
SMT-Based Bounded Model Checking of
Fixed-Point Digital Controllers

Iury Bessa, Renato Abreu, João Edgar Filho, and Lucas Cordeiro
Electronic and Information Research Center, Federal University of Amazonas, Brazil

E-mails: {iurybessa,renatoabreu,lucascordeiro,jo_edgar}@ufam.edu.br

Abstract Digital controllers have several advantages with
respect to their flexibility and design’s simplicity. However, they
are subject to problems that are not faced by analog controllers. In
particular, these problems are related to the finite word-length
implementation that might lead to overflows, limit cycles, and time
constraints in fixed-point or floating-point processors. This paper
proposes a new method to detect design’s errors in fixed-point
digital controllers using a state-of-the art bounded model checker
based on satisfiability modulo theories. The experiments with a
commercial industrial plant demonstrate that the proposed
method can be effective in finding errors in digital controllers than
other existing approaches, which are based on traditional
simulations tools. The verification results are conclusive in 93.5%
of the benchmarks, determining the absence or occurrence of
errors.

Keywords Digital controllers, fixed-point, model-checking.

I. INTRODUCTION

Nowadays, almost all control systems are implemented in
computational structures, which increase the applications of
digital controllers. Digital controllers have improved the
flexibility of control algorithms, since a controller may be
implemented with different software variations using the same
hardware structure; this reduces the design time and
consequently simplifies the design process. In this respect, digital
controller designers do not exploit all the computer
implementation advantages if they only reproduce the traditional
analog techniques (e.g., PID and lag/lead control) in a computer-
based system [1]. To achieve the best advantages of
computational implementation, the computer-controlled system
must exploit all digital control techniques. However, this might
lead to problems related to finite word-length realizations, which
represent an important area of research in the control system
community.

Digital controllers are typically implemented in micro-
computers, microprocessors, or digital signal processors. Any
digital computer with a data acquisition system and an operating
system can be used to implement a digital controller. These
implementations might use fixed-point or floating-point
arithmetic. Since floating-point implementation has a greater
number of representable values and consequently reduced errors,
the fixed-point processors are the fastest and cheapest and
consequently, they are more common in practice. In this context,
problems (i.e., quantization and overflow errors) caused by finite
word-length have greater dimensions in the computer-controlled
systems; they are thus subjects to problems that only occur in
digital controller realizations. These problems would be fixed or
at least reduced according to the chosen computational structure
(e.g., direct forms), which would increase or decrease the number
of arithmetical operations and quantizations effects.

Additionally, there is another major problem that might
occur in digital controller realizations, which is related to time

constraints. Digital controllers are strictly real-time systems.
The controls tasks execution cannot take more time than a
sample period, which is chosen by the control engineer. Hence,
the controller’s implementation must consider the code
execution time and the sample time requirements. In principle,
control engineers are aware about these problems, but they
frequently use simulation tools to validate their controllers and
to check whether the desired performance is achieved. However,
most simulation tools, e.g., PSIM [2], LABVIEW [3], and
MATLAB [4] are based on floating-point arithmetic and thus
ignore all problems that might occur in fixed-point
implementations. There are some tools that simulate fixed-point
systems, but they show poor results since they neither cover all
possible scenarios nor check time constraints [5].

An example of simulation tool is proposed by Sung and Kum,
where an algorithm is developed to determine the minimum
bound of the word-length fixed-point representation via
simulation methods [6]. However, as other simulation tools, it
cannot explore all possible scenarios and thus problems might go
unnoticed. An interesting work is presented by Anta et al. [7],
where a tool called Costan is developed. Costan finds errors in
implementation of a mathematical model and verifies whether
the error is tolerated, considering the quantization effect and
fixed-point implementation; the authors focus their analysis on
the stability of the system only. In particular, Costan verifies the
C implementation of the controller and checks the maximum
possible error between the C model and the SIMULINK model
of the controller via a symbolic error analysis. Some recent work
uses a formal verification methodology based on bounded model
checking (BMC) with satisfiability modulo theory (SMT)
solvers. Cox et al. show that simulations tools are useful, but
insufficient [8], [9]; the authors propose the use of an SMT-based
BMC to verify digital filters. Most recently, Abreu et al. verify
various types of digital filters properties (e.g., overflows, limit
cycles, times constrains, stability, and frequency response) using
a state-of-the-art BMC tool, called ESBMC (Efficient SMT-
based Bounded Model Checking) [10].

In this paper, digital controllers’ implementations are
verified using an SMT-based BMC approach; similar to Cox et
al. and Abreu et al. [8], [10], [11]. A digital controller can be
seen as a form of filter, but in digital controllers all actions must
happen in real-time and it differentiates our work from others
[8], [11]. Additionally, this is the first work uses model checking
to design and validate digital controllers. In particular, the
proposed method checks for overflows (using different
realization structures of digital controllers), limit cycles,
stability, and time constraints in addition to help the control
engineer determine the most optimized word-length in fixed-
point implementations of digital filters. The proposed method is
validated using different digital controllers for a ball and beam
industrial plant.

II. BACKGROUND

This section describes implementation problems caused by
the use of fixed-point arithmetic. The satisfiability modulo
theory and BMC concepts are also addressed here.

A. Fixed-Point Digital Controllers Implementation

A digital controller is a linear time-invariant causal discrete-
time dynamic system [10]. A digital controller manipulates
discrete numerical signals and its implementation is a program
executed by a microprocessor. There are many ways to
implement a digital controller in software; the controller
realization significantly influences its performance in practice.
Different realizations of digital controllers are studied in several
books [12] - [13]. In this work, however, only direct forms
implementations are considered.

In particular, a quantizer approximates a signal value by a
value from a discrete finite set, generating a rounding error,
whose maximum value is considered as 2����, where � is the
number of bits of the fractional part. The quantization in the finite
word-length operations often causes periodic oscillations known
as limit cycles, which are caused by round-off errors in
multiplication and overflow errors in addition [14].

The overflow occurs when a sum or product is outside the
range of representable values. There are two main ways of
handling overflow: wrap-around and saturation. The first way
ignores the overflow, allowing the numerical representation of a
result to be greater than a maximum representable value to be
stored with the least significant bits (i.e., it wraps). The second
way holds the maximum representation value when overflow
occurs [5]. All these problems are known as finite word-length
(FWL) effects; a realistic model of a FWL system must include
the quantization of every numerical value, including arithmetic
results, input signals, and system coefficients.

The typical fixed-point representation uses two-complement
to represent signed binary values. A standard representation of a
fixed point number is < �,�> , where � represents the number
of bits of the integer part and � represents the number of bits of
the fractional part. The most significant bit is the sign bit;
therefore, the representable range of values is between 2��� −
2�� and − 2���.

Naturally, the FWL effects are more present in fixed-point
than in floating-point implementations. There are several
approaches that aim to minimize these effects in fixed-point
processors. However, traditional tools for simulation and testing
do not appear to be sufficient in validation of fixed-point digital
controllers’ implementation, because they explore only a limited
number of scenarios and values. Moreover, controller designers
usually adopt floating-point tools to evaluate their projects,
which have the potential to let some failures go unnoticed. As a
result, one can argue that detecting problems caused by fixed-
point implementations of digital controllers is a challenge that
deserves a formal verification method.

B. SMT-Based Bounded Model Checking

The basic idea of BMC is to check (the negation of) a given
property at a given depth. Supposing a transition system M, a
property � and a bound �, BMC unrolls the system � times and
translates it into a verification condition (VC) � , in such a way

that � is satisfiable if and only if ϕ has a counterexample, of
depth less than or equal to k; standard SMT solvers can be used
to check whether � is satisfiable.

In BMC of digital controllers, the bound k limits the number
of loop iterations and recursive calls in the controller
implementation. BMC thus generates VCs that reflect the exact
path in which a statement is executed, the context in which a
given function is called, and the bit-accurate representation of
expressions [15]. Here, the ESBMC tool is used as a verification
engine, since it represents one of the most efficient BMC tools
that participated in the last software verification competitions,
[16], [17].

In particular, ESBMC is a context-bounded model checker
for C/C++ programs based on SMT solvers. It allows the
verification engineer to verify single- and multi-threaded
software (with shared variables and locks); to reason about
arithmetic under- and overflow, pointer safety, memory leaks,
array bounds, atomicity and order violations, deadlock, and data
race. ESBMC also verifies programs that make use of bit-level,
pointers, structs, unions, and fixed-point arithmetic. In ESBMC,
the associated SMT-based BMC problem is formulated by
constructing the following logical formula

ψ� = �(��)∧ ⋁ ⋀ ����,�����
���
���

�
��� ∧ �(��)�������, (3)

where � is a safety property (e.g., overflow), I is the set of initial
states of �, and γ�s�,s���� is the transition relation of � between

time steps � and �+ 1. Hence, I(s�)∧ ⋀ γ�s�,s����
���
��� represents

the executions of a transition system � of length �. The above
VC �� can be satisfied if and only if, for some �≤ �, there exists
a reachable state, at time step �, in which � is violated. If
Equation (3) is satisfiable, then the SMT solver provides a
satisfying assignment, from which the values of the controller
variables can be extracted, in order to construct a
counterexample. The latter, for a property ϕ , is then defined as a
sequence of states s�,s�,… ,s� with s� ∈ S�, s� ∈ S and
γ(s�,s���), for 0 ≤ i< �; and this can be used to reproduce the
error in traditional simulation-based tools. If Equation (3) is
unsatisfiable, then one can concluded that there is no error state
in � steps or less.

III. VERIFICATION OF DIGITAL CONTROLLERS

To explain the verification of digital controllers, the ball and
beam discrete model is used as a running example [18]- [19]. The
digital controllers for a Quanser’s ball and beam plant with
SRV02 actuator set are properly designed; all plant parameters
and mathematical models are extracted from user manuals.

As a first step, controllers can be designed through different
techniques, e.g., emulation, Ragazzini, Truxal, and discretization
[10], [12], [20]. Secondly, after designing the controllers, their
behaviors can then be simulated in SIMULINK, which is part of
the MATLAB toolset [4]. Here, the closed-loop responses are
verified from simulations to check the step-response of the
system; when necessary, other types of testing signals (e.g., ramp
or parable) are also applied to the control system. Thirdly, after
the simulation, the output range for a specific input is estimated,
and the word-length of the fixed-point representation is chosen.
Fourthly, once the word-length and the transfer function of the
controller are obtained, the digital controller is then implemented

in a C model for a specific fixed-point microprocessor
architecture with a known clock time; it allows the analysis of
the digital controller behavior in the time domain. The final step
of the proposed method consists of verifying the properties.
Therefore, assertions are inserted into the C model of the
controller to check for four particular properties: overflow, limit
cycle, stability, and time constraint. The verification of these
properties are carried out by the verification engine, which
checks the implementation of the controller according to its
specification, even if the properties (extracted from the
specification) do not require an exhaustive checking via non-
deterministic inputs [11].

The verification engine aids the control engineer to optimize
their controllers’ implementation; in particular, it helps them
choose the sample time, quantization range, word-length, and
implementation structure. When a property violation is detected,
the control engineer fixes the identified problem in the
controller’s design. As an example, when an overflow occurs, an
output error violation will occur too, and the engineer must
perform a new verification with the same controller (and the
same poles and zeros positions), but with a reduced gain or with
a larger word-length. However, if a time constrain violation is
detected, the engineer must reduce the word-length and if the
problem persists, the controller has to be redesigned with a lower
complexity or with a greater sample time, in case it does not
affect the system stability. Model checking digital controllers is
thus an interactive process, whereby the engineer should fit the
controller mathematical representation to the given
microprocessor architecture, finding the optimal fixed-point
representation, and thus avoiding implementation problems,
which are typically met in the physical implementation and
whose causes are hard to be detected.

A. Arithmetic Overflow Verification

The arithmetic overflow verification without a computational
tool is a very challenging task; BMC tools appear to be a good
solution for this. In this work, the quantizer C code contains
assertions and ESBMC is thus configured to detect overflows in
a digital controller with a specific fixed-point word-length via the
application of non-deterministic inputs to the already quantized
mathematical model. For any addition or multiplication results,
during controller operation, if there exists a value that exceeds
the range representable by the fixed-point, a VC detects it as an
overflow violation. Here, a literal ��������� is generated in order
to represent the validity of each addition and multiplication
operation, according to the following constraint

��������� ⇔ (��� ≤ ��)∧ (�� ≤ ���), (4)

where FP is the fixed-point representation for the result of the
adders and multipliers after the quantization, and MIN and MAX
are, respectively, the minimum and maximum values of the
representable range for the given fixed-point bit format. A failed
overflow verification example is shown in Table 1. Here, a
controller (see test case 9 of Table 3) is verified with the DFI
realization. The fixed-point representation format is < 4,11 >

and the input range is [-6,6]. However, the sequence of inputs in
Table 1 leads the output to a number that is greater than the
representable limit, thus occurring the overflow. The verification
engine indicates that failure and gives as counterexample the
sequence of inputs shown in Table 1, which can be easily
reproduced using the difference equation to compute outputs
values; note that this particular defect may go unnoticed by
simulation tools (e.g., Matlab) unless one knows the exact input
sequence that leads to the overflow, which is infeasible in
practice.

B. Limit Cycle Verification

The steady state response of a control system is the portion
of total response that remains after the transient effect becomes
insignificant [21]. In this way, the step response of a stable
control system should be a constant value after a certain time.
However, when the limit cycle occurs, it is not necessarily true.
The limit cycle phenomenon consists in the presence of
oscillations occurring in the output, even when the input
sequence is a constant value [14]. These oscillations may be very
harming to the control systems, because they may cause damages
to the physical plant (especially in mechanical systems) and then
harm surround products [22].

To verify the limit cycle occurrence in a digital controller, the
quantization process wraps around when the overflow occurs.
Thus, the verification engine does not detect overflow failures.
For the limit cycles test, the verification engine is configured to
input a zero sequence and initialize the system with a non-
deterministic initial state. A verification condition is then added
to detect the limit cycle failure, i.e., it detects a failure if a
sequence of outputs states are repeated during the zero inputs
sequence.

An example of failure in limit cycle verification is shown in
Fig. 1. This is a digital controller (see the test case 11 in Table 3)
in DFI realization, with output range of [− 4,4] and with fixed-
point representation < 2,13 > . The verification engine checks
the failure occurrence and gives the following counterexample:
if the system receives a zero sequence, following a {2,2,2,2}
sequence of past outputs, the limit cycle will occur, as shown in
Fig. 1. In this graph, a simulation with 2 seconds of duration is
shown, reproducing the counterexample provided by the
verification engine.

C. Time Constrains Verification

The sample time is a very important parameter to be chosen
in a digital control system. In particular, all the system’s dynamic
is changed with a modification in the sample time. A precise
selection of sample period is thus essential for a computer-
controlled system. On the one hand, too short sample times
require a greater performance and consequently processors with

n 1 2 3 4 5
�(�) 6.0000 5.9990 −5.9990 6.0000 5.9995
�(�) 0.6 − 1.6801 2.5025 −4.3369 12.1032

Table 1. Overflow failure example

Fig. 1. Limit Cycle in a Digital Controller

a high clock frequency; this can impose technical limitation in
the design of the digital controller. On the other hand, too long
sample times do not permit the reconstruction of continuous
signals [12]. In principle, the sample time choice depends on the
physical plant, where the control system is applied. The right
choice of the computational implementation of a controller may
thus reduce the number of arithmetic operations and
consequently the computational costs. As control systems are
typically real-time systems, they cannot take more time to
process tasks than a sample period. In practical applications, the
controller is designed with a reasonable sample period in order
to produce good simulations results. Thereafter, it is
implemented in a computer-based system, where samples are
scheduled at every sample period; this is the maximum time that
the processor takes to perform all control tasks and
corresponding operations. If an operation cannot terminate on
time, then the results might not be correct and the control system
might not work as expected.

For this particular reason, a time constraint verification
becomes a very useful controller design tool, which may indicate
if the chosen sample period and the computational realization are
compatible, before the physical implementation, thus avoiding
serious malfunctions of the system. As a result, the needed time
to execute a specific code can be estimated, once each instruction
can be broken into a set of assembly instructions; in particular,
every processor has a table of clock cycles spent on each
assembly instruction. To know the total time needed to execute
a code, the number of clock cycles must be divided by the
processor clock rate (or multiplied by the clock time). However,
the estimation of clock cycles is a challenging task, once a
controller’s implementation contains loops and decision
statements, which can take different number of clock cycles to
execute, depending on the input parameters (that are usually non-
deterministic values). In order to verify time constraints, a literal
������� is generated to represent the time response, with the
following constraint

 ������� ⟺ �(� × �)≤ ��, (5)

where � is the number of cycles spent by the digital controller,
� is the clock period and � is the deadline [11].

D. Poles and Zeros Verification

The stability of a system may be verified through the
positioning of its poles. A discrete system is stable if all its poles
are in the interior region of the unitary circle of �-plane, i.e., the
poles must have the module less than one [23]. Thus, the
stability verification of a system should be done with an
algorithm that determines the roots of the transfer function
denominator polynomial.

In this work, the Eigen Library [24] is used, in order to
determine the roots of a polynomial. The three steps of the
algorithm can be described as follows:

1. Given a polynomial �(�)= �� + �(���)�
��� + ⋯ +

���+ ��, determine the companion matrix �, such
that:

� =

⎣
⎢
⎢
⎢
⎡
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋯ ⋯ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−�� −�� −�� ⋯ −����⎦

⎥
⎥
⎥
⎤

;

2. Reduce the matrix � to the Real Schur form;
3. Apply the Schur Decomposition to compute the roots

of polynomial �(�).
The verification engine checks the system’s stability, by

verifying whether all eigenvalues show absolute values less than
one, after the coefficients quantization. If any eigenvalue
absolute value is greater than one, then stability fails and a
counterexample is reported to reproduce the error in a
simulation-based tool.

IV. EXPERIMENTAL EVALUATION

This section is split into three parts. The first section
describes all digital controllers that are designed for the Ball and
Beam industrial plant. The second section describes the
experiments configuration and the last section summarizes the
results.

A. Digital Controllers’ Design for a Ball and Beam Plant

Digital controllers for a Quanser ball and beam plant are
developed using different techniques with MATLAB’s aid, as
described in Section II; they are all simulated in SIMULINK.
The objective of this control system is to stabilize the ball in a
desired position along the beam; therefore, the controller should
input a voltage signal in the SRV02’s system, which rotates the
beam by adjusting its angle. From the specification, the plant
parameters and model are extracted [18], [19], [25]. The discrete
form of the plant, using a sample time of 0.01 �, is given by

�(�)=
1.0067× 10��(�+ 9.256)(�+ 0.9324)(�+ 0.9389)

(�− 1)�(�− 0.7041)
.

Controllers with different performances are designed and
simulated in SIMULINK. Table 2 describes the controllers with
these numerators and denominators vectors as well as a
summary of the simulation results, i.e., settling time (��),
overshooting (���), and steady-state error (���).

B. Experimental Setup

For the following verifications, a 16-bits microcontroller
with a clock rate of 16 MHz is used as the embedded platform,
where the controllers are actually implemented; all sample rates
are adjusted to 100 Hz. Table 3 summaries different digital
controllers’ configurations. A physical implementation with a
signal conditioning circuit external to the microcontroller with
an external gain is assumed. To understand the influence of the
realization structures on overflows, limit cycles, and time
constrains, all digital controllers are implemented in three
different realizations: DFI, DFII, and TDFII. These realizations
have no effect in the system’s stability, once they only check for
the effect of coefficient quantization and round-offs on poles and
zeroes of the fixed-point digital controllers. Note that the second-
order structures (i.e., parallel or cascade models) are not
addressed in this paper, but only direct implementations which
are more susceptible to design’s errors.

This work employs ESBMC v1.231 with the SMT solver Z3
v4.0. All tests are executed with a maximum verification time of
3600s. If the time needed to finish the verification is greater than
this maximum, then the verification is aborted. ESBMC is

1 The ESBMC tool and benchmarks are available at www.esbmc.org

invoked by setting the file name, timeout, and the SMT solver.
Additionally, division by zero, array bounds, and pointer safety
verifications are disabled, once the main objective is to verify the
controller’s properties. The experiments are executed in a

Numerator Denominator �� OVS ���

A [0.15 0.05 0.40] [1.0 0.0 0.3] Inf. Inf. Inf.

B [2.0 − 4.0 2.0]× 10� [1.00 0.00 − 0.25] 0.35 27% 0

C [50.000− 140.950 131,850− 40.935] [1.00000 − 1.97000 1.03300 − 0.06068] 7.24 0 0

D [9.37− 35.82 52.01− 3.482 10.03− 0.78]× 10� [1.000 9.112− 2.247− 8.656 0.657 0.135] Inf. Inf. Inf.

E [1.0 − 3.0 3.0 − 1.0]× 10� [1.000 1.800 1.140 − 0.272] 0.12 57% 36%

F [1.0 − 2.5 2.0 − 0.5]× 10� [1.000 1.500 0.680 0.096] 2.62 0 0

Controller Gain
Input
Range

Bits Type
Overflow Limit Cycle Timing Stability

Result Time Result Time Result Time Result

1 A 1 [−1,1] < 3,4 >

DFI S 19.8 S 32.9 S <1

S DFII S 15.7 S 235.8 S <1

TDFII S 79.0 F 102.2 S <1

2 B 10� [−1,1] < 2,6 >

DFI F 1.7 S 62.2 S <1

S DFII F 1.6 S 252.0 S <1

TDFII F 1.6 F 114.8 S <1

3 B 10� [−1,1] < 4,3 >

DFI S 22.0 S 23.0 S <1

S DFII S 10.2 S 131.9 S <1

TDFII S 59.1 F 179.6 S <1

4 C 50 [−1,1] < 2,13 >

DFI F 79.2 TO - S <1

S DFII F 29.7 F 686.8 S <1

TDFII F 131.4 TO - S <1

5 D 10� [−1,1] < 2,13 >

DFI F 1771,7 TO - S <1

F DFII F 437.5 TO - S <1

TDFII F 2085.2 TO - S <1

6 D 10�� [−1,1] < 2,13 >

DFI F 3437.2 S 14.8 S <1

F DFII F 860.0 S 28.9 S <1

TDFII F 2522.7 S 25.8 S <1

7 C 500 [−4,4] < 2,13 >

DFI F 102.0 S 5.6 S <1

S DFII F 34.5 S 20.0 S <1

TDFII F 555.5 S 9.4 S <1

8 C 500 [−5,5] < 2,8 >

DFI F 48.6 F 494.3 S <1

S DFII F 24.3 TO - S <1

TDFII F 190.5 TO - S <1

9 C 500 [−6,6] < 4,11 >

DFI TO - TO - S <1

S DFII F 12.8 TO - S <1

TDFII TO - F 2503.6 S <1

10 B 10� [−1,1] < 3,12 >

DFI S 25.1 S 334.2 S <1

S DFII S 19.6 S 1122.6 S <1

TDFII S 68.7 F 250.1 S <1

11 E 10� [−4,4] < 2,13 >

DFI F 352.4 S 5.9 S <1

S DFII F 55.7 S 13.3 S <1

TDFII F 178.0 S 10.0 S <1

12 F 10� [−2,2] < 2,13 >

DFI F 14.9 S 5.6 S <1

S DFII F 11.3 S 11.9 S <1

TDFII F 77.5 S 8.8 S <1

Table 2. Digital Controllers for a Ball and Beam Plant

Table 3. Experimental Results

computer with the following hardware configurations: Intel Core
i7-2600 3.40 GHz processor, 24 GB of RAM, and Ubuntu 11.10
Maverick Meerkat 64-bits OS.

C. Experimental Results

Table 3 presents the verification results. Here, S represents a
successful test and F represents a failed test. If the verification
exceeds the limit time, then the result is represented by TO (time-
out). According to the experimental results, ESBMC detects
various errors in different realizations of digital controllers, but
it cannot detect errors in 6.5% of test cases due to time-out;
typically, the verification process takes longer if the controller
order is higher than three. Others factors that may influence this
time is the precision of the fixed-point implementation; if the
number of fractional bits is increased, then the verification time
tends to increase as well. Furthermore, in the limit cycle tests, the
length of zero input vectors used to verify oscillations occurrence
must be greater or equal than the length of the fractional part, i.e.,
the limit cycle verification time tends to take much longer if the
precision is greater. The successful verifications usually take
more time than failed ones, once the verification process only
stops when an error is found or when all VCs are checked.

The results points out that ESBMC is an useful design tool to
determine the most optimized fixed-point structure realization
for digital controllers; for example, the results in Table 3 (lines
1, 2, 3, and 10) show that a control engineer may easily conclude
that the controllers A and B should be implemented in the DFI
or DFII instead of the TDFII, in order to avoid limit cycle
oscillations. Furthermore, some failures that appear in the
counterexamples are difficult to be detected by simulation tools.
As an example, one can analyze the stability of a closed-loop
control system using the controller C in SIMULINK and
conclude that the closed-loop system will be stable. This
controller is designed by emulating and mapping analogs poles
and zeroes with the following zero-poles-gain representation:

��(�)=
���(���)�(���.�����)�

(���.����)(���.����)(���.������)
.

Two zeroes on 1 can be observed in this controller to cancel
two poles in 1 of the ball and beam plant and then stabilize the
closed-loop system. When this closed-loop system is simulated,
the poles and zeroes cancellation occurs and the system’s
response is acceptable (the step response is shown in Figure 2).
However, if the transfer function with quantized coefficients is
simulated, then the response is totally different (see Figure 3).
When the closed-loop system model is verified by ESBMC, the
stability test fails due to the non-cancellation of unstable poles
on 1; the cancellation does not occur due to errors caused by the
FWL effects. Some other examples of reduction of controller’s
precision are described by Satina et al. [26].

Note that the stability verification time is not shown in Table
3, since they are very fast to be checked, (i.e., each verification
run takes less than one second). The results show that limit cycles
failures occur more frequently in DTFII structure than others
studied here. However, this structure presents less arithmetical
operations, which means less computational effort and less
chances of problems related to time constrains. None of the
examples present time constrains failures, since the sample time
is relatively high (10 ��).

Additionally, the results show that direct form realizations
are not a good solution for high-order digital controllers. The
controllers C, D, E, and F always present overflows, although the
fixed-point format and the representable range are changed. It
indicates that these high-order systems should be implemented
in other structures, e.g., parallel and cascade forms, where the
probability of occurrence of overflows and round-off errors may
be decreased.

V. RELATED WORK

Previous work about validation methods for control systems
related to FWL implementation are mostly based on simulations
methods. Chattopadhyay describes a case study about the
occurrence of limit cycles at DC-DC converters that employs
digital current mode control and pulse-width modulation (PWM)
[27]. Here, the author proposes a solution for the oscillations by
adjusting the ADC resolution and the limit cycle corrector.
Chattopadhyay uses the MATLAB/SIMULINK tool to verify the
limit cycle and then validate the implementation. However, tests
carried out with pre-specified reference current do not take into
account the reminiscent oscillations for the various different
current values. An SMT-based BMC approach, as proposed here,
may be used as a complementary technique to provide sufficient
conditions to ensure the correctness of the DC-DC converters.

Qu and Yourui propose an interesting method for PID
controllers’ implementations in FPGAs based on fixed-point
[28]. In this work, the control system design is carried out in
SIMULINK and simulated in Modelsim [29]. After applying the
method, the plant’s behavior presents stability and expected
responses. However, the authors do not present any evaluation
in terms of performance and error detection. In particular, the
authors use a limited number of test vectors to validate their
methodology; this would be avoided if they use a formal
verification approach. As a result, Qu and Yourui would prove
their methodology efficiency and would realize various types of
checks (e.g., overflows, limit cycles, and time constrains).

Mohta [5] demonstrates that traditional design tools (e.g.,
SIMULINK) cannot help enough in FWL related problems and

Fig. 2. Step response without quantiztions effects

Fig. 3. Step response with quantiztions effects

suggests the creation of a tool to determine the most optimized
FWL format implementation (i.e., coefficient word-length) to
make the design process easier. In particular, Mohta presents a
methodology to optimize the word-length in FWL
implementations by using some metrics (e.g., ����

,���,���).
This methodology is applied to digital filters (or controllers) and
includes the closed-loop discussion, quantizations, and its effects
on stability, but it does not include any substantial discussion on
limit cycles, for example. Sung and Kum [6] also presents a
methodology to optimize the word-length, where the search for
the optimal implementation uses brute force in a simulation-
based environment. However, simulation approaches cannot
cover all possible scenarios and thus the optimal FWL
implementation may still contain other types of failures (e.g.,
overflows and limit cycles), because these optimizations only
consist of error minimization. The verification proposed in this
paper can be used as an iterative design tool that does not depend
on complex metrics as in [5], and shows more reliable and less
effort than a brute force simulation as in [6]. Moreover,
additional properties can checked as well (e.g., limit cycles and
overflows).

VI. ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their helpful
comments. This research was supported by Samsung, CNPq, and
FAPEAM grants. Iury Bessa was also supported by a FAPEAM
studentship.

VII. CONCLUSIONS

This paper describes a novel method to verify digital
controllers, where an SMT-based BMC approach is used to
verify fixed-points realizations properties of digital controllers
and to identify failures that are hard to be detected by simulation
tools. Digital controllers for a ball and beam industrial plant are
used to verify the occurrence of typical problems of finite word-
length implementation; in particular, overflows and limit cycles.
Furthermore, stability and time constraints are verified using
different types of controllers’ realization. The proposed method
can be used as an interactive process, where controllers are firstly
designed in a mathematical tool and translated into a C model;
then check whether properties hold in the controller’s model
using a BMC tool and repeat this process until the controller is
immune to overflows and limit cycles occurrences to ensure the
system’s stability. The experimental results show that the
stability and time constraints checks are relatively fast, while
overflows and limit cycles tend to take much longer for high-
order digital controllers. Additionally, they show that the
proposed method can verify up to 93.5% of all benchmarks. This
is a good indication that an SMT-based BMC approach may be
an important tool to design and verify fixed-point digital
controllers. The proposed method can thus be effective to find
design’s errors and to determine the most optimized fixed-point
structure realization for digital controllers. This paper marks the
first application of SMT-based BMC to digital controllers.

REFERENCES

[1] D. I. Landao and G. Zito, Digital Control Systems: design, identification
and implementation, Springer, 2007.

[2] Powersim Technologies Inc., "PSIM User Manual," 1999.

[3] National Instruments, "LabVIEW User Manual," 2003.

[4] MathWorks®, "MATLAB® Primer," 2013.

[5] V. Mohta, "Finite Wordlength in Fixed-Point Implementations of Linear
Systems," Massachusetts Institute of Technology, 1998.

[6] W. Sung and K.-l. Kum, "Simulation-based word-length optimization
method for fixed-point digital signal processing systems," IEEE
Transactions on Signal Processing, vol. 43, no. 12, pp. 3087-3090, 1995.

[7] A. Anta, R. Majumdar, I. Saha and P. Tabuada, "Automatic Verification
of Control System Implementations," in Proceedings of the 10th ACM
International conference on Embedded software, New York, 2010.

[8] A. Cox, S. Sankararayanan and B. -Y. E. Chang, "A bit too precise?
Bounded verification of quantized digital filters," in Proc. of the 18th
International Conference on Tools and Açgorithms for the Construction
and Analysis of Systems, Tallinn, 2012.

[9] A. Cox, S. Sankaranarayanan and B.-Y. E. Chang, "A bit too precise?
Verification of quantized digital filters," International Journal on
Software Tools for Technology Transfer, vol. 16, no. 2, pp. 175-190,
2014.

[10] K. Ogata, Discrete-Time Control Systems, Prentice-Hall, 1994.

[11] R. B. Abreu, L. C. Cordeiro and E. B. L. Filho, "Verifying Fixed-Point
Digital Filters using SMT-Based Bounded Model Checking," Proc. of the
XXXI Brazilian Telecommunications, Sebtember 2013.

[12] K. J. Astrom and B. Wittenmark, Computer Controlled Systems: Theory
and Design, 3ª ed., Englewood Cliffs, NJ: Prentice-Hall, 1997.

[13] R. Istepanian and J. F. Whidborne, Digital Controller Implementation and
Fragility: A Modern Perspective, Springer, 2001.

[14] J. D. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, 3ª ed., Prentice-Hall, 1996.

[15] L. Cordeiro, B. Fischer and J. Marques-Silva, "SMT-based bounded
model checking for embedded ANSI-C software," IEEE Transactions on
Software Engineering, vol. 38, no. 4, pp. 957-974, July 2012.

[16] L. Cordeiro, J. Morse, D. Nicole and B. Fischer, "Context-bounded model
checking with ESBMC 1.17," Proc. of the 18th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
vol. 7214, pp. 534-537, 1 April 2012.

[17] J. Morse, L. Cordeiro, D. Nicole and B. Fischer, "Handling unbounded
loops with ESBMC 1.20," Proc. of the 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, vol.
7795, pp. 619-622, March 2013.

[18] Quanser, "Ball and Beam Position Control," 2008.

[19] Quanser, "SRV02 User Manual," 2008.

[20] G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of
Dynamic Systems, 3ª ed., CA: Addison Wesley Longman, 1998.

[21] F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9 ed., Wiley,
2010.

[22] D. Putra, Control of Limit Cycling in Fritional Mechanical Systems,
Eindhoven, 2004.

[23] A. V. Oppenheim, Signals and Systems, 2nd ed., New Jersey: Prentice
Hall, 1983.

[24] G. Guennebaud, Eigen: a C++ Linear Algebra Library, Bordeaux, 2011.

[25] Quanser, "Ball and Beam User Manual," 2008.

[26] M. S. Santina, A. R. Stubberud and G. H. Hostetter, "Quantization
Effects," in The Control Handbook, 1996, p. 301.

[27] S. Chattopadhyay, "Analysis of Limit Cycle Oscillations in Digital
Current Mode Control," Applied Power Electronics Conference and
Exposition, pp. 460-486, March 2006.

[28] L. Qu and L. L. Yourui, "Design and Implementation of Intelligent PID
Controller Based on FPGA," 4th International Conference on Natural
Computation, pp. 511-515, October 2008.

[29] Mentot Graphics, "ModelSim® Tutorial," 2009.

	I. Introduction

	II. Background

	A. Fixed-Point Digital Controllers Implementation

	B. SMT-Based Bounded Model Checking

	III. Verification of Digital Controllers

	A. Arithmetic Overflow Verification

	B. Limit Cycle Verification

	C. Time Constrains Verification

	D. Poles and Zeros Verification

	IV. Experimental Evaluation

	A. Digital Controllers’ Design for a Ball and Beam Plant

	B. Experimental Setup

	C. Experimental Results

	V. Related work

	VI. ACKNOWLEDGEMENTS

	VII. Conclusions

