
IET Research Journals

A Survey on Automated Symbolic
Verification and its Application for
Synthesizing Cyber-Physical Systems

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Lucas C. Cordeiro1∗ Eddie B. de Lima Filho2 Iury V. Bessa3

1School of Computer Science, University of Manchester, Manchester, UK
2TPV Technology, Manaus, Brazil
3Department of Electricity, Federal University of Amazonas, Manaus, Brazil
* E-mail: lucas.cordeiro@manchester.ac.uk

Abstract: Dependency on correct operation of embedded systems is rapidly growing, mainly due to their wide range of applica-
tions, such as micro-grids, automotive device control, health care, surveillance, mobile devices, telecommunications, internet of
things, and consumer electronics. Their structures are becoming more and more complex and currently require multi-core proces-
sors with scalable shared memory, signal-processing pipelines, and sophisticated software modules, in order to meet increasing
computational power, flexibility demands, and also to adapt to new scenarios and behaviors. Additionally, interaction with real-
world entities and addition of modern communication capabilities further enhance the mentioned features and give rise to a new
system class: embedded and cyber-physical systems (ECPS). As a consequence, reliability of ECPS becomes a key issue dur-
ing system development, which must be carefully addressed and assured. Generally, state-of-the-art verification methodologies
for ECPS generate test vectors (with constraints) and use assertion-based verification and high-level processor models, during
simulation; however, new challenges arose, such as need for meeting time and energy constraints, handling concurrent software,
dealing with platform restrictions, evaluating implementation-structure choices, validating operation logic, ensuring correct system
behavior together with physical plants, providing compliance with target systems, incorporating knowledge about new problems
and conditions, and supporting new software architectures and legacy designs, which now have to be tackled. This survey deals
with the mentioned issues, reviews related literature, and discusses recent advances on symbolic model checking techniques and
their applications to control synthesis. Additionally, challenges, problems, and recent advances to ensure correctness and timeli-
ness, regarding ECPS, are discussed. Reliability issues, when developing ECPS, are then considered, as a prominent verification
and synthesis application for achieving correct-by-construction systems.

1 Introduction

Generally, embedded computer systems perform dedicated functions
with high degree of reliability, according to their original design and
requirements (e.g., real-time) [1]. They are ubiquitous in modern day
information systems and are also becoming increasingly important
in our society, due to their use to process, monitor, control, and even
replace every human activity, which include the ones related to fac-
tories, power plants, mobile devices, traffic control, vehicles, and
home duties [2]. Besides, they are also used in a variety of sophis-
ticated applications, which range from entertainment software, such
as games and graphics animation, to safety-critical systems, such as
nuclear reactors and automotive controllers.

Interaction between embedded software and physical processes
created a different class of systems, which are complex, highly
integrated, and present a mixture of continuous and discrete dynam-
ics, named as hybrid systems (HSs). Indeed, the embedded-system
domain allied to the most recent communication revolution caused
an intense integration between different and spread physical pro-
cesses, which are called embedded and cyber-physical systems
(ECPS) [3, 4]. In particular, the presence of modern communication
technologies (e.g., internet of things - IoT) causes a revolution in
terms of flexibility, scalability, and complexity of those systems and
adds a novel class of problems to challenges found in the embed-
ded systems domain. For example, micro-grids, i.e., small-scale
electricity systems that gather different sources of distributed gen-
eration (DG) and loads, are emerging ECPS, where reliability and
carbon emission reduction are of paramount importance [2]. One
may also notice that each DG element and the majority of current

loads already employ embedded software and present several safety-
critical requirements; however, the integration of both constitute
ECPS, where additional challenges related to synchronization, sta-
bility, control, communication, and reliability of entire micro-grids
arise.

Thus, ECPS demand short development cycles and high-level of
reliability and robustness [3, 5], besides presenting challenges that
include but are not limited to the ones already imposed by embedded
systems. As a consequence of their popularization, human life has
also become more and more dependent on services provided by this
type of system and, in particular, their success is strictly related to
both service relevance and quality/reliability.

Fig. 1 illustrates subcomponents of general ECPS, inside the
biggest blue box, which typically consist of human-machine inter-
face (e.g., keyboard and display), processing unit (e.g., real-time
computer system), and instrumentation interface (e.g., sensor, net-
work, and actuator) that can be connected to some physical plant [1].
Fig. 1 also shows some ECPS examples, including mass-production
devices, multi-core processors embedded into consumer electronic
devices, and safety-critical systems. Indeed, many current ECPS,
such as unmanned aerial vehicles (UAVs) [6] and medical moni-
toring systems [7], become interesting solutions only if they can
reliably perform their target tasks. For instance, UAVs are a trend
on military missions and civil applications, since they can easily
achieve places that cannot be accessed by humans, i.e., without
on-board pilots and also with different degrees of autonomy; how-
ever, an incorrect plan execution may cost civilian lives, which is
unacceptable. In addition, wrong disease diagnosis or condition-
evaluation reports have the potential to compromise patients’ health
and even many aspects of their lives, with serious consequences. On

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 1

Fig. 1: Subcomponents of general ECPS and some examples.

the one hand, portable ECPS are capable of monitoring and identify-
ing conditions, which is very difficult for human specialists, mainly
when their contact with patients happens only in medical clinics.
On the other hand, wrong or incomplete diagnostic data may delay
necessary treatments or deteriorate patients’ health.

Besides, when physical interaction with the real-world is needed,
which happens in ECPS, additional care must be taken, mainly when
human action is directly replaced, as in vehicle driving. Regarding
the latter, even human-in-the-loop feedback control can be employed
[8], which then raises deeper concerns related to reliability of human
behavior modeling and system implementation. Consequently, it is
important to go beyond design correctness and also address behav-
ior correctness, which may be performed by incorporating system
models. Specifically, such representations can be used to evaluate
and even synthesize a given particular system, by ensuring that all
necessary functions are correctly implemented and an appropriate
behavior is exhibited, i.e., a system is indeed correct by its method
of construction [9].

For instance, one may argue that a Linux device driver [10] was
verified and correctly uses the related kernel services (e.g., exported
symbols and scheduling); however, not much can be said about cor-
rect access to the associated hardware and its use, i.e., if read and
write operations are performed according to what is specified in a
device’s data-sheet and setup periods are respected, for instance. In
summary, it is important to ensure that the developed driver is com-
pliant with the underlying hardware, which goes further than code
correctness and also tackles interaction with surrounding entities.

Regarding behavior correctness, one important observation is that
it is becoming more difficult, since fixed mathematical models are
being replaced by machine learning approaches (ML) [11], where
future operation may change based on data acquired during previous
actions, due to model updating. Indeed, ML algorithms have a dual
role on software verification development: model evolution and ver-
ification enhancement. Given the dissemination of such algorithms,
several ECPS have embedded ML software and, as a consequence,
system-correctness verification procedures should also adapt some-
how and incorporate new checks (which may also rely on ML),
when analyzing target models, or fed with acquired data, as recently
reported in literature [12, 13]. In addition, model checking mech-
anisms have also incorporated ML algorithms, in order to increase
efficiency of verification [14–16] and synthesis [17] procedures.

A number of distinctive characteristics might influence ECPS ver-
ification and synthesis processes, which include: mass production
and static structure, functionality determined by software in read-
only memory, multi-core processors with scalable shared memory,
and limited amount of energy. Additionally, increasing computa-
tional power and decreasing size and cost, which are common to
the area of computer processors, are enabling system designers to
move more features to software domain, which consequently leads
to difficulties in verifying design correctness, since stringent con-
straints imposed by underlying hardware platforms (e.g., real-time,

memory allocation, interrupts, interfacing, and concurrency) [18] or
even new structures provided with the goal of ensuring more compu-
tational capacity [19] must be considered during verification. Such
observations expand the addressed issues and even complement what
was previously mentioned.

As one may notice from previous paragraphs, verifying and
safely synthesizing ECPS are challenging tasks, which involves
many aspects of target applications. In addition, there is an increas-
ing demand for correct-by-design ECPS, which prevent financial
losses, given the associated high reliability and correct behavior,
and provide systems best fitted to a given scenario. Indeed, while
formal synthesis aims to obtain such systems, it cannot achieve
that goal without robust formal verification techniques, which may
even be integrated in an automated framework for system creation.
Finally, it is worth noticing that synthesis and verification are linked
through system (behavior) models, which present restrictions and
include parameters capable of influencing a given system’s opera-
tion. As pointed out by Zheng and Julien [20], mission-critical ECPS
applications often rely on simulation-based testing; however, at the
same time, simulation-centric tools present limitation in correctness
assessment. Indeed, problems may even arise from hardware limita-
tions not considered in simulations, which could be tackled through
comprehensive systems models, and, in medical-device develop-
ment, where correctness is usually pursued by code inspection, static
analysis, and module and system integration testing, patients are not
often considered [20]. Regarding the latter, a system model including
both ECPS and patient, in association with formal techniques, would
have the potential to show unforeseen problems related to their
interaction, i.e., models are often underrepresented in verification
stages. Nonetheless, scalability to real-size systems and complete-
ness are still concerns, which may be fulfilled with statistical [21]
and induction [22] approaches, respectively.

Therefore, modeling, verification and synthesis of ECPS are
interdependent problems. In particular, modeling of ECPS and prop-
erties is a sine qua non condition for ECPS verification, since the
verification algorithms are performed based on these models that
must trade off the accuracy and simplicity for compatibility with
these (software) procedures. In addition, formal synthesis consists
in designing systems that are correct according to the evaluation
by the formal verification algorithms. Therefore, formal synthesis
depend on formal verification and both are based on sound mod-
els of systems and properties. It is worth mentioning that adequate
ECPS modeling for formal verification and synthesis, should take
into account communication delays, network availability, faults, and
cyber attacks.

This article represents a recent survey study about verification
methods and their application to ECPS synthesis, while address-
ing both largely employed schemes and the ones with potential
to improve current results or provide better fits to real and high-
complex ECPS. Later on, we then focus on symbolic methods,
specifically bounded model checking (BMC), which represents the
authors’ vision for future ECPS verification and synthesis schemes.
In particular, in order to perform that, we have adopted an automated
search mechanism via popular digital libraries, with the goal of find-
ing the most relevant studies regarding ECPS. Here, we have used
Google Scholar∗, Web of Science† and Scopus‡ digital libraries,
which represent the largest databases for scientific publications. Our
main goals for this survey article can be described as follows:

• Briefly describe part of the established research about ECPS
modeling, verification, and synthesis;
• Provide an overview about technical issues and recent advances
in symbolic verification, together with synthesis applications of the
latter that are currently employed for ECPS, while focusing on
verification techniques based on Boolean Satisfiability (SAT) and
Satisfiability Modulo Theories (SMT);

∗https://scholar.google.com/
†https://login.webofknowledge.com/
‡https://www.scopus.com/

IET Research Journals, pp. 1–24
2 c© The Institution of Engineering and Technology 2015

https://scholar.google.com/
https://login.webofknowledge.com/
https://www.scopus.com/

• Present open challenges on ECPS verification and synthesis and
also clarify current trends, which is mainly driven by ECPS, IoT, and
ML.

This survey is organized as follows. We present a brief discussion
about models for ECPS, in Section 2, and then provide an overview
on ECPS verification, in Section 3, while taking into account aggre-
gate effects and specific domains. Later, in Section 4, we discuss
specific topics in formal verification and promising approaches
for verifying ECPS, which include BMC, k-induction verification
based on invariant inference, property directed reachability (or IC3),
abstraction, counterexample guided inductive synthesis, and system
model incorporation. The state-of-the-art on formal synthesis for
ECPS is discussed in Section 5. In Section 6, the main challenges
regarding verification and synthesis of ECPS are described, while
Section 7 tackles those problems that are (partially) open in cur-
rent published research and later describes current achievements and
future trends in ECPS verification and synthesis. Section 8 addresses
new applications, which take into account the new trends (e.g., ML)
mentioned here. Finally, we describe the main limitations of this
survey, in Section 9, and then conclude and present future work, in
Section 10.

2 Modeling Embedded and Cyber-Physical
Systems as Hybrid Systems for Verification and
Synthesis

2.1 ECPS Concept and Definition

Automated formal verification has been employed to ensure cor-
rectness and reliability of ECPS, during the last decade, as well as
provide controller synthesis [23–29] for ECPS and HSs [21, 30–35].
ECPS reliability is related to its ability to maintain correct execution
of specific functions, which depends on correctness of embedded
software and hardware compatibility. Correctness is asserted with
respect to a given specification, which may be related to safety or
liveness [36, 37]. A safety specification concerns a set of undesir-
able (reachable) states that must be avoided or simply ensures that
“something bad never happens”, while a liveness one refers to a
desired (reachable) state that will eventually be achieved or simply
ensures that “something good will eventually happen”. In both cases,
a model is needed for ECPS, in order to ensure that no error state is
reachable or that a desirable one is eventually reached. Therefore,
an algorithmic (decision) procedure can be devised from a formal
model, in order to decide about its correctness and reliability; this
decision procedure output is simply “yes”, if a specification holds,
or, otherwise, “no” [38]. A general ECPS model is then defined as
follows.

Definition 1. ECPS S are tuples S = (X,X0, U, Y, r, v), where X
is a set of reachable states, X0 is a set of initial states, U is a set
of inputs, Y is a set of outputs, r is a transition function, such that
r : X × U → X , and v is an output mapping function, such that
v : X × U → Y [39–41].

2.2 Formal Modeling for ECPS Verification and Synthesis

This general ECPS model can be used to synthesize ECPS; in par-
ticular, synthesizing reliable ECPS is related to designing controllers
that are able to handle complex system dynamics. One may notice
that the so-called ECPS can also be considered HSs, since both types
present a mixture of continuous and discrete dynamics. Thus, both
formal verification and control synthesis for ECPS are based on
hybrid control system theory, which is still under development, since
control theories for continuous and discrete systems were devel-
oped independently [42]. As a consequence, formal ECPS synthesis
includes but is not limited to a control synthesis problem and must
consider both formal verification of its correctness and reliability.

Besides, formal verification and control synthesis for ECPS is usu-
ally based on a model denoted as hybrid automata (HA), which
follows Definition 1.

The overall automated formal-synthesis process for ECPS
involves three main steps: modeling, which is related to obtaining
a sound mathematical representation (usually HA) to capture all
relevant aspects of continuous and discrete dynamics and their inter-
action, as well as formulate properties and invariants that describe a
desirable behavior; verification, where ECPS are checked against a
trusted mathematical model and compliance with a desired behav-
ior is verified; and synthesis, where a controller is (automatically)
produced or invariant control laws that allow ECPS to meet require-
ments and behave as desired are found, which can then be confirmed
by a verification oracle.

Generally speaking, formal models are largely employed in sci-
ence and engineering areas, in order to analyze, predict, and modify
the behavior of real-world systems. Specifically, deterministic and
stochastic models are the basis of many recent engineering advances:
the former is uniquely determined by parameter values and previ-
ous states, while the latter presents inherent randomness, which is
described by probability distributions, i.e., random variables whose
behavior is described by probability density functions [43]. Nonethe-
less, one can argue that such models are not enough to represent
ECPS, since interactions among different entities (software and
hardware components) present several events that could not be deter-
ministically or stochastically modeled, i.e., they should be better
represented by non-deterministic approaches [5]. Indeed, that is even
more evident when unknown properties are addressed, such as inter-
net traffic that is dependent on human behavior. Indeed, probability
relies on likelihood and non-determinism on possibility.

On the one hand, early representations of hybrid systems, i.e., sys-
tems that mix continuous and discrete dynamics, consisted in instan-
tiating discrete components and discretized continuous dynamics,
by using discrete models and considering non-modeled effects as
uncertainties or perturbations exogenous to them, which can even
be negligible. On the other hand, that particular approach is unsuit-
able for complex ECPS, which present intense non-determinism,
where uncertainties play a central role and might invalidate an
entire system behavior. Nonetheless, state-of-the-art verification and
synthesis methodologies for ECPS take advantage of the entire mod-
eling framework for hybrid systems; in particular, hybrid automata
and their variants. Indeed, ECPS have been modeled through dif-
ferent structures that present different degrees of non-determinism
and balance between continuous and discrete dynamics, such as
timed automata [44], hybrid automata [45, 46], and stochastic hybrid
automata [47, 48].

Another useful formalism for ECPS is timed automata, which tar-
gets real-time systems and employs finite automata with clocks, i.e.,
real variables that follow continuous trajectories (behaviors) with
constant slope. Hybrid automata bridges digital processing and ana-
log entities and consequently generalizes timed automata, by also
employing finite automata with real variables, but whose trajecto-
ries follow more general dynamical laws [46]. Timed automata and
hybrid automata are deterministic models for hybrid systems that
built the basis of HS representations, which were subdivided into
different classes of hybrid automata, depending on mapping func-
tions (r and v), e.g., linear hybrid automata [49], rectangular hybrid
automata [46, 50], nonlinear hybrid automata [51, 52], integration
graphs [53], and linear stochastic hybrid automata [47]. Recently,
Rungger and Tabuada [39] and Tabuada et al. [54] proposed a gen-
eral and wide model for ECPS, which is based on hybrid automata,
by providing the concept of robustness and important tools for robust
stability analysis. In addition to HA- and TA-based models, there
are a number of other ECPS modeling initiatives based on (exact
or approximate) bi-simulation [41] and simulation [55], as well as
interval analysis [56].

Another approach to ECPS modeling tackles quantized control
systems and finite-word length (FWL) effects on the performance
of those systems. Differently from bi-simulation, quantized models
are built from a countable subset of the (quantized) input space [57].
In particular, Keel and Bhattacharyya showed that even robust and
optimal controllers may still present an undesired property [58, 59]:

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 3

fragility or sensitivity to implementation aspects (e.g., FWL repre-
sentations of digital controllers). Therefore, various studies tried to
connect sampled-data theory to hybrid-system models [60–63].

In addition to ECPS-dynamics modeling, it is often interesting
to establish invariants on ECPS’s state-spaces, which can be used
for accelerating formal verification and synthesis processes regard-
ing those systems. Such invariants might be synthesized, in order
to point out state-space boundaries [64], and could determine ECPS
stability [65] or reachability [56, 66]. Finally, it is worth mentioning
that there are still some recent modeling approaches that are mixtures
of stochastic and non-deterministic models for ECPS, e.g., stochas-
tic non-deterministic automata [67] and piecewise-deterministic
Markov chains [47].

2.3 Illustrative Example of ECPS Model

In order to illustrate the general modeling process of ECPS, by
means of HAs, a three-tanks system, known as Sim3Tanks [68], is
considered here. Such a three-tanks system consists of three cylin-
drical tanks connected by four pipes, which allow fluid exchange
between the lateral tanks (tanks 1 and 2) and the central one (tank
3), in both directions, as illustrated in Fig. 2, while Fig. 3 shows its
corresponding HA. The upper pipes and valves that connect tanks 1
and 2 to tank 3 are located at the same height h0 and are called trans-
mission pipes and valves, respectively. The lower pipes and valves
that connect tanks 1 and 2 to tank 3, in turn, are aligned with their
base and are called connection pipes and valves, respectively. At the
bottom of each tank, there are output pipes and valves; the dashed
arrows illustrated in Fig. 2 indicate the reference direction of each
flow.

The state-space X of Sim3Tanks is defined by the state vec-
tor x = [h1 h2 h3]T and the initial state space X0 is assumed
to be levels lower than the height of the transmission valves, i.e.,
h1, h2, h3 < h0. The flow rates from pumps P1 and P2 (i.e.,
QP1

and QP2
) are inputs that define the input space U , with

u = [QP1
QP2

]T . The flows through transmission, connection, and
output pipes can be determined, respectively, by

Qv = Kvβsgn(∆hv,k)
√
|∆hv,k|, with v = a, b, (1)

Qi3 = Ki3βsgn(hi − h3)
√
|hi − h3|, with i = 1, 2, (2)

and
Qj = Kjβ

√
hj , with j = 1, 2, 3, (3)

where
∆ha,1 = ∆hb,1 = ∆ha,3 = ∆hb,5 = 0, (4)

∆ha,2 = ∆hb,2 = ∆ha,4 = ∆hb,6 = h0 − h3, (5)

∆ha,5 = ∆ha,7 = h1 − h0, (6)

∆ha,6 = ∆ha,8 = h1 − h3, (7)

∆hb,3 = ∆hb,7 = h2 − h0, (8)

and
∆hb,4 = ∆hb,8 = h2 − h3. (9)

Kv , Ki3, and Kj correspond to the state of the flow control
valves (Kv,Ki3,Kj ∈ [0, 1]) and β = µS

√
2g, where µ is the flow

Reservoir

Tank 3 Tank 2Tank 1

QP1

KP1

P1

QP2

KP2

P2

Qa Qb

Q13 Q23

Ka

K13 K23

Kb

K1 K3 K2Q1 Q3 Q2

h1
h0

h3

h2

u1 u2

Actuator 1 Actuator 2

Controller 1 Controller 2

Fig. 2: Sim3Tanks

correction term, S is the pipe cross-sectional area, and g is the grav-
ity acceleration constant. The transition function r : X × U → X is
a mix of continuous-time transitions, represented by ordinary differ-
ential equations of type ẋ = rk(x, u), for k = 1, . . . , 8, which are
defined for each control mode i and discrete-time transitions rela-
tions related to actions, such as “level up” and “level down”. In
particular, the continuous-time transitions are described as

ẋ = rk(x, u)

=


1

Sc
KP1

QP1
− 1

Sc
(Qa +Q13 +Q1)

1

Sc
KP2

QP2
− 1

Sc
(Qb +Q23 +Q2)

1

Sc
(Q13 +Q23 +Qa +Qb)−

1

Sc
Q3

 . (10)

The output function v : X × U → Y is related to the sensors avail-
able in Sim3Tanks. At the top of each tank, there is an ultrasonic
sensor responsible for measuring the liquid level inside it and, in all
pipes, there is a flow control valve (proportional or on/off) and a
Hall effect flow sensor. As a result, this system has a total of twelve
sensors, i.e., three level sensors (one per tank) and nine flow sensors
(one per valve). Thus, its output function is defined, for all control
modes, as

y = v(x, u) =



h1
h2
h3
0
0
Qa

Qb
Q13
Q23
Q1
Q2
Q3


+



0 0
0 0
0 0

KP1
0

0 KP2

0 0
0 0
0 0
0 0
0 0
0 0
0 0


u. (11)

One may suppose that there is a safety condition that forbids the
liquid level of some tank to be greater than a maximum level h̄,
in order to avoid spill or structure damage. By assuming that the
controlled variable of Sim3Tanks is the output flow rate Q3, with
K1 = K2 = 0, it is desirable that this particular variable tracks a
reference signal zref . The first condition is a safety specification, i.e.,
some state (h1 > h̄ or h2 > h̄ or h3 > h̄) that must be unreachable,
and the second one is a liveness specification, where the desirable
state (Q3 = zref) is eventually reached. Such properties can then be
modeled through the computation tree logic (CTL) formulae φsafety
and φliveness, respectively, as follows:

φsafety |= AG¬(φ1 ∨ φ2 ∨ φ3) (12)

and

φliveness |= AFAG φ4, (13)

where propositional variables φ1, φ2, φ3, and φ4 can be represented
as

φ1 ↔ h1 > h̄,

φ2 ↔ h2 > h̄,

φ3 ↔ h3 > h̄,

and

φ4 ↔ Q3 = zref .

In summary, φsafety means that, along all paths, ¬(φ1 ∨ φ2 ∨
φ3) must hold globally, while φliveness means that, along all paths
and at some moment in the future, φ4 becomes true and remains
that way thereafter. Properties φsafety and φliveness could also be

IET Research Journals, pp. 1–24
4 c© The Institution of Engineering and Technology 2015

8
ẋ = r8(x, u)

3
ẋ = r3(x, u)

1
ẋ = r1(x, u)

6
ẋ = r6(x, u)

2
ẋ = r2(x, u)

5
ẋ = r5(x, u)

4
ẋ = r4(x, u)

7
ẋ = r7(x, u)

h2 > h0,
h2 level up
x′ = x

h2 ≤ h0,
h2 level down

x′ = x

h3 > h0,
h3 level up
x′ = x

h3 ≤ h0,
h3 level down

x′ = x

h2 > h0,
h2 level up
x′ = x

h2 ≤ h0,
h2 level down

x′ = x

h1 > h0,
h1 level up
x′ = x

h1 ≤ h0,
h1 level down

x′ = x

h1 > h0,
h1 level up
x′ = x

h1 ≤ h0,
h1 level down

x′ = x

h2 > h0,
h2 level up
x′ = x

h2 ≤ h0,
h2 level down

x′ = x

h1 > h0,
h1 level up
x′ = x

h1 ≤ h0,
h1 level down

x′ = x

h2 > h0,
h2 level up
x′ = x

h2 ≤ h0,
h2 level down

x′ = x

h1 > h0,
h1 level up
x′ = x

h1 ≤ h0,
h1 level down

x′ = x

h3 > h0,
h3 level up
x′ = x

h3 ≤ h0,
h3 level down

x′ = x

h2 > h0,
h2 level up
x′ = x

h2 ≤ h0,
h2 level down

x′ = x

h1 > h0,
h1 level up
x′ = x

h1 ≤ h0,
h1 level down

x′ = x

h3 > h0,
h3 level up
x′ = x

h3 ≤ h0,
h3 level down

x′ = x

start
h1, h2, h3 < h0

Fig. 3: Hybrid automata modeling of Sim3Tanks.

modeled through other temporal logic, such as linear-time temporal
logic (LTL) as follows:

φsafety |= G¬(φ1 ∨ φ2 ∨ φ3) (14)

and
φliveness |= GF φ4. (15)

Based on this kind of approach and supposing the system behavior
of Sim3Tanks is captured in a model and taken into account, this
system could then be checked, through a suitable methodology.

3 Symbolic Verification of Cyber-Physical
Systems

3.1 Existing Symbolic Verification Methodologies for
Cyber-Physical Systems

ECPS are complex entities composed by computing systems that
interact with each other and their surrounding environment, through
data exchange; the latter usually being converted into different

domains (analog and digital). As a consequence, there is a compound
behavior, which is not exactly a composition of individual elements,
but instead a distinct collection of effects arising from the men-
tioned arrangements and interactions. Aggregate effects influence
system actions, resource allocation, and fragility aspects, which then
require methodologies for mitigating or taking advantage of them,
thus depending on specific scenarios. In that respect, formal verifi-
cation is an interesting approach, where a system can be analyzed
for determining whether it meets design requirements.

Aggregate effects can be observed in a wide variety of ECPS,
such as medical devices, autonomous vehicles, and smart grids [69].
For instance, controllers that do not take into account aggregate
effects have the potential to cause serious problems, such as auto-
matic medical infusion systems that do not consider continuous drug
administration to human bodies [69], which present modified behav-
ior caused by chemical compounds; and practical implementations
of digital controllers for UAV attitude systems, if those entities do
not take into account FWL effects, which then causes UAV crash
and malfunctioning, during missions [70]. Such an effect could also
be noticed in system Sim3Tanks presented in the preceding section,
that being in the implementation of a controller for Q3, which can
indeed be affected by FWL effects, or fluid density and viscosity

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 5

modifications, which are able to influence pump performance and
flow rates.

Based on what was exposed in the last paragraphs, it may be not
enough to verify ECPS implementations, from the point of view of a
designed hardware or software model, in such a way that composing
elements, being those constructive gates or instructions in a given
programming language, are correct, but instead assure that their
behaviors were taken into account, even when influenced by noise or
exogenous conditions. In addition, aggregate behaviors should also
be considered, in such a way that interaction effects are not disre-
garded, which may result in critical problems. Nonetheless, behavior
models may be difficult to develop, given their stochastic nature,
and model checking may become very complex to perform. Finally,
safety in ECPS may not be achievable, in some scenarios, due to lim-
itations of practical components, which is related to error conditions
and signal delays.

ECPS correctness can be verified through symbolic model check-
ing [21], which ensures if a property holds for all reachable states.
SMV [71] and NuSMV [72] are two representative symbolic veri-
fiers based on binary decision diagrams (BDDs); actually, the latter
is a re-implementation and extension of SMV, which also sup-
ports BMC using SAT solvers. In NuSMV, system properties can
be expressed in a wide range of temporal properties, such as CTL,
as done for system Sim3Tanks in Section 2.3, real-time CTL, LTL,
and property specification language (PSL). SMV and NuSMV also
construct counterexamples, whether a property violation is found;
however, given that BDDs based verifiers can be unfeasible regard-
ing system resources, BMC using SAT or SMT solvers may be
considered a viable option. For instance, Chaves et al. [70] explored
that behavior-modeling approach and developed models for digital
controllers implemented with fixed-point arithmetic, where effects,
such as overflow and limit-cycle oscillations, were checked, which
resulted in correct operation or guidelines for system redesign. As
already mentioned, Sim3Tanks could benefit from such an approach,
regarding its target controllers, given that their practical imple-
mentations are usually developed in a representation format and
then performed in another one, which is not taken into account
in a compound structure. In summary, the mentioned effects were
transformed into properties to be checked by a BMC tool, whose
operation might result in a counterexample. Another viable solu-
tion is non-linear hybrid automata in SMT-based verification [73],
where quantifier-free theories are reduced, at the cost of additional
variables.

Another interesting approach for ECPS is deductive verification
via theorem proving, which has the potential to be faster, given that
it takes into account specific inference rules w.r.t. system constraints
for efficient state-space exploration [74]. Platzer [75] tackles some
interesting topics regarding theorem proving applied to ECPS, from
which we can highlight multi-dynamical systems, which represent
complex systems as combinations of multiple elementary dynamical
features. Given that ECPS rely on decisions evaluated by computer
control, they are discrete; however, since they interact with physi-
cal processes, they are also continuous, while dealing with scenarios
characterized by uncertainty. As a consequence, ECPS verifica-
tion involves many dynamical aspects, and one example exploiting
them is KeYmaera [76], which uses a combination of automated
theorem proving, real quantifier elimination, and symbolic compu-
tations for ECPS verification. In addition, Sanwal and Hasan [77]
proposed high-order-logic theorem proving for ECPS continuous-
aspects analysis. Indeed, continuous parts of ECPS can be modeled,
while theorem proving ensures correctness.It is worth noticing that
such an approach would be very suitable to Sim3Tanks (see Section
2.3), which could be used for modeling interaction with the fluid in
its reservoir.

Simulation is another tool for extracting behavior models regard-
ing ECPS, although they do not consider interaction with continuous
systems. One notable example is the wireless cyber-physical sim-
ulator (WCPS) [78], which is based on a federate architecture
combining realistic simulations of both wireless sensor networks and
structures, with focus on civil structural analysis. Canadas et al. [79],
in turn, used time automata for modeling ECPS to be used during
simulation, where global models are systematically created for plant

and controller; here, software tools can then be used for validation,
such as UPPAAL [80]. Junjie et al. [81] proposed a unified approach
for ECPS modeling, with modelica, as a basis for system verifica-
tion. Indeed, the use of a unified modeling language for ECPS is
very appealing; however, behavior model of whole systems should
be carefully performed, while considering environmental influences
and aggregate effects. Finally, simulation approaches depend heav-
ily on models, which can be done through automatic abstraction.
Thacker et al. [82] worked on a methodology based on automatic
abstraction, where models are described through a language inspired
by assembly code that unifies hardware, software, and environmental
aspects, in a single formalism.

Symbolic execution is considered a high-coverage testing method,
given that it ensures addressing of reachable paths, with properties
described as assertions. In summary, variables are represented as
symbols that are modified during program execution, while they are
evaluated with assertions. Ishigooka et al. [83] proposed a frame-
work with model generator, which provides models and checks them
through symbolic execution. A careful definition regarding proper-
ties to be checked is required, by taking into account interaction
between actuator and plant. Radojicic et al. [84], in turn, take into
account uncertainty, through affine arithmetic decision diagrams,
during symbolic execution of ECPS. In addition, computation with
uncertainty is separated from simulation, which makes it possible to
integrate symbolic execution into pre-existing frameworks. Finally,
Majumdar et al. [85] introduced a closed-loop symbolic execution
tool for ECPS, named as closed-loop symbolic execution (CLSE).
Its inputs are a differential equation for plant and a software imple-
mentation for controller, whose combination is executed up to a
horizon time. Due to those aspects, this one would be a good option
for verifying Sim3Tanks, after some few modifications, given that
its continuous-time transitions are already described by differential
equations. Nonetheless, those authors noticed scalability problems,
when dealing with typical control systems, which could be solved
through combination with abstract interpretation.

We could not conclude without mentioning compositional ver-
ification, which consists in extracting aspects that are relevant to
a given system, by analyzing its individual components. In such a
context, Borda et al. [86] proposed a language for modeling self-
adaptive ECPS and a technique for composition verification of those
systems, where specific aspects affecting a requirement are identified
and adaptation procedures are devised for them, in order to preserve
behavior, in face of environment changes. In summary, such adap-
tation procedures can be confined to specific system components,
where formal verification can check individual behavior and ensures
requirement satisfaction, in a restricted state space (of a component).

Finally, as stated at the beginning of this section, aggregate behav-
iors are of paramount importance, in such a way that unforeseen
conditions, due to interaction of internal components, are not dis-
regarded, which can cause serious damages to ECPS. For instance,
Brings [87] proposed a methodology based on automated genera-
tion of models representing the different possible system-networks a
cyber-physical system may interact with, in order to identify relevant
behavior aspects and provide automated verification. Each aggregate
model is checked against a system specification, with the goal of
providing proper operation for aggregate behaviors.

3.2 Verification for Specific Domains

In the previous section, we tackled ECPS verification focusing on
techniques, with a broad summary regarding the most important
results. Nonetheless, specific domains present distinct challenges
and employ special algorithms, with approaches tuned for unique
goals. For instance, Kang et al. [88] proposed a methodology for per-
forming verification and validation of automotive ECPS, regarding
non-functional properties of autonomous vehicles, through Simulink
design verifier and constraints translated into UPPAAL-SMC [89]
models, during design phases. In addition, it is worth noticing that
the proposed methodology supports continuous dynamic behavior
models for plants, in Simulink.

IET Research Journals, pp. 1–24
6 c© The Institution of Engineering and Technology 2015

Medical ECPS are another interesting domain, which constitute
critical systems whose main goal is to keep patients’ safety. As a con-
sequence, verification of those ECPS are strictly necessary, in order
to provide reliable systems. In that spirit, Silva et al. [90] proposed
a model-based approach focusing on re-usability and productivity,
which allows users build aggregate models, based on patients (clin-
ical databases) and medical devices (technical specifications), and
simulate them, in order to identify undesirable behavior.

There is also an interesting approach towards micro-grid ECPS
[91], which is based on a test platform. It has three major com-
ponents for validation: real-time model of a distribution feeder,
network simulator in-the-loop model, and physical hardware. As
an experimental validation of the proposed strategy, a threshold
at which a micro-grid controller could break down was presented.
Finally, cyber-security aspects could also be incorporated, in addi-
tion to large power systems, with the goal of preserving system’s
availability, integrity, and confidentiality.

Finally, Klein et al. [92] presented formal verification approaches
for ensuring safety and security, in UAVs. In particular, they
described an attack by rogue camera software and a virus delivered
through a compromised universal-serial-bus stick, for the Boeing
Unmanned Little Bird H-6U. Those authors emphasized the need
for formal methods regarding vulnerability analysis (software con-
nected with hardware), remote accessibility (device authentication
and access control), and patch management (vendors might be long
gone).

4 Discussion Regarding Formal Verification of
Cyber-Physical Systems and Future Trends

The ECPS-verification problem can be tackled through formal meth-
ods as based on decidability, which is stated according to Definition
2.

Definition 2. Given a class of ECPS Ω and a set Φ of desired
properties, a class of verification problems γ is called decidable if
an algorithmic procedure can decide whether there exists a finite
number of steps O ∈ Ω that satisfies every property L ∈ Φ [40].

Decidability can be regarded as a key issue in ECPS verifica-
tion, since there are uncountable states and complex dynamics to be
considered. In particular, ECPS safety verification is undecidable,
except in very specific cases, as in systems that can be represented
by timed and rectangular automata [93]. An alternative to ensure that
ECPS trajectories will not pass through unsafe states is the use of
barrier certificates [94, 95]: one example is stability, which ensures
state convergence to an equilibrium point and consequently means
that there is a region where any trajectory remains inside it. Sta-
bility can be ensured based on Lyapunov theory, for a wide class of
model abstractions [27], or linear system stability theory, for discrete
simulations [96].

Generally, properties that must hold for ECPS are related to
safety/reachability and liveness, and more recently, security require-
ments such as availability (services are accessible if requested by
authorized users), integrity (data completeness and accuracy are pre-
served), and confidentiality (only authorized users can get access to
a system’s data). The earliest studies on HSs and ECPS proposed
approaches based on computational tree logic and linear temporal
logic [45], in order to specify properties and verify those systems. A
glimpse regarding that, in a unified manner, can be noticed in Section
2.3, through system Sim3Tanks. In the last decade, signal temporal
logic [97, 98] was proposed and have been used since then for this
purpose, thus providing more suitable operators for dynamic sys-
tems and signal processing. Therefore, model-checking procedures
have been employed to verify those properties, even under undecid-
ability conditions via approximations, e.g., bounding the number of
steps from initial states, which leads to BMC [99].

Along with CPS modeling and verification techniques purely
based on hybrid automata, one can also highlight logic-based
approaches [100], which may still use hybrid automata, but which
are not based on a algebraic description of states and transitions.

Some examples of logic-based verification are theorem proving tech-
niques, e.g., deductive verification (i.e., interactive theorem prov-
ing) [101] and automatic theorem proving [74], and reduction-based
techniques, among which BMC stands out [102].

Recently, some studies have addressed ECPS formal verifica-
tion considering discretization, switching, and quantization effects.
Dugirala and Viswanathan [103] verified embedded control software
considering real-time issues, e.g., delayed responses and possible
loss of real-time deadlines. Anta et al. [104] presented a tool called
Costan, which finds errors in mathematical-model implementations
and verifies whether those are tolerated, considering quantization
effects and fixed-point implementation, while focusing on quantiza-
tion error effects over system stability. Similarly, Ismail et al. [105]
presented DSVerifier, a BMC tool for digital systems that employs
SMT solvers as back-ends, in order to provide support for digital sys-
tem design and verification considering FWL effects. In particular,
DSVerifier checks if a designed digital controller and/or closed-loop
ECPS presents a desired performance, when it is implemented with
a given FWL format [96, 106].

Finally, it is worth mentioning that there are other alternatives
for ECPS modeling and analysis, which are not based on verifica-
tion, but instead on simulators [81, 107, 108], as already exposed.
Although such approaches generally fail in ensuring that some
properties hold, they present good scalability, which is ideal for
large scale and complex systems that are hardly modeled through
automata- or logic-based approaches. As pointed out in Section 3,
Modelica [81] and Simulink/MATLAB [108] are important exam-
ples of widely used simulators for ECPS. In order to achieve a
balanced trade-off between ECPS-simulation scalability and correct-
ness of verification methods, statistical model checking has been
employed to formally verify ECPS [21].

In addition, Shoukry et al. [109] tackled another important prob-
lem related to ECPS: security. Indeed, the essence of ECPS claims
for sophisticated interfacing (e.g., sensors and network connections),
which normally leads to security issues [110], given that wrong con-
trol actions can be generated through corrupted measurements. The
mentioned authors proposed a methodology for estimating physical-
system state, through formal methods, even if sensor inputs are
contaminated with erroneous or intentionally corrupted data, in order
to still be able to execute suitable control commands. As a result,
those authors focused their effort on ensuring system’s availability,
integrity, and confidentiality. In this respect, the Science of Sen-
sor Systems Software (S4) project∗ brings together researchers to
develop new methods, algorithms and tools for sensor system soft-
ware, which allows one to increase the system’s reliability of the
ever-expanding networks of sensors, in ECPS.

Choo et al. [111] also raised new challenges regarding ECPS,
mainly focused on privacy and security, which must operate in sen-
sitive environments. Towards that, Illiano, Muños-Gonzáles, and
Lupu [112] proposed a wavelet-based approach that is able to
identify malicious data injection (providing counteract), in wire-
less sensor networks, and distinguish them from faulty behaviors.
Cyber-security is also a concern of Fiore et al., who aim to ensure
secure-state estimation of UAV systems under sparse attacks [113].
Indeed, many situations can be regarded as satisfiability problems
and solved, for instance, with approaches based on SMT [114–
116], which indicate many links with other research areas and might
lead to a unified approach regarding system verification, security
enforcement, and interaction handling.

In summary, one may notice from what was explained that ECPS
present high verification-complexity, due to their size and intricacy.
As a consequence, the chosen techniques should aim for coverage,
while minimizing computational efforts, and also consider aggregate
effects, as a means to systemic evaluation. Again, Sim3Tanks, in
Section 2.3, is an elucidating example, given that its structure can be
easily expanded, when dealing with professional or industrial sys-
tems, which would soon raise scalability concerns, and its aggregate
effects regarding interaction with stored fluid can compromise the
entire system operation and must be taken into account during its

∗http://www.dcs.gla.ac.uk/research/S4/

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 7

http://www.dcs.gla.ac.uk/research/S4/

verification. In that sense, one should focus on accurate system mod-
els allied to restricted state space exploration, which could be done,
for instance, through symbolic verification and its companion tech-
niques (e.g., abstract interpretation). The next sections address them,
in an attempt to devise new paths for ECPS verification.

4.1 Bounded Model Checking (BMC)

Bounded Model Checking (BMC) based on SAT was originally pro-
posed to verify hardware designs and then alleviate the state-space
explosion problem by BDD-based procedures [102, 117]. Indeed,
Biere et al. were able to successfully verify large digital circuits with
approximately 9510 latches and 9499 inputs, leading to BMC for-
mulae with 4× 106 variables and 1.2× 107 clauses to be checked
by standard SAT solvers. BMC based on SMT [118], in turn, was
originally proposed to deal with increasing software verification
complexity [119]. In general, BMC techniques aim to check viola-
tions of a given (safety) property at a given system depth, as shown
in Fig. 4.

Fig. 4: Bounded Model Checking (BMC).

In order to formulate the BMC problem, let M be an abstract
machine that represents a state transition system according to
Definition 3.

Definition 3. A state transition system, denoted by M , is defined by
a triple (S,R, S0), where S represents the set of states, R ⊆ S × S
represents the set of transitions (i.e., pairs of states specifying how
the system can move from state to state), and S0 ⊆ S represents the
set of initial states.

Indeed, given a transition system M, which is derived from the
control-flow graph of a program, a property φ, which represents pro-
gram correctness and/or a system’s behavior, and an iteration bound
k, which limits loop unrolling, data structures, and context-switches,
BMC techniques thus unfold a system k times, in order to convert it
into a verification condition ψ, which is expressed in propositional
logic or in a decidable-fragment of first-order logic, such that ψ is
satisfiable if and only if φ has a counterexample of depth less than
or equal to k. The propositional problem associated with SAT-based
BMC is formulated by constructing [117]

ψk = I (s0) ∧
k−1∧
i=0

R (si, si+1) ∧ ¬φk. (16)

Here, φk represents a safety property φ in step k, I is the set of
initial states of M , and R (si, si+1) is the transition relation of M
at time steps i and i+ 1. Hence, the equation

∧k−1
i=0 R (si, si+1)

represents the set of all executions of M of length k and ¬φk
means the condition that shows φ is violated in state k, which is
reached by a bounded execution of M of length k. Finally, the
resulting (bit-vector) equation is translated into conjunctive normal
form, in linear time, and passed to a SAT solver (if (16) is encoded
into propositional logic) or SMT solver (if (16) is encoded into a
decidable-fragment of first-order logic) for checking satisfiability.
One may notice that Eq. (16) can be used to check safety proper-
ties [120]. Liveness properties (e.g., starvation and deadlock) that
contain the LTL operator F are checked by encoding ¬φk in a loop,
within a bounded execution of length at most k, such that φ is vio-
lated in any state in a loop [102, 121]. In that case, Eq. 16 can be
rewritten as

ψk = I (s0) ∧
k−1∧
i=0

R (si, si+1) ∧

(
k∨

i=0

¬φi

)
, (17)

where φi is the propositional variable φ at time step i. Thus, this
equation can be satisfied if and only if, for some i (i ≤ k), there
exists a reachable state at time step i in which φ is violated. Indeed,
Eq. (17) differs slightly from (16), because it represents a violation
of length k or less to the considered and safety property, while (16)
represents a violation of exactly length k. It means that if a system
deadlocks in l ≤ k steps and the respective cause is at step j ≤ l,
then formula (16) turns out to be unsatisfiable and therefore it will
not detect such an error.

One may notice that BMC analyzes only bounded program runs,
but generates verification conditions (VCs) that reflect the exact path
in which a statement is executed, the context in which a given func-
tion is called, and the bit-accurate representation of expressions.
A verification condition is a logical formula (constructed from a
bounded program and desired correctness properties), whose validity
implies that a program’s behavior agrees with its specification [22].
Correctness properties, in programs, can be specified by users via
assert statements or automatically generated from a specification
language [122]. If all of a bounded program’s VCs are valid, then
it is in compliance with its specification, up to a given bound.

As an example, one may consider a simple C program (slightly
modified from [123]) with an exponential number of paths, as shown
in Fig. 5(a). The corresponding C program, in single static assign-
ment (SSA) form [124], is shown in Fig. 5(b). The SSA form is
an intermediate representation, which is used by compilers to facili-
tate optimizations and transformations of source code. The common
property in SSA form is that every variable state has only one
definition in a program text, which is achieved by introducing a
fresh variable from an original name (e.g., with a subscript), at every
assignment, such that there is an unique left-hand side for each new
state, as shown in Fig. 5(b).

Apart from that, this program has an exponential number of paths,
since each element of x can be either greater than one or less than
or equal to one. Despite the large number of paths through that pro-
gram, BMC unwinds it up to a bound k and translates it into a VC
ψ, such that ψ is satisfiable if and only if the assertion a <= N
fails. One may also notice that BMC still encodes program stages
with a size that grows linearly with N . More precisely, the program
in Fig. 5(a) is converted into ψ, through a decidable fragment of
first-order logic [22], as

ψ :=



a1 = N
∧ a2 = ite (x[0] > 1, a1 − 1, a1)
∧ a3 = ite (x[1] > 1, a2 − 1, a2)
∧ a4 = ite (x[2] > 1, a3 − 1, a3)
∧ . . .
∧ aN+1 = ite (x[N − 1] > 1, aN − 1, aN)
∧¬ (aN+1 ≤ N)


. (18)

The ternary operator f ? t1 : t2, shown in Fig. 5(b), is converted
into the conditional expression ite(f, t1, t2) that takes as its first
argument the Boolean formula f and, depending on its value, selects
either the second (i.e., t1) or the third argument (i.e., t2). In order
to verify that the assertion a <= N holds, its negation is added
to ψ and a check is performed, regarding whether the entire for-
mula is satisfiable, through an off-the-self SMT solver. Formula (18)
can be represented simply as a Boolean logic circuit, which can be
further transformed into a (equisatisfiable) conjunctive-normal-form
formula over propositional variables, by Tseitin’s transform [125], in
linear time, and also by introducing at most a linear number of fresh
variables; however, checking validity of a first-order logic formula,
in a given background theory, is anNP-complete problem [126].

From the practical point of view, SAT- or SMT-based BMC pro-
cedures have been successfully applied to verify a large number of
hardware and software systems, including digital circuits and single-
and multi-threaded programs. Those BMC techniques were able to
find subtle bugs in real digital and embedded software systems, as

IET Research Journals, pp. 1–24
8 c© The Institution of Engineering and Technology 2015

1 # i n c l u d e < a s s e r t . h>

2 i n t x [N] , a ;

3 . . .

4 i n t main (void) {

5 a=N;

6 f o r (i n t i =0 ; i <N; i ++){

7 i f (x [i] >1){

8 a−−;

9 a s s e r t (a <=N) ;

10 re turn 0 ;

11 }

12 }

13 }

(a)

1 a1 = N

2 a2 = (x [0] > 1) ? a1 − 1 : a1

3 a3 = (x [1] > 1) ? a2 − 1 : a2

4 a4 = (x [2] > 1) ? a3 − 1 : a3

5 . . .

6 an +1 = (x [N−1] > 1) ? an − 1 : an

(b)

Fig. 5: (a) A simple C program with a loop for. (b) The
corresponding unwound C program of (a) converted into SSA form.

reported in the available literature [127–131]. Nonetheless, the main
criticism with respect to BMC techniques relies on completeness,
since they are able to prove system correctness only if an upper
bound k is known, i.e., a bound that unfolds all loops and recursive
functions to their maximum possible depths.

Due to that limitation, BMC tools are typically susceptible to
exhaustion of time or memory limits, when checking complex
circuit-implementations or programs with loops, whose bounds are
too large or cannot be statically determined. Indeed, such an issue
has pushed researchers to overcome the depth limitation and pro-
pose extensions capable of proving global correctness. In particular,
two possible strategies can be adopted, in order to prove properties
through traditional BMC: (i) compute the completeness threshold,
which can be smaller than or equal to the maximum number of loop-
iterations occurring in a program, or (ii) determine the high-level
worst-case execution time (WCET), which also gives a bound on
the maximum number of loop-iterations [102, 132, 133]. Nonethe-
less, in practice, complex software systems involve large data-paths
and complex expressions. Therefore, verification conditions that
arise from BMC of programs become harder to solve and require
substantial amounts of memory to build. Finally, another strategy,
which is based on complementary analyzes beyond basic BMC, con-
sists in using a companion technique, with the potential to fill the
gap between the adopted depth and all subsequent ones, such as
induction, which is explained below [134, 135].

4.2 Induction-based Verification of C Programs

One promising approach to achieve completeness, in BMC tech-
niques, is to prove that an invariant (assertion) is k-inductive [134,
135]; however, the main challenge regarding such an approach relies
on computing and strengthening inductive invariants from programs.
In particular, loop invariants, which are computed from programs
under verification, must be inductive (and not just invariant), in order

1 # i n c l u d e < a s s e r t . h>

2 i n t main (void) {

3 f l o a t x =2;

4 whi le (∗) {

5 x = ((2∗ x) − 1) ;

6 }

7 re turn 0 ;

8 }

Fig. 6: Motivating example for inductive invariants.

to check the corresponding VCs, i.e., invariance cannot determine
induction of a non-inductive assertion [22].

For instance, one may consider the C-code fragment shown in
Fig. 6, where the star-notation indicates non-determinism. In addi-
tion, suppose that one wants to prove that P : x > 0 is invariant and,
in order to do that, induction can be applied:

• It holds initially, because

x = 2︸ ︷︷ ︸
initial condition

=⇒ x > 0︸ ︷︷ ︸
P

;

• Whenever P holds for k loop unwindings, it also holds for k + 1
steps, given that

x > 0︸ ︷︷ ︸
P

∧x = 2 ∧ x′ = 2 ∗ x− 1︸ ︷︷ ︸
transition relation

=⇒ x′ > 0︸ ︷︷ ︸
P’

.

If we consider the IEEE floating-point standard (IEEE 754) [136,
137], then invariant x > 0 initially holds; however, after 128 loop
iterations (lines 4-6 of Fig. 6), an overflow occurs, whose numerical
behavior is then determined by the standard IEEE 754. Nonetheless,
this invariant is not inductive, given that x > 0 before an initial iter-
ation does not ensure that x > 0 after each iteration. In particular, if
we initially assign x = 0.9, then, after the fourth iteration, x < 0. As
a consequence, even if invariant generation procedures successfully
compute such assertions, which are indeed invariant, those must be
inductive, so that k-induction verifiers can automatically prove cor-
rectness. In that specific example, an inductive invariant would be
x > 1, given that if x > 1 before the initial iteration, then also x > 1
after k iterations.

There are several invariant-generation algorithms that discover
linear and polynomial relations among integer and real variables,
in order to provide loop invariants and also discover the mem-
ory “shape”, in programming languages with pointers [138, 139].
The current literature also reports successful applications of k-
induction based verification algorithms for hardware and software
systems, using invariant generation and strengthening, mostly based
on interval analysis [140].

Novel verification algorithms for proving correctness of (a large
set of) C programs, by mathematical induction and in a completely
automatic way (i.e., users do not need to provide loop invariants),
were recently proposed [140–144]. Additionally, k-induction based
verification was also applied to ensure that (restricted) C programs
(1) do not contain violations related to data races [145], considering
the Cell BE processor, and (2) do respect time constraints, which
are specified during system design phases [134]. Apart from that,
k-induction is also a well-established technique in hardware verifi-
cation, where it is easily applied, due to the monolithic transition
relation present in such designs [134, 135, 146].

It is worth noticing that k-induction with invariants has the poten-
tial to be directly integrated into existing BMC approaches, given
that the induction algorithm itself can be seen as an extension after
k unwindings and it is possible to generate program invariants with

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 9

other software modules, which are then translated and instrumented
into an input program [144].

Nonetheless, there is little evidence, in the available literature, that
model checking hardware and software systems through k-induction
(and invariants) can be efficiently exploited in ECPS verification
and synthesis. That happens due to the distinctive characteristics
mentioned earlier, which influence ECPS developments and also
verification processes. Additionally, there is still a lack of studies
for software verifiers to exploit the combination and configura-
tion of different invariant generation and strengthening algorithms,
including analysis to discover linear inequalities, polynomial equal-
ities and inequalities, and invariants related to memory and variable
aliasing [22].

4.3 Property Directed Reachability (or IC3)

Bradley et al. introduced the “property directed reachability” (or
IC3) procedure for the safety verification of systems [147, 148]
and have shown that IC3 can scale on certain benchmarks, where
k-induction fails to succeed. In particular, the success of IC3 over
k-induction procedures is due to the ability of the former to guide
the search for inductive instances with counterexamples regarding
inductiveness (CTIs) of a given property [149].

One may consider again the C-code fragment shown in Fig. 6,
where P : x > 0 is an invariant.

x > 0︸ ︷︷ ︸
P

∧x = ∗ ∧ x′ = 2 ∗ x− 1︸ ︷︷ ︸
transition relation

6=⇒ x > 0︸ ︷︷ ︸
P’

.

In this specific example, a CTI returned by an SMT solver is x = 0.
If this state is not eliminated, then the invariant P cannot be estab-
lished. The generated inductive assertion should establish that the
CTI x = 0 is unreachable and if no such inductive assertion exists,
then other CTIs can be examined instead (e.g., 0.1, 0.2, . . . , 0.9).
As a result, the lemmas should be strong enough that consecutively
revisiting a finite set of CTIs will eventually end up in an asser-
tion, which is inductive relative to them, thus eliminating the CTI. In
this example, instance x > 1 is inductive and eliminates all possible
CTIs.

Jovanović et al. [150] presented a reformulation of IC3, by sep-
arating reachability checking from inductive reasoning. The authors
further replace the regular induction algorithm by the k-induction
one and show that it provides more concise invariants. Those authors
implemented the mentioned algorithm in the SALLY model checker
using Yices2, in order to perform a forward search, and MathSAT5,
which executes a backward search. They showed that new algorithm
is able to solve a number of real-world benchmarks, at least as fast
as other approaches.

4.4 Craig Interpolation

Another feasible alternative to prove properties in BMC is to com-
pute Craig interpolants for inconsistent pairs (or more generally,
sets) of formulae [151, 152]. This alternative approach exploits the
SAT/SMT solvers’ ability to produce refutations, i.e., proofs regard-
ing the nonexistence of counterexamples of depth less than or equal
to k, which do not ensure whether a given property holds, but contain
information about reachable states of a model.

Definition 4. Given a pair of formulae (A,B), such that A ∧B is
inconsistent, and a proof by resolution for (A,B), an interpolant for
(A,B) is a formula F with the following properties [151, 152]:

• A⇒ F ;
• F ∧B is unsatisfiable;
• F expressed only over the common variables (non-logical sym-
bols) of A and B.

As an example, consider A = (x1 ∧ x2) and B = (¬x2 ∧ x3).
Given that (x1 ∧ x2) must imply F (or simply that ¬x1 ∨ ¬x2 ∨ F

hold) and F ∧ ¬x2 ∧ x3 must be unsatisfiable, one possible inter-
polant for the given pair of formulae (A,B) is F = x2, since x2 is
a common part of both A and B.

The use of interpolants allows us to define a complete method for
finite-state reachability analysis based on SAT and SMT solvers. In
order to show how BMC and interpolation can be combined, we refer
to Section 4.1, where we define Eq. (16) and the terms I , R, and φ.
Now, suppose that Q = I and Eq. (16) is partitioned, so that the set
of initial states I and the first instance of the transition relationR are
in set A, while the remaining instances of R and the property φ are
in set B, as shown in Fig. 7 (note that k is unknown).

R R R R R R R

S 0 S k

A B

S 1 S 2

= > P

Fig. 7: Computing image by interpolation [151].

Suppose that we use an SMT solver to prove that the A ∧B is
unsatisfiable, i.e., we use an SMT solver to conclude that there is no
satisfying assignment to A ∧B.∗ The internal steps performed by
SMT solvers for reaching this conclusion can be used to construct a
proof of unsatisfiability Π, from which we can derive an interpolant
F for the pair of formulae (A,B), i.e., F = interpolant (Π, A,B).
According to Definition 4, A must imply F and since we defined A
to be the set of initial states and the first instance of R (i.e., from
Fig. 7,A = s0 ∧ s1), it follows thatF is true in every state reachable
from the initial state, in one step. In other words, we can say that F
is an over-approximation of the forward image of I [151, 152]. Also
according to Definition 4, the formula F ∧B must be unsatisfiable
(from Fig. 7,B = s2 ∧ s3 ∧ . . . ∧ sk), which means that there is no
state satisfying F that can reach a final state sk. After computing
F , we then check whether F implies Q. If F implies Q, then no
reachable state can satisfy the property φ and we can thus conclude
that the property holds; however, since F is an approximation, we
can falsely conclude that the final state is reachable. In this case, we
update Q = F ∨Q and A = F ∧R0, increase the value of k + 1,
and check whether A ∧B is unsatisfiable. If A ∧B is satisfiable,
we have found a valid counter-example (i.e., a path from the initial
state to the final one); otherwise, we compute the interpolant F =
interpolant (Π, A,B) again and check whether F implies Q. This
procedure is stopped when we have found a valid counterexample or
proved that the final state is not reachable (i.e., the property holds).
The details of the algorithm and further information about the use of
interpolants, in model checking, can be found in [151, 152].

4.5 Abstraction

Apart from recent advances in automated symbolic verification,
the number of functions implemented by current ECPS is growing
considerably, which makes design verification using state-of-the-art
symbolic verification techniques (e.g., BMC, k-induction and IC3)
more difficult. One possible alternative is to divide them in sets and
attack isolated modules; however, inter-dependency also increases,
which makes such an approach unfeasible. Another viable and more
elegant strategy to scale those verification techniques is to combine
them with some sort of abstraction, in order to remove irrelevant
detail and reduce model size [153].

In this respect, predicate abstraction has been successfully used
in software verification, by large organizations, e.g., SLAM at
Microsoft, which is a tool to automatically check device drivers for
certain errors [154]. The key idea of predicate abstraction is to only
track predicates on data and remove variables from models, with the

∗Note that if at any stage we can satisfy the property φ within k steps from

the initial state, then we have found a counterexample.

IET Research Journals, pp. 1–24
10 c© The Institution of Engineering and Technology 2015

goal of pruning state spaces; however, predicate abstraction mostly
works with control-flow dominated properties, which compromises
ECPS verification. Another successful example of predicate abstrac-
tion is SATABS [155], which implements counterexample-guided
abstraction refinement (CEGAR) based on SAT solvers, in order to
verify single- and multi-threaded software with shared variables. In
CEGAR, an initial abstract model is automatically produced from
control structures of a program to be verified. Abstract models can
admit erroneous (or “spurious”) counterexamples, but every single
counterexample is analyzed and its abstract model is correspond-
ingly refined, in order to remove unintended behavior incorrectly
added during an abstraction process.

Abstract interpretation is another useful formal analysis tech-
nique, which soundly approximates semantics of programs [156].
It can infer invariants about program behavior, by means of inter-
val, which computes the maximum and minimum value of a given
program variable (e.g., a < x < b): octagons, which computes some
relation among the program variables (e.g., x < a, x− y < b), and
convex polyhedral, which computes a full relation among the pro-
gram variables (e.g., ax+ by < c). A number of tools exists to dis-
cover linear/polynomial relations among integer and real variables
and then infer loop invariants [138, 139]. Additionally, the combi-
nation of invariant generation tools with symbolic model checking,
for computing pre- and post-conditions, has also been reported in
literature, with successful applications to verify safety properties
in (embedded) software systems [140, 144, 157]. Astrée [158],
PolySpace [159], and Frama-C [160] are the most successful imple-
mentations of the abstract interpretation technique; in particular,
Astrée and PolySpace have been successfully used to prove absence
of run-time errors, in real-world flight control software. Although
those software verifiers scale relatively well for large code bases,
their main drawback is that they usually provide false alarms, due to
over-approximation of possible program executions.

4.6 Path-based Symbolic Execution

Path-based symbolic execution is another verification technique for
addressing the complexity of checking large software systems with
a particular focus on path exploration, i.e.,, all possible paths in a
program are enumerated and individually checked [161]. On the one
hand, path-based symbolic execution seems to be similar to BMC,
since it will symbolically explore state-spaces, generate (path) con-
straints, and then check for satisfiability of program assertions. On
the other hand, when a branch is found, while a BMC tool evaluates
both branch sides (i.e., true and false) and merges states after that
branch, a symbolic executor primarily explores each branch, sep-
arately, thereby making a copy (i.e., forking) of the current state.
This process will happen for every branch in a program, until either
an assertion violation is reached or all paths have been systemati-
cally explored. Similar to BMC, a model is generated, if a formula
is satisfiable and a test case can be produced.

If the constraints for a given path are unsatisfiable, then a sym-
bolic executor backtracks to the last visited branch, by removing
every constraint added, when evaluating the unsatisfiable side of that
branch, and explores the other side of it. One may notice that path
exploration grows exponentially, with the number of branches; in lit-
erature, it is often referred to as path explosion. Path-based symbolic
execution tools, as KLEE [162], employ several optimizations to
prune the number of paths being explored, thereby caching previous
queries and checking whether branch path constraints are satisfiable,
before exploring them.

One notable advantage of symbolic executors, over BMC tools,
is that the former can be used for coverage test generation. Recent
results of software testing competitions do not lead to favorable
assessment of BMC tools, over path-based symbolic execution tools,
in order to produce test cases for achieving coverage∗. Path-based
symbolic execution tools explore state-spaces by using a depth-first

∗https://test-comp.sosy-lab.org/2019/results/

results-verified/

search (DFS) algorithm, while a test case can be generated for each
path of a program: every time a final state is reached, the underlying
SMT solver can be queried for a model that satisfies all constraints in
that particular path [163]. BMC tools, however, explore state-spaces
by using a breath-first search (BFS) algorithm, so using it for cov-
erage test generation is trickier, since many different paths can be
evaluated, in a single run, and only one of them will be returned, if a
bug is found.

5 SAT- and SMT-based Synthesis for
Cyber-Physical Systems

5.1 Control Synthesis of Cyber-physical Systems

Control synthesis for ECPS consists in finding a controller or an
invariant control law C, such that a closed-loop system composed
of (C,Ω) satisfies every property L ∈ Φ.

A possible approach to synthesize reliable ECPS is Counterex-
ample Guided Inductive Synthesis (CEGIS) [164]. Its key idea is
the definition (by a user) of a set of safe states, i.e., the specifi-
cation of Φ, as well as a generic template τ for a control system
that must satisfy such a specification, and then iteratively refine
parameter values through counterexamples, until a final implemen-
tation is achieved. Then, a CEGIS engine computes values for the
unknown symbols of the chosen template, which hold for Φ [165].
In particular, it splits the parameter-synthesis problem into simpler
steps, which are then treated by SMT or SAT solvers. Abate et
al. [9, 166] presented a method for synthesizing stable controllers
that are suitable to continuous plants given as transfer functions [9]
and state-space representations [166], which exploits bit-accurate
verification of software implemented in digital microcontrollers [96,
105, 106], while the resulting systems must ensure non-fragile
stability [9] and safety [166]. Indeed, they provide two comple-
mentary approaches based on CEGIS: one computes a completeness
threshold k and then checks correctness over k time steps, in a multi-
staged approach, i.e., the adopted depth bounds the entire symbolic
verification process, while the other relies on a conforming abstrac-
tion of a system’s continuous dynamics, at specific times. Ravan-
bakhsh and Sankaranarayanan [167, 168] also employed CEGIS
based on the Lyapunov’s function, in order to ensure robust reach-
while-stay property (i.e., a safety specification) [168] and non-zeno
behavior [167]. Although non-linear solvers constitute a bottleneck
for those schemes, regarding computation complexity, the iterative
nature of CEGIS approaches may be explored, in order to create
trade-off points. CEGIS was also employed to synthesize model
predictive controllers for a wide variety of applications, e.g., heat-
ing ventilation and air conditioning systems, autonomous vehicles
control, and aircraft electric power system [116].

The examples above showed promising techniques based on
CEGIS, which may or already benefit from its iterative behavior.
Indeed, convergence may be promptly achieved or even further ori-
ented, if additional processing steps are placed between consecutive
runs. In addition, CEGIS is an important, but not the unique, exam-
ple of symbolic control synthesis for ECPS. The main advantage of
using symbolic synthesis techniques (e.g., SMT- and SAT-based) is
the possibility of encoding (via logic formulae) reachability/safety
specifications on original concrete systems, which breaks a com-
plex synthesis procedure into smaller steps, as already mentioned.
Indeed, there are many studies [55, 169–178] on symbolic control
synthesis for ECPS, available in literature, which show the impor-
tance and flexibility of such a technique. For instance, Zamani,
van de Wouw, and Majumdar [174] tackled incremental stability,
through incremental Lyapunov functions and contraction metrics,
and proposed a technique suitable to a larger classes of control sys-
tems, which enforces incremental input-to-state stability rather than
input-to-state convergence. Indeed, incremental Lyapunov functions
favored the construction of finite bi-similar abstractions for incre-
mentally stable closed-loop control systems, which is an interesting
result that reinforces combination between abstraction and control
system properties.

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 11

https://test-comp.sosy-lab.org/2019/results/results-verified/
https://test-comp.sosy-lab.org/2019/results/results-verified/

A common procedure for controller synthesis for ECPS is based
on finite-state approximations of infinite-states systems, i.e., using
hybrid automata. Such an approach allows fully automated synthesis
of control systems for ECPS, which ensures complex-specifications
realization; however, the main weakness of this approach is that
it often produces complex controllers with high implementation
cost. In order to avoid that problem, refined controllers have been
proposed, which aim to provide some invariant properties for close-
loop systems, e.g., safety [178–180], reachability [176, 181], sta-
bility [171, 175], and safety/reachability properties, considering
quantization effects [182].

5.2 Program Synthesis via Counter-Example Guided
Inductive Synthesis (CEGIS)

The basic idea of program synthesis is to automatically construct a
program P that satisfies a correctness specification σ. In particular,
program synthesis is automatically performed by engines that use a
correctness specification σ, as starting point, and then incrementally
produce a sequence of candidate solutions that satisfy σ [9, 183]. As
a result, a given candidate program p is iteratively refined, in order to
match σ more closely. Counter-Example Guided Inductive Synthesis
(CEGIS) represents one of the most popular approaches to program
synthesis that are currently used in practice [183], whose basic archi-
tecture is shown in Fig. 8 and has close connections to algorithmic
debugging using counterexamples and abstraction refinement [184].

The correctness specification σ provided to a program synthesizer
is of the form ∃~F .∀~x.σ(~x, ~F), where ~F ranges over functions, ~x
ranges over ground terms, and σ is a quantifier-free formula typically
supported by SMT solvers. The ground terms are interpreted over
some finite domain D, where D can be encoded using the SMT’s
bit-vectors part. The phases SYNTHESIZE and VERIFY, in Fig. 8,
interact via a finite set of test vectors INPUTS that is incrementally
updated. Given the correctness specification σ, the SYNTHESIZE
procedure tries to find an existential witness ~F satisfying the spec-
ification σ(~x, ~F), for all ~x in INPUTS (as opposed to all ~x ∈ D). If
SYNTHESIZE succeeds in finding a witness ~F , the latter is a can-
didate solution to the full synthesis formula, which is passed to
VERIFY, in order to check whether it is a proper solution (i.e., ~F
satisfies the specification σ(~x, ~F) for all ~x ∈ D). If this is the case,
then the algorithm terminates; otherwise, additional information is
provided to the phase SYNTHESIZE, in the form of a new counterex-
ample that is added to the INPUTS set and the loop iterates again.

Fig. 8: Counter-Example Guided Inductive Synthesis (CEGIS).

One may notice that each iteration of the CEGIS loop adds a
new input to the finite set INPUTS, which is then used for synthe-
sis. Given that the full set of inputs D is finite, this means that the
refinement loop can only iterate over a finite number of times; how-
ever, D can represent a large number of elements for the finite set
INPUTS. In order to avoid exploring all possible values, machine
learning techniques can be used in the phase SYNTHESIZE, with the
goal of learning from experience (input-output samples), i.e., learn-
ing from counterexamples provided by a verification oracle [184]. In
addition to that, a pre-processing stage could also figure as another
block in the scheme shown in Fig. 8, between VERIFY and SYN-
THESIZE, which would process counterexamples and provide larger

and refined information to the latter, according to specification σ and
domain D, in order to speed-up convergence to a final candidate.

Nowadays, program synthesis engines that implement the CEGIS
approach [185] can automatically produce solutions for a large vari-
ety of specifications, due to the combination of automated testing,
genetic algorithms, and SMT-based automated reasoning [186].

CEGIS for ECPS: A typical synthesizer for ECPS controllers iter-
ates between two main phases, an inductive synthesis one, that is,
SYNTHESIZE, and a validation one, that is, VERIFY [187]. The two
phases interact via a finite set of test vectors, which is updated incre-
mentally. Given an ECPS specification (e.g., stability and safety),
a inductive synthesis procedure tries to find a candidate solution
satisfying that specification, for the given set of test inputs. If the
synthesis phase succeeds in finding a witness, then the latter is a
candidate solution for the full synthesis formula. This candidate is
passed to the validation phase, which checks whether it is a proper
solution (i.e., it satisfies the specification for all possible inputs). If
that is the case, then the algorithm terminates; otherwise, additional
information is provided to the inductive synthesis phase, in the form
of a new counterexample, C-ex, which is added to the set of test
inputs, and the loop iterates again.

One possible architecture for a synthesizer is presented in Fig. 9,
considering stability and safety specifications. It starts by devising
a digital controller, through inductive synthesis, that stabilizes the
physical model, while remaining safe for a pre-selected time horizon
(k) and a single initial state. Then, it employs a multi-staged verifi-
cation process, as follows. (i) The first verification stage (SAFETY)
checks if the candidate solution, which we synthesized to be safe for
at least one initial state, is safe for all possible initial states, i.e., it
does not reach an unsafe state within k steps. The tentative system is
unfolded k steps and we check if the target safety specification holds
for any initial state, according to Algorithm 1. (ii) The second veri-
fication stage (PRECISION) restores soundness with respect to plant
precision, by using interval arithmetic [188] to validate operations
performed by the previous stage. (iii) The third verification stage
(COMPLETE) checks if k is large enough to ensure safety for any
k′>k, where k is computed to ensured k≥k for the current candidate
controller [166], i.e., k is at least the number of iterations required to
sufficiently unwind the closed-loop state-space model, such that the
boundaries are not violated for any larger number of iterations.

ALGORITHM 1: Safety check

Function Safety check begin
Check if input is bounded

for All possible initial states do
for All time steps until k do

Compute system evolution

Check if a safe state was achieved

end
end

end

As a real example, it is interesting to revisit system Sim3Tanks,
which was presented in Section 2.3. Through the CEGIS approach
presented by Abate et al. [9, 166], an iterative design would then be
performed, where candidates are generated and then verified, based
on properties φ1, φ2, φ3, and φ4. As already mentioned, the first
three are related to safety, regarding fluid height in tanks, while the
latter is related to liveness, in such a way that flow Q3 follows a
desired form. Indeed, checking the latter is a little bit more intricate,
given that the it must comply with a (possibly dynamic) form for k
steps and is highly dependent on the aggregate effects of that system,
which includes reservoir and fluid characteristics. As a consequence,
introducing a suitable model, which could be used both in the verifi-
cation and also in an additional pre-processing step, is a interesting

IET Research Journals, pp. 1–24
12 c© The Institution of Engineering and Technology 2015

SYNTHESIZE

VERIFY

1.SAFETY 2.PRECISION 3.COMPLETE DONE

Program Search BMC-based
Verifier

Fixed-point
Arithmetic

Verifier

Completeness
Verifier

K

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Fig. 9: CEGIS with multi-staged verification for ECPS.

strategy. In the former, a verifier would check if Q3 follows zref
and, in the latter, a processing and tuning stage would provide refined
information aligned with the mentioned system model, in such a way
that the synthesis step would converge toward a viable solution, in
a system sense. Finally, the verification step could also include a
desirable range for Q3, instead of am exact curve.

5.3 Incorporating System Models to Automated Verification
and Synthesis Procedures

Currently, SMT-based BMC approaches check code properties
in real programs, which basically address programming-language
issues and general correctness, without taking into account target
applications or system behavior. Such a statement is important,
since, as already mentioned, many system features are being moved
to software domain, which then requires schemes that do not only
check if source code is correctly written, but also if it will properly
respond in real environments or under external problems or cor-
rupted data. For instance, the anti-lock braking system software of
a vehicle model can be bug free, but it may not work correctly if a
sensor is damaged or even intentionally tampered [109].

Indeed, research in software verification is now incorporating
such considerations, during checking processes, and some schemes
already use knowledge about the system to be verified and the under-
lying hardware. Recently, a verification tool for digital systems was
proposed, which is called digital system verifier (DSVerifier) [105]
and is able to aid engineers to check overflow, limit cycle, out-
put error, timing, stability, and minimum phase, considering FWL
effects. Additionally, DSVerifier checks closed-loop systems with
uncertain models considering FWL effects, which are typically rep-
resented as hybrid systems, i.e., the controller is digital, but the
controlled agent (plant) is a physical and continuous system [96].
That ultimately leads to the use of analog-to-digital (A/D) convert-
ers, which are one of the most important aspects to be considered,
given that data loss (quantization) is inevitable. As a consequence,
verification procedures have to consider the interaction between a
continuous plant and a digital (and sampled) controller with FWL
effects, which can be connected using different control system con-
figurations. Additionally, the latter may present a different behavior,
regarding what was specified in analog domain, due to the inherent
discrete-time operation.

DSVerifier is actually a front-end for internal modules
of the Efficient SMT-Based Context-Bounded Model Checker
(ESBMC) [131], with the goal of converting digital system speci-
fications into C syntax containing representation format, realization
structure, and configuration parameters, in order to use the entire
ESBMC’s verification chain. Its verification methodology is shown
in Fig. 10, which starts with a digital system design step that can
be done through traditional techniques available in literature. Then,
some implementation parameters must be defined, in the second and
third steps, which are finite word-length format (fixed-point repre-
sentation), dynamic range, and realization form, including direct and
delta forms. Following that, other hardware and verification parame-
ters are fed to its engine, which includes number of bits, verification
time, and property to be checked, the latter being overflow, limit

cycle, timing, stability, or minimum phase. As a result, its verifica-
tion process is started and design parameters are checked as system
properties: if there is no property violation, its verification result is
“successful”; otherwise, “failed” is returned, together with a coun-
terexample. Based on the latter, other implementations can then be
tried, by a designer, in other to avoid failure, in an iterative way.

Fig. 10: DSVerifier’s verification methodology.

In summary, DSVerifier is a useful test tool regarding ECPS,
which takes into account different representations (e.g., transfer-
function and state-space), realization forms (e.g., direct, delta, and
transposed forms), and other implementation restrictions, in order to
explore design spaces. It has been already applied to real-world cases
and scenarios, mainly regarding digital filters [105] and controllers
[70], while tackling many different representation formats, imple-
mentations structures, and safety properties. Finally, if a system’s
requirements are not met with a given configuration, an analysis
of the provided error report may suggest another setup, which can
even be incorporated into a given system development procedure, by
providing both system verification and model refinement.

In this respect, DSVerifier has been extended to automatically
synthesize digital stabilizing controllers for continuous plants rep-
resented as transfer functions or state-space equations [9, 166]. In
particular, a CEGIS-based approach, implemented in a tool called
digital system synthesizer (DSSynth), uses inductive synthesis in
conjunction with the DSVerifier’s algorithm for verifying robust
closed-loop stability that addresses plant variations as interval sets,
as well as FWL uncertainties in digital controllers. DSSynth is able
to successfully synthesize stable digital controllers for a set of intri-
cate plant models, taken from the control literature, within minutes.
The DSSynth’s synthesis process is shown in Fig. 11. The first three
steps are performed by users and are also similar to what is already
done by DSVerifier, while the next three ones are automatically per-
formed, which result in a non-deterministic model for representing a
plant family, a function to compute controller parameters, and ANSI-
C code for representing a digital system implementation, including
a specification for the property to be checked, respectively, which
is then used as input for its CEGIS engine. After a synthesis pro-
cedure, stability of closed-loop control systems are checked, while
considering fragility aspects, such as FWL problems and uncertainty
in plant models. Nonetheless, system correction is of paramount
importance and, even with such a synthesizing tool, a final verifi-
cation procedure should be executed, with the goal of ensuring that
the generated solution still complies with the provided specs and
other issues, which may have not been initially tackled and have the
potential to compromise system reliability, are not present.

Apart from the control system domain, Scratch is another exam-
ple software model-checking tool, which uses knowledge about the
system to be verified and the underlying hardware, with the goal of
detecting races related to direct memory access (DMA) regarding
scratchpad memory, in the Cell BE processor [145]. That tool also
uses SAT-based BMC, in order to detect DMA races, and SAT-based
BMC with k-induction, which aims to prove the absence of them.
Scratch uses four variables for tracking DMA operations, i.e., valid,
which is true if a DMA operation is tracked, addr, sz and tag, which
represent address, size and tag of a pending DMA operation, on

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 13

Fig. 11: DSSynth’s synthesis methodology.

instrumented programs, where a given DMA operation is compared
with all previous ones. For instance, one might consider an oper-
ation get(l, h, s, t) that transfers data of s contiguous bytes, from
region h, to local memory region l, while identified by tag t depen-
dent on the processor’s word-size. Scratch would then replaces such
an operation with

• assert((unsigned)t < ws && (unsigned)s < max);
• assert(!valid || l + s <= addr || addr + sz <= s);
• memset(l, ∗, s);
• if(∗){valid = true; addr = l; sz = s; tag = t; }.

Such statements ensure that parameters are within a hardware’s
range, check if two DMA operations do not race, model generic
transfers, and update variables for a new operation, respectively.
Indeed, all operations supported by the Cell architecture could
be similarly encoded. If support to other DMA operations were
added, Scratch could be adapted to different architectures, i.e., the
same techniques would be employed, but with a different system
behavior/knowledge.

One may also notice that such a paradigm, i.e., verification and
synthesis based on an expected system behavior, is not restricted to
digital filters and controllers or DMA races, but it can also be applied
to possibly any real system, as long as the desired behavior can be
expressed as properties in BMC frameworks. For instance, regard-
ing self-driving cars, an important property could be the detection of
pedestrians, animals, bicycles, or any obstacle present on urban and
rural roads. Indeed, bicycles are considered one of the most difficult
problems, due to their myriad of possible shape and colors [189]. In
addition, the mentioned problem is closely related to machine learn-
ing, from which refinement strategies can be devised, incorporated
to BMC approaches [190], and directly applied to ECPS verification.

In summary, current approaches already tackle ECPS characteris-
tics (e.g., interaction with real world entities and digital processing),
which are included in verification and synthesis methodologies.
Finally, the final complement may come from ML techniques, which
have the potential to fill gaps (e.g., lack of complete models includ-
ing non-determinism), bridge tools and models (e.g., analog and
digital domains in ECPS and verification schemes), and provide
model and methodology evolution.

6 Verification and Synthesis Challenges for
ECPS

Generally, state-of-the-art verification methodologies for embedded
systems (including ECPS) generate test vectors (with constraints)
and use some assertion-based verification and high-level processor
models, during simulation [191, 192], as illustrated in Fig. 12.

In particular, the main challenges regarding verification of embed-
ded systems lie on improving coverage, where more system func-
tions are verified, reducing verification time, i.e., pruning state-space
exploration during verification, providing completeness, i.e., if all
possible states can be reached and evaluated, and incorporating sys-
tem models, which allows specific checks regarding system behav-
ior and not only code correctness. Additionally, embedded-system
verification raises additional challenges, such as:

Fig. 12: Verification methodologies for embedded systems.

1. Time and energy constraints;
2. Handling of concurrent software;
3. Platform restrictions;
4. Security issues;
5. Verification of code pieces or modules that rely on larger struc-
tures;
6. Legacy designs;
7. Support to different programming languages, frameworks, and
interfaces;
8. Correct code instrumentation;
9. Handling of non-linear and non-convex optimization problems;
10. Incorporation of new and adapted checks, due to system or
environment change;
11. Provision of system evolution, in such a way that a version more
adapted to a given scenario is obtained.

Indeed, the first two aspects are of extreme relevance in micro-
grids and cyber-physical systems, in order to ensure reliability,
which is a key issue for (smart) cities, industries, and consumers,
and the third one is essential in systems that implement device mod-
els, such as digital filters and controllers, which present a behavior
that is highly dependent on signal inputs and outputs and whose
deployment may be heavily affected by hardware restrictions. In
that sense, as already mentioned, DSVerifier [70, 105] is a power-
ful tool, which has been evolved and now is capable of checking
many properties in digital systems, including digital filters, digi-
tal controllers, and closed-loop systems [193], while taking into
account fragility aspects (e.g., FWL problems). In addition, it has
also inspired synthesis methodologies [9, 166] based on CEGIS.
Indeed, DSVerifier is being developed towards complete ECPS ver-
ification, which includes components and entire system behavior,
based on models tackling aggregate behavior and fragility. Finally,
Sim3Tanks (see Section 2.3) can be considered as a suitable bench-
mark for future versions of DSVerifier, given that it includes all
mentioned challenges.

The fourth aspect is very important, mainly in the context of
IoT and ECPS. Indeed, remote management is of paramount impor-
tance, leads to connection through private networks and also the
Internet, and may suffer from cyber attacks. For instance, Beg, John-
son, and Davoudi [194] studied DC micro-grids, which are ECPS
with sophisticated interactions between physical and computer enti-
ties, and devised a framework to detect possible false-data injection
attacks, through identification of changes in candidate invariants.
In summary, reachability analysis based on hybrid automata was
employed and actual invariants, obtained from the reach sets con-
tained within the candidate ones, were compared with the latter,
which then indicated occurrence of attacks.

The fifth aspect deals with code that relies on existing infras-
tructures and must be compliant with those, such as Linux kernel
modules. Witkowski [195] addressed that problem and proposed a
tool called DDVerify, which is able to verify Linux device drivers
through SatAbs, with focus on Linux kernel application program-
ming interfaces (APIs) described by natural language. The sixth
aspect, in turn, is inherent to a large number of embedded systems
from telecommunications, control systems, and medical devices,
including ECPS. In particular, software developed for those types of
embedded system has been extensively tested and verified, and also
optimized for efficiency over years of development. Therefore, when
a new product is derived from a given platform, a lot of legacy code
is usually reused for improving development time and code qual-
ity. Nonetheless, legacy code usually presents specifications written
post hoc, it is often poorly developed, and its verification may

IET Research Journals, pp. 1–24
14 c© The Institution of Engineering and Technology 2015

require interaction, which present hard challenges for any employed
approach [196].

The seventh aspect is related to evolving development processes
and technologies, which may delay the application of suitable ver-
ification and synthesis approaches, if verifiers and synthesizers do
not support different programming languages and interfaces. In this
context, Monteiro et al. [197] proposed the use of a QT operational
model for verifying code written with the Qt framework, which is a
simplified version of the latter and is already instrumented for for-
mal verification. It is not exactly an ECPS verification technique;
however, it shows that if ECPS are developed with a specific frame-
work, its verification is still possible and can scale on that concept.
The eighth aspect highlights a subjective task in verification: where
one must insert an evaluation point or assertion, in order to cor-
rectly address a property. In that direction, Li et al. [198] proposed
an automatic approach for software verification based on instrumen-
tation and concolic testing, which uses C intermediate language and
control C graphs for identifying security-sensitive parts (e.g., buffer
overflow). Indeed, instrumentation driven by target issues (not a
generic analysis) seems to be a promising approach, which could
also greatly benefit from behavior models. For instance, in Section
2.3, we pointed out target properties for Sim3Tanks, but we did
not define where they should be checked, which could be resolved
through a complete system model. The ninth one is related to the
widespread use of embedded systems in autonomous-vehicle navi-
gation systems [199], which demands optimization solving during
their execution for a wide range of functions, including non-linear
and non-convex problems using fixed- and floating-point arithmetic.
One example is optimization through counterexample guided induc-
tive optimization (CEGIO) [114], which uses an iterative approach,
based on formal verification, to perform inductive generalization
and then reduce optimization domains. As a consequence, one may
notice that formal methods may be regarded as a base framework,
which can be applied to many problems related to ECPS design and
verification.

The tenth aspect is a consequence of changes in environment or
different applications and scenarios, which may present new prob-
lems to embedded systems that did not exist or were not tackled
during their development. Such a challenge is also closely related to
ML techniques, given that they may be integrated into commercial
systems and have the potential to devise new and refined control
strategies, which must then be identified, checked, and validated
[200]. In a simplified manner, verification of ML-based systems can
be classified into two groups: development of monitors to ensure
safety rules, such as maintenance of a safe distance from fragile ele-
ments (e.g., bicycles and animals), as already mentioned earlier in
the present article, and verification regarding satisfaction of safety
criteria, such as erratic or dangerous behaviors, which is very dif-
ficult to formally define, in any given language. For instance, a
diagnostic system may employ techniques that make it able to learn
new tumor patterns and them warn their presence on patients’ bod-
ies, but a wrong updated model may compromise earlier traditional
assessments and erroneously perform new ones, which should be
verified and validated. Finally, the latter also raises another question:
an embedded system must be checked only when it is developed/cre-
ated or also during its life cycle, in order to ensure that improved
models and actions are sound and reliable? That is an issue that will
probably concern researchers, when ML becomes mature and widely
spread in software verification.

The eleventh aspect is related to the current development and
test strategies adopted for embedded systems, which aim at sim-
ply providing robust structures, instead of anti-fragile ones [201].
In summary, it is not feasible to account for every error or faulty
scenario and, as a consequence, it would be more beneficial to pro-
vide a module, architecture, or methodology capable of thriving on
problems and getting stronger. Such an aspect shares some simi-
larity with the ninth one and may also be achieved through ML
techniques. Indeed, this kind of scheme consists in a completely dif-
ferent approach, which would profoundly change the way we design
ECPS.

Those eleven challenges place additional difficulties for devel-
oping reliable synthesizers for embedded systems, especially for

cyber-physical systems and micro-grids, where controlled objects
(e.g., physical plants) typically exhibit continuous behavior (which
may eventually change), whereas controllers (usually implemented
by real-time computer systems) operate in discrete time and over
a quantized domain. In particular, synthesizers for those systems
[9, 166] need to consider the effects of quantizers (A/D and D/A
converters), when a digital equivalent of the controlled object is
considered, i.e., a model of their physical environment (cf. the intel-
ligent product in Fig. 1). Additionally, finite-precision arithmetic and
their related rounding errors need to be considered, when correct-by-
construction code is generated for ECPS. Additionally, synthesis of
ECPS raises additional challenges, such as:

1. Parametrization of search-space exploration processes;
2. Improvement of learning processes via counterexamples;
3. Use of incremental SAT/SMT solving approaches.

The first aspect is related to word lengths and representations
of variables in an employed (embedded) hardware, where ECPS
are built upon [105]. Here, floating-point representations can pro-
vide better approximation of real numbers, when compared with
fixed-point ones with the same number of bits, which typically
varies from 16 to 64 bits, in popular hardware architectures used
for ECPS. Multiple-precision floating-point arithmetic can further
represent real numbers, whose precision digits are bounded by the
available memory of a system, and practical software packages do
exist to implement that type of arithmetic (e.g., MPFR∗ and MPFI†).
Nonetheless, using floating-point arithmetic in software synthesizers
usually leads to higher verification time and memory consumption,
as previously observed by Duggirala and Viswanathan [103]. In
order to synthesize ECPS, typical synthesizers need to parameter-
ize search-space exploration via multiple choices of word-length and
variable representations, in order to produce a candidate solution that
considers time and memory limits.

The second aspect deals with the way software synthesizers can
learn from counterexamples produced during a verification phase,
in order to quickly propose a candidate solution that meets a given
specification. Here, critical aspects for any CEGIS approach, such as
counterexample selection, are still poorly understood by the research
community, thereby resulting in completely ad-hoc designs. Further
investigation of those aspects would allow software synthesizers to
come up with efficient synthesis approaches, for instance, through
the use of an additional processing step before counterexample
input, so that reliable implementations of communication and con-
trol software in ECPS could be learned, in order to quickly achieve
a correct-by-construction design. Machine learning techniques, such
as reinforcement learning and decision tree learning, could be used,
in order to achieve that goal and then speed up synthesis processes.

Lastly, the third aspect is related to the ability of SAT/SMT
solvers to incrementally solve propositional or fragment of first-
order logic formulae. In particular, incremental SAT solving [202]
allows software synthesizers to deal with sufficiently large logi-
cal formulae, incrementally, by learning from previous checks, i.e.,
check VCs in iteration k + 1 based on the work done for iteration
k, thus optimizing search procedures and potentially eliminating
a large amount of formula state-space to be tackled. Some prior
studies [134, 203] show that incremental learning can cut run-
times by one order of magnitude, in comparison with standard
non-incremental approaches over a large set of industrial embed-
ded benchmarks (mainly from the automotive industry); however,
we have not seen much effort, in the research community, regarding
use of incremental SAT/SMT solving to efficiently synthesize con-
trol software for ECPS, through incremental learning (from previous
checks).

7 Current Achievements and

∗https://www.mpfr.org/
†https://directory.fsf.org/wiki/MPFI

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 15

Future Trends

In the preceding sections, we identified and discussed many aspects
regarding ECPS, which included design, synthesis, behavior, ver-
ification, and bottlenecks. Nonetheless, from the point of view of
computer-aided verification and synthesis of ECPS, it is possible to
highlight seven major research problems (RPs), which are tackled
here and can be regarded as (partially) open in current published
research.

(RP1) provision of suitable encoding into SMT [118], which may
extend background theories typically supported by SMT solvers,
with the goal of reasoning accurately and effectively about realistic
ECPS.

(RP2) exploitation of SMT techniques to leverage (bounded)
model checking of multi-threaded software, in order to mitigate the
state-explosion problem due to thread interleaving, when verify-
ing ECPS implementations that require multi-core processors with
scalable shared memory.

(RP3) proof of correctness and timeliness of ECPS, by taking into
account stringent constraints imposed by hardware platforms.

(RP4) incorporation of knowledge about system purpose and
associated features, which aims to detect system-level and behavior
failures in ECPS.

(RP5) provision of tools and approaches capable of addressing
different programming languages and application interfaces, with
the goal of reducing the time needed to adapt current verification
techniques to new developments and technologies.

(RP6) development of automated synthesis approaches that are
algorithmically and numerically sound, in order to handle (con-
trol) software that is tightly coupled with physical environments, by
considering uncertain models and FWL effects.

(RP7) provision of a unified framework, which is able to tackle
high and low level properties, as well as system behavior and even
its evolution, with the potential to lead to another degree of com-
pleteness, in such a way that every implementation aspect of ECPS
is addressed and evaluated.

Due to the fact that the mentioned research problems are some of
the main issues found in the technology area addressed in this article,
many studies have already tackled them and other researchers still
perform experiments and suggest new methodologies and schemes
for mitigating or solving their consequences. As a result, we can
cite the following contributions toward them, which already provide
some answers or at least present promising approaches.

7.1 Research Problem 1: SMT Encoding

Symbolic model checking using SAT solvers instead of BDDs was
first proposed by Biere et al. [117], in order to verify hardware
systems. A successful implementation of that approach to verify C
programs was proposed by Clarke et al. [127], via CBMC. Armando
et al. proposed the first SMT-based BMC for C programs [119],
which was further extended by Cordeiro et al. to support the SMT
encoding of full C programs via ESBMC [131]. The latter, in turn,
was then extended to support C++03 programs [204], CUDA pro-
grams [19], and Qt-based consumer electronics applications [197].
This approach was also able to find undiscovered bugs related to
arithmetic overflow, buffer overflow, and invalid pointer, in stan-
dard benchmarks, which were later confirmed by their creators (e.g.,
NOKIA, NEC, NXP, and VERISEC) [129, 131, 204].

Other symbolic verification approaches have also been presented
in literature [128, 140, 155, 205], but the coverage and performance
of all existing ones are still limited to specific program classes, suf-
fering performance degradation for programs that contain intensive
floating-point arithmetic and dynamic memory allocation [206]. k-
Induction based verifiers, which use BMC as a “component” to
prove partial correctness, are continuously gaining popularity in the
software verification community. Beyer, Dangl, and Wendler [140]
described a software verification-framework called CPAchecker,
which automatically generates invariants through a combination of
data-flow-based invariant generator and dynamic precision adjust-
ment, with the goal of injecting (inductive) invariants into the

k-induction algorithm. Even though the combination between k-
induction and continuously-refined invariants significantly enhances
verification results, there is still room for improvements, particularly
for learning from counterexamples, in order to improve bug finding
capabilities (cf. Section 7.3).

Here, one possible research direction is to bridge the gap between
symbolic verifiers and SMT solvers, propose background theories,
and develop more efficient decision procedures, in order to handle
specific program classes. In this particular research direction, the
European Project SC2 (Satisfiability Checking and Symbolic Com-
putation: uniting two communities to solve real problems) aims to
further extend background theories supported by SMT solvers, in
order to solve problems related to security and safety of computer
systems (or large mathematical problems), through the development
of radically improved software tools [207].

One may notice that the main bottleneck of existing symbolic
verifiers is to unfold complex transition systems. As described in
Section 3, there are approaches that extend BMC without unrolling
the transition system (e.g., IC3 and Interpolants), but they do
not cope well with software systems, as recently reported in SV-
COMP [206], either due to the type of VCs that are produced or
simply because they might require further engineering effort, in
order to make them useful for software verification.

Another interesting direction for future research consists in inves-
tigating the application of separation logic [208], in order to reason
about ECPS. The key idea of separation logic is to perform a local
reasoning based on specifications and proofs of a given program
component, by considering only the portion of memory used by
that same component, and not the entire program global state; thus,
this allows modular reasoning among different program compo-
nents, with the goal of scaling formal verification to larger software
systems. Infer [209] represents one of the most successful implemen-
tations of that approach; it is an open-source static code analysis tool
used for verifying the Facebook code base, was employed on many
mobile apps (e.g., WhatsApp), and was adopted by many companies
(e.g., Mozilla and Spotify).

7.2 Research Problem 2: Verification of Multi-thread
Software

The symbolic verification methods proposed in literature were
further developed to verify correct lock acquisition ordering and
absence of deadlocks, data races, and atomicity violations, in multi-
threaded software based on POSIX and CUDA libraries [19, 129,
210], while considering monotonic partial-order reduction [211]
and state-hashing [212] techniques, in order to prune state-space
exploration.

Recent advances on verification of multi-threaded C programs
have been proposed to speed up verification times, which signifi-
cantly prune state-space exploration [210, 213], and also extensions
to verify the Debian GNU/Linux distribution, based on a context-
and thread-sensitive abstract interpretation framework [214], were
made available. As an example, Lazy-CSeq is a code-to-code trans-
formation tool based on Lazy Sequentialization techniques, initially
introduced by La Torre et al. [215] for non-deterministically sequen-
tializing concurrent C programs, which re-uses existing BMC tools
as backends, in order to find code violations [210]. Its main idea
is to pre-process a concurrent program and convert it into a non-
deterministic sequential one, with the goal of simplifying verifica-
tion tasks. Nonetheless, the set of concurrent-program classes (e.g.,
CUDA, OpenCL, and MPI) that can be verified is still very limited.

Given that typical implementations of ECPS now require multi-
core processors with scalable shared memory, in order to meet
the increasing computational power demands, one possible research
direction is to further extend symbolic verification methods of multi-
threaded programs via Lazy Sequentialization [210], by using SMT
solvers, in order to analyze unsatisfiability cores [216], with the goal
of removing redundant behavior or analyzing interpolants [152, 205]
and then prove non-interference of context switches. This will
enable one to capture, within a single verification framework, multi-
threaded programs that communicate via shared memory, for the

IET Research Journals, pp. 1–24
16 c© The Institution of Engineering and Technology 2015

variety of (weak) memory models that are implemented in today’s
computer architectures, and also distributed programs, which typ-
ically rely on a message-passing communication style. Scaling up
this single verification framework, for multi-threaded programs, has
the potential to increase the level of safety and security of ECPS
implementations and thus contribute to the vision of fully verified
embedded software.

7.3 Research Problem 3: Proof of Correctness and
Timeliness

Novel approaches to model check embedded software using k-
induction and invariants were proposed and evaluated in literature,
which demonstrate its effectiveness in some real-life embedded-
system applications [141, 142, 144, 145]. In particular, the k-
induction proof rule of ESBMC (named ESBMC-kind) has been
ranked at the top 3 in SV-COMP 2018∗; however, the main challenge
remains still open, i.e., to compute and strengthen loop invariants for
proving program correctness and timeliness, in a more efficient and
effective way, in order to be competitive with other model-checking
approaches.

Invariant-generation algorithms have substantially evolved over
the last years, with the goal of discovering inductive invariants of
programs [138, 139] or continuously refine them during verifica-
tion [140]. For instance, Beyer, Dangl, and Wendler [140] proposed
k-induction combined with automatically-generated continuously-
refined invariants, in order to iteratively increment the induction
parameter k and then search for stronger invariants. As a conclusion,
the authors stated that efficient k-induction approaches are possi-
ble; however, there is still room for improvement. Indeed, there is a
lack of studies for exploiting the combination of different invariant-
generation algorithms (e.g., interval analysis, linear inequalities,
polynomial equalities and inequalities) and how to strengthen them
during verification, in order to ensure system robustness w.r.t. imple-
mentation aspects. In this respect, Jovanović et al. [217] present a
reformulation of IC3, by separating the reachability checking from
the inductive reasoning. They further replace the regular induction
proof rule by k-induction and show that it provides more concise
invariants. The authors implemented their algorithm in the SALLY
model checker, with Yices2 for the forward search and MathSAT5
for the backward one. They showed that the new algorithm can
solve a number of real-world benchmarks, at least as fast as other
approaches. Lastly, optimal configurations for invariant generators
are still of paramount importance, given that applications with code
based on different aspects may benefit from different setups.

7.4 Research Problem 4: System-level Properties

State-of-the-art symbolic verification approaches were extended to
verify overflow, limit cycle, time constraints, stability, and mini-
mum phase, in digital systems, which was first proposed by Cox et
al. [218]. Indeed, digital filters and controllers [105, 218, 219] were
tackled, in order to specify system-level properties of those systems,
by employing either LTL for verifying embedded software used in
medical devices [121] or simply using user-specified assertions for
verifying embedded software used in the automotive industry [203].
Additionally, a specific UAV application was tackled using DSVer-
ifier, with the goal of checking UAV’s attitude controllers [106],
which integrated knowledge into symbolic verification procedures
regarding a quadrotor’s orientation, w.r.t. an inertial reference system
described by the Euler angles: pitch, roll, and yaw [70].

There are other verification tools that provide similar fea-
tures for verifying digital filters and controllers, in ECPS, such
as Astrée [158], PolySpace [159], and Simulink Design Verifier
(SDV) [220]. Those tools are able to verify, to some extend, low-
level properties in digital systems. Although Astrée works on pre-
processed C code, it tackles only digital filters and is focused on
verifying overflow and register dimensioning, which means that it

∗https://sv-comp.sosy-lab.org/2018/results/results-verified/

is not prepared to handle digital controllers and physical plants.
SVD is focused on block level (Simulink) and needs substantial
work regarding requirement expression and its respective encoding,
in order to support digital filters and controllers. Finally, PolySpace
is more software oriented and generically handles potential run-time
errors, in ECPS, while also leaves code fragments for further review.

More recently, other implementation aspects were added to those
existing verification framework, including magnitude, phase, poles,
and zeros, which provide deeper analysis regarding digital systems,
by tackling frequency-domain parameters, permissible deviation,
and associated natural response [219]. In general, however, there
is still a lack of studies to verify system-level properties related
to ECPS: emphasis should be given to micro-grids [2], which
present high-dependability requirements for computation, control,
and communication. Additionally, the application of automated fault
detection, localization, and correction techniques to digital systems
represents an important research direction, with the goal of making
symbolic verification tools useful for ECPS engineers [221].

7.5 Research Problem 5: Support to Different Tools and
Applications

Although existing symbolic verification tools [127, 128, 131, 222]
were extended to support Java, C/C++, and some variants, new appli-
cation interfaces and programming languages are often developed,
which require suitable software verification tools for specific frame-
works and embedded platforms, in order to build ECPS. Indeed, it
would be interesting if a new programming language model could
be loaded, which, along with symbolic verification core algorithms,
were able to check different programs and frameworks.

Some work towards that goal was already presented by Mon-
teiro et al. [197], which employed operational models for checking
Qt-based programs from consumer electronics. In summary, the
symbolic verification core (in that case, ESBMC) is not changed
(it is still C/C++ code), but instead an operational model, which
implements the behavior and features of Qt libraries, is used to pro-
vide the new code structure to be checked. This approach could
also adopt the Clang compiler [223], which is already widely
used in industry [224], in order to produce an Abstract Syntax
Tree (AST) for a wide variety of programming languages (e.g.,
C/C++/ObjectiveC/ObjectiveC++). This AST can then be converted
either into an intermediate representation (IR) of the underlying ver-
ifier or into LLVM bitcode that is already produced by Clang. In this
respect, Clang even provides a static analyzer (called CSA) [225],
which is an open-source project built on top of Clang that can
perform context-sensitive inter-procedural analysis for programs
written in languages supported by Clang. It is designed to be fast,
so that it can provide results for common mistakes (e.g., division by
zero or null pointer dereferencing), even in complex programs.

Obviously, a completely new language may present new struc-
tures and resources; however, if different inputs are parsed and
converted into a form that preserves every aspect of their structure, it
can then be analyzed and verified in an unified way. Such a research
problem is closely related to the first one (RP1) and has the potential
to devise a new paradigm in ECPS verification.

7.6 Research Problem 6: Formal Synthesis

State-of-the-art synthesis approaches for embedded (control) sys-
tems typically disregard the platform in which the embedded system
software operates and restrict themselves to generate code that do
not take into account FWL effects [226]. Synthesized systems, how-
ever, must include physical plants, in order to avoid malfunctioning
(or even a catastrophe), due to embedded (control) software, e.g.,
the Mars Polar Lander did not account for leg compression, prior to
landing [227].

Research in this direction has made some progress to design,
implement, and evaluate an automated approach for generating
correct-by-construction digital controllers, which is based on state-
of-the-art inductive synthesis techniques [9, 166]. Nonetheless, there
is still little evidence whether that approach can scale on larger

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 17

systems modeled through other representation types (e.g., Multiple-
Input Multiple-Output).

In addition to that, another research direction for synthesizers
is to generate code for UAV trajectory and mission planning, by
taking into account system’s dynamics and nonholonomic con-
straints [114]. As a consequence, verifiers and synthesizers need
to handle a wide range of functions, including non-linear and non-
convex optimization problems based on both fixed- and floating-
point arithmetic.

Lastly, the provision of a unified synthesis framework to a very
large class of problems is a challenging task for synthesis-based
tools. The investigation and development of an automated formal
synthesis framework based on machine learning techniques (e.g.,
reinforcement learning and decision tree learning), which is algo-
rithmically and numerically sound, will enable one to synthesize
embedded software for ECPS that is tightly coupled with physical
environments, with the goal of achieving safety and security in real
implementations.

7.7 Research Problem 7: Simultaneous Verification of Low-
and High-Level Properties

Embedded systems are typically implemented in low- and medium-
level programming languages (e.g., ANSI-C/C++, Java, and Python).
Given the availability of different programming languages for writ-
ing code for ECPS, the provision of a unified framework able to
tackle low- and high-level properties, as well as system behavior,
is needed to achieve code coverage in real applications. With that
goal in mind and also considering the widespread use of embedded
software that implements ML algorithms, e.g., deep neural networks
(DNNs), this unified framework should also be able to check for
system’s evolution, given the learning nature of ML-based algo-
rithms used in a range of hard problems in artificial intelligence, e.g.,
games, robotics, natural language processing, and image classifica-
tion. In addition, adequate modeling for formal verification is still
needed and synthesis of ECPS phenomenons and associated risks are
still incipient, i.e., it is necessary the development of simplified mod-
els that are able to represent some particular ECPS problems, such
as communication delays, network availability, faults, and cyber
attacks.

The Clang compiler [223] offers a simple and strong approach to
lead software verification to another degree of completeness, so that
every implementation aspect of ECPS can be addressed and evalu-
ated. In particular, by using the Clang compiler as front-end for a
software verification tool, one can avoid the need for maintaining
a proprietary front-end, which is a real challenge nowadays, given
that the C and C++ standards are rapidly evolving, and then focus
on the main objective: formal program verification and synthesis
for ECPS. In RP5 (cf. Section 7.5), we describe the use of opera-
tion models to tackle low- and high-level system properties, via an
abstract representation of the associated libraries, which conserva-
tively approximates their semantics. Those operational models could
also be developed to check specific properties in ML-based software,
e.g., the NVIDIA CUDA deep neural network library (cuDNN),∗

which is a library for implementing DNNs in graphical process-
ing units (GPUs). Those operational models could then describe
behavior, pre-, and post-conditions of routines, such as forward and
backward convolution, pooling, normalization, and activation layers,
in order to achieve high code coverage and find adversarial examples
in DNNs. The Clang compiler offers an industrial quality analyzer
and an application programming interface to access and traverse its
internal AST, which can then be used by software verifiers to gener-
ate their IR or alternatively analyze the LLVM bitcode produced by
Clang.

Finally, BMC tools like CBMC [127], ESBMC [228],
SMACK [229], and LLBMC [128] represent the most prominent

∗https://developer.nvidia.com/cudnn

approaches for verifying C programs, as observed in the Intl. Com-
petition on Software Verification [206], where verifiable (correct-
ness and violation) witnesses are important for evaluating software
verifiers [230]. The increasing number of verification tasks being
added every year to this competition allows developers to further
improve their verifiers, by implementing new types of abstraction
and simplification techniques. As a consequence, the continuous
development and improvement of verifiers can leverage more effi-
cient synthesizers and further increase the reliability of verified
ECPS.

7.8 Relation among the RPs and Challenges

The presented research problems cover most open challenges regard-
ing ECPS verification and synthesis, while a brief discussion includ-
ing current results and ongoing work is provided. In addition, even
the challenges raised in Section 6 are related to those RPs, as
shown in Table 1, which has the goal of further clarifying what was
previously explained.

Research Problem Challenges
RP1 1, 2, 3, and 4
RP2 2 and 4
RP3 1
RP4 7 and 9
RP5 5 and 6
RP6 10
RP7 5, 6, and 9

Table 1 Relation among RPs and challenges.

7.9 Vision for Future Research

Fig. 13 illustrates our vision for employing symbolic verifiers, as
discussed in Section 4, to synthesize correct-by-construction ECPS
implementations, where we start with a correctness specification σ
of a system, e.g., stability, safety, performance, and behavior. The
basic idea is to automatically construct a program P that satis-
fies σ. In particular, our program synthesizer will automatically use
σ as starting point and then incrementally produce a sequence of
candidate solutions that partially satisfy σ. As a result, a given can-
didate program p is iteratively refined, in order to match σ more
closely. On every refinement iteration to find our candidate solution,
we add the respective counterexample produced by our symbolic
verification engine to a test suite, which can be used later for auto-
mated (regression) testing. This way, the main challenge lies on
exploiting effectively and efficiently counterexamples provided by
symbolic verifiers (including their scalability to handle complex
ECPS models), in order to quickly learn reliable embedded software
implementations.

8 New Applications: Beyond Code Correctness

As already mentioned in section 2, even problems that are not
directly related to code correctness may be tackled with formal meth-
ods, as long as they are conveniently modeled. Araújo et al. [114]
employed SMT for handling non-convex optimization problems,
with the goal of ensuring optimal solutions. Indeed, it is possible
to recursively re-constrains a model checking procedure, by using
the current counterexample as a seed for the next run, until a global
minimum is achieved. Nonetheless, elapsed execution times are still
a bottleneck for some applications, such as changes in UAV trajec-
tories, but that can be improved, through the use of simplification
techniques and problem constraints.

In the same fashion, other problems may benefit from the
recursive-refinement approach provided by SMT-based verification
schemes. For instance, de Jesus et. al [231] developed a simpli-
fied methodology for antenna alignment that makes use of many

IET Research Journals, pp. 1–24
18 c© The Institution of Engineering and Technology 2015

Fig. 13: Automated Verification and Synthesis for ECPS.

modules already available in satellite TV receivers, along with a
suitable structure for performing position correction. In summary,
a reference signal is evaluated, until an (approximately) error-free
reception is acquired, which can be measured through a simple trans-
port stream (TS) error-indication interface and further refined with
other parameters, such as carrier-to-noise ratio and signal level. This
way, by using an SMT-based verification method, one may map TS
error indication and other performance figures as properties and then
recursively perform realignment procedures, until no counterexam-
ple is output. It is worth noticing that associated timing requirements
should be more relaxed, as mentioned in the work developed by
Araújo et al. [114], which can be seen as an advantage for such an
implementation.

Regarding behavior correctness, many other applications can be
tackled, such as the ones related to automatic classification. Amoedo
et al. [232] proposed a modulation classification methodology,
with the goal of spectrum sensing for opportunistic transmissions.
Besides a correct software implementation, i.e., correct source code,
which is already covered by formal methods already available in lit-
erature [127, 131, 219], one may argue if the proposed methodology
is able to recognize modulations under some reception condition,
such as severe analog interference. This way, it would be interest-
ing to develop a verification module for transmission and reception
software, which could be capable of creating inputs related to sam-
pled radio frequency signals, under a variety of conditions, and
then unify source code and behavior verification. In addition, that
kind of implementation usually employs digital filters with specific
parameters, which could also be addressed. Indeed, communica-
tion aspects of ECPS could be tackled, as properties in system
verification procedures.

ML techniques are already being used in the software verifica-
tion area [233–236]. For instance, Hamel [233] proposed to induce
a theory, through ML, that fits a test set for a program, in such a way
that it implements the respective test set. Phuc [234], in turn, applied
decision tree C4.5 and multi-layer perceptron to annotated programs
(metrics related to structure and semantics) and tackled the genera-
tion of test sets satisfying desired constraints. Bridge, Holden, and
Paulson [235] studied the automation of heuristic selection based on
features, regarding first-order logic theorem proving, and Hutter et.
al [236] showed that ML can be used for improving SAT solvers
regarding huge verification tasks, when applied to parameter tun-
ing [236]. Seshia et al. [237], in turn, showed that control synthesis
based on ML is also a trend, since it has been applied to different
applications and model classes [238, 239]. Finally, ML can also be
used for invariant computation and strengthening, which is a major
bottleneck in k-induction verification based on invariant algorithms.
As a consequence of what was presented, it seems worthwhile to pur-
sue integration of ML into BMC-based checkers, given that it has the
potential to tackle many open problems or at least enhance existing
solutions.

In addition, another aspect closely related to ML techniques, as
mentioned in Section 6, is system fragility. Currently, most design

strategies try to produce robust systems, which are able to deal with a
number of errors that happen when they are operating. Nonetheless,
that is effective only if problems foreseen during design phases hap-
pen; otherwise, operation may be severely compromised and even
cause loss of lives.

Indeed, depending on the employed point of view, fragility and
robustness may be regarded as the same property. A system that is
more robust is less fragile, but it is still prone to problems, which
depends on operating scenarios, use cases, and uncertainties. For
instance, Keel and Bhatactacharyya [59] showed that robust and
optimal control system can still be fragile, with respect to imple-
mentation issues. In summary, if the chosen model does not tackle
every possible problem or error that might occur in a given environ-
ment, system-failure events are still possible, which is true even for
the Ariane 5’s failure [201].

As a result, it may be more interesting to develop methodolo-
gies that are not simply robust, regarding predetermined conditions,
but instead thrive on problems and grow stronger (as the human
body, which gets stronger when exposed to germs), which leads
to anti-fragile systems. In engineering, we are only beginning to
develop solutions that can be classified as anti-fragile, which can
be carried out via analytical or physical redundancy to achieve per-
formance enhancement [240]. For instance, multiple-input/multiple-
output (MIMO) systems, which use multiple signal copies together
with multi-path signal copies, would initially result in a destructive
effect; however, with the use of a methodology that takes advantage
on them, the obtained net result is performance improvement.

Systems that could greatly benefit from being anti-fragile are the
cyber-physical ones, which interact with other external elements and
use their internal representations to interpret physical properties. As
faults occur, which may be treated with some sort of system elas-
ticity, and external environments are normally dynamic, given that
they naturally change with time, variations in operating conditions
happen and should be tolerated, in order to keep behavior quality
[201]. Besides, when discussing the fundamentals of anti-fragility, it
is difficult not to tackle machine learning [201], which has the poten-
tial to provide some wisdom regarding correct behavior and internal
representations, in order to keep systems working in volatile envi-
ronments. An interesting scenario regarding that is the Sim3Tanks in
Section 2.3, which could be able to cope with changes in fluid and
reservoir characteristics, in such a way it adapts to different environ-
mental conditions, while still keeping the chosen properties: φ1, φ2,
φ3, and φ4.

For instance, we could think of a system including an anti-
fragility module composed by two elements: a ML engine, capable
of capturing current behaviors and identifying different trends, and
a SMT-based verification method, in charge of recursively perform-
ing re-tuning procedures, which could test new parameters estimated
from data provided by the machine learning module and then test
new behaviors based on them, through counterexamples. In addition,
there could also be a measurement module, which would judge some
metrics regarding the new behavior (e.g., signal-to-noise-error). As
a consequence, we would be able to design systems with potential of
being anti-fragile, given that they would learn from new challenges
and then modify its behavior model, in order to account for new
errors and threats and even benefit from them.

9 Limitations of this Survey

We have systematically carried out a literature review about sym-
bolic verification and synthesis techniques for ECPS and also out-
lined our vision for future research. One of the major problems with
systematic literature reviews is to find all relevant studies in the field;
this process typically includes three stages: searching, screening,
and synthesis [241]. All those three stages present limitations and
bias, which we have tried to alleviate during our systematic review
process. In particular, in order to minimize limitations regarding
our searching stage, we have adopted an automated search mech-
anism via the main academic digital libraries, in order to find the
most relevant studies regarding ECPS, namely, Google Scholar, Web
of Science, and Scopus. In order to reduce any bias introduced by

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 19

us, when using those digital libraries, we first performed a manual
search of relevant papers addressed by peer-reviewed conferences
and journals, in order to determine whether they had published any
relevant (research) paper, related to symbolic verification and syn-
thesis techniques for ECPS, in the last ten years, which we denoted
as “control list”. We have used the latter to validate publications
returned by our search engines, in order to help us double-check exe-
cution of string searching in Google Scholar, Web of Science, and
Scopus; however, these digital libraries might not cover the entire
spectrum of papers published in the ECPS field. For future work, we
will extend this survey, by including other digital libraries, with the
goal of gathering new publications not yet indexed by them.

Additionally, we have carefully included criteria to screen
potentially-relevant studies. In particular, our criteria include strings
that encompass the main focus of our survey, i.e., symbolic schemes
to automatically verify and synthesize software for ECPS. Since the
latter is a very broad research topic, we have restricted our search
strings to keywords typically used in that field, e.g., “Internet-of-
Things”, “Concurrent Systems”, “Hybrid Systems”, “Control Sys-
tems”, and so on. Additionally, we have carefully discussed the
screening process with each author of this survey, by commonly
including studies based on our main goal, which is “automated sym-
bolic verification and synthesis for ECPS”. Nonetheless, we do agree
that this screening process might still have some degree of subjec-
tivity and we also identify it as a limitation of our survey. Lastly, the
synthesis stage requires extraction of relevant studies to be described
and evaluated in a survey, with the goal of explaining the state-of-
the-art and identifying bottlenecks for future research. In our study,
we have informally defined a protocol to describe definitions, search
strings, search strategy, inclusion, and exclusion criteria, in order to
make the synthesis stage feasible, regarding our main goal; however,
this informal protocol represents a limitation of our survey, since
they rely on searching and screening phases in which they are, by
themselves, limited as described above.

10 Conclusions

This paper presented the main challenges related to verification of
design correctness, in ECPS, and also raised some important side
considerations about synthesis. In particular, we have covered six
symbolic verification methods: BMC, k-induction, IC3, Craig inter-
polation, abstraction (including predicate abstraction and abstract
interpretation), and path-based symbolic execution; we have also
described various state-of-the-art verifiers that successfully imple-
ment these symbolic verification techniques. Additionally, we have
emphasized one particular application of such symbolic verifica-
tion methods that represents an approach beyond code and behavior
verification, i.e., formal ECPS synthesis.

In this respect, we pointed out that stringent constraints imposed
by underlying hardware (e.g., real-time, word length, memory allo-
cation, interrupts, and concurrency), along with system behavior
models, must be considered during verification and synthesis. Addi-
tionally, there is little evidence that model checking ECPS using
k-induction, IC3, invariants, and learning, which extends promising
symbolic-based approaches from falsification to verification, can be
applied to formally verify correctness and timeliness of ECPS.

In addition, it is worth noticing that formal synthesis consists
in designing systems that are correct, according to evaluation pro-
cedures performed by formal verification algorithms. Therefore,
formal synthesis is dependent on formal verification and both are
based on sound models of systems and properties.

Given that software complexity has significantly increased in
ECPS, there are still some (recent) advances to stress and exhaus-
tively cover system state space, in order to verify low-level properties
that have to meet an application’s deadline, access memory regions,
handle concurrency, and control hardware registers. There is a trend
towards incorporating knowledge about a system to be verified,
which may take software verification and synthesis one step further,
where not only code correctness will be addressed, but also full sys-
tem reliability. In addition, it seems interesting to provide behavioral
models, when new application interfaces or programming language

features are used, in order to extend capabilities of current verifica-
tion tools, without changing the core symbolic verification module.
Finally, there are some bottlenecks in software verification that are
possible to be handled with machine learning, given some initial
studies carried out in the current literature, which may represent
another step towards a unified and complete approach that combines
code verification, behavior correctness, environment adaptation, and
system evolution.

As future work, the main goal of this research is to extend
symbolic verification as a design and synthesis tool for achiev-
ing correct-by-construction ECPS implementations. In particular, we
noticed that the current literature lacks further studies that exploit the
use of different symbolic verification methods beyond system code
and behavior verification. Special attention will be given to mod-
ern micro-grids, considering small-scale versions of a distributed
system, so that reliability and other system-level properties (e.g., car-
bon emission reduction in smart cities) are amenable to automated
verification and synthesis, probably through behavior models. Addi-
tionally, ML techniques will be incorporated to symbolic verification
frameworks, in order to provide flexibility and specific-problem
tuning, or even allow system adaptation and behavior tuning.

11 Acknowledgments

We thank the anonymous reviewers for their comments, which
helped us substantially improve the draft version of this paper.
This research was supported in part by FAPEAM (Grant
062.00719/2016), in part by CNPq (Grant 432341/2018-8), and
in part by the PROPG-CAPES/FAPEAM Scholarship Program
(Grant/Award Number: 88887.217045/2018-00).

12 References
1 Kopetz, H.: ‘Real-Time Systems: Design Principles for Distributed Embedded

Applications’. Real-Time Systems Series. (Springer US, 2011)
2 Xu, X., Jia, H., Wang, D., Yu, D.C., Chiang, H.D.: ‘Hierarchical energy man-

agement system for multi-source multi-product microgrids’, Renewable Energy,
2015, 78, pp. 621 – 630

3 Lee, E.A. ‘Cyber physical systems: Design challenges’. In: 11th Interna-
tional Symposium on Object and Component-Oriented Real-Time Distributed
Computing, 2008. pp. 363–369

4 Lee, E.A.: ‘Computing Foundations and Practice for Cyber-Physical Systems:
A Preliminary Report’. (EECS Department, University of California, Berkeley,
2007)

5 Lee, E.A.: ‘The past, present and future of cyber-physical systems: A focus on
models’, Sensors, 2015, 3, (15), pp. 4837–4869

6 Groza, A., Letia, I.A., Goron, A., Zaporojan, S. ‘A formal approach for iden-
tifying assurance deficits in unmanned aerial vehicle software’. In: Progress in
Systems Engineering, 2015. pp. 233–239

7 Cordeiro, L., Fischer, B., Chen, H., Marques.Silva, J. ‘Semiformal verification
of embedded software in medical devices considering stringent hardware con-
straints’. In: International Conference on Embedded Software and Systems, 2009.
pp. 396–403

8 Munir, S., Stankovic, J.A., Liang, C.J.M., Lin, S. ‘Cyber physical system
challenges for human-in-the-loop control’. In: 8th International Workshop on
Feedback Computing, 2013. p. 1

9 Abate, A., Bessa, I., Cattaruzza, D., Lucas, C., David, C., Kesseli, P., et al. ‘Sound
and automated synthesis of digital stabilizing controllers for continuous plants’.
In: 20th International Conference on Hybrid Systems: Computation and Control,
2017. pp. 197–206

10 Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G. ‘Model checking
concurrent linux device drivers’. In: 22nd International Conference on Automated
Software Engineering, 2007. pp. 501–504

11 Virtanen, S., Virtanen, S.: ‘Advancing Embedded Systems and Real-Time Com-
munications with Emerging Technologies’. 1st ed. (Hershey, PA, USA: IGI
Global, 2014)

12 Huang, X., Kwiatkowska, M., Wang, S., Wu, M. ‘Safety verification of deep
neural networks’. In: Computer Aided Verification. vol. 10426 of LNCS, 2017.
pp. 3–29

13 Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J. ‘Reluplex: An
efficient SMT solver for verifying deep neural networks’. In: Computer Aided
Verification. vol. 10426 of LNCS, 2017. pp. 97–117

14 Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: ‘Enhancing model checking in
verification by AI techniques’, Artif Intell, 1999, 112, (1), pp. 57 – 104

15 Bortolussi, L., Milios, D., Sanguinetti, G. ‘Machine learning methods in statisti-
cal model checking and system design – tutorial’. In: Bartocci, E., Majumdar, R.,
editors. Runtime Verification, 2015. pp. 323–341

16 Brázdil, T., Chatterjee, K., Chmelík, M., Forejt, V., Křetínský, J., Kwiatkowska,
M., et al. ‘Verification of markov decision processes using learning algorithms’.
In: Automated Technology for Verification and Analysis, 2014. pp. 98–114

IET Research Journals, pp. 1–24
20 c© The Institution of Engineering and Technology 2015

17 Jha, S., Seshia, S.A.: ‘A theory of formal synthesis via inductive learning’, Acta
Informatica, 2017, 54, (7), pp. 693–726

18 Kroening, D., Liang, L., Melham, T., Schrammel, P., Tautschnig, M. ‘Effective
verification of low-level software with nested interrupts’. In: Design, Automation
& Test in Europe Conference & Exhibition, 2015. pp. 229–234

19 Pereira, P., Albuquerque, H., da Silva, I., Marques, H., Monteiro, F., Ferreira,
R., et al.: ‘SMT-based context-bounded model checking for CUDA programs’,
Concurrency and Computation: Practice and Experience, 2016,

20 Zheng, X., Julien, C. ‘Verification and validation in cyber physical systems:
Research challenges and a way forward’. In: 1st International Workshop on
Software Engineering for Smart Cyber-Physical Systems, 2015. pp. 1–4

21 Clarke, E.M., Zuliani, P. ‘Statistical model checking for cyber-physical systems’.
In: 9th International Conference on Automated Technology for Verification and
Analysis, 2011. pp. 1–12

22 Bradley, A.R., Manna, Z.: ‘The Calculus of Computation: Decision Procedures
with Applications to Verification’. (Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2007)

23 Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A.D., Grizzle, J.W.,
et al.: ‘Correct-by-construction adaptive cruise control: Two approaches’, IEEE
Transactions on Control Systems Technology, 2016, 24, (4), pp. 1294–1307

24 Prabhakar, P., García.Soto, M. ‘Formal synthesis of stabilizing controllers
for switched systems’. In: 20th International Conference on Hybrid Systems:
Computation and Control, 2017. pp. 111–120

25 Esmaeil.Zadeh.Soudjani, S., Majumdar, R. ‘Controller synthesis for reward col-
lecting markov processes in continuous space’. In: 20th International Conference
on Hybrid Systems: Computation and Control, 2017. pp. 45–54

26 Ames, A.D., Tabuada, P., Jones, A., Ma, W.L., Rungger, M., Schürmann, B., et al.:
‘First steps toward formal controller synthesis for bipedal robots with experimen-
tal implementation’, Nonlinear Analysis: Hybrid Systems, 2017, 25, pp. 155 –
173

27 Tabuada, P.: ‘Verification and Control of Hybrid Systems: A Symbolic
Approach’. (Springer US, 2009)

28 Hasuo, I.: ‘Metamathematics for systems design’, New Generation Computing,
2017, 35, (3), pp. 271–305

29 Zamani, M., Abate, A., Girard, A.: ‘Symbolic models for stochastic switched
systems: A discretization and a discretization-free approach’, Automatica, 2015,
55, pp. 183 – 196

30 Khoo, T.P. ‘Model-based testing of cyber-physical systems’. In: International
Conference on Formal Engineering Methods, 2018. pp. 423–426

31 Zhang, Y., Dong, Y., Xie, F. ‘Bounded model checking of hybrid automata push-
down system’. In: 14th International Conference on Quality Software, 2014.
pp. 190–195

32 Simko, G., Jackson, E.K. ‘A bounded model checking tool for periodic
sample-hold systems’. In: 17th International Conference on Hybrid Systems:
Computation and Control, 2014. pp. 157–162

33 Sanwal, M.U., Hasan, O. ‘Formal verification of cyber-physical systems: Coping
with continuous elements’. In: 13th International Conference on Computational
Science and Its Applications. vol. 7971 of LNCS, 2013. pp. 358–371

34 Lee, H.Y. ‘Towards model checking of simulation models for embedded system
development’. In: International Conference on Parallel and Distributed Systems,
2013. pp. 452–453

35 Li, T., Tan, F., Wang, Q., Bu, L., Cao, J.N., Liu, X.: ‘From offline toward real
time: A hybrid systems model checking and CPS codesign approach for med-
ical device plug-and-play collaborations’, IEEE Transactions on Parallel and
Distributed Systems, 2014, 25, (3), pp. 642–652

36 Jhala, R., Majumdar, R.: ‘Software model checking’, ACM Computing Surveys,
2009, 41, (4), pp. 21:1–21:54

37 Baier, C., Katoen, J.: ‘Principles of model checking’. (MIT Press, 2008)
38 Kroening, D., Strichman, O.: ‘Decision Procedures - An Algorithmic Point of

View, Second Edition’. Texts in Theoretical Computer Science. An EATCS
Series. (Springer, 2016)

39 Rungger, M., Tabuada, P.: ‘A notion of robustness for cyber-physical systems’,
IEEE Transactions on Automatic Control, 2016, 61, (8), pp. 2108–2123

40 Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: ‘Discrete abstractions of
hybrid systems’, Proceedings of the IEEE, 2000, 88, (7), pp. 971–984

41 Girard, A., Pappas, G.J.: ‘Approximate bisimulation: A bridge between computer
science and control theory’, European Journal of Control, 2011, 17, (5), pp. 568
– 578

42 Lunze, J., Lamnabhi.Lagarrigue, F.: ‘Handbook of Hybrid Systems Control:
Theory, Tools, Applications’. (Cambridge University Press, 2009)

43 Bargmann, H.: ‘The role of stochastic modelling in engineering science’, Acta
Mechanica, 1997, 125, (1), pp. 63–71

44 Alur, R., Dill, D.L.: ‘A theory of timed automata’, Theoretical Computer Science,
1994, 126, (2), pp. 183–235

45 Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H. ‘Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems’. In:
Hybrid Systems, 1993. pp. 209–229

46 Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P. ‘What’s decidable about
hybrid automata?’. In: 27th Annual Symposium on Theory of Computing, 1995.
pp. 373–382

47 Julius, A.A., Pappas, G.J.: ‘Approximations of stochastic hybrid systems’, IEEE
Transactions on Automatic Control, 2009, 54, (6), pp. 1193–1203

48 Pola, G., Bujorianu, M.L., Lygeros, J., Benedetto, M.D.D.: ‘Stochastic hybrid
models: An overview’, IFAC Proceedings Volumes, 2003, 36, (6), pp. 45 – 50

49 Lafferriere, G., Pappas, G.J., Yovine, S. ‘A new class of decidable hybrid sys-
tems’. In: 2nd International Conference on Hybrid Systems: Computation and
Control, 1999. pp. 137–151

50 Puri, A., Varaiya, P. ‘Decidability of hybrid systems with rectangular differential
inclusion’. In: Computer Aided Verification, 1994. pp. 95–104

51 Henzinger, T.A., Ho, P.H. ‘Algorithmic analysis of nonlinear hybrid systems’. In:
Computer Aided Verification, 1995. pp. 225–238

52 Broucke, M.E., Varaiya, P. ‘Decidability of hybrid systems with linear and non-
linear differential inclusions’. In: 4th International Workshop on Hybrid Systems.
vol. 1273 of LNCS, 1996. pp. 77–92

53 Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S. ‘Integration graphs: A class
of decidable hybrid systems’. In: Hybrid Systems. vol. 736 of LNCS, 1992.
pp. 179–208

54 Tabuada, P., Caliskan, S.Y., Rungger, M., Majumdar, R.: ‘Towards robustness
for cyber-physical systems’, IEEE Transactions on Automatic Control, 2014, 59,
(12), pp. 3151–3163

55 Rungger, M., Mazo, M. Jr., Tabuada, P. ‘Specification-guided controller synthesis
for linear systems and safe linear-time temporal logic’. In: 16th International
Conference on Hybrid Systems: Computation and Control, 2013. pp. 333–342

56 Li, Y., Liu, J. ‘An interval analysis approach to invariance control synthesis for
discrete-time switched systems’. In: 55th Conference on Decision and Control,
2016. pp. 6388–6394

57 Tabuada, P.: ‘Symbolic models for control systems’, Acta Informatica, 2007, 43,
(7), pp. 477–500

58 Istepanian, R.S.H., Whidborne, J.F., editors. ‘Digital Controller Implementation
and Fragility: A Modern Perspective’. (London: Springer, 2001)

59 Keel, L.H., Bhattacharyya, S.P.: ‘Robust, fragile, or optimal?’, IEEE Transactions
on Automatic Control, 1997, 42, (8), pp. 1098–1105

60 Bicchi, A., Marigo, A., Piccoli, B.: ‘On the reachability of quantized control
systems’, IEEE Transactions on Automatic Control, 2002, 47, (4), pp. 546–563

61 Petreczky, M., van Schuppen, J.H.: ‘Realization theory for linear hybrid systems’,
IEEE Transactions on Automatic Control, 2010, 55, (10), pp. 2282–2297

62 Petreczky, M.: ‘Realization theory for linear switched systems: Formal power
series approach’, Systems & Control Letters, 2007, 56, (9), pp. 588 – 595

63 Ye, H., Michel, A.N., Hou, L.: ‘Stability theory for hybrid dynamical systems’,
IEEE Transactions on Automatic Control, 1998, 43, (4), pp. 461–474

64 Ben.Sassi, M.A., Girard, A.: ‘Computation of polytopic invariants for polyno-
mial dynamical systems using linear programming’, Automatica, 2012, 48, (12),
pp. 3114–3121

65 Paul, T., Kimball, J.W., Zawodniok, M., Roth, T.P., McMillin, B., Chellap-
pan, S.: ‘Unified invariants for cyber-physical switched system stability’, IEEE
Transactions on Smart Grid, 2014, 5, (1), pp. 112–120

66 Li, Y., Liu, J. ‘Computing maximal invariant sets for switched nonlinear systems’.
In: Conference on Computer Aided Control System Design, 2016. pp. 862–867

67 Fisher, A., Jacobson, C.A., Lee, E.A., Murray, R.M., Sangiovanni.Vincentelli, A.,
Scholte, E. ‘Industrial cyber-physical systems – iCyPhy’. In: Complex Systems
Design & Management, 2014. pp. 21–37

68 Farias, A.O., Queiroz, G.A.C., Bessa, I.V., Medeiros, R.L.P., Cordeiro, L.C., Pal-
hares, R.M.: ‘Sim3tanks: A benchmark model simulator for process control and
monitoring’, IEEE Access, 2018, 6, pp. 62234–62254

69 Song, H., Rawat, D.B., Jeschke, S., Brecher, C.: ‘Cyber-Physical Systems: Foun-
dations, Principles and Applications’. (Hershey, PA, USA: Academic Press,
2017)

70 Chaves, L., Bessa, I., Ismail, H., dos Santos.Frutuoso, A.B., Cordeiro, L.C.,
de Lima.Filho, E.B.: ‘DSVerifier-Aided verification applied to attitude control
software in unmanned aerial vehicles’, IEEE Transactions on Reliability, 2018,
67, (4), pp. 1420–1441

71 McMillan, K.L.: ‘Symbolic Model Checking’. (Norwell, MA, USA: Kluwer
Academic Publishers, 1993)

72 Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: ‘NUSMV: a new symbolic
model checker’, International Journal on Software Tools for Technology Transfer,
2000, 2, (4), pp. 410–425

73 Cimatti, A., Mover, S., Tonetta, S. ‘A quantifier-free SMT encoding of non-
linear hybrid automata’. In: Formal Methods in Computer-Aided Design, 2012.
pp. 187–195

74 Platzer, A. ‘Differential dynamic logic for verifying parametric hybrid sys-
tems’. In: 16th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, 2007. pp. 216–232

75 Pkatzer, A. ‘Logic & proofs for cyber-physical systems’. In: 8th International
Joint Conference on Automated Reasoning, 2016. pp. 15–21

76 Platzer, A., Quesel, J.D. ‘KeYmaera: a hybrid theorem prover for hybrid
systems’. In: International Joint Conference on Automated Reasoning, 2008.
pp. 171–178

77 Sanwal, M.U., Hasan, O. ‘Formal verification of cyber-physical systems: Cop-
ing with continuous elements’. In: International Conference on Computational
Science and Its Applications. vol. 1, 2013. pp. 358–371

78 Li, B.: ‘Wireless Cyber-Physical Simulator and Case Studies on Structural
Control’. Master of Science Thesis. (Washington University in St. Louis, 2013)

79 Canadasa, N., Machado, J., Soares, F., Barros, C., Varela, L.: ‘Simulation of cyber
physical systems behaviour using timed plant models’, Mechatronics, 2018, 54,
pp. 175–185

80 Gerdsmeier, T., Cardell.Oliver, R.: ‘Analysis of scheduling behaviour using
generic timed automata’, Electronic Notes in Theoretical Computer Science,
2001, 42, pp. 143–157

81 Junjie, T., Jianjun, Z., Jianwan, D., Liping, C., Gang, X., Bin, G., et al. ‘Cyber-
physical systems modeling method based on Modelica’. In: 6th International
Conference on Software Security and Reliability Companion, 2012. pp. 188–191

82 Thacker, R.A., Jones, K.R., Myers, C.J., Zheng, H. ‘Automatic abstraction for
verification of cyber-physical systems’. In: 1st International Conference on
Cyber-Physical Systems, 2010. pp. 12–21

83 Ishigooka, T., Saissi, H., Piper, T., Winter, S., Suri, N. ‘Practical formal verifica-
tion for model based development of cyber-physical systems’. In: International
Conference on Computational Science and Engineering, 2016. pp. 1–6

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 21

84 Radojicic, C., Grimm, C., Jantsch, A., Rathmair, M. ‘Towards verification of
uncertain cyber-physical systems’. In: 3nd International Workshop on Symbolic
and Numerical Methods for Reachability Analysis, 2017. pp. 1–17

85 Majumdar, R., Saha, I., Shashidhar, K.C., Wang, Z. ‘CLSE: closed-loop symbolic
execution’. In: NASA Formal Methods Symposium. vol. 7226 of LNCS, 2012.
pp. 356–370

86 Borda, A., Pasquale, L., Koutavas, V., Nuseibeh, B. ‘Compositional verification
of self-adaptive cyber-physical systems’. In: 13th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, 2018. pp. 1–11

87 Brings, J. ‘Verifying cyber-physical system behavior in the context of cyber-
physical system-networks’. In: 25th International Requirements Engineering
Conference, 2017. pp. 556–561

88 Kang, E.Y., Mu, D., Huang, L., Lan, Q. ‘Verification and validation of a cyber-
physical system in the automotive domain’. In: International Conference on
Software Quality, Reliability and Security, 2017. pp. 326–333

89 David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: ‘Uppaal smc
tutorial’, International Journal on Software Tools for Technology Transfer, 2015,
17, (4), pp. 397–415

90 Silva, L.C., Almeida, H.O., Perkusich, A., Perkusich, M.: ‘A model-based
approach to support validation of medical cyber-physical systems’, Sensors,
2015, 15, (11), pp. 27625–27670

91 Nelson, A., Chakraborty, S., Wang, D., Singh, P., Cui, Q., Yang, L., et al.
‘Cyber-physical test platform for microgrids: Combining hardware, hardware-
in-the-loop, and network-simulator-in-the-loop’. In: IEEE Power and Energy
Society General Meeting, 2016. pp. 1–5

92 Klein, G., Andronick, J., Fernandez, M., Kuz, I., Murray, T.C., Heiser, G.: ‘For-
mally verified software in the real world’, Communications of the ACM, 2018, 61,
(10), pp. 68–77

93 Alur, R. ‘Formal verification of hybrid systems’. In: 9th International Conference
on Embedded Software, 2011. pp. 273–278

94 Prajna, S., Jadbabaie, A., Pappas, G.J.: ‘A framework for worst-case and stochas-
tic safety verification using barrier certificates’, IEEE Transactions on Automatic
Control, 2007, 52, (8), pp. 1415–1428

95 Prajna, S., Jadbabaie, A. ‘Safety verification of hybrid systems using barrier
certificates’. In: 7th International Conference on Hybrid Systems: Computation
and Control. vol. 2993 of LNCS, 2004. pp. 477–492

96 Bessa, I., Ismail, H., Palhares, R., Cordeiro, L., Filho, J.E.C.: ‘Formal non-
fragile stability verification of digital control systems with uncertainty’, IEEE
Transactions on Computers, 2017, 66, (3)

97 Maler, O., Nickovic, D. ‘Monitoring temporal properties of continuous sig-
nals’. In: International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems. LNCS, 2004. pp. 152–166

98 Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S. ‘On
temporal logic and signal processing’. In: 10th International Conference on
Automated Technology for Verification and Analysis, 2012. pp. 92–106

99 Veanes, M., Bjorner, N., Gurevich, Y., Schulte, W.: ‘Symbolic bounded model
checking of abstract state machines’, International Journal of Software and
Informatics, 2009, 3/2-3, pp. 149–170

100 Phan, A.D.: ‘Modelling and Analysis for Cyber-Physical Systems: An SMT-
based approach’. (Technical University of Denmark (DTU, 2015)

101 Nipkow, T., Wenzel, M., Paulson, L.C.: ‘Isabelle/HOL: A Proof Assistant for
Higher-order Logic’. (Berlin, Heidelberg: Springer-Verlag, 2002)

102 Biere, A. ‘Bounded model checking’. In: Handbook of Satisfiability, 2009.
pp. 457–481

103 Duggirala, P.S., Viswanathan, M. ‘Analyzing real time linear control systems
using software verification’. In: IEEE Real-Time Systems Symposium, 2015.
pp. 216–226

104 Anta, A., Majumdar, R., Saha, I., Tabuada, P. ‘Automatic verification of con-
trol system implementations’. In: 10th International Conference on Embedded
Software, 2010. pp. 9–18

105 Ismail, H., Cordeiro, I.B.L., Filho, E.B.L., ao Edgar.Chaves.Filho, J. ‘DSVerifier:
A bounded model checking tool for digital systems’. In: 22nd International SPIN
Workshop on Model Checking of Software. vol. 9232 of LNCS, 2015. pp. 126–
131

106 Bessa, I.V., Ismail, H.I., Cordeiro, L.C., Filho, J.E.C.: ‘Verification of fixed-point
digital controllers using direct and delta forms realizations’, Design Autom for
Emb Sys, 2016, 20, (2), pp. 95–126

107 Phan, A., Hansen, M.R., Madsen, J. ‘EHRA: specification and analysis of energy-
harvesting wireless sensor networks’. In: Specification, Algebra, and Software.
vol. 8373 of LNCS, 2014. pp. 520–540

108 Nakajima, S., Furukawa, S., Ueda, Y. ‘Co-analysis of sysml and simulink models
for cyber-physical systems design’. In: International Conference on Embedded
and Real-Time Computing Systems and Applications, 2012. pp. 473–478

109 Shoukry, Y., Nuzzo, P., Puggelli, A., Sangiovanni.Vincentelli, A.L., Seshia, S.A.,
Tabuada, P.: ‘Secure state estimation for cyber physical systems under sen-
sor attacks: A satisfiability modulo theory approach’, IEEE Transactions on
Automatic Control, 2017, PP, (99), pp. 1–1

110 Liu, Y., Ning, P., Reiter, M.K. ‘False data injection attacks against state estimation
in electric power grids’. In: 16th Conference on Computer and Communications
Security, 2009. pp. 21–32

111 Choo, K.K.R., Kermani, M.M., Azarderakhsh, R., Govindarasu, M.: ‘Emerging
embedded and cyber physical system security challenges and innovations’, IEEE
Transactions on Dependable and Secure Computing, 2017, 14, (3), pp. 235

112 Choo, V.P.I., noz González, L.M., Lupu, E.C.: ‘Don’t fool me!: Detection, char-
acterisation and diagnosis of spoofed and masked events in wireless sensor
networks’, IEEE Transactions on Dependable and Secure Computing, 2017, 14,
(3), pp. 279–293

113 Fiore, G., Chang, Y.H., Hu, Q., Benedetto, M.D.D., Tomlin, C.J. ‘Secure state
estimation for cyber physical systems with sparse malicious packet drops’. In:

American Control Conference, 2017. pp. 1898–1903
114 Araújo, R.F., Albuquerque, H.F., de Bessa, I.V., Cordeiro, L.C.,

ao E..Chaves.Filho, J.: ‘Counterexample guided inductive optimization based on
satisfiability modulo theories’, Science of Computer Programming, 2017,

115 Trindade, A.B., Cordeiro, L.C.: ‘Applying SMT-based verification to hardware/-
software partitioning in embedded systems’, Design Automation for Embedded
Systems, 2016, 20, (1), pp. 1–19

116 Rahman, M.A., Duan, Q., Al.Shaer, E. ‘Energy efficient navigation management
for hybrid electric vehicles on highways’. In: International Conference on Cyber-
Physical Systems, 2013. pp. 21–30

117 Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y. ‘Symbolic model checking without
bdds’. In: 5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems, 1999. pp. 193–207

118 Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C. ‘Satisfiability modulo
theories’. In: Handbook of Satisfiability, 2009. pp. 825–885

119 Armando, A., Mantovani, J., Platania, L.: ‘Bounded model checking of software
using SMT solvers instead of SAT solvers’, International Journal on Software
Tools for Technology Transfer, 2009, 11, (1), pp. 69–83

120 Prasad, M.R., Biere, A., Gupta, A.: ‘A survey of recent advances in SAT-based
formal verification’, International Journal on Software Tools for Technology
Transfer, 2005, 7, (2), pp. 156–173

121 Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: ‘Model Checking LTL Properties
over ANSI-C Programs with Bounded Traces’, Software & Systems Modeling,
2015, 14, (1), pp. 65–81

122 Ball, T., Rajamani, S.: ‘SLIC: A Specification Language for Inter-
face Checking (of C)’. (Microsoft Research, 2002). available at:
https://www.microsoft.com/en-us/research/publication/slic-a-specification-
language-for-interface-checking-of-c/

123 Kroening, D., Strichman, O.: ‘Decision Procedures: An Algorithmic Point of
View’. 1st ed. (Springer Publishing Company, Incorporated, 2008)

124 Appel, A.W.: ‘Modern Compiler Implementation in C: Basic Techniques’. (New
York, NY, USA: Cambridge University Press, 1997)

125 Siekmann, J.H., Wrightson, G., editors. ‘Automation of Reasoning: 2: Classical
Papers on Computational Logic 1967–1970’. (Berlin, Heidelberg: Springer Berlin
Heidelberg, 1983)

126 Patarin, J., Goubin, L. ‘Trapdoor one-way permutations and multivariate poly-
nominals’. In: First International Conference on Information and Communication
Security. vol. 1334 of LNCS, 1997. pp. 356–368

127 Clarke, E.M., Kroening, D., Lerda, F. ‘A tool for checking ANSI-C programs’.
In: 10th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. vol. 2988 of LNCS, 2004. pp. 168–176

128 Merz, F., Falke, S., Sinz, C. ‘LLBMC: bounded model checking of C and
C++ programs using a compiler IR’. In: International Conference on Verified
Software: Theories, Tools, Experiments. vol. 7152 of LNCS, 2012. pp. 146–161

129 Cordeiro, L., Fischer, B. ‘Verifying multi-threaded software using SMT-based
context-bounded model checking’. In: 33rd International Conference on Software
Engineering, 2011. pp. 331–340

130 Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K. ‘Model checking c pro-
grams using F-SOFT’. In: International Conference on Computer Design, 2005.
pp. 297–308

131 Cordeiro, L., Fischer, B., Marques.Silva, J.: ‘SMT-based bounded model check-
ing for embedded ANSI-C software’, IEEE Transactions on Software Engineer-
ing, 2012, 38, (4), pp. 957–974

132 Clarke, E., Kroening, D., Strichman, O., Ouaknine, J. ‘Completeness and
complexity of bounded model checking’. In: International Workshop on Veri-
fication, Model Checking, and Abstract Interpretation. vol. 2937 of LNCS, 2004.
pp. 85–96

133 Ganai, M.K., Gupta, A. ‘Completeness in SMT-based BMC for software
programs’. In: Design, Automation and Test in Europe, 2008. pp. 831–836

134 Eén, N., Sörensson, N. ‘An extensible sat-solver’. In: 6th International Confer-
ence on Theory and Applications of Satisfiability Testing. vol. 2919 of LNCS,
2003. pp. 502–518

135 Sheeran, M., Singh, S., Stålmarck, G. ‘Checking safety properties using induction
and a sat-solver’. In: Formal Methods in Computer-Aided Design, 2000. pp. 108–
125

136 IEEE: ‘IEEE standard for floating-point arithmetic’, Std 754-2008, 2008, pp. 1–
70

137 Goldberg, D.: ‘What every computer scientist should know about floating-point
arithmetic’, ACM Computing Surveys, 1991, 23, (1), pp. 5–48

138 CRI (MINES ParisTech). ‘PIPS: Automatic Parallelizer and Code Transformation
Framework’. (https://pips4u.org/, 2016). accessed 21st of February
2016

139 Henry, J., Monniaux, D., Moy, M.: ‘PAGAI: A path sensitive static analyser’,
Electronic Notes in Theoretical Computer Science, 2012, 289, pp. 15–25

140 Beyer, D., Dangl, M., Wendler, P. ‘Boosting k-induction with continuously-
refined invariants’. In: Computer Aided Verification. vol. 906 of LNCS, 2015.
pp. 622–640

141 Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: ‘Handling loops in bounded model
checking of c programs via k-induction’, International Journal on Software Tools
for Technology Transfer, 2017, 19, (1), pp. 97–114

142 Brain, M., Joshi, S., Kroening, D., Schrammel, P. ‘Safety verification and
refutation by k-invariants and k-induction’. In: International Static Analysis
Symposium. vol. 9291 of LNCS, 2015. pp. 145–161

143 Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P. ‘Software verification
using k-induction’. In: International Static Analysis Symposium. vol. 6887 of
LNCS, 2011. pp. 351–368

144 Rocha, W., Rocha, H., Ismail, H., Cordeiro, L.C., Fischer, B. ‘Depthk: A k-
induction verifier based on invariant inference for C programs - (competition
contribution)’. In: 23rd International Conference on Tools and Algorithms for the

IET Research Journals, pp. 1–24
22 c© The Institution of Engineering and Technology 2015

https://pips4u.org/

Construction and Analysis of Systems. vol. 10206 of LNCS, 2017. pp. 360–364
145 Donaldson, A.F., Kroening, D., Ruemmer, P. ‘SCRATCH: A tool for automatic

analysis of DMA races’. In: 16th Symposium on Principles and Practice of
Parallel Programming, 2011. pp. 311–312

146 Grosse, D., Le, H.M., Drechsler, R. ‘Induction-based formal verification of Sys-
temC TLM designs’. In: 10th International Workshop on Microprocessor Test
and Verification, 2009. pp. 101–106

147 Bradley, A.R. ‘IC3 and beyond: Incremental, inductive verification’. In:
Computer Aided Verification. vol. 7358 of LNCS, 2012. pp. 4–4

148 Hassan, Z., Bradley, A.R., Somenzi, F. ‘Better generalization in IC3’. In: Formal
Methods in Computer-Aided Design, 2013. pp. 157–164

149 Bradley, A.R.: ‘Understanding IC3’. (Technical Report. Accessed on February
23rd 2018: ECEE Department, University of Colorado at Boulder, 2018)

150 Jovanović, D., Dutertre, B. ‘Property-directed k-induction’. In: Formal Methods
in Computer-Aided Design, 2016. pp. 85–92

151 McMillan, K.L. ‘Interpolation and sat-based model checking’. In: Computer
Aided Verification. vol. 2725 of LNCS, 2003. pp. 1–13

152 McMillan, K.L. ‘Applications of craig interpolants in model checking’. In: 11th
International Conference on Theory and Practice of Software. vol. 3440 of LNCS,
2005. pp. 1–12

153 Clarke, E.M., Grumberg, O., Long, D.E.: ‘Model checking and abstraction’, ACM
Transactions on Programming Languages and Systems, 1994, 16, (5), pp. 1512–
1542

154 Flanagan, C., Qadeer, S. ‘Predicate abstraction for software verification’. In: 29th
Annual Symposium on Principles of Programming Languages, 2002. pp. 191–
202

155 Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K. ‘SATABS: sat-based pred-
icate abstraction for ANSI-C’. In: 11th International Conference on Theory and
Practice of Software. vol. 3440 of LNCS, 2005. pp. 570–574

156 Cousot, P., Cousot, R. ‘Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints’. In: 4th
Symposium on Principles of Programming Languages, 1977. pp. 238–252

157 Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G. ‘Concurrent program veri-
fication with lazy sequentialization and interval analysis’. In: 5th International
Conference on Networked Systems. vol. 10299 of LNCS, 2017. pp. 255–271

158 Monniaux, D. ‘Compositional analysis of floating-point linear numerical filters’.
In: Computer Aided Verification. vol. 3576 of LNCS, 2005. pp. 199–212

159 Munier, P.: ‘Polyspace’. (Wiley-ISTE, 2013)
160 Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: ‘Frama-

C: A software analysis perspective’, Formal Aspects of Computing, 2015, 27, (3),
pp. 573–609

161 King, J.C.: ‘Symbolic Execution And Program Testing’, Communications of the
ACM, 1976, 19, (7), pp. 385–394

162 Cadar, C., Dunbar, D., Engler, D. ‘KLEE: Unassisted And Automatic Generation
Of High-coverage Tests For Complex Systems Programs’. In: Symposium On
Operating Systems Design And Implementation, 2008. pp. 209–224

163 Godefroid, P. ‘Compositional Dynamic Test Generation’. In: Symposium On
Principles Of Programming Languages, 2007. pp. 47–54

164 Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A. ‘Com-
binatorial sketching for finite programs’. In: 12th international conference on
Architectural support for programming languages and operating systems, 2006.
pp. 404–415

165 Riener, H., Könighofer, R., Fey, G., Bloem, R. ‘SMT-based CPS parameter syn-
thesis’. In: 3rd International Workshop on Applied Verification for Continuous
and Hybrid Systems, 2016. pp. 126–133

166 Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P., et al.
‘Automated formal synthesis of digital controllers for state-space physical plants’.
In: Computer Aided Verification. vol. 10426 of LNCS, 2017. pp. 462–482

167 Ravanbakhsh, H., Sankaranarayanan, S. ‘Counterexample-guided stabilization
of switched systems using control Lyapunov functions’. In: 18th International
Conference on Hybrid Systems: Computation and Control, 2015. pp. 297–298

168 Ravanbakhsh, H., Sankaranarayanan, S. ‘Robust controller synthesis of switched
systems using counterexample guided framework’. In: 13th International Confer-
ence on Embedded Software, 2016. pp. 8:1–8:10

169 Gol, E.A., Lazar, M., Belta, C.: ‘Language-guided controller synthesis for linear
systems’, IEEE Transactions on Automatic Control, 2014, 59, (5), pp. 1163–1176

170 Holub, O., Zamani, M., Abate, A. ‘Efficient HVAC controls: A symbolic
approach’. In: European Control Conference, 2016. pp. 1159–1164

171 Tabuada, P.: ‘An approximate simulation approach to symbolic control’, IEEE
Transactions on Automatic Control, 2008, 53, (6), pp. 1406–1418

172 Zamani, M., Arcak, M.: ‘Compositional abstraction for networks of control
systems: A dissipativity approach’, IEEE Transactions on Control of Network
Systems, 2018, 5, (3), pp. 1003–1015

173 Zamani, M., Abate, A.: ‘Approximately bisimilar symbolic models for randomly
switched stochastic systems’, Systems & Control Letters, 2014, 69, pp. 38 – 46

174 Zamani, M., van de Wouw, N., Majumdar, R.: ‘Backstepping controller synthesis
and characterizations of incremental stability’, Systems & Control Letters, 2013,
62, (10), pp. 949 – 962

175 Zamani, M., Pola, G., Mazo, M., Tabuada, P.: ‘Symbolic models for nonlinear
control systems without stability assumptions’, IEEE Transactions on Automatic
Control, 2012, 57, (7), pp. 1804–1809

176 Khatib, M.A., Girard, A., Dang, T.: ‘Stability verification and timing contract
synthesis for linear impulsive systems using reachability analysis’, Nonlinear
Analysis: Hybrid Systems, 2017, 25, pp. 211 – 226

177 Lesser, K., Abate, A.: ‘Controller synthesis for probabilistic safety specifications
using observers’, IFAC-PapersOnLine, 2015, 48, (27), pp. 329 – 334

178 Girard, A.: ‘Low-complexity quantized switching controllers using approximate
bisimulation’, Nonlinear Analysis: Hybrid Systems, 2013, 10, pp. 34 – 44

179 Dallal, E., Colombo, A., Del.Vecchio, D., Lafortune, S.: ‘Supervisory control
for collision avoidance in vehicular networks using discrete event abstractions’,
Discrete Event Dynamic Systems, 2017, 27, (1), pp. 1–44

180 Dallal, E., Colombo, A., Vecchio, D.D., Lafortune, S. ‘Supervisory control for
collision avoidance in vehicular networks with imperfect measurements’. In:
52nd Conference on Decision and Control, 2013. pp. 6298–6303

181 Habets, L.C.G.J.M., Collins, P.J., van Schuppen, J.H.: ‘Reachability and control
synthesis for piecewise-affine hybrid systems on simplices’, IEEE Transactions
on Automatic Control, 2006, 51, (6), pp. 938–948

182 Reissig, G., Weber, A., Rungger, M.: ‘Feedback refinement relations for the syn-
thesis of symbolic controllers’, IEEE Transactions on Automatic Control, 2017,
62, (4), pp. 1781–1796

183 David, C., Kroening, D., Lewis, M. ‘Using program synthesis for program anal-
ysis’. In: 20th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, 2015. pp. 483–498

184 Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
et al. ‘Syntax-guided synthesis’. In: Formal Methods in Computer-Aided Design,
2013. pp. 1–8

185 Solar.Lezama, A.: ‘Program sketching’, International Journal on Software Tools
for Technology Transfer, 2013, 15, (5), pp. 475–495

186 Sharma, R., Aiken, A. ‘From invariant checking to invariant inference using
randomized search’. In: Computer Aided Verification, 2014. pp. 88–105

187 Abate, A., Bessa, I., Cattaruzza, D., Chaves, L., Cordeiro, L.C., David, C., et al.
‘Dssynth: an automated digital controller synthesis tool for physical plants’.
In: 32nd International Conference on Automated Software Engineering, 2017.
pp. 919–924

188 Moore, R.E.: ‘Interval analysis’. vol. 4. (Prentice-Hall, 1966)
189 Fairley, P.: ‘Self-driving cars have a bicycle problem [news]’, IEEE Spectrum,

2017, 54, (3), pp. 12–13
190 Bortolussi, L., Milios, D., Sanguinetti, G.: ‘Smoothed model checking for uncer-

tain continuous-time markov chains’, Information and Computation, 2016, 247,
(C), pp. 235–253

191 Behrend, J., Lettnin, D., Grünhage, A., Ruf, J., Kropf, T., Rosenstiel, W.:
‘Scalable and optimized hybrid verification of embedded software’, Journal of
Electronic Testing, 2015, 31, (2), pp. 151–166

192 Lettnin, D., Nalla, P.K., Behrend, J., Ruf, J., Gerlach, J., Kropf, T., et al. ‘Semi-
formal verification of temporal properties in automotive hardware dependent
software’. In: Design, Automation Test in Europe Conference Exhibition, 2009.
pp. 1214–1217

193 Chaves, L.C., Ismail, H.I., Bessa, I.V., Cordeiro, L.C., de Lima.Filho, E.B.:
‘Verifying fragility in digital systems with uncertainties using DSVerifier v2.0’,
Journal of Systems and Software, 2019, 153, pp. 22–43

194 Beg, O.A., Johnson, T.T., Davoudi, A.: ‘Detection of false-data injection attacks
in cyber-physical dc microgrids’, IEEE Transactions on Industrial Informatics,
2017, 13, (5), pp. 2693–2703

195 Witkowski, T.: ‘Formal Verification of Linux Device Drivers’. Master of Science
Thesis. (Technishe Universiät Dresden, 2007)

196 Beckert, B., Bormer, T., Grahl, D. ‘Deductive verification of legacy code’. In:
International Symposium on Leveraging Applications of Formal Methods, 2016.
pp. 749–765

197 Monteiro, F.R., Garcia, M., Cordeiro, L.C., de Lima.Filho, E.B.: ‘Bounded model
checking of C++ programs based on the qt cross-platform framework’, Software
Testing, Verification and Reliability, 2017, 27, (3)

198 Li, H., Oh, J., Oh, H., Lee, H. ‘Automated source code instrumentation for ver-
ifying potential vulnerabilities’. In: International Conference on ICT Systems
Security and Privacy Protection, 2016. pp. 211–226

199 Vilca, J., Adouane, L., Mezouar, Y.: ‘Optimal multi-criteria waypoint selec-
tion for autonomous vehicle navigation in structured environment’, Journal of
Intelligent & Robotic Systems, 2016, 82, (2), pp. 301–324

200 van Wesel, P., Goodloe, A.E.: ‘Challenges in the Verification of Reinforcement
Learning Algorithms’. (National Aeronautics and Space Administration, NASA
STI Program, 2017)

201 De.Florio, V. ‘Antifragility = elasticity + resilience + machine learning’. In:
1st International Workshop From Dependable to Resilient, From Resilient to
Antifragile Ambients and Systems. Procedia Computer Science, 2014. pp. 834–
841

202 Audemard, G., Lagniez, J., Simon, L. ‘Improving glucose for incremental SAT
solving with assumptions: Application to MUS extraction’. In: 16th International
Conference on Theory and Applications of Satisfiability Testing. vol. 7962 of
LNCS, 2013. pp. 309–317

203 Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
‘Incremental bounded model checking for embedded software’, Formal Aspects
of Computing, 2017, 29, (5), pp. 911–931

204 Ramalho, M., Freitas, M., Sousa, F., Marques, H., Cordeiro, L., Fischer, B.
‘SMT-based bounded model checking of c++ programs’. In: 20th International
Conference and Workshops on the Engineering of Computer Based Systems,
2013. pp. 147–156

205 Wachter, B., Kroening, D., Ouaknine, J. ‘Verifying multi-threaded software with
impact’. In: Formal Methods in Computer-Aided Design, 2013. pp. 210–217

206 Beyer, D.: ‘Reliable and reproducible competition results with benchexec and
witnesses (report on SV-COMP 2016)’, LNCS, 2016, 9636, pp. 887–904

207 Ábrahám, E., Abbott, J., Becker, B., Bigatti, A.M., Brain, M., Buchberger, B.,
et al.: ‘Satisfiability checking and symbolic computation’, ACM Communications
in Computer Algebra, 2016, 50, (4), pp. 145–147

208 O’Hearn, P.W.: ‘Separation logic’, Communications of the ACM, 2019, 62, (2),
pp. 86–95

209 Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., et al.
‘Moving fast with software verification’. In: 7th International Symposium on
NASA Formal Methods. vol. 9058 of LNCS, 2015. pp. 3–11

IET Research Journals, pp. 1–24
c© The Institution of Engineering and Technology 2015 23

210 Inverso, O., Tomasco, E., Fischer, B., La.Torre, S., Parlato, G. ‘Bounded model
checking of multi-threaded c programs via lazy sequentialization’. In: Computer
Aided Verification, 2014. pp. 585–602

211 Kahlon, V., Wang, C., Gupta, A. ‘Monotonic partial order reduction: An optimal
symbolic partial order reduction technique’. In: Computer Aided Verification.
vol. 5643 of LNCS, 2009. pp. 398–413

212 Morse, J., Cordeiro, L.C., Nicole, D.A., Fischer, B. ‘Context-bounded model
checking of LTL properties for ANSI-C software’. In: 9th International Confer-
ence on Software Engineering and Formal Methods. vol. 7041 of LNCS, 2011.
pp. 302–317

213 Zheng, M., Rogers, M.S., Luo, Z., Dwyer, M.B., Siegel, S.F. ‘CIVL: formal ver-
ification of parallel programs’. In: 30th International Conference on Automated
Software Engineering, 2015. pp. 830–835

214 Kroening, D., Poetzl, D., Schrammel, P., Wachter, B. ‘Sound static deadlock anal-
ysis for C/Pthreads’. In: 31st International Conference on Automated Software
Engineering, 2016. pp. 379–390

215 La Torre, S., Madhusudan, P., Parlato, G. ‘Reducing Context-Bounded Concur-
rent Reachability to Sequential Reachability’. In: Computer Aided Verification.
vol. 5643 of LNCS, 2009. pp. 477–492

216 Grumberg, O., Lerda, F., Strichman, O., Theobald, M. ‘Proof-guided
underapproximation-widening for multi-process systems’. In: 32nd Symposium
on Principles of Programming Languages, 2005. pp. 122–131

217 Jovanovic, D., Dutertre, B. ‘Property-directed k-induction’. In: Formal Methods
in Computer-Aided Design, 2016. pp. 85–92

218 Cox, A., Sankaranarayanan, S., Chang, B.E.: ‘A bit too precise? verification of
quantized digital filters’, International Journal on Software Tools for Technology
Transfer, 2014, 16, (2), pp. 175–190

219 Abreu, R.B., Gadelha, M.Y.R., Cordeiro, L.C., de Lima.Filho, E.B., da Silva.Jr.,
W.S.: ‘Bounded model checking for fixed-point digital filters’, Journal of the
Brazilian Computer Society, 2016, 22, (1), pp. 1:1–1:20

220 Hamon, G. ‘Simulink design verifier – applying automated formal methods to
simulink and stateflow’. In: 3rd Workshop on Automated Formal Methods, 2008.
pp. 1–2

221 Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: ‘A survey on software
fault localization’, IEEE Transactions on Software Engineering, 2016, 42, (8),
pp. 707–740

222 Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtík, M. ‘JBMC: A
bounded model checking tool for verifying java bytecode’. In: Computer Aided
Verification. vol. 10981 of LNCS, 2018. pp. 183–190

223 Lopes, B.C., Auler, R.: ‘Getting Started with LLVM Core Libraries’. (Packt
Publishing, 2014)

224 Metz, C.: ‘Why Apple’s swift language will instantly remake computer program-
ming’. (http://www.wired.com/2014/07/apple-swift/, 2016).
Accessed 14th of April 2018

225 Arroyo, M., Chiotta, F., Bavera, F. ‘An User Configurable Clang Static Analyzer
Taint Checker’. In: Conference Of The Chilean Computer Science Society, 2016.
pp. 1–12

226 Roy, P., Tabuada, P., Majumdar, R. ‘Pessoa 2.0: a controller synthesis tool for
cyber-physical systems’. In: 14th International Conference on Hybrid Systems:
Computation and Control, 2011. pp. 315–316

227 Jackson, D., Vaziri, M. ‘Correct or usable? the limits of traditional verifica-
tion (impact paper award)’. In: 24th International Symposium on Foundations
of Software Engineering, 2016. pp. 11–11

228 Morse, J., Ramalho, M., Cordeiro, L.C., Nicole, D., Fischer, B. ‘ESBMC 1.22 -
(competition contribution)’. In: Tools and Algorithms for the Construction and
Analysis of Systems. vol. 8413 of LNCS, 2014. pp. 405–407

229 Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.
‘SMACK+Corral: A modular verifier’. In: Tools and Algorithms for the
Construction and Analysis of Systems, 2015. pp. 451–454

230 Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A. ‘Witness vali-
dation and stepwise testification across software verifiers’. In: 23th International
Symposium on Foundations of Software Engineering, 2015. pp. 721–733

231 Jesus, A.S., Rodrigues, R.N., Ferreira, A.N.G., Melo, W.C., Lima.Filho, E.B.,
Silva.Júnior, W.S. ‘Automatic antenna alignment system for satellite receivers
operating in c and ku bands’. In: Brazilian Symposium on Telecommunications
and Signal Processing (in Portuguese), 2017. pp. 1–5

232 Amoedo, D.A., da Silva.Júnior, W.S., de Lima.Filho, E.B. ‘Parameter selection
for SVM in automatic modulation classification of analog and digital signals’. In:
International Telecommunications Symposium, 2014. pp. 1–5

233 Hamel, L. ‘On the use of machine learning in formal software verification’. (Dept.
of Computer Science and Statistics, University of Rhode Island, 2003. technical
Report TR03-294

234 Phuc, N.V.: ‘The Application of Machine Learning Methods in Software Verifi-
cation and Validation’. (University of Texas at Austin, 2010)

235 Bridge, J.P., Holden, S.B., Paulson, L.C.: ‘Machine learning for first-order
theorem proving’, Journal of Automated Reasoning, 2014, 53, (2), pp. 141–172

236 Hutter, F., Babic, D., Hoos, H.H., Hu, A.J. ‘Boosting verification by automatic
tuning of decision procedures’. In: Formal Methods in Computer-Aided Design,
2007. pp. 27–34

237 Seshia, S.A., Hu, S., Li, W., Zhu, Q.: ‘Design automation of cyber-physical sys-
tems: Challenges, advances, and opportunities’, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2017, 36, (9), pp. 1421–1434

238 Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A. ‘Synthesizing switching logic for
safety and dwell-time requirements’. In: 1st International Conference on Cyber-
Physical Systems, 2010. pp. 22–31

239 Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A. ‘A learning based
approach to control synthesis of markov decision processes for linear tempo-
ral logic specifications’. In: 53rd Conference on Decision and Control, 2014.
pp. 1091–1096

240 Lucky, R.W.: ‘Antifragile Systems’. (https://spectrum.ieee.org/
telecom/wireless/antifragile-systems, 2013). Accessed 13rd of
December 2017

241 Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: ‘Lessons
from applying the systematic literature review process within the software engi-
neering domain’, Journal of Systems and Software, 2007, 80, (4), pp. 571–583

IET Research Journals, pp. 1–24
24 c© The Institution of Engineering and Technology 2015

http://www.wired.com/2014/07/apple-swift/
https://spectrum.ieee.org/telecom/ wireless/antifragile-systems
https://spectrum.ieee.org/telecom/ wireless/antifragile-systems

