Bounded Model Checking of
C++ Programs Based on the Qt Framework

Felipe R. M. Sousa, Lucas C. Cordeiro, and Eddie B. de Lima Filho
Federal University of Amazonas - UFAM
Manaus-AM, Brazil 69077—-000
Email: {felipemonteiro,lucascordeiro,edd@ufam.edu.br

Abstract—The software development process for embedded ESBMC++ verifies single- and multi-threaded programs and
systems is getting faster and faster, which generally incurs an checks for properties related to arithmetic under- andftower
increase in the associated complexity. As a consequence, consume division by zero, out-of-bounds index, pointer safety, diea
electronics companies usually invest a lot of resources in fast |gcks, and data races. In ESBMG-, the verification process is

gn;jte?]zj;or;r?éicrgcieljggaﬂ%%upcrto(;gg?lﬁsr,aitr:asor%eerc;%sgecﬁ[ethrgtbutﬂe completely automated and does not require the user to aenota
Y P ; ' programs with pre- or post-conditions.

present paper proposes a simplified version of the Qt framework,
which is integrated into the Efficient SMT-Based Bounded Model
Checking tool to verify actual applications that use the mentioned [coto |ContolFiow-Graph| imep | TpeCheck| pase |, Sean
framework. The method proposed in this paper presents a succss {_Prooram | [e T L™ | Souree

rate of 94.45%, for the developed test sute. [

Symbolic
Execution Convert Constraints

Keywords—Qt framework, Bounded Model Checking. Prpery

to bound k

!

i GL‘:TO ISSAForm | Select Logical SMT }»
[Symex] SMT Solver Context Solver
I. INTRODUCTION ‘ : : opery
. violation
Consumer electronics companies increasingly invest teffor

and time to develop fast and cheap alternatives for verify-
ing correctness in their systems, in order to avoid financial
losses [1]. Among such alternatives, one of the most effecti Figure 1. Overview of the ESBME+ architecture.
and less expensive way is the model checking [2] approach.
However, despite its advantages, there are many systemns thaFig. 1 shows the ESBME&+ architecture used for veri-
could not be automatically verified, due to the unavailabil-fying C/C++ programs. ESBM&+ converts ANSI-C/G-+
ity of verifiers that support certain types of languages andrograms into equivalenGOTO-programs which simplify
frameworks. For instance, the Java PathFinder is able tfyver statement representations.d, replacement ofwhile by if
Java code, based on byte-code [3], but it does not suppo#@nd goto statements). TheGOTO-programis symbolically
verification of Java applications, which rely on the Android executed by th&OTO-symexwhich generates a Single Static
operating system. Indeed, it is true unless an abstraceésepr Assignment form that is later converted into an SMT formula
entation of the standard libraries (operational model)ictvh and then checked by an SMT solver. If a property violation
conservatively approximates their semantics, is availabl is found, a counterexample is provided by ESBME, which
The present work identifies the main Qt features used irassigns values to the program variables to reproduce the err
rea(lj e}ppliﬁat;]ons andd, based on that, Icreatesdanh opker‘ationa
model, which provides a way to analyse and check prop-
erties related to those features. The developed algorithms i VERI(F:LI(’;ISS-CI:’T:FEORISI\(A;T:A&hﬁfAECV%ESKON THEQT
were integrated into a checker that uses Bounded Model
Checking (BMC) based on Satisfiability Modulo Theor- In the first step of the verification process, the Qt program
ies (SMT), known as Efficient SMT-based Context-Boundeds converted into an intermediate representation (IRegg.tr
Model Checker (ESBM&+) [4], in order to verify specific However, since Qt is a robust framework, the set of stand-
properties in ANSI-C/G-+ programs. Although the combina- ard Qt libraries contains hierarchical and complex stmastu
tion of ESBMG++ and operational models has been appliedwhich make Qt programs verification an unfeasible task. Due
to verify C++ programs [4], in this work, additional models to this particular reason, the use of an operational model,
are developed in order to identify Qt framework structuned a written in C++ and containing only structures needed for
to verify specific properties related to such structures,prie- verifying properties related to the Qt framework, représen
and post-conditions. Given the current knowledge in saftwa a feasible alternative. Additionally, the use of assedids
verification, there is no other model checker that appliesStBM indispensable for verifying properties related to methivdm
technigues to verify programs based on the Qt frameworkihe Qt framework and their execution, which is not covered by
regarding consumer electronics devices. standard libraries. Such assertions are integrated ifrentive
methods, in order to detect violations related to the irexirr
use of the Qt framework. In summary, ESBMG- is able
Il. EFFICIENT SMT-BASED BOUNDED MODEL CHECKING verify specific properties of the operational model. For
ESBMC++ is a Context-Bounded Model Checker based onexample, the proposed methodology can check if a parameter,
SMT solvers, which is used for ANSI-C/S+ programs [4]. which represents a certain time period, is positive.

template<class T>
class QList {

void push_front(const value_type& x){
if (this—=_size != 0) {
for (int i = this—=_size —1; i > —1; i—)
this—_list[i+1] = this—_list[i];

this—=_list[0] = x;
10 this—_size ++;

FOOENOUAWNE

s
12 T& front() {
13 __ESBMC_assert (!isEmpty () ,

| (
Source Code — Property violation
ESBMC++
Operational Property holds up to bound k
Model

) Verification

Successful
14 “‘The list must not be empty'’);
15 return this —=_list[0];
}

Figure 2. \Verification process for Qt programs using an opmrat model. 16

Fig. 2 shows the proposed verification process for Qt profigure 4. Operational model for theush_front() and front() methods
grams. In the first step, the model is connected to ESBMC
and the Qt program to be verified, via a parameterAfter
that, ESBMGr+ automatically checks all pre- and post- consequence, the operational model must strictly folloe th
conditions and, if there is no bug, it claimeerification specification described in the official documentation [5].
Successfulip to the analysed depth; otherwise, ESBME
returns a counterexample, reporting the line containing th IV. EXPERIMENTAL EVALUATION

error, the violated property, and the execution steps. All experiments were conducted on an otherwise idle Intel
Based on the framework documentation [5], the operationatore i7-4790, with 3.60 GHz clock and16 GB of RAM,
model was developed, which considers the structure of eacfynning Ubuntu OS4 bits) and ESBMG-+2 1.25.4.The time
library and its classes, including attributes, method &gn and memory limits, for each test case, were sé®seconds
tures, and function prototypes. From this simplified stigt and 16 GB (14 GB of RAM and 2 GB of virtual memory),
assertions are integrated into the operational model fer efntegpectivel§. The indicated time periods were measured using
suring that each property is formally checked. Indeed,etherne tjme command. As an operational model was developed,
are many properties to be verified, such as invalid memorpenchmarks were included into an automatic test suitectalle
access, negative time-period values, access to missisgdile eshmc-qgtin order to validate this implementation. Currently,
null pointers. Additionally, there are pre- and post-céinds, eshmc-qtcontains52 benchmarks 1767 code lines), which
which are necessary for the correct execution of QT methodsgke abouti8 seconds to be verified. ESBMGH presents a
successful rate di4.45% for the developed test suite, a “false
T — incorrect” rate of1.85%, which occurs when there is no error
mylist pusifront(300): and ESBMGC:-+ finds a violation, and a “failed” rate a.70%,

mylist. pusiLfront (200); which happens when ESBME+ crashes during verification.

assert(mylist.front() == 200);

DA WN e

V. CONCLUSION

Figure 3. Code fragment usir@List class This paper proposes an approach to verify--@Qt pro-
o grams using an operational model, which includes pre- and
In the example shown in Fig. 3, the methpebnt() handles post-conditions, simulation features.g, how element values
a precondition [5]. Indeed, an assertion was added to checyf containers are manipulated and stored), and also hove thos
whether the respective list is not empty (lin of Fig. 4) are used in order to verify Qt applications, in consumer-elec
and contains the assigned value. When fhent() method tronics devices. The experimental results show the effigien
is called, ESBMG-+ interprets its behavior as implemented and effectiveness of this approach for verifying Qt progsam
in the operational model. As shown in Fig. 3, the operationand present, for the developed test suite, a success rate of
is valid and, consequently, the assertion evaluatesrue, 94.45%. As future work, more classes and libraries will be
however, if an invalid operation is performed, like an emj®y integrated into the developed operational model, in order t
calling front(), then the assertion would evaluatefadse In increase Qt framework coverage and validate its properties
that case, ESBM&+ would return a counterexample with all Acknowledgements.Part of the results presented in this paper were
execution steps needed to reproduce the violation, iniaddit sponsored by Samsung Efatica da Amaania Ltda. under the terms

to the error described in the respective assertion. of Brazilian federal law No. 8.387/91 (SUFRAMA).
Nonetheless, some methods not only contain properties
that must be handled as preconditions, but also properties REFERENCES

that are considered as postconditions. For instance, in tHe] B. Berard, M. Bidoit, and A. FinkelSystems and Software Verification:
code fragment shown in Fig. 3, an element is inserted into Model-Checking Techniques and TooSpringer Publishing, 2010.
the beginning of a certain listn{ylist) and, later on, the [2] E. M. Clarke and et al.Model Checking Springer Publishing, 1999.
first element of the same list is checked with an assertion3] P. C. Mehlitz, N. Rungta, and W. Visser, “A hands-on jawathginder
From the operational model gfush_front(), in Fig. 4, it tutorial,” in ICSE 2013, pp. 1493-1495.

is clear that if only preconditions are checked, then therd4 M. Ramalho, M. Freitas, F. Sousa, H. Marques, L. C. Coajeand
is no evidence that elements are properly inserted into the E'CFBIZCQSEE SMT-based hounded model checking of C++ programs
respective list. This way, one needs to simulate the behafio PR, LA/=238. .

the respective method to consistently verify propertidatee [The Qt Framework, http:/fwww.qt.io/qt-framework/, Apr2015.

to the manipulation or storage of values in a container. As & 2The tool and benchmarks are available at http://www.esbigc.or

3- - unwind 10- - no- unwinding assertions | /libraries/Qt/- - memlimit
1.1 libraries/Qt/ 14000000 - timeout 600

