
ESBMC-Solidity: An SMT-Based Model Checker for Solidity
Smart Contracts

Kunjian Song
Nedas Matulevicius
University of Manchester

Manchester, UK
kunjian.song@postgrad.manchester.ac.uk
nedas.matulevicius@postgrad.manchester.ac.uk

Eddie B. de Lima Filho
TPV Vision Innovator

Manaus, Brazil
eddie_batista@yahoo.com.br

Lucas C. Cordeiro
University of Manchester

Manchester, UK
lucas.cordeiro@manchester.ac.uk

ABSTRACT
Smart contracts written in Solidity are programs used in blockchain
networks, such as Etherium, for performing transactions. However,
as with any piece of software, they are prone to errors and may
present vulnerabilities, which malicious attackers could then use.
This paper proposes a solidity frontend for the efficient SMT-based
context-bounded model checker (ESBMC), named ESBMC-Solidity,
which provides a way of verifying such contracts with its frame-
work. A benchmark suite with vulnerable smart contracts was
also developed for evaluation and comparison with other verifica-
tion tools. The experiments performed here showed that ESBMC-
Solidity detected all vulnerabilities, was the fastest tool and pro-
vided a counterexample for each benchmark. A demonstration is
available at https://youtu.be/3UH8_1QAVN0.

CCS CONCEPTS
• Software and its engineering → Model checking; Software
verification.

KEYWORDS
Formal Verification, Solidity
ACM Reference Format:
Kunjian Song, Nedas Matulevicius, Eddie B. de Lima Filho, and Lucas C.
Cordeiro. 2022. ESBMC-Solidity: An SMT-Based Model Checker for Solidity
Smart Contracts. In 44th International Conference on Software Engineering
Companion (ICSE ’22 Companion), May 21–29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.3516855

1 INTRODUCTION
The blockchain system is a distributed ledger technology that forms
the primary mechanism behind Bitcoin, Ethereum, and alternative
cryptocurrencies [1]. It can be considered as a singly linked list
of blocks [2], where each of them contains a set of unmodifiable
transactions. This way, such a technology serves as a distributed
tamper-resistant record of such transactions [3]. Ethereum, for
instance, can be regarded as a state machine whose global state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516855

is updated by those transactions, which indeed constitute state
transitions.

The transactions are performed by smart contracts, which are
programs automatically executed on blockchain networks when
specific conditions are met [1], which encode business logic. For
instance, such conditions can be an exchange of cryptocurrency or
even a process of content unlocking if a digital rights management
system is involved. Indeed, transactions act as stimuli to smart
contracts. Nevertheless, such contracts must first be written in a
given language. In the case of Etherium, smart contracts are written
in Solidity, which is an object-oriented language for programs to
be run on the Ethereum virtual machine (EVM) [2].

Once deployed, there is no way to update a smart contract except
for deleting it entirely and re-deploying a new one. Even a smart
contract’s author cannot modify the corresponding source code
or fix bugs after that [4]. Due to such immutability, it is critical
to ensure that a smart contract is secure before its deployment
on a blockchain network, such as Ethereum. However, as usually
happens to software, smart contracts suffer from vulnerabilities,
which represent a risk as malicious attackers often exploit them. As
an example, the DAO attack, in 2016, resulted in a monetary loss of
more than $50 million dollars, which forced Ethereum to be hard
forked and then rolled back to a previous state [5].

If there can be vulnerabilities, software testing becomes para-
mount, and the community has already begun to tackle the related
problems [6, 7]. However, most approaches target only a limited
number of errors, which worsens as new applications appear and
the need for specific aspects arises. Consequently, it is essential to
employ mature and flexible verifiers, e.g., based on model checking
and satisfiability modulo theories (SMT), to check smart contracts.
This way, a myriad of problems is already handled, and consequent
methodology advancements can be devised faster, including behav-
ior models and specific properties [8].

In that sense, the efficient SMT-based context-bounded model
checker (ESBMC) is a good candidate [9, 10]. It is a state-of-the-art
(SOTA) checker, which can be extended to support different pro-
gramming languages and target systems, such as digital filters and
controllers, even incorporating behavior models and companion
tools [8, 11, 12]. In addition, it was initially devised as a C-language
model checker and has been evaluated using standard benchmarks
and embedded applications in the telecommunication industry [13–
15]. Recent efforts include the development of a new frontend to
verify the most recent C++ standard [16].

This paper tackles the problem raised here, i.e., smart-contract
verification, and proposes a frontend for ESBMC based on the newly

https://youtu.be/3UH8_1QAVN0
https://doi.org/10.1145/3510454.3516855
https://doi.org/10.1145/3510454.3516855

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Song, et al.

Figure 1: Architectural overview of ESBMC with its extension for verifying Solidity smart contracts. The new frontend takes
Solidity JSON AST as input and converts the AST into ESBMC’s IR, which is used to generate the symbol table. It then generates
the GOTO program, which is symbolically executed to generate the program SSA form. Finally, the logical equations to represent
the constraints (C) and properties (P) are created from the SSA form. The SMT solver finds the satisfiability of the equations
only when there is a violation of the safety property; otherwise, the smart contract is considered safe up to the bound 𝑘 .

developed Grammar-based Hybrid Conversion methodology explic-
itly developed for this work. It enables ESBMC to verify Solidity con-
tracts, written in the Solidity language, using its available tools and
techniques via two steps. First, we convert Solidity JavaScript object
notation (JSON) abstract syntax trees (AST) into the ESBMC’s in-
termediate representation (IR). Second, we integrate with ESBMC’s
infrastructure middleware and backend to reuse its existing SMT-
based verification strategies (incremental and k-induction [17]).

In order to evaluate the proposed framework, named ESBMC-
Solidity, a benchmark suite with vulnerable smart contracts was
created and used as input for it and other SOTA Solidity verification
tools: Smartcheck [18], Slither [19], Oyente [20], and Mythril [21].
ESBMC-Solidity outperformed the mentioned verification tools in
soundness and performance. Besides, it identified all vulnerabilities,
with a counterexample for each, and proved the fastest approach.

2 TOOL DESCRIPTION
2.1 Tool Overview
Fig. 1 illustrates the architecture of ESBMC-Solidity, where the
gray box with solid border represents the new frontend, and the
white ones constitute the existing ESBMC’s components. The gray
box with a dashed border indicates an external element for prepro-
cessing smart contracts: the Solidity compiler. It is used for lexical
analysis and parsing, taking a smart contract as input and then
transforming it into JSON AST, which is done with the argument
--ast-compact-json.

The proposed approach takes JSON AST and converts each Solid-
ity AST of its nodes into an equivalent IR one, using the ESBMC’s
irept, a tree-structured IR that preserves a program’s semantics.
Next, each irept node is converted into the corresponding sym-
bol and then added to a table, which is translated into a GOTO
program. Then, the latter is processed by the symbolic execution
engine (SymEx) to generate its static single assignment (SSA) form,
which is used to generate verification conditions (VCs) 𝐶 ∧ ¬𝑃 ,
where 𝐶 represents constraints and 𝑃 denotes a safety property.
Lastly, ESBMC uses off-the-shelf SMT solvers to verify those VCs’
satisfiability.

If a property is satisfiable, an execution path leads to a bug in
an original Solidity smart contract. Then, when ESBMC detects it,
a counterexample is provided, in the form of state traces, to allow
its reproduction. It is worth noticing that ESBMC supports sev-
eral SMT solvers, including Z3 [22], Bitwuzla [23], Boolector [24],
MathSAT [25], CVC4 [26], and Yices [27, 28].

2.2 The Grammar-Based Hybrid Conversion
Methodology

Given a smart contract as input, the goal of the proposed frontend
is to populate the resulting symbol table, where each symbol is
represented by the ESBMC’s symbolt data structure [28]. Further-
more, it shall complete the type-checking procedure of Solidity
AST nodes and transform each JSON AST node into its equivalent
ESBMC’s irept one while preserving the associated semantic infor-
mation. To achieve this goal, we developed this frontend based on
the Grammar-Based Hybrid Conversion methodology [29], as an
approach specifically devised for that during the development of
this work.

Grammar-Based Conversion. The proposed frontend uses the
library nlohmann/json1 to process Solidity ASTs in JSON format.
When traversing Solidity AST nodes, it uses different functions to
transform them into equivalent 𝑖𝑟𝑒𝑝_𝑡 ones, e.g., get_var_decl_stmt,
get_expr, and get_statement, for variable-declaration-statement, ex-
pression, and statement nodes, respectively. Besides, each AST node
may contain multiple child ones, e.g., the AST node of a for loop
contains four child nodes: initialisation, condition, increment, and
loop body. So, during their conversion, the production rules in So-
lidity grammar documentation are followed [29], so that they are
visited in correct order. For instance, the variable-initialisation node
of a for loop must be visited before the body one, as it may be refer-
enced by the latter. If the node for a body loop is converted before
its variable initialisation, the type checker will fail to handle any
reference to it; so, conversion order is guided by production rules.

Hybrid conversion. Three functions must be supported: (1)
𝑎𝑠𝑠𝑒𝑟𝑡 () for defining safety properties; (2) 𝑎𝑠𝑠𝑢𝑚𝑒 () for defining

1JSON for Modern C++ - https://github.com/nlohmann/json

ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart Contracts ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

constraints; and (3)𝑛𝑜𝑛𝑑𝑒𝑡 () for assigning non-deterministic values
to variables. Consequently, they are implemented by ESBMC as
C-style declarations. However, the new frontend works with JSON
AST nodes. Besides, since there are more than 70 intrinsic decla-
rations, e.g., forward declarations for nondeterministic types, we
instantiate the existing ESBMC’s clang frontend to convert those
into irept nodes to avoid replication, hence generating the symbol
table mentioned before. Finally, the latter is further merged with
the symbol table generated from the original Solidity AST.

2.3 Illustrative Example

1 // SPDX -License -Identifier: GPL -3.0
2 pragma solidity >=0.4.26;
3 contract MyContract {
4 uint8 x;
5 uint8 sum;
6 function nondet () public pure
7 returns(uint8) {
8 uint8 i;
9 return i;
10 }
11 function __ESBMC_assume(bool)
12 internal pure { }
13 function func_sat () external {
14 x = 0;
15 uint8 y = nondet ();
16 sum = x + y;
17 __ESBMC_assume(y < 255);
18 __ESBMC_assume(y > 220);
19 __ESBMC_assume(y != 224);
20 assert(sum % 16 != 0);
21 }
22 }

Figure 2: An example smart contract written in Solidity. In
order to instrument the code, the developers need to add the
hooks as pure functions in the smart contract. The property
is specified using the assert function.

Fig. 2 shows an example of smart-contract verification with
ESBMC-Solidity. Indeed, developers can instrument code by adding
the hooks, e.g., nondet for nondeterministic integers between 0
and 255 and __ESBMC_assume for additional constraints. Those
help developers narrow down the scope for triggering a bug, hence
identifying a set of breaking inputs. Function func_sat is the one we
need to verify, where two state variables x and sum are defined in
lines 4 and 5, respectively, while a safety property indicates that x +
y should not be a multiple of 16. In addition, constraints are added
using __ESBMC_assume, in lines 17, 18, and 19, which restrict 𝑦 as
any integer between 220 and 255, but 224. Then, ESBMC will check
whether there exists an execution path that satisfies its negation.
This way, the verification of func_sat becomes a satisfiability prob-
lem: given the binary operation expression “sum = x + y”, where x
is 0 and y is a constrained nondeterministic value, find an execution
path where the negation of “𝑠𝑢𝑚%16! = 0” is satisfied. ESBMC is
then invoked with

esbmc <JSON AST> --function func_sat \
--contract <contract source code> --z3

For the smart contract in Fig. 2, ESBMC generates the 𝐶 and
𝑃 equations as described in Eq. (1) for constraints and Eq. (2) for
property. Eq. (1) shows a conjunction of the constraints represented
by assignments. When generating its SSA form, ESBMC uses the
temporary variable temp to represent the left-hand-side of the safety
property specified in line 20, which corresponds to the assignment
𝑡𝑒𝑚𝑝 = 𝑠𝑢𝑚%16 in Eq. (1).

𝐶 =

𝑦 = 𝑛𝑜𝑛𝑑𝑒𝑡 ()
∧ 𝑠𝑢𝑚 = 𝑦

∧ 𝑦 ! = 224
∧ 𝑡𝑒𝑚𝑝 = 𝑠𝑢𝑚%16

 (1)

𝑃 =
[
𝑡𝑒𝑚𝑝 ! = 0

]
(2)

The resulting VC for satisfiability verification, via SMT solver, is
then formed by 𝐶 ∧ ¬𝑃 . Consequently, ESBMC reports a property
violation and provides a counterexample that contains a trace of
states showing the set of assignments and the breaking values that
trigger such violation, where 𝑦 is set with a value 240 as illustrated
in Fig. 3.

1 Counterexample:
2
3 State 1 file example.sol line 15 function func_sat
4 --
5 y = 240
6
7 State 2 file example.sol line 16 function func_sat
8 --
9 sum = 240
10
11 State 6 file example.sol line 20 function func_sat
12 --
13 Violated property:
14 file example.sol line 20 function func_sat
15 assertion
16 sum % 16 != 0
17
18
19 VERIFICATION FAILED

Figure 3: ESBMC-Solidity provides the counterexample,
showing the breaking value of y, violating the property
“𝑠𝑢𝑚%16! = 0”.

3 EVALUATION AND BENCHMARKS
ESBMC-Solidity, though an early prototype, that yet covers all pro-
duction rules, can detect vulnerabilities listed in the smart-contract
weakness classification (SWC) registry [31]. So, our evaluation aims
to answer three questions.
EQ1 (soundness). Is our approach able to report a confirmed bug

in a smart contract?
EQ2 (performance). Does our approach find a bug in a reason-

able amount of time?
EQ3 (bug reproduction). Is our approach able to provide a coun-

terexample to help reproduce a specific bug?

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Song, et al.

Table 1: Experimental results, where column “Found” indicates whether a bug was detected, followed by column “CE” showing
whether a counterexample was provided. The line “Total Time” represents the CPU time [30] used for verification.

TC SmartCheck Slither Oyente Mythril ESBMC-Solidity
Found CE Found CE Found CE Found CE Found CE

TC1 No - No - No - Yes No Yes Yes
TC2 No - No - No - Yes No Yes Yes
TC3 No - No - No - Yes No Yes Yes
TC4 No - No - No - Yes No Yes Yes

TC5 Yes N/A Yes N/A
Failed to
compile - Yes N/A Yes N/A

TC6 No - No - No - Yes No Yes Yes
TC7 No - No - No - Yes No Yes Yes
TC8 No - No - No - Yes No Yes Yes

Total Time 1.160s 0.519s 1.116s 3.106s 0.183s

3.1 Benchmark Suite Design
A benchmark suite that contains bugs in smart contracts was devel-
oped to evaluate ESBMC-Solidity and compare it with other SOTA
verification tools [32]. The design of each test case (TC) was guided
by the SWC registry [31], as shown in Table 2, while Table 1 shows
that all bugs in TCs were detected and confirmed by at least one of
the non-ESBMC tools. The test suite and logs are publicly available
in Zenodo.2

Table 2: Test case design based on SWC registry [31].

SWC Bug ID Vulnerability TC

SWC-101 Integer Overflow TC1,2
Integer Underflow TC3,4

SWC-115 Authorization through tx.origin TC5

SWC-110 Static array out-of-bounds TC6
Dynamic array out-of-bounds TC7,8

3.2 Results
Table 1 shows results for ESBMC-Solidity and other tools. The
former found bugs in all TCs confirmed by Mythril, which affirms
EQ1. SmartCheck and Slither were able to confirm TC5, which
contains a vulnerability reported in the security considerations3,
while detected none for the other TCs. Oyente did not find any bug.
Mythril, a tool used in the service MythXTM [21], also reported
bugs in all TCs.

Apart from TC5, Mythril and the other non-ESBMC tools failed
to provide a counterexample for each TC. However, ESBMC-Solidity
did, which affirms EQ3. For TC5, a counterexample is not needed,
as a tool should only inform that authorization via 𝑡𝑥 .𝑜𝑟𝑖𝑔𝑖𝑛 must
be avoided. One possible reason for the missing counterexamples
could be loss of the original Solidity syntax, as tools either use EVM
bytecode, e.g., Oyente and Mythril or rely on various forms of IR
that do not preserve the original Solidity declaration references
needed for state tracing, e.g., SmartCheck and Slither.

2https://doi.org/10.5281/zenodo.5721726
3https://docs.soliditylang.org/en/v0.8.6/security-considerations.html

ESBMC-Solidity is the fastest tool, as can be seen in the last line of
Table 1, which thus affirms EQ2. Oyente and Mythril work on EVM
bytecode and employ simulation for execution path-exploration [33],
which might be the reason why they are slower than ESBMC-
Solidity. Apart from bug detection, Slither also provides code op-
timization [19], which might add to the total verification time. To
the best of our knowledge, there is no option in Slither to disable
the optimization. SmartCheck is implemented in Java, converts
Solidity code into an XML-based IR, and uses XPath to query it,
while ESBMC-Solidity is implemented purely in C++.

Overall, ESBMC-Solidity presented the best results, reporting
bug found in all test cases in 0.183 seconds, faster than other SOTA
tools, which answers EQ1 nad EQ2. Regarding the counterexample,
ESBMC was the only tool that successfully provided counterexam-
ples for the applicable test cases in our experiment.

4 RELATEDWORK
Among the tools we evaluated, Mythril and Oyente use SMT-based
symbolic execution to check EVM bytecode and also simulate a
virtual machine for execution-path exploration, which might lead
to performance degradation [33]. ESBMC-Solidity also uses SMT
solvers as backends, but it processes ASTs, so there is no need for
environment simulation.

A similar tool that also adopts SMT encoding and solvers to find
satisfiability for a property violation is discussed by Alt and Re-
itwiessner [33]. They developed a component to translate programs
into smtlib2 formulae to interface with SMT solvers via their C++
interfaces [33]. The main difference between it and ESBMC-Solidity
is that the latter supports code instrumentation, using special func-
tions, which narrows down the scope of inputs that trigger viola-
tions. In addition, ESBMC-Solidity can also be extended on top of
various existing verification strategies and reasoning techniques
provided by ESBMC, such as k-induction [17].

5 CONCLUSIONS
We presented ESBMC-Solidity that checks memory safety and user-
defined properties in smart contracts written in the Solidity pro-
gramming language. We evaluated ESBMC-Solidity against other

ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart Contracts ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

SOTA verification tools and overcame them, confirming all pre-
sented bugs and providing the associated counterexamples. Other
SOTA tools for solidity cannot provide such a counterexample for
the violated properties. Although ESBMC-Solidity is an early proto-
type, it shows promising results. Our current focus is on providing
100% coverage for the language Solidity, including polymorphism,
inheritance, special crypto functions, such as Keccak256 and sha256,
and multiple returns.

ACKNOWLEDGMENTS
The work in this paper is partially funded by the EPSRC grants
EP/T026995/1, EP/V000497/1, EU H2020 ELEGANT 957286, and
Soteria project awarded by the UK Research and Innovation for the
Digital Security by Design (DSbD) Programme.

REFERENCES
[1] Imran Bashir. 2017. Mastering blockchain. Packt Publishing Ltd.
[2] Kevin Solorio, Randall Kanna, and Dave HHoover. 2019. Hands-on Smart Contract

Development with Solidity and Ethereum: From Fundamentals to Deployment.
O’Reilly Media, Incorporated.

[3] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. 2019. Blockchain technol-
ogy overview. arXiv preprint arXiv:1906.11078 (2019).

[4] Andreas M Antonopoulos and Gavin Wood. 2018. Mastering ethereum: building
smart contracts and dapps. O’reilly Media.

[5] Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong,
Gabrielle Fletcher, Ryan Sanayhie, Henry M Kim, and Marek Laskowski. 2019.
Understanding a revolutionary and flawed grand experiment in blockchain: the
DAO attack. Journal of Cases on Information Technology (JCIT) 21, 1 (2019),
19–32.

[6] Ákos Hajdu and Dejan Jovanović. 2019. solc-verify: A modular verifier for solidity
smart contracts. InWorking Conference on Verified Software: Theories, Tools, and
Experiments. Springer, 161–179.

[7] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. 2021. A survey
on formal verification for solidity smart contracts. In 2021 Australasian Computer
Science Week Multiconference. 1–10.

[8] Lucas C Cordeiro, Eddie B de Lima Filho, and Iury V Bessa. 2020. Survey on auto-
mated symbolic verification and its application for synthesising cyber-physical
systems. IET Cyber-Physical Systems: Theory & Applications 5, 1 (2020), 1–24.

[9] Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd
Fischer, and Denis A Nicole. 2018. ESBMC 5.0: an industrial-strength C model
checker. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering. 888–891.

[10] Mikhail R. Gadelha, Rafael S. Menezes, and Lucas C. Cordeiro. 2021. ESBMC 6.1:
automated test case generation using bounded model checking. Int. J. Softw. Tools
Technol. Transf. 23, 6 (2021), 857–861. https://doi.org/10.1007/s10009-020-00571-2

[11] Omar M Alhawi, Herbert Rocha, Mikhail R Gadelha, Lucas C Cordeiro, and Eddie
Batista. 2021. Verification and refutation of C programs based on k-induction
and invariant inference. International Journal on Software Tools for Technology
Transfer 23, 2 (2021), 115–135.

[12] Lennon C Chaves, Hussama I Ismail, Iury V Bessa, Lucas C Cordeiro, and Eddie B
de Lima Filho. 2019. Verifying fragility in digital systems with uncertainties
using DSVerifier v2. 0. Journal of Systems and Software 153 (2019), 22–43.

[13] Lucas Cordeiro, Bernd Fischer, and JoaoMarques-Silva. 2011. SMT-based bounded
model checking for embedded ANSI-C software. IEEE Transactions on Software
Engineering 38, 4 (2011), 957–974.

[14] Jeremy Morse, Lucas C. Cordeiro, Denis A. Nicole, and Bernd Fischer. 2011.
Context-Bounded Model Checking of LTL Properties for ANSI-C Software. In
Software Engineering and Formal Methods - 9th International Conference, SEFM
2011, Montevideo, Uruguay, November 14-18, 2011. Proceedings (Lecture Notes in
Computer Science, Vol. 7041), Gilles Barthe, Alberto Pardo, and Gerardo Schneider
(Eds.). Springer, 302–317. https://doi.org/10.1007/978-3-642-24690-6_21

[15] Phillipe A. Pereira, Higo F. Albuquerque, Isabela da Silva, Hendrio Marques,
Felipe R. Monteiro, Ricardo Ferreira, and Lucas C. Cordeiro. 2017. SMT-based
context-bounded model checking for CUDA programs. Concurr. Comput. Pract.
Exp. 29, 22 (2017). https://doi.org/10.1002/cpe.3934

[16] Felipe R. Monteiro, Mikhail R. Gadelha, and Lucas C. Cordeiro. 2022. Model
checking C++ programs. Softw. Test. Verification Reliab. 32, 1 (2022). https:
//doi.org/10.1002/stvr.1793

[17] Mikhail Y. R. Gadelha, Hussama Ibrahim Ismail, and Lucas C. Cordeiro. 2017.
Handling loops in bounded model checking of C programs via k-induction. Int. J.
Softw. Tools Technol. Transf. 19, 1 (2017), 97–114. https://doi.org/10.1007/s10009-

015-0407-9
[18] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis
of ethereum smart contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain. 9–16.

[19] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[21] ConsenSys/mythril. v0.22.1. Github. Retrieved Nov 24, 2021 from https://github.
com/ConsenSys/mythril

[22] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[23] Aina Niemetz and Mathias Preiner. 2020. Bitwuzla at the SMT-COMP 2020. arXiv
preprint arXiv:2006.01621 (2020).

[24] Robert Brummayer and Armin Biere. 2009. Boolector: An efficient SMT solver
for bit-vectors and arrays. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 174–177.

[25] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and
Roberto Sebastiani. 2008. The mathsat 4 smt solver. In International Conference
on Computer Aided Verification. Springer, 299–303.

[26] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In
International Conference on Computer Aided Verification. Springer, 171–177.

[27] Bruno Dutertre. 2014. Yices 2.2. In International Conference on Computer Aided
Verification. Springer, 737–744.

[28] esbmc/esbmc. v6.8. Github. Retrieved Nov 24, 2021 from https://github.com/
esbmc/esbmc

[29] solidity. v0.8.6. soliditylang. RetrievedNov 24, 2021 fromhttps://docs.soliditylang.
org/en/v0.8.6/grammar.html

[30] linux.org. 2019. time(1) — Linux manual page. Retrieved Nov 24, 2021 from
https://man7.org/linux/man-pages/man1/time.1.html

[31] SWC Registry. 2020. SmartContractSecurity. Retrieved Nov 24, 2021 from
https://swcregistry.io/

[32] Nedas Matulevicius and Lucas C. Cordeiro. 2021. Verifying Security Vulner-
abilities for Blockchain-based Smart Contracts. In XI Brazilian Symposium on
Computing Systems Engineering, SBESC 2021, Florianopolis, Brazil, November 22-26,
2021. IEEE, 1–8. https://doi.org/10.1109/SBESC53686.2021.9628229

[33] Leonardo Alt and Christian Reitwiessner. 2018. SMT-based verification of solidity
smart contracts. In International Symposium on Leveraging Applications of Formal
Methods. Springer, 376–388.

https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/978-3-642-24690-6_21
https://doi.org/10.1002/cpe.3934
https://doi.org/10.1002/stvr.1793
https://doi.org/10.1002/stvr.1793
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/esbmc/esbmc
https://github.com/esbmc/esbmc
https://docs.soliditylang.org/en/v0.8.6/grammar.html
https://docs.soliditylang.org/en/v0.8.6/grammar.html
https://man7.org/linux/man-pages/man1/time.1.html
https://swcregistry.io/
https://doi.org/10.1109/SBESC53686.2021.9628229

	Abstract
	1 Introduction
	2 Tool description
	2.1 Tool Overview
	2.2 The Grammar-Based Hybrid Conversion Methodology
	2.3 Illustrative Example

	3 Evaluation and Benchmarks
	3.1 Benchmark Suite Design
	3.2 Results

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

