Understanding Programming Bugs in ANSI-C
Software Using Bounded Model Checking
Counter-Examples

Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

Federal University of Amazonas
Av. General Rodrigo Octavio Jordao Ramos, 3000
Campus, Coroado I - Manaus/Amazonas
{herberthb12, lucasccordeiro}@gmail. com
{rbarreto,arilo}@dcc.ufam.edu.br
http://portal.ufam.edu.br

Abstract. One of the main challenges in software development is to
ensure the correctness and reliability of software systems. In this sense,
a system failure or malfunction can result in a catastrophe especially
in critical embedded systems. In the context of software verification,
bounded model checkers (BMCs) have already been applied to discover
subtle errors in real projects. When a model checker finds an error, it pro-
duces a counter-example. On one hand, the value of counter-examples to
debug software systems is widely recognized in the state-of-the-practice.
On the other hand, model checkers often produce counter-examples that
are either too large or difficult to be understood mainly because of the
software size and the values chosen by the respective solver. This paper
proposes a method with the purpose of automating the collection and
manipulation of counter-examples in order to generate new instantiated
code to reproduce the identified error. The proposed method may be seen
as a complementary technique for the verification performed by state-of-
the-art BMC tools. In particular, we used the ESBMC model checker
to show the effectiveness of the proposed method over publicly available
benchmarks and, additionally, a comparison with the tool Frama-C.

1 Introduction

Building complex software systems has been a great challenge to software en-
gineers. This situation can become worse when such software system belongs
to a critical embedded system (e.g., aeronautics, space, automotive, health ap-
plications) that has to be formally verified to identify errors that may result in
failures during the software execution. Thus, verification techniques and software
testing are indispensable items for high quality software development.

In the last few years, we can observe a trend towards the application of for-
mal verification techniques to the implementation level. Bounded model check-
ing (BMC) is going to this direction since it has been applied to reason about
low-level ANSI-C programs, usually checking safety and/or liveness properties,



2 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

considering single- and multi-threaded applications [5,6]. BMCs have gained
popularity due to their ability to handle the full semantics of actual program-
ming languages, and to support the verification of a rich set of properties such as
shared variables and locks, arithmetic under- and overflow, pointer safety, array
bounds, deadlocks, and fixed-point arithmetic [5].

This paper proposes a method called EZProofC that aims to apply a software
bounded model checker, in this case ESBMC (Efficient SMT-Based Context-
Bounded Model Checker), with the purpose of verifying critical parts of a software
written in the C programming language and, additionally, collecting data to show
the evidence that failures might happen. ESBMC is a state-of-the-art symbolic
context bounded model checker, which performs comparable to other off-the-
shelf software model checkers (e.g., CBMC, SATABS) [5]. The motivation of
this work is that data collected by verification tools is usually not trivial to be
understood, mainly due to the amount of variables and values involved in the
counter-example as well as the lack of a standard output to represent the counter-
example. The proposed method uses the data provided by counter-examples to
generate new instantiated code to reproduce the identified error. In this paper,
the instantiated code is a particular instance of the code with the variable values
provided by the BMC, which are enough to reproduce the error. This work thus
proposes a method where developers can confirm the results provided by the
bounded model checker, and additionally, alleviates the process of analyzing large
counter-examples, as well as counter-examples that do not characterize an error
(i.e., a spurious counter-examples). We adopted the C programming language
since it is the standard language to implement several kinds of software including
performance-critical software [11]. However, our techniques can also be applied
to other programming languages like C++ and Java.

We show the effectiveness of the proposed method over publicly available
benchmarks and, additionally, a comparison with the tool Frama-C [4]. Our
experimental results show that EZProofC is able to automatically reproduce
all failures found in the benchmarks by the adopted BMC tools through the
instantiation of the code. Additionally, EZProofC shows a great advantage in
comparison to Frama-C since we do not need to write specifications (i.e., pre-
and post-conditions) in the source code. We advocate that automating the data
collection process we may disseminate the application of formal methods, help
developers not very familiar with this subject, and consequently help them to
verify more complex C programs.

2 Context-Bounded Model Checking with ESBMC

Model checking has been used successfully to verify actual software (as opposed
to abstract system designs) [3, 5, 12], including multi-threaded applications writ-
ten in low-level programming languages such as ANSI-C [5]. In context-bounded
model checking, the state spaces of such applications are bounded by limiting the
size of the program’s data structures (e.g., arrays) as well as the number of loop
iterations and context switches between the different threads that are explored



Understanding Programming Bugs in ANSI-C Software 3

by the model checker. In symbolic model checking, a set of verification condi-
tions (VCs) is derived from the (bounded) system, which are then solved using
a Boolean satisfiability (SAT) or satisfiability modulo theories (SMT) solver.

ESBMC is a symbolic context-bounded model checker based on SMT solvers,
which allows the verification of single- and multi-threaded software with shared
variables and locks [5]. ESBMC supports full ANSI-C, and can verify programs
that make use of bit-level, arrays, pointers, structs, unions, memory allocation
and fixed-point arithmetic. It can reason about arithmetic under- and overflows,
pointer safety, memory leaks, array bounds violations, atomicity and order vio-
lations, local and global deadlocks, data races, and user-specified assertions.

In ESBMC, the program to be analyzed is modeled as a state transition
system M = (S, R, Sp), which is extracted from the control-flow graph (CFG).
S represents the set of states, R C S x S represents the set of transitions (i.e.,
pairs of states specifying how the system can move from state to state) and
So C S represents the set of initial states. A state s € S consists of the value
of the program counter pc and the values of all program variables. An initial
state s assigns the initial program location of the CFG to pc. ESBMC identifies
each transition v = (s;, s;+1) € R between two states s; and s; 1 with a logical
formula ~(s;, s;+1) that captures the constraints on the corresponding values of
the program counter and the program variables.

Given the transition system M, a safety property ¢, a context bound C and
a bound k, ESBMC builds a reachability tree (RT) that represents the program
unfolding for C, k and ¢. ESBMC then derives a verification condition (VC) ¢}
for each given interleaving (or computation path) 7 = {v1,..., v} such that ¢}
is satisfiable if and only if ¢ has a counter-example of depth %k that is exhibited
by 7. v} is given by the following logical formula:

kEoi—1
7 = Is0) A\ A\ s, 5541) A —6(s:) 1)
i=0j=0

where function I characterizes the set of initial states of M and ~y(sj, sj+1)
is the transition relation of M between time steps j and j + 1. Hence, I(sg) A
/\E;B v(s;,8;+1) represents executions of M of length 7 and ¢] can be satisfied
if and only if for some ¢ < k there exists a reachable state along 7 at time step
i in which ¢ is violated. ¥} is a quantifier-free formula in a decidable subset of
first-order logic, which is checked for satisfiability by an SMT solver. If ¥ is
satisfiable, then ¢ is violated along 7 and the SMT solver provides a satisfying
assignment, from which ESBMC can extract the values of the program variables
to construct a counter-example.

A counter-example is a trace that shows that a given property does not hold
in the model [1]. Counter-examples allow the user: (i) to analyze the failure; (ii)
to understand the root of the error; and (iii) to correct either the specification
or the model, in this case, from the property and the program that has been
analyzed respectively. A counter-example for a property ¢ is a sequence of states
50,81, ..,8K with so € So, s € 5, and v (s4,8i41) for 0 < ¢ < k. If ¥f is
unsatisfiable, we can conclude that no error state is reachable in k steps or less
along 7. Finally, we can define ¢, = A_ 9] and use it to check all paths.



4 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

3 EZProofC Method

This section describes the main steps of the EZProofC method! which aims to
explore the counter-examples generated by the ESBMC model checker, in such
a way that it can generate a new instantiated code to reproduce the errors. It is
important to emphasize here that we could adopt any BMC tool.

Figure 1 shows an overview of our proposed method. The EZProofC method
consists of the following steps: (i) code preprocessing; (ii) model checking with
ESBMC; (iii) generation of a new instantiated code; and (iv) code execution and
confirmation of defects.

First Step Second Step Fourth Step

E r No Counterexample | [out P1 | E
| Code ' . :
| ' With Counterexample | ) out P2["

| T ' ' Finish

Verification For each property Report
Uncrustify | ............................................ '
— o —— e —— e — . — — - — - R

Preprocessed Output

' Code Data Counterexample | | Execution
| Instantiation € Reader |
' =
' \ New C Code Compilation
| L}
- e __ T4
Third Step

Fig. 1. Flow structure of the proposed method.

To explain the main steps of our proposed method, we use the application
Sendmail?, in particular, the code tTflag_arr_two_loops_bad.c extracted from
the Verisec® benchmark suite, which is the the standard Unix mail (SMTP)
server. This code has 64 lines of code and aims to parse a string of digits into
two signed integers.

3.1 First Step: Code Preprocessing

In the first step, the analyzed code is preprocessed using the tool UNCRUS-
TIFY* that will preprocess the code, as show in Figure 2, to define a standard
formatting to improve the presentation of the formatting items such as: inden-
tation, block delimiters, one command per line, delineation of structures, and
other formatting aspects. This preprocessing step allows a better identification
of structures contained in the code, facilitating its handling and making it easier
to implement the next steps. It is important to note that Figure 2 presents just
a fragment from the original code.

! Available at https://sites.google.com /site/ezproofc/

2 Available at http://www.sendmail.org

3 Available at http://se.cs.toronto.edu/index.php/Verisec_Suite
4 Available at http://uncrustify.sourceforge.net



Understanding Programming Bugs in ANSI-C Software 5

#define INSIZE 14

int main (void){

unsigned char in [INSIZE+1];
unsigned char c;

int i, j;

int idx_.in = 0;

o o W N R

0 ~

/*accumulate last(int) from in (char[])x*/
¢ = in[idx-in];

if (¢ = ‘=)

{

i=0;

idx_in—++;

¢ = in[idx-in];

while ((‘0’ <= ¢) && (c <= ‘97))

©

N e
ok W N RO

H
[=]
-~

c — ‘07
i 10 + j;
i
i

=
w0 ~

[
o ©
o e

[N
I 1

1

=}

+

Y

n[idx_in];

NN
N
—~—
-

N
w

Fig. 2. C code fragment already pre-processed.

3.2 Second Step: Model Checking with ESBMC

In the second step, we use the ESBMC to verify the properties that are violated in
the code. ESBMC divides the verification in two levels: In the first level, ESBMC
determines which properties might be violated by means of preliminary static
analysis (using abstract interpretation), for determining program locations that
potentially contain an error (these properties are called claims). It is worth to
note that claims are automatically generated by ESBMC. Due to the imprecision
of the static analysis, there is the need to go the second level, that is, ESBMC has
to confirm that these claims are indeed genuine errors by using a more complete
and accurate verification technique (it is important to emphasize that during
the verification, ESBMC adopts the program slicing technique [14]).

The verification result may be classified in two ways: the code was checked
and there is no counter-example (i.e., the property was verified but no error has
been found up to the given bound k) and the code was verified and there is a
counter-example (i.e., a property violation has been found, as shown in Figure 3)
which presents the violation of the property “idx_in<15” identified in the code
fragment shown in Figure 2 (line 20). Additionally, for the verification process,
ESBMC has an Eclipse plug-in, ® which allows the user to locate the variable
in the counter-example directly in the analyzed code. To explain clearly each
proposed step, we decided to analyze one specific claim as shown in line 20 of
Figure 2.

The property “idx_in<15” has been violated due to the fact that in the
array index in the variable idx_in exceeds the upper bound of the array in as

® Available at http://www.eclipse.org



6 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

Counterexample:

State 55 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 9 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::c=45 (00101101)

State 58 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 13 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::idx_in=9 (00000000000000000000000000001001)

State 59 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 14 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::c=48 (00110000)

State 96 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 17 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::j=3 (00000000000000000000000000000011)

State 97 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 18 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::i=33 (00000000000000000000000000100001)

State 98 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 19 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::idx_in=15 (00000000000000000000000000001111)

State 93 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 20 function main thread 0

pre_tTflag_arr_two_loops_bad::main::1::c=51 (00110011)
Violated property:
file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 20 function main
array ‘in' upper bound
idx_in <15

VERIFICATION FAILED

Fig. 3. Counter-example.

defined in line 3 (in[INSIZE+1]) of Figure 2, where INSIZE is defined with the
value 14. As the loop in line 15 does not control the value of the variable idx_in,
in state 98 this variable receives a value greater than the upper bound of the
array in, which thus causes the UPPER BOUND violation.

3.3 Third Step: Code Instantiation

The third step is divided into two phases: analysis of counter-examples produced
in step 2 and generation of a new instantiated C code. Algorithm 1 details the
method to run both phases. The runtime complexity of this algorithm is O(n +
m), where n is the size of the analyzed C code and m is the size of the counter-
example. The inputs of this algorithm are the analyzed code (Code) and the
counter-example (CE_Out). Initially, the counter-example (CE_Out) is analyzed
to collect several pieces of information, such as: (1) the variables involved in the
property violation; (2) the line number where values are assigned to variables;
and (3) the specific value for each variable. This information is obtained by the
function GetValuesCEER (line 1 of the Algorithm 1) through regular expressions
applied to the counter-example file. This function returns a set that contains
data about the variables found in the counter-example (e.g., Var{vline = 9,var

c,vvalue = 45}), the violated property (P) and the line number where the
property has been violated (1ine_p).

In this way, the analyzed code is read (starting from line 8), as well as the
counter-example. If the line number of the variable identified in the counter-



Understanding Programming Bugs in ANSI-C Software 7

Input: Code, CE_Out

Output: New instantiated code

// first phase

Var,P line_p < GetValuesCEER(CFE_Out);

SCE < {Var{vline,var,vvalue},P line_p};

size <— GetTotalLineCE(SCE/Var[]]);

Lines, tline <— GetValuesCode (Code);

SCode <« {Lines{ }, tline};

UPCASE <« {Set of specific cases for counter-example data collection};
i,k 1;

// second phase

8 while i < SCodeltline] do

9 if i == SCE/[Var[vline[k]]] AND k < size then

A N R

10 if SCE[P] OR SCE[Var[vvalue[k]]] € UPCASE then

11 New_Line < StartTrigger (SCE[P], SCE[Var[vvalue[k]]]);
12 ‘ WriteLineCode(New_Line); k «+ k + 1;

13 end

14 else

15 New_Line +— “SCE[Var[var[k]]] = SCE[Var[vvalue[k]]]”;
16 WriteLineCode (New_Line); k - k + 1;

17 end

18 end

19 else

20 | WriteLineCode (SCode/Lines[i/]); i +— i + 1;

21 end

22 end

Algorithm 1: Counterexample2NewCode

example is equal to the line number of the analyzed code we can generate a new
line of code; where the identified variable receives the value abstracted from the
counter-example (e.g., the following values of the variables gathered from the
counter-example line = 9, var =c and value = 45 result that the variable
New Line (in line 15) receives the text ¢ = 45, which thus generates a new
line). Importantly, the instantiation of the variables in the new code is strictly
executed according to the sequence in the counter-example. For instance, if the
same variable in the counter-example is mentioned multiple times in the same
line (for example, in loops), only the last value found in the counter-example
will be assigned to the variable in the instantiated code.

Improving the counter-example data collection, the proposed method may
require a separate approach for some specific cases, where it is applied to the
verification step of the EZProofC method (see Section 3.2) or triggered by the
analysis of the counter-example. Line 10 of the Algorithm 1 checks whether the
property or a variable in the counter-example is in a set of specific cases already
predefined (line 6 variable UPCASE). Thus, if there is some specific case in the
counter-example that has been identified, the proper approach is applied by the
adoption of the function StartTrigger in the line 11, as following:

(i) When the violation of a property is identified and there is not enough in-
formation about the counter-example, it is necessary to use in the verifica-



8 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

tion step with ESBMC, particularly in smaller code, the option --no-slice

which does not remove unused equations of the program for generating the

counter-example. Another way to diversify the values of variables, and hence
the result in the counter-example, is to apply non-deterministic values to
them, e.g. a[0]=nondet_int ();

(ii) In some specific cases, the violation of the property UPPER BOUND can
generate a counter-example without the data about the upper bound of the
array. In this case, the method firstly identifies the array name and, through
the analysis of the code, it can collect the upper bound. This procedure is
accomplished by two elements: the first is the function NUM_OF (arr) to get
the array size; and the second element is an assert that will contain the
result of the function NUM_OF (arr) and the index value of the array that was
identified in the counter-example, thereby the structure of the assert will be
the following assert ((N) <=NUMOF (arr)—1), where N is the index value,
that will be adopted to validate the bound of the array;

(iii) Considering dynamic memory allocation violations, the proposed method has
to analyze: (1) if the pointer is referencing to the correct object; (2) if the
pointer points to an invalid object; (3) if the object considered is a dynamic
object; and (4) the argument of a free function call if in the deallocation
procedure is still a valid pointer value. The aim of this analysis is to obtain
a right assertion about the property identified.

The second phase of this third step from the EZProofC method aims to
generate a new instantiated code. The method only makes a copy of the original
code (in line 20 of the Algorithm 1), and replaces variables assignments using the
specific values identified in phase one (in line 12 or 16). In the case of properties
such as UPPER BOUND or LOWER BOUND, the proposed method includes assertions
in the instantiated code to reproduce the error, as mentioned before in line 11
about the triggers in the analysis of the counter-example. Such assertions contain
data from the property identified in the counter-example. The final result of this
step is an instantiated C code with the values of variables that are extracted
from the counter-example, as shown in Figure 4. It is worth noting that in the
counter-example (see Figure 3), the property violated was UPPER BOUND, and the
data was “idx_in<15”. In this case, in line 20 of Figure 4, the proposed method
has included an assertion in order to reproduce the error.

In particular, in this example it is obvious that the assertion will fail. This is
because the previous instruction assigns exactly a value that contradicts the as-
sertion. However, it is worth observing that this assignment comes directly from
the counter-example, implying that there is a situation where this assignment
happens in one of the execution paths.

3.4 Fourth Step: Code execution and confirmation of errors

In the third step of this method, we generate one instantiated program for each
property violated. In this fourth step, each instantiated code is compiled and
executed. The result of the execution demonstrates the error (Line:20:main:
Assertion & ‘idx_in<15’ failed. Aborted) pointed out by the counterex-
ample.



Understanding Programming Bugs in ANSI-C Software 9

1|#define INSIZE 14

2| int main (void){

3| unsigned char in [INSIZE+1];

4| unsigned char c;

5| int 1, j;

6| int idx_-in = 0;

7).

8| /*accumulate last(int) from in (char[])x*/

©

¢ =45 ; //<— by EZProofC
if (¢ == ‘=)

{

12| i =0 ;

13| idx_.in =9 ; //<— by EZProofC

14| ¢ =48 ; //<— by EZProofC

15| while ((‘0’ <= ¢) && (c <= ‘97))

o
= o

16| {

17 j =3 ; //<— by EZProofC

18 i =33 ; //<— by EZProofC

19 idx_in = 15 ; //<— by EZProofC

20 assert (idx_in <15); //<— by EZProofC
21 ¢ =51 ; //<— by EZProofC

22

23| }

24| }

Fig. 4. C code already instantiated.

4 Experimental Results

This section describes the planning, design, execution, and the analysis of the
results of an empirical study conducted with the purpose of evaluating the
proposed method when applied to the verification of standard ANSI-C bench-
marks and, additionally, a comparison with the tool Frama-C® [4] version Boron-
20100401. Frama-C is a suite of tools dedicated to the analysis of software written
in C. Frama-C makes it possible to observe sets of possible values for the vari-
ables of the program at each point of the execution. Frama-C also allows verifying
that the source code satisfies a provided formal specification. The specifications
can be written in a dedicated language, in this case, ANSI/ISO C Specification
Language (ACSL).

The experiments were conducted on an Intel Core 2 Duo CPU, 2Ghz, 3GB
RAM with Linux OS. The proposed method was implemented in a tool called
EZProofC using the ESBMC v1.16 model checker.

4.1 Planning and Design the Experiments

The goal of this empirical evaluation is to analyze the impact of the proposed
method with the purpose of confirming the properties reported by the model
checker as possible errors in the code. This confirmation is based on the number
of properties (claims) reported by the model checker, which should be confirmed
by the proposed method.

% http://frama-c.com/



10 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

In order to evaluate the proposed method, we considered 211 ANSI-C pro-
grams from six different benchmarks selected with the aim to evaluate the ca-
pacity and performance of methods and techniques in the identification of errors.
Moreover, such ANSI-C programs from these standard benchmark suites repre-
sent real implementations. The adopted benchmarks were: (i) EUREKA” which
contains programs that allow us to assess the scalability of the model checking
tools on problems of increasing complexity. It is worth observing that some of
the programs represent more than one execution, with different input data. For
instance, the program bubble_sort1_13.c represents 13 instances (from 1 to 13)
of the program bubble_sort.c. The program primé 8.c represents 5 instances
(from 4 to 8) of the program prim.c; (ii) SNU® which contains C programs
used for worst-case execution time analysis, where such programs are mostly of
numeric analysis and DSP (Digital Signal Processing) algorithms; (iii) WCET?
which, in the same way as SNU, contains programs used for worst-case exe-
cution time analysis; (iv) NEC!® which contains C programs that allow us to
check error-detection easily since they provide ANSI-C programs with and with-
out known errors; (v) Siemens (SIR'!) which is a test suite for lexical analyzer,
pattern matching and (vi) some ANSI-C programs taken from the CBMC (C
bounded model checker) tutorial 2.

During this empirical evaluation, each program of the benchmark was exe-
cuted using 3 methods: (1) Application of the EZProofC method (see Section 3),
i.e., code preprocessing, identification of claims, verification, analysis of counter-
examples, and code instantiation; (2) Application of the tool Frama-C with the
option -val, which means that the value analysis plug-in is called in such a
way that it computes automatically variation domains for the variables of the
program. This plug-in is used to infer absence/presence of runtime errors; and
(3) Application of the tool Frama-C with the plug-in Jessie, which is a plug-
in that allows deductive verification of C programs annotated with ACSL [2].
The verification conditions (VC) are verified by the Z3 theorem prover '3, which
is the same standard theorem prover used by the ESBMC model checker. In
this way the tool Frama-C was executed as: frama-c -jessie -jessie-atp=z3
<file.c>, where <file.c> is the C code that will be verified.

4.2 Experiment’s Execution and Results Analysis

After executing the benchmarks, we obtained the results shown in Table 1, where
each column of this table means: (1) the application identification (ID), (2) the
C program name and, additionally, in some cases, the range of instances, e.g.,
file1_13.c, meaning that there are 13 instances, from 1 to 13. In Table 1 the

" http://www.ai-lab.it /eureka/bmc.html
8 http://www.cprover.org/goto-cc/examples/snu.html
9 http://www.mrtc.mdh.se/projects/wcet /benchmarks.html
9 http://www.nec-labs.com /research /system /systems_S AV-website/benchmarks.php
H http://sir.unl.edu/portal /index.html
2 http:/ /www.cprover.org/cbme/doc/manual. pdf
'3 http://research.microsoft.com /en-us/um/redmond/projects/z3/



Understanding Programming Bugs in ANSI-C Software 11

programs from 1 to 16 come from the EUREKA benchmark, from 17 to 19 come
from the CBMC tutorial, program 20 comes from the NEC benchmark, from 21
to 22 come from the SNU benchmark, program 23 comes from WCET bench-
mark, and program 24 comes from SIR benchmark; (3) the lines of code - LOC
(#L); (4) the amount of identified warnings (#W) and the execution time (T'W)
of the Frama-C with the value analysis plug-in; (5) the total number of proper-
ties (or claims) that may be violated (#P), the execution time of the properties
identification spent by ESBMC and EZProofC (TC), the execution time of the
verification of all properties spent by ESBMC (TV), total number of proper-
ties that have been violated and reproduced using the EZProofC method (#V),
and the number of lines in the counter-examples (CE); and (6) the number of
properties found in common (Same Claims & Warnings) between the EZProofC
(claims) and the Frama-C (warnings).

It is important to note that for programs with several instances, the num-
ber of violated properties presented is that of the highest instance value. Ad-
ditionally, in case of programs with more than one instance, the number of
lines in the counter-examples (#CE) and properties found in common (Same
Claims & Warnings) is respectively the largest counter-example found and the
largest number of properties found in common. The results of the applica-
tion of the proposed method, as well as the EZProofC tool are available at
https://sites.google.com/site/ezproofc/.

Table 1. Details related to the execution time of the benchmarks

Frama-C| EZProofC/ESBMC [Same Claims
# Module #LIZW[TW|#P|TC| TV |#V|CE |& Warnings
1 |bf5_20.c 49| 6 |[<1s| 33 [<1ls| <60s 0 - 0
2 |bubble_sort1_13.c 51| 2 |<1s| 25 |<1s| <1bs 0 - 0
3 |fibonaccil_13.c 25 1 |<Is| 1 |<1s| <l1s 0 - 0
4 |init_sel_sort1_13.c 54 | 2 |<1Is| 25 [<1s| <15s 0 - 0
5 [minmax1_13.c 19 6 |<Is| 9 |<ls| <3s 0 - 0
6 |minmax_unsafel_13.c 19| 6 |<ls| 9 |<1ls| <d4s 1 16 0
7 In_k_gray_codes1_13.c 45| 36 |<1s| 22 |<1s| <120s | O - 11
8 [no_init_bubble_sort_safel_13.c| 25 | 2 |<1s| 14 |<lIs| <Ts 1 32 1
9 [no_init_sel_sort1_13.c 41 5 | <lIs| 25 |<1s| <1bs 12 | 144 3
10|no_init_sel_sort_safel_13.c 28| 5 |<lIs| 14 [<1s| <Ts 1 32 3
11|no_init_sel_sort_unsafel_13.c |28 | 5 |<ls| 14 |<lIs| <Ts 1 | 32 3
12|prim4._8.c 79| 12 |<1s| 30 |<1s| <60s 0 - 3
13|selection_sort1_13.c 54 | 2 |<1Is| 25 [<1s| <15s 0 - 0
14|strcmpl-13.c 15| 4 |<Is| 6 |<1s|=14400s| 3 | 80 0
15|suml1_13.c 21 1 |<Is| 1 |<1s| <l1s 1 | 48 0
16|sum_arrayl_13.c 11 1 |<Is| 7 |<1s| <3s 1 8 0
17|assert_unsafy.c 15| 4 |<1ls| 1 |<1ls| <l1s 1| 24 0
18|bound_array.c 16 | 2 |<1s| 10 |<1s| <10s 1 | 30 1
19|division_by_zero.c 32| 3 |[<Is| 1 [<1s| <l1s 1 |24 1
20|ex26.c 29| 4 |<1s| 8 |<1s| ~420s | 2 (1236 1
21|crc_det.c 1251 1 |<1s| 15 [<1s| ~840s | O - 1
22|select_det.c 1221 3 | <1s| 39 |<1s|~14400s| 3 | 40 1
23|cnt_nondet.c 139 0 |<1s| 16 |<1ls| <I1s 0 - 0
24|Siemens_print_tokens2.c 508 | 90 | <1s| 51 |<1s|~=18000s| 1 |3344 34




12 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

As shown in Table 1, the EZProofC method is scalable to any code and
counter-example size, since the complexity of the proposed method algorithm is
O(n+m). The execution time of EZProofC is thus linear, even when considering
different code sizes, as we can see in the experiments’ execution time.

One could argue that the selected benchmarks may not represent well all the
possible scenarios for applying the proposed method, mainly when taking into
account the programs size in terms of LOCs. However, as an example consider
the experiment with the program 20 from Table 1, which has only 29 LOCs but
it was the one that produced some of the largest counter-examples, in this case
1236 lines. Note further that this counter-example has a trace that shows all
the variables, as well as the assignments included in a specific execution (i.e.,
including loops) that will result in the violation of the property that has been
identified by ESBMC (i.e., unwind of a specific execution of the program). The
drawback of the EZProofC tool is that it relies on the scalability of the adopted
model checker, since it depends only on it to generate the counter-examples.
Apart from that, the proposed method is able to scale to large sizes of counter-
examples, in this case, from 8 up to 3344 lines. However, we believe that the
limiting factor on the size of the counter-example is far beyond this.

Analyzing the Frama-C tool with the value analysis plug-in, it is important
to emphasize that the results about warnings (in the column #W) are very
effective, providing the user with a good support to explore the code that has
been analyzed. However, such warnings were not only about safety properties,
but involved analysis of the structures of the code (e.g., return of functions). This
partly explains why the number of properties between the EZProofC (claims)
and the Frama-C (warnings) (column Same Claims & Warnings of Table 1) are
rather different.

The Frama-C tool also allows the use of other plug-ins, for instance, the plug-
in Jessie, which aims to perform deductive verification of C programs not using,
in this case, static analysis. The C program does not need to be complete nor an-
notated to be analyzed with the Jessie plug-in [10]. However, in the experiment
conducted, Jessie plug-in did not find any property violation, i.e., no error was
found, even though Frama-C pointed out several warnings. Jessie plug-in also
allows to prove that C functions satisfy their specification as expressed in AN-
SI/ISO C Specification Language (ACSL). We understand that the verification
of Frama-C could be improved by writing such specifications on the analyzed C
code. However, the inclusion of such specifications may be hard and error-prone,
especially for legacy code. Therefore, if we compare the use of Frama-C/Jessie
and the EZProofC, we argue that a great advantage of EZProofC is not requiring
such auxiliary specifications. EZProofC is a completely automatic method that
does not need to write specifications, and neither preconditions and postcondi-
tions. Additionally, in the case of the Frama-C, the user has to act explicitly to
reproduce the error using the computed values.

In these experiments some situations need to be pointed out about the ap-
plication of the EZProofC method.



Understanding Programming Bugs in ANSI-C Software 13

— In program 20 from Table 1, EZProofC identified properties of safety point-
ers and dynamic memory allocation (POINTER_OFFSET and SAME-OBJECT).
The property identified was UPPER BOUND and the data was !'(2 * y +
POINTER_OFFSET(x) >= 200) || !(SAME-OBJECT (x, &b[0])).However, af-
ter handling all information (see Section 3.3), this resulted only in the fol-
lowing assertive (2%xy + x >= 200) || (x != b).

— Program 24 is considered the golden version code (i.e., the supposed correct
version). Taking into account that this code is very large, and requires a
significant amount of memory, the verification was performed in a function-
by-function basis. Particularly, we checked the function get_token. The error
identified in this code is the UPPER BOUND violation of array buffer, which
is declared with the upper bound of 80. However, based on the proof of the
error, it is noticed that the index of this array, the variable i, exceeded the
upper bound, causing the violation of property ¢ < 81, in the same way as
identified in the work of Cordeiro et.al. [6].

We have shown that the manipulation of the counter-example is not always
a trivial task. During the experiments, we obtained relatively large counter-
examples (e.g., 3344 lines). However, the application of our proposed method
decreases substantially the complexity of this task, i.e., the EZProofC solves the
problem in less than 1s (without the verification step with the model checker), to
manipulate a large amount of data, variables and their values. It is important to
emphasize the need for verifying each property (claims) identified in the analyzed
code. This is because these properties do not necessarily correspond to errors,
but these are only potential failures. This is the reason by which the number of
properties identified in Table 1 is greater than or equal to the number of errors
reproduced.

5 Related Work

In the technical literature, there are several tools and methods for analysis of
counter-examples and debugging code for error-proof. Many studies have ad-
dressed this problem (e.g. [4], [7], [9], [13]), that aim to find the root cause of a
failure in the model, and propose automated means of extracting more informa-
tion about the model, facilitating the debugging process.

Ji et al. [9] present a software debugger used for finding errors in C pro-
grams. In the same way, EZProofC aims to demonstrate errors found by BMCs.
The difference is that our technique tests the system exhaustively for verifying
that a given property is part of the model. Additionally, BMCs run the code
symbolically, that is, they do not test programs with fixed entry values, but
create a mathematical model of the program [1]. Debuggers, however only eval-
uate execution paths that were defined according to the input variables. Thus,
a debugger will not exhaustively test the state space of the analyzed code.

Taghdiri and Jackson [13] propose a counter-example guided refinement of
an abstraction to check programs written in any programming language that
supports procedure declarations and can be translated to logical constraints. In



14 Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

the same way as our work, they propose a “validity check”, where the validity of
each behavior in the counter-example is checked in the original program. They
use a SAT solver, and our work uses ESBMC that adopts an SMT solver. Never-
theless, if the counter-example is invalid they propose to adopt a “specification
inference”, that is, the specification is not provided by the user but automati-
cally inferred from the code. In our opinion, the drawback of such method is the
limited applicability since they target to solve only structural properties, i.e.,
properties that constrain the configuration of the heap after the execution of a
procedure.

Astrée'? [7] is a completely automatic analyzer that aims to prove the absence
of run time errors (RTE) in C programs. The design of Astrée is based on ab-
stract interpretation, which is a formal theory of discrete approximation. Astrée
analyzes structured C programs, with complex memory usages, but without dy-
namic memory allocation and recursion. It also excludes union types, unbounded
recursive functions calls, and the use of C libraries. In the same way as Astrée,
the EZProofC aims to produce a correctness proof for complex software without
any false alarm (or spurious counter-examples). However, EZProofC differs from
Astrée in the sense that the proposed verification is made by a bounded model
checker which provides support for structures not supported by Astrée.

6 Conclusions and Future Work

The main purpose of this paper is to help developers not familiar with formal
verification techniques to use a model checker tool to find failures in the soft-
ware and to verify that such errors may happen. We described a method called
EZProofC that aims to contribute as a complementary technique to the verifica-
tion performed by BMCs. Specifically, we have used the ESBMC tool, which is a
state-of-the-art symbolic context bounded model checker. Basically, our method
proposes to automate the gathering and manipulation of the counter-example
generated by ESBMC in order to reproduce the identified error.

The experimental results have shown to be very effective over publicly avail-
able benchmarks. In this case, we could reproduce all failures encountered by
the adopted BMC tool. On the one hand, we demonstrate that EZProofC has
some advantages, when compared to Frama-C, mainly because EZProofC can
automatically reproduce the identified property violation, through the genera-
tion of a instantiated code. On the other hand, the Frama-C requires the user
to act explicitly to demonstrate the error using computed values.

We noticed that due to the state space explosion problem, the user may
ask to the BMC to adopt simplifications in the model (e.g. function-by-function
verification). In some situations, this can lead to spurious results, i.e., a counter-
example may not truly characterize an error. In this way, we want to investigate
the inclusion of additional data during the phase of new instantiated code gen-
eration in order to demonstrate the verification (with such simplifications). For
instance, in the case of verifying a program function-by-function, we need to

' http://www.astree.ens.fr/



Understanding Programming Bugs in ANSI-C Software 15

include the values of variables that are dependent on other functions other than
the function being verified. Additionally, we intend to extend our experiments
to evaluate the usability of the proposed method. We also plan to adapt the pro-
posed method to use other model checkers (Blast [3] and Java PathFinder [8])
that rely on other abstraction techniques. We think that the adjustment will be
in most part on regular expressions, which was the way we implemented data
gathering and new code generation.

Acknowledgement

The authors acknowledge the support granted by FAPESP process 08/57870-9,
CAPES process BEX-3586/10-3, and by CNPq processes 575696/2008-7, and
573963 /2008-8.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

2. Baudin, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.. ACSL:
ANSI/ISO C Specification Language. In: CEA LIST and INRIA (2009), http:
//frama-c.cea.fr/acsl.html

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast: Applications to software engineering. In: Int. J. Softw. Tools Technol. Transf.
(STTT). vol. 9, pp. 505-525 (2007)

4. Canet, G., Cuoq, P., Monate, B.: A Value Analysis for C Programs. In: Intl Conf.
on Source Code Analysis and Manipulation (SCAM). pp. 123-124 (2009)

5. Cordeiro, L., Fischer, B.: Verifying Multi-threaded Software using SMT-based
Context-Bounded Model Checking. In: Intl. Conf. on Software Engineering (ICSE).
pp. 331-340 (2011)

6. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. In: IEEE Transactions on Software Engineering
(TSE). vol. 99 (2011), http://eprints.ecs.soton.ac.uk/22291/

7. Cousot, P.; Cousot, R., Feret, J., Mauborgne, L., Min, A., Monniaux, D., Rival,
X.: The ASTREE analyzer. In: Programming Languages and Systems (PLS). vol.
LNCS 3444, pp. 21-30 (2005)

8. Havelund, K.: Java PathFinder, A Translator from Java to Promela. In: Intl. SPIN
Workshops on Theoretical and Practical Aspects of SPIN Model Checking. p. 152

1999

9. Si, J.%I., Woo, G., Park, H.B., Park, J.S.: Design and Implementation of Retar-
getable Software Debugger Based on GDB. In: Intl. Conf. on Convergence and
Hybrid Information Technology (CHIT). vol. 1, pp. 737-740 (2008)

10. Marché, C., Moy, Y.: Jessie plugin tutorial. In: INRIA (2010), http://frama-c.
com/download/jessie-tutorial-Carbon-20101201-betal.pdf

11. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: Compiler Enforced
Temporal Safety for C. In: SIGPLAN Notes. vol. 45, pp. 31-40 (2010)

12. Schlich, B., Kowalewski, S.: Model checking C source code for embedded systems.
In: Int. J. Softw. Tools Technol. Transf. (STTT). vol. 11, pp. 187-202 (2009)

13. Taghdiri, M.: Inferring Specifications to Detect Errors in Code. In: Intl. Conf. on
Automated Software Engineering (ASE). pp. 144-153 (2004)

14. Tip, F.: A survey of program slicing techniques. Journal Programming Languages
3(3) (1995)



