
AIREPAIR: A Repair Platform for Neural Networks
Xidan Song∗, Youcheng Sun∗, Mustafa A. Mustafa∗†, Lucas C. Cordeiro∗‡

∗Department of Computer Science, University of Manchester, UK
†imec-COSIC, KU Leuven, Belgium

‡Federal University of Amazonas, Brazil
∗{xidan.song, youcheng.sun, mustafa.mustafa, lucas.cordeiro}@manchester.ac.uk

Abstract—We present AIREPAIR, a platform for repairing
neural networks. It features the integration of existing network
repair tools. Based on AIREPAIR, one can run different repair
methods on the same model, thus enabling the fair compari-
son of different repair techniques. In this paper, we evaluate
AIREPAIR with five recent repair methods on popular deep-
learning datasets and models. Our evaluation confirms the utility
of AIREPAIR, by comparing and analyzing the results from
different repair techniques. A demonstration is available at
https://youtu.be/UkKw5neeWhw.

I. INTRODUCTION

As neural networks are widely applied in various areas,
insufficient accuracy, adversarial attack, and data poisoning,
among others, threaten the development and safe deployment
of neural network applications [1]. Unlike traditional software,
a neural network model is not programmed manually by
software developers. Instead, its parameters are automatically
learned from training data. As a result, these models’ defects
cannot be easily fixed.

Many repair techniques and tools, like DeepRepair [2],
DL2 [3], Apricot [4], DeepState [5] and RNNRepair [6] have
been proposed to automatically fix the defects found in a
neural network Naturally, the neural network repair has two
objectives: correcting the model’s wrong behaviors on failed
tests while not comprising its original performance on passing
tests. Existing repair techniques can be classified into three
categories: retraining/fine-tuning, direct weight modification,
and architecture extension.

In the first category of repair methods, the idea is to
retrain or fine-tune the model for the corrected output with
the identified misclassified input. Typical methods include
counterexample-guided data augmentation, which adds mis-
classified examples iteratively to the training datasets [7]. The
editable training in [8] aims to efficiently patch a mistake
of the model on a particular sample, and the training input
selection in [9] emphasizes selecting high-quality training
samples for fixing model defects. DeepRepair [2] implements
transfer-based data augmentation to enlarge the training dataset
before fine-tuning the models. RNNRepair [6] and Deep-
State [5] also augment the datasets and perform retraining to
improve the performance of the neural network models; they
are specifically designed to repair the Reconcurrent Neural
Network (RNN) [10] models.

The methods in the second category calculate new weight
values of the model to fix erroneous nodes in the neural

network, to improve the classification accuracy, or to satisfy
safety properties. In [11] and [12], SMT solvers are used
for solving the weight modification needed at the output
layer for the neural network to meet specific requirements
without any retraining. In [13], the repair method localizes the
faulty neuron weights and optimizes the localized weights to
correct the model misbehavior by Particle Swarm Optimisation
algorithm. The Apricot tool [4] adjusts the weights of a model
with the feedback from a set of so-called reduced models
trained with subsets of training data.

Repair techniques in the third category extend a given
neural network architecture, e.g., by introducing more weight
parameters or repair units, to facilitate more efficient repair.
PRDNN [14] introduces Decoupled DNNs, a new DNN ar-
chitecture that enables efficient and effective repair. DeepCor-
rect [15] corrects the worst distortion-affected filter activations
by appending correction units. DL2 [3] implements neural net-
works that can train with constraints that restrict inputs outside
the training set. Researchers have used these different methods
to develop many repair tools. Different repair tools run on
different environments with customized configurations. They
accept different input formats and produce various outputs. It
can be challenging to figure out which repair tool and setting to
use. To make it easier for users to configure appropriate repair
methods and parameters, we developed a neural network repair
platform – AIREPAIR. It can automatically repair trained
models using different methods. We believe that AIREPAIR
would be helpful for developers who want to improve their
neural networks and those interested in evaluating their new
repair methods.

The main contributions of this paper are three-fold:
• We develop AIREPAIR for integrating and evaluating ex-

isting (and future) repair techniques on neural networks.
• We benchmark five repair techniques on 11 types of

neural network models across four datasets.
• We make AIREPAIR and its benchmark publicly avail-

able: https://github.com/theyoucheng/AIRepair

II. AIREPAIR DESCRIPTION

A. Overview

The motivation for AIREPAIR is to develop a platform for
testing and evaluating different repair methods in a compatible
way. As illustrated in Fig. 1, AIREPAIR accepts the trained
models and the training datasets if they are specified in the

https://youtu.be/UkKw5neeWhw
https://github.com/theyoucheng/AIRepair

Configure

Environment

Model

Conversion

Pre-Processing

Retraining/Fine-

turning

Direct Weight

Modification

Architecture

Extension

Repair

Models

Datasets

Accuracy

Confusion Accuracy

Constraints Accuracy

...

Evaluate Compare Output Models

performance

improved?

Tool Input

Fig. 1: The AIREPAIR Architecture.

configuration. It performs pre-processing on different bench-
marks to make them capable of different frameworks. Pre-
processing isolates different running environments for various
deep learning libraries, e.g., TensorFlow [16] or PyTorch [17].
After the repair, AIREPAIR collects the results and analyses
them automatically, which is done by examining the outputs
and experimental logs. Finally, it presents the results for the
user to decide which repairing tool suits their models. The
output from AIREPAIR includes the repaired model combined
with the logs and parameters.

B. Modular View

In this part, we detail each component in AIREPAIR: 1)
input, 2) pre-processing, 3) repair, and 4) evaluation.

1) Input: The input to our platform is trained neural net-
work models and testing or training datasets depending on the
repair method configured. AIREPAIR accepts fully connected
feed-forward neural networks and convolutional neural net-
works in popular deep learning model formats such as .pth
and .pt from PyTorch, and .pb, and .h5 from TensorFlow +
Keras [18]. Our platform has been tested on standard datasets
like MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100.

2) Pre-processing: This component converts neural net-
work models between different formats, configures the running
environments for various underlying repair tools, and evaluates
the models before repair.

3) Repair: Based on the input and pre-processing, the
repair component configures and calls the underlying repair
methods to perform repairs on the input models. During re-
pair, it monitors the hardware resource consumption, displays
messages for the status of the repair procedure, and saves the
logs for evaluation.

4) Evaluation: This component measures the performance
of a model before and after repair. There are several metrics for
characterizing a model’s performance, from complementary
perspectives, including the model’s (classification) accuracy,
constraint accuracy [3], and confusion accuracy. The con-
straint accuracy describes the percentage of predictions given
by the model that satisfies the constraint associated with the
problem, which requires that the probabilities of groups of

classes have either a very high or a very low probability.
The confusion accuracy is defined as P = TP

TP+FP , where TP
and FP are True Positive and False Positive classifications.
These two metrics evaluate the model’s robustness. Data
augmentation of different kinds of blurs (glass, motion, and
zoom) [19] can be applied on the input dataset when collecting
these metrics.

Typically, existing repair tools take some misclassified
inputs, and the repair goal is to correct those erroneous
nodes. Each repair method often focuses on improving the
performance according to one type of evaluation metric. The
AIREPAIR tool integrates different repair methods and differ-
ent performance metrics, to give a comprehensive view when
repairing a neural network model.

5) Output: AIREPAIR delivers the repaired models after
repair and the resulting configurations for each repair method
that will be stored in log files.

C. Example Usage

At the first step, we encourage one to train the baseline
model using the script ('train baseline.py') provided. Subse-
quently, one can configure and run different network repair
tools with AIREPAIR:

py thon AIRepa i r . py [− h] [−− a l l]
[−− n e t a r c h NETARCH] [−− d a t a s e t DATASET]
[−− p r e t r a i n e d PATH AND FILENAME]
[−− d e p t h DEPTH]
[−− method METHOD] [−− a u t o]
[−− a d d i t i o n a l p a r a m PARAM]
[−− i n p u t l o g s INPUT LOGS]
[−− t e s t o n l y]

For example, the setup below configures and runs AIRE-
PAIR with three repair methods, Apricot, DeepRepair, and
DL2, as discussed in Section I. They are applied to repair
a model named 'cifar10 resnet34' with the CIFAR-10 dataset.

py thon AIRepa i r . py −−method a p r i c o t
d e e p r e p a i r d l 2 −− p r e t r a i n e d
c i f a r 1 0 r e s n e t 3 4 b a s e l i n e . p t −− d a t a s e t
c i f a r 1 0 −− n e t a r c h r e s n e t −− d e p t h 34

In particular, when using '--pre-trained' to specify the path
of a trained neural network model to repair, users need to
specify the model’s architecture as well as depth. PyTorch
has two different methods to save the trained model: saving
the entire model or saving the state dict or checkpoint. When
loading the neural network model, AIREPAIR needs to know
its structure for the second method. It has the built-in structure
definition for ResNet families and several convolutional neural
networks for MNIST and Fashion-MNIST. Hence, users only
need to specify the net architecture and depth when loading
the state dict. For the architectures that do not belong to
these three models, users either provide the entire model
or customize AIREPAIR’s pre-processing module. Currently,
AIREPAIR can process both feed-forward neural networks and
convolutional neural networks.

The parameter '--net arch' specifies the architecture of mod-
els, and '--dataset' selects the corresponding dataset (that are

TABLE I: AIRepair results: The best accuracy (Acc.) and constrains accuracy (Const.) improvement for each model is
highlighted in % and % separately.

Datasets CIFAR-10 CIFAR-100 MNIST Fashion-MNIST

Models ResNet18 ResNet34 ResNet50 ResNet18 ResNet34 ResNet50 MNIST Fashion-MNIST

Baselines Acc. 92.05% 91.34% 94.42% 46.84% 44.16% 47.36% 99.45% 92.20%
Const. 90.51% 90.27% 90.66% 86.62% 85.95% 85.21% 99.96% 100%

Apricot Acc. -2.65% -0.38% -3.4% +9.02% +13.74% +11.15% +0.06% +0.61%

DeepRepair Acc. +0.5% -1.27% -4.14% +10.91% +21.42% +20.32% +0.17% +0.47%
Const. -9.46% -8.82% -12.77% -37.62% -34.95% -29.71% -0.43% -4.10%

DL2 Acc. -2.16% +0.23% -1.95% +0.87% +1.17% -1.16% +0.08% +0.28%

Const. +9.3% +9.61% +5.4% -0.49% -0.89% -0.4% +2.55% +6.27%

needed for retraining/refining or attaching correction units).
These are as discussed in Section II-B1. The specific repair
method (tool) can be specified using '--method', and '--auto'
will automatically invoke the repair using the default param-
eters for the selected repair methods. For example, it sets
the following configurations for DeepRepair method to repair
ResNet34 trained on CIFAR-10 dataset.

−− b a t c h s i z e 128 −− l r 0 . 1 −−lam 0
−− e x t r a 128 −−epoch 60 −− b e t a 1 . 0
−− cu tmix p rob 0 −− r a t i o 0 . 9

Alternatively, one can use '-–additional param' to customize
these parameters, which will substitute these default settings.
The '--testonly' option is for evaluating a model without any
repair procedure; users can use it before or after repair to
check the model’s performance. The evaluation metrics include
accuracy, confusion, and constraint accuracy. For convenience,
'python AIRepair.py --all' runs all the repair methods on all
available models 1 with default parameters automatically. Note
that this option requires substantial computing power.

III. EXPERIMENT

A. Experimental Setup

We ran experiments on a machine with Ubuntu 18.04.6
LTS OS Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz and
two Nvidia Quadro RTX 6000 GPUs. Five repair methods,
Apricot [4], DeepRepair [2], DL2 [3], DeepState [5], and
RNNRepair [6], are chosen as baselines. They are applied
to repair a benchmark of 11 neural network models (includ-
ing ResNet models [20]) with four datasets MNIST [21],
Fashion-MNIST [22], CIFAR-10 and CIFAR-100 [23]. Users
can invoke it by specifying '--auto' as discussed in Section
II-C. We repeat the same experiment three times to eliminate
randomness in repair methods.

B. Results

Table I shows the complete AIREPAIR results of 3 repair
methods on 8 neural networks (columns) from 4 datasets.
We measured the performance by accuracy and constraint
accuracy. The baseline represents each model’s actual perfor-
mance, and for each repair method, we report the absolute

1https://zenodo.org/record/7627801#.Y-X6g3bP3tU

performance increment or decrement after repair. Apricot
repairs a neural network by directly modifying its weights
parameter values. DeepRepair and DL2 belong to the cate-
gory of retraining and architecture extension, respectively, for
repairing neural networks. The three baselines are selected to
represent all 5 categories of neural network repair methods, as
discussed in Section I.

For the models trained on CIFAR-10, we can see that DL2
brings the highest constrains accuracy (Const.) improvement,
while this often comes with slight drops in the plain accuracy
(Acc.). The adversarial robustness and the plain accuracy are
two contradicting goals [24]. Besides, the performance of the
CIFAR-10 models drops to different extents by Apricot and
DeepRepair. Apricot is not designed to improve the constrains
accuracy of models. We do not evaluate the constrains accu-
racy metrics on models repaired by Apricot.

At the same time, Apricot and DeepRepair have better im-
provements on CIFAR-100 neural network models. This indi-
cates that when the original model’s performance is relatively
low, the Apricot and DeepRepair are more effective. Moreover,
as the ResNet models become deeper, from 18 layers to
50 layers, DeepRepair can improve accuracy by sacrificing
constraint accuracy. DL2 has no significant improvement in
performance this time.

The original implementations for Apricot, DeepRepair, and
DL2 do not support models trained on MNIST and Fashion-
MNIST, so we created patches to integrate them into AIRE-
PAIR for pre-processing and repairing these datasets and
models. As shown in Table I (last two columns), all three
repair methods result in noticeable performance improvements
of different levels for MNIST and Fashion-MNIST models,
even though the original networks’ performance is already
high (99.45% and 92.20% respectively).

In summary, there are some general observations from the
experiments. There is no single best repair method on all
benchmarks and on all evaluation metrics. Different repair
methods seem to complement each other highly, and this
would motivate future “combined repair” of neural network
models, for which AIREPAIR can serve as the test bed. Mostly,
as expected, less complex neural networks (MNIST/Fashion-
MNIST in Table I) and lower performance models (CIFAR-
100 examples in Table I) are easier to repair. We still regard

https://zenodo.org/record/7627801##.Y-X6g3bP3tU

them as valuable observations, as they confirm that AIREPAIR
is a valid platform for benchmarking different repair methods.

More neural network architectures: We also tested
AIREPAIR on three RNN-based architectures. We apply Deep-
State and RNNRepair to repair LSTM, BLSTM, and GRU
models trained on MNIST. The baseline model classification
accuracy is 98.6%, 98.54%, and 98.93%. DeepState slightly
improves the accuracy of these models by 0.05%, 0.19%, and
0.18%, whereas the model accuracy drops by 0.09%, 0.06%,
and 0.33% when using RNNRepair.

C. Discussions

Based on AIREPAIR experiments, when encountering the
performance anomaly of a neural network model, we suggest
using neural network repair methods in the following order:
1) direct weight modification, 2) fine-tuning/retraining, and 3)
attaching a new repair structure into the model.

For simpler neural networks like models trained on MNIST
and Fashion-MNIST datasets, we put direct weight modifi-
cation as a higher priority for repair. This repair does not
require training/testing datasets and can be done without GPU
hardware. However, it may face more significant challenges
when repairing a trained model with high performance.

For complex convolutional models such as ResNets with
millions of parameters, direct weight modification is more
likely to encounter the search space explosion problem. In
such cases, retraining/refining-based repair methods can still
be applied without altering the neural network’s structure.
However, they may require more powerful hardware support.

If there is over-fitting during the retraining procedure or
even further improvement is needed for the repair, or the
models need to improve specific constraint accuracies, one
could consider attaching repairing units.

Determining which repair method to use may depend on the
NN application scenarios. For example, NN models trained
on the MNIST dataset recognize handwriting materials, while
models trained on ImageNet are designed to be used on image-
based searches. We suggest referring to the above discussion
and prioritizing the selection of the appropriate repair accord-
ing to the characteristics and types of models. Another unique
use case is the quantized neural network models used in mobile
and embedded devices.

IV. CONCLUSION

We present AIREPAIR, a comprehensive platform for re-
pairing neural networks, and it can test and compare different
neural network repair methods. This paper gives the results
of five existing neural network repair tools integrated into
AIREPAIR. Although AIREPAIR is an early prototype, it
shows promising results. We will support and test more neural
network repair methods and propose a unified interface for
developers to test and benchmark their repair methods.

ACKNOWLEDGEMENTS

This work is funded by the EPSRC grant EP/T026995/1
“EnnCore: End-to-End Conceptual Guarding of Neural Ar-
chitectures”. The Dame Kathleen Ollerenshaw Fellowship of
The University of Manchester supports M. A. Mustafa.

REFERENCES

[1] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu,
and X. Yi, “A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability,” Computer Science Review, vol. 37, p. 100270, 2020.

[2] B. Yu, H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, and J. Zhao,
“Deeprepair: Style-guided repairing for deep neural networks in the real-
world operational environment,” IEEE Transactions on Reliability, 2021.

[3] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, and
M. Vechev, “DL2: Training and querying neural networks with logic,”
in ICML, 2019.

[4] H. Zhang and W. Chan, “Apricot: A weight-adaptation approach to fixing
deep learning models,” in ASE. IEEE, 2019.

[5] Z. Liu, Y. Feng, Y. Yin, and Z. Chen, “DeepState: selecting test suites
to enhance the robustness of recurrent neural networks,” in ICSE, 2022.

[6] X. Xie, W. Guo, L. Ma, W. Le, J. Wang, L. Zhou, Y. Liu, and X. Xing,
“Rnnrepair: Automatic rnn repair via model-based analysis,” in ICML,
2021.

[7] T. Dreossi, S. Ghosh, X. Yue, K. Keutzer, A. Sangiovanni-Vincentelli,
and S. A. Seshia, “Counterexample-guided data augmentation,”
arXiv:1805.06962, 2018.

[8] A. Sinitsin, V. Plokhotnyuk, D. Pyrkin, S. Popov, and A. Babenko,
“Editable neural networks,” arXiv:2004.00345, 2020.

[9] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “MODE: automated
neural network model debugging via state differential analysis and input
selection,” in ESEC/FSE, 2018.

[10] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer
feed-forward neural networks,” Chemometrics and intelligent laboratory
systems, vol. 39, no. 1, pp. 43–62, 1997.

[11] B. Goldberger, G. Katz, Y. Adi, and J. Keshet, “Minimal modifications
of deep neural networks using verification.” in LPAR, 2020, p. 23rd.

[12] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. S. Păsăreanu, “Nn
repair: Constraint-based repair of neural network classifiers,” in CAV.
Springer, 2021, pp. 3–25.

[13] J. Sohn, S. Kang, and S. Yoo, “Arachne: Search based repair of deep
neural networks,” TOSEM, 2022.

[14] M. Sotoudeh and A. V. Thakur, “Provable repair of deep neural net-
works,” in PLDI, 2021.

[15] T. S. Borkar and L. J. Karam, “Deepcorrect: Correcting dnn models
against image distortions,” IEEE Transactions on Image Processing,
vol. 28, no. 12, pp. 6022–6034, 2019.

[16] M. Abadi, P. Barham, Chen et al., “{TensorFlow}: a system for {Large-
Scale} machine learning,” in USENIX OSDI, 2016.

[17] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style,
high-performance deep learning library,” NeurIPS, 2019.

[18] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[19] A. Laugros, A. Caplier, and M. Ospici, “Are adversarial robustness
and common perturbation robustness independant attributes?” in ICCV,
2019.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[21] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, 2012.

[22] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms,”
arXiv:1708.07747, 2017.

[23] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[24] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “There
is no free lunch in adversarial robustness (but there are unexpected
benefits),” arXiv:1805.12152, vol. 2, no. 3, 2018.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

	Introduction
	AIRepair Description
	Overview
	Modular View
	Input
	Pre-processing
	Repair
	Evaluation
	Output

	Example Usage

	Experiment
	Experimental Setup
	Results
	Discussions

	Conclusion
	References

