 25 21 26 150 329 261 417
Edges 32 48 69 331 448 442 600
S0 20 10 20 50 600 4578 300

Exact Solution
Hp 15 47 31 241 692 13820 876
Sp 19 4 19 46 533 4231 297

ILP
T(s) 1.6 1.3 1.6 648.9 1806.2 TO TO
Hp 15 47 31 241 692 - -

GA
T(s) 6.7 7.4 8.8 340.4 2050.0 1371.9 TO
Hp 17 47 40 245 647 8619 -

Error % 13.3 0.0 29.0 1.7 -6.5 -37.6 -

ESBMC
T(s) 30.3 313.7 324.7 MO MO MO MO
Hp 15 47 31 - - - -

ESBMC-SS
T(s) 2.2 5.8 7.0 1609.3 TO TO TO
Hp 15 47 31 241 - - -

ESBMC-PS
T(s) 3.7 10.0 12.0 2468.0 TO TO TO
Hp 15 47 31 241 - - -

ESBMC-PB
T(s) 4.3 4.7 6.3 218.7 TO TO TO
Hp 15 47 38 241 - - -

ESBMC-νZ
T(s) 0.3 0.3 0.7 86.4 TO TO TO
Hp 15 47 31 241 - - -

Thus, considering that nowadays processors have more
and more cores, when modeling the problem, it is
possible to consider multi-core model checking as an
alternative to solve the HW-SW partitioning problem.

Finally, there is an issue about 150 nodes problem,
since it seems to be the limit of multi-core ESBMC.
However, it really depends on the modeling granularity
of the problem. Some researchers propose fine-grained
models, in which each instruction can be mapped to
either HW or SW. This may lead to thousands of nodes
or even more. Others defend coarse-grained models,
where decisions are made for larger components, thus

even complex systems may consist of just some dozens of
nodes to partition. In principle, a fine-grained approach
may allow to obtain better partitions, but at the cost of
an exponential increase of the search space size.

In future work, we will address improvements in
ESBMC to remove the parallel layer on top of ESBMC
and implement it during symbolic execution so that
we can optimize the overall verification time. And
so that the limits of the techniques can be defined
more precisely, new benchmarks will be included in
future work, with their complexity ranging between
100 and 400 nodes. Furthermore, more complex types

12 A. Trindade et al.

of architectures of HW-SW model will be addressed,
including more than one CPU, and the assumption
of just singled-threaded program execution will be
extended to multiprogramming and multiprocessing
(second generation of co-design).

References

Arato, P., Juhasz, S., Mann, A., Orban, A. and
Papp, D. (2003) ’Hardware/software partitioning in
embedded system design’, International Symposium
on Intelligent Signal Processing, pp.192–202.

Arato, P., Mann, A., Orban, A. (2005) ’Algorithmic
aspects of hardware/software partitioning’, ACM
Transactions on Design Automation of Electronic
Systems, Vol. 1, No. 1, pp.136–156.

Armando, A., Mantovani, J. and Platania, L. (2009)
’Bounded model checking of software using SMT
solvers instead of SAT solvers’, International Journal
on Software Tools for Technology Transfer, Vol. 11,
No. 1, pp.69–83.

Barrett, C., Conway, C., Deters, M., Hadarean, L.,
Jovanovic, D., King, T., Reynolds, A. and Tinelli,
C. (2011) ’CVC4’, Proceedings of the International
Conference on Computer-Aided Verification, Vol.
6806, pp.171–177.

Barth, P. and Putnam, D. (1995) ’Enumeration
Algorithm for Linear Pseudo-Boolean Optimization’,
Technical Report MPI-I-95-2-003, Max Plank Institute
for Computer Science.

Biere, A., Heule, M., Maaren, H. and Walsh, T. (2009)
’Bounded Model Checking’, Handbook of Satisfiability,
ISBN 978-1-58603-929-5.

Bjorner, N. and Phan, A (2014) ’vZ - Maximal
Satisfaction with Z3’, Proceedings of the International
Symposium on Symbolic Computation in Software
Science, pp.1–10.

Bjorner, N., Phan, A. and Fleckenstein, L. (2015) ’vZ
- An Optimizing SMT Solver’, Proceedings of the
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Vol. 9035,
pp.194–199.

Boucheneb, H. and Hadjidj, R. (2006) ’Using inclusion
abstraction to construct Atomic State Class Graphs
for Time Petri Nets’, Int. J. of Embedded Systems, Vol.
2, N. 1/2, pp.128–139.

Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila,
T., Rossum, P., Schulz, S. and Sebastiani, R.
(2005) ’MathSAT: Tight integration of SAT and
mathematical decision procedures’, Journal of
Automated Reasoning, Vol. 35, No. 1-3, pp.265–293.

Brummayer, R. and Biere, A. (2009) ’Boolector: An
Efficient SMT Solver for Bit-Vectors and Arrays’,
Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, Vol. 5505, pp.174–177.

Clarke, E., Biere, A., Raimi, R. and Zhu, Y. (2001)
’Bounded model checking using satisfiability solving’,
Formal Methods in System Design, Vol. 19, No. 1,
pp.7–34.

Cordeiro, L. and Fischer, B. (2011) ’Verifying multi-
threaded software using SMT-based context-bounded
model checking’, Proceedings of the International
Conference on Software Engineering, pp.331–340.

Cordeiro, L. Fischer, B. and Marques-Silva, J. (2012)
’SMT-based Bounded Model Checking for Embedded
ANSI-C Software’, IEEE Transactions on Software
Engineering, Vol. 38, No. 4, pp.957–974.

Cormen, T., Leiserson, C., Rivest, R. and Stein, C.
(2009) ’Introduction to Algorithms’, MIT Press, Vol.
I-XIX, pp.1–1292.

Dagum, L. and Menon, R. (1998) ’OpenMP:
An Industry-Standard API for Shared-Memory
Programming’, Proceedings of the International
Conference on Computational Science Engineering,
pp.46–55.

Dutertre, B. (2014) ’Yices 2.2’, Proceedings of the
International Conference on Computer-Aided
Verification, Vol. 8559, pp.737–744.

Ganai, M. K. and Gupta, A. (2006) ’Accelerating high-
level bounded model checking’, Proceedings of the
IEEE/ACM International Conference on Computer-
Aided Design, pp.794–801.

Guthaus, M., Ringenberg, J., Ernst, D., Austin, T.,
Mudge, T. and Brown, R. (2011) ’MiBench: A free,
commercially representative embedded benchmark
suite’, Proceedings of the annual workshop on workload
characterization, pp.3–14.

Hau, Y.W. and Khalil-Hani, M. (2009) ’SystemC-based
HW/SW co-simulation platform for system-on-chip
(SoC) design space exploration’, Int. J. of Information
and Communication Technology, 2009, Vol.2, N. 1/2,
pp.108–119.

Holzmann, G., Joshi, R. and Groce, A. (2011)
’Swarm Verification Techniques’, IEEE Transactions
on Software Engineering, Vol. 37, No. 6, pp.845–857.

Holzmann, G. (2012) ’Parallelizing the spin model
checker’, Proceedings of the International Symposium
on Model Checking Software, Vol. 7385, pp.155–171.

Hong, L. and Cai, J. (2010) ’The application
guide of mixed programming between MATLAB
and other programming languages’, Proceedings of

Multi-Core Model Checking and Maximum Satisfiability Applied to Hardware-Software Partitioning 13

the International Conference on Computer and
Automation Engineering, pp.185–189.

Huong, P. and Binh, N. (2012) ’An approach to design
embedded systems by multi-objective optimization’,
Proceedings of the International Conference on
Advanced Technologies for Communications, pp.165–
169.

Jan, K. Y., Fan, C. B., Kuo, A. C., Yen, W. C.,
and Lin, Y. L. (2005) ’A platform based SOC
design methodology and its application in image
compression’, Int. J. of Embedded Systems, Vol.1, N.
1/2, pp. 23–32.

Jiang, Y., Zhang, H., Jiao, X., Song, X., Hung, W., Gu,
M. and Sun, J. (2012) ’Uncertain model and algorithm
for hardware/software partitioning’, Proceedings of the
IEEE Computer Society Annual Symposium on VLSI,
pp.243–248.

Mann, A., Orban, A. and Arato, P. (2007) ’Finding
optimal hardware/software partitions’, Formal
Methods in System Design, Vol. 31, No. 3, pp.241–263.

Manquinho, V. and Marques-Silva, J. (1995) ’Effective
Lower Bounding Techniques for Pseudo-Boolean
Optimization’, IST/INESC-ID, Technical University
of Lisbon, Portugal.

MathWorks Inc. (2013) ’MATLAB (version R2013a)’,
ISBN 9780982583883.

Microsoft Research (2015) ’Z3 API - Source code
and documentation’ [online] https://z3.codeplex.com/
(Accessed 18 August 2015).

Mittal, S., and Vetter, J. (2015) ’A Survey of CPU-
GPU Heterogeneous Computing Techniques’, ACM
Computing Surveys, Vol. 47, Issue 4, pp. 69:1–69:35.

Moura, L. and Bjorner, N. (2008) ’Z3: An Efficient SMT
Solver’, Proceedings of the International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pp.337–340.

Muller, M. (2002) ’OpenMP C and C++ Application
Program Interface, Version 2.0’, OpenMP Architecture
Review Board.

Narodytska, N. and Bacchus, F. (2014) ’Maximum
Satisfiability Using Core-Guided MAXSAT
Resolution’, Proceedings of the Conference on
Artificial Intelligence, pp.2717–2723.

Paci, F., Ferrini, R., Sun, Y. and Bertino, E.
(2008) ’Authorization and User Failure Resiliency
for WS-BPEL business processes’, Proceedings of
the International Conference on Service-Oriented
Computing, pp.116–131.

Pavlinovi, Z., King, T. and Wies, T. (2015) ’Practical
SMT-Based Type Error Localization’, Proceedings
of the International Conference on Functional
Programming, pp.412–423.

Qawasmeh, A., Malik, A. and Chapman, B. (2014)
’OpenMP task scheduling analysis via OpenMP
runtime API and tool visualization’, Proceedings of
the International Symposium on Parallel Distributed
processing, pp.1049–1058.

Ramalho, M., Freitas, M., Sousa, F., Marques, H.,
Cordeiro, L. and Fischer, B. (2013) ’SMT-Based
Bounded Model Checking of C++ Programs’,
International Conference and Workshops on the
Engineering of Computer-Based Systems, pp.147–156.

Rao, S. (2009) ’Engineering Optimization: Theory and
Practice. 4th edition’, ISBN 978-0-470-18352-6.

Sapienza, G., Seceleanu, T. and Crnknovic, I. (2013)
’Partitioning decision process for embedded hardware
and software deployment’, Proceedings of the IEEE
37th Annual Conference and Workshops on Computer
Software and Applications, pp.674–680.

Sebastiani, R. and Trentin, P. (2015) ’OptiMathSAT: A
Tool for Optimization Modulo Theories’, Proceedings
of the International Conference on Computer Aided
Verification, Vol. 9206, pp.447–454.

Tang, T., Lin, Y. and Ren, X. (2010) ’Mapping
OpenMP concepts to the stream programming
model’, Proceedings of the International Conference
on Computer Science Education, pp.1900–1905.

Teich, J. (2012) ’Hardware/Software Codesign: The
Past, the Present, and Predicting the Future’,
Proceedings of the IEEE, Special Centennial Issue,
Vol. 100, pp.1411–1430.

Tranquillo, J. (2011) ’Matlab for Engineering and the
Life Sciences’, Synthesis Lectures on Engineering.
Morgan Claypool, ISBN 9781608457113.

Trindade, A. and Cordeiro, L. (2015) ’Applying SMT-
based verification to hardware/software partitioning
in embedded systems’, Design Automation for
Embedded Systems, Vol. 20, No. 1, pp. 1–19.

Trindade, A., Ismail, H. and Cordeiro, L. (2015)
’Applying Multi-Core Model Checking to Hardware-
Software Partitioning in Embedded Systems (short
paper)’, V Brazilian Symposium on Computing
Systems Engineering, pp. 102–105.

Wintersteiger, C., Hamadi, Y. and Moura, L. (2009)
’A Concurrent Portfolio Approach to SMT Solving’,
Proceedings of the International Conference on
Computer-Aided Verification, Vol. 5643, pp.715–720.

Wu, M., Wu, W., Tai, N., Zhao, H., Fan, J. and Yuan,
N. (2014) ’Research on OpenMP model of the parallel
programming technology for homogeneous multicore
DSP’, Proceedings of the International Conference on
Software Engineering and Service Science, pp.921–
924.

