Summary of Model Checking C++ Programs

Felipe R. Monteiro
Federal University of Amazonas
Manaus, Amazonas, Brazil
felipemonteiro@ufam.edu.br

Abstract—This is an extended abstract of the article “Model
Checking C++ Programs” by Felipe R. Monteiro, Mikhail R.
Gadelha, and Lucas C. Cordeiro. We describe and evaluate a
novel verification approach based on bounded model checking
(BMC) and satisfiability modulo theories (SMT) to verify C++
programs. Our verification approach analyzes bounded C++
programs by encoding into SMT various sophisticated features
that the C++ programming language offers, such as templates,
inheritance, polymorphism, exception handling, and the Standard
Template Libraries. We implemented our verification approach
on top of ESBMC. We compare ESBMC to LLBMC and DIVINE,
which are state-of-the-art verifiers to check C++ programs
directly from the LLVM bitcode. Experimental results show that
ESBMC can handle a wide range of C++ programs, presenting
a higher number of correct verification results. Additionally,
ESBMC has been applied to a commercial C++ application in the
telecommunication domain and successfully detected arithmetic-
overflow errors, which could lead to security vulnerabilities.

Index Terms—C++, memory safety, model checking, SMT,
software verification

I. OVERVIEW

Over the last 15 years, formal techniques dramatically
evolved, its adoption in industry has been growing, and several
tools to formally verify C programs have been proposed.
However, there exist only a few attempts with limited success
to cope with the complexity of C++ program verification.
The main challenge here is to support sophisticated features
that the C++ programming language offers, such as templates,
sequential and associative template-based containers, strings &
streams, inheritance, polymorphism, and exception handling.

In “Model Checking C++ Programs” [1], we describe
and evaluate a novel SMT-based BMC approach to verify
C++ programs integrated into ESBMC [2], a state-of-the-
art context-bounded model checker. ESBMC can check for
undefined behaviors and memory safety issues such as under-
and overflow arithmetic, division-by-zero, pointer safety, array
out-of-bounds violations, and user-defined assertions.

The article starts with an overview of ESBMC’s type-
checking engine, which includes our approach to support
templates (similar to conventional compilers) that replaces
the instantiated templates before the encoding phase. It also
describes the type-checking mechanism to handle single and
multiple inheritance and polymorphism in C++ programs. It

This research was partially funded by the EPSRC grants EP/T026995/1,
EP/V000497/1, EU H2020 ELEGANT 957286, Nokia Institute of Technology
(INAT), and Soteria project awarded by the UK Research and Innovation for
the Digital Security by Design (DSbD) Programme.

Mikhail R. Gadelha
Igalia
A Coruiia, Spain
mikhail.ramalho @ gmail.com

Lucas C. Cordeiro
University of Manchester
Manchester, UK
lucas.cordeiro@manchester.ac.uk

} Front-end } o .
! ! Model
GOTO IR Type-checked | CH++ C++IR C++Parse | | Scan
Converter ; Type-check Tree }
! ! o
! } Source
|
|
|
|
! I
| asT clang IR o | scan ANSI-C
GOTO 1| Converter 9 } Source
|

Program
(CFG)

Verification Successful

ConvertConstraints

Property
holds up
to bound k

Logical Constraints

SSA Form Logical Formula SMT

Solver

Symbolic
Engine

Logical
Context

Logical Properties violation

Counterexample

Fig. 1. ESBMC architectural overview. White rectangles represent input and
output; gray rectangles represent the steps of the verification.

l Property

ConvertProperties

then presents the significant contributions of this work: the
C++ operational models (COM) and the support for exception
handling. It describes an abstraction of the Standard Template
Libraries (STL), which replaces them during the verification
process to reduce complexity while checking whether a given
program uses the STL correctly. Finally, it presents novel
approaches to handle critical features of exception handling
in C++ (e.g., unexpected and termination function handlers).
We also compare ESBMC against LLBMC, a state-of-the-art
bounded model checker based on SMT solvers, and DIVINE,
a state-of-the-art explicit-state model checker, both for C and
C++ programs. Our experimental evaluation contains a broad
set of benchmarks with over 1,500 instances, where ESBMC
reaches a success rate of 84.27% (in approximately 4 hours),
outperforming LLBMC and DIVINE.

For future work, we intend to extend ESBMC coverage in
order to verify C++11 programs, rewrite our front-end using
clang to generate the program abstract syntax tree (AST), and
develop a conformance testing procedure to ensure that our
COM conservatively approximates the STL semantics.

REFERENCES

[1] F. R. Monteiro, M. R. Gadelha, and L. C. Cordeiro, “Model checking c++
programs,” Software Testing, Verification and Reliability, vol. 32, no. 1,
p. 1793, 2022.

[2] M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and
D. A. Nicole, “ESBMC 5.0: An industrial-strength C model checker,” in
Automated Software Engineering, 2018, pp. 888-891.

