
Bounded Model Checking of
C++ Programs Based on the Qt Framework

Felipe R. M. Sousa, Lucas C. Cordeiro, and Eddie B. de Lima Filho
Federal University of Amazonas - UFAM

Manaus-AM, Brazil 69077–000
Email: {felipemonteiro,lucascordeiro,eddie}@ufam.edu.br

Abstract—The software development process for embedded
systems is getting faster and faster, which generally incurs an
increase in the associated complexity. As a consequence, consumer
electronics companies usually invest a lot of resources in fast
and automatic verification processes, in order to create robust
systems and reduce product recall rates. Because of that, the
present paper proposes a simplified version of the Qt framework,
which is integrated into the Efficient SMT-Based Bounded Model
Checking tool to verify actual applications that use the mentioned
framework. The method proposed in this paper presents a success
rate of 94.45%, for the developed test suite.

Keywords—Qt framework, Bounded Model Checking.

I. I NTRODUCTION

Consumer electronics companies increasingly invest effort
and time to develop fast and cheap alternatives for verify-
ing correctness in their systems, in order to avoid financial
losses [1]. Among such alternatives, one of the most effective
and less expensive way is the model checking [2] approach.
However, despite its advantages, there are many systems that
could not be automatically verified, due to the unavailabil-
ity of verifiers that support certain types of languages and
frameworks. For instance, the Java PathFinder is able to verify
Java code, based on byte-code [3], but it does not support
verification of Java applications, which rely on the Android
operating system. Indeed, it is true unless an abstract repres-
entation of the standard libraries (operational model), which
conservatively approximates their semantics, is available.

The present work identifies the main Qt features used in
real applications and, based on that, creates an operational
model, which provides a way to analyse and check prop-
erties related to those features. The developed algorithms
were integrated into a checker that uses Bounded Model
Checking (BMC) based on Satisfiability Modulo Theor-
ies (SMT), known as Efficient SMT-based Context-Bounded
Model Checker (ESBMC++) [4], in order to verify specific
properties in ANSI-C/C++ programs. Although the combina-
tion of ESBMC++ and operational models has been applied
to verify C++ programs [4], in this work, additional models
are developed in order to identify Qt framework structures and
to verify specific properties related to such structures, via pre-
and post-conditions. Given the current knowledge in software
verification, there is no other model checker that applies BMC
techniques to verify programs based on the Qt framework,
regarding consumer electronics devices.

II. EFFICIENT SMT-BASED BOUNDED MODEL CHECKING

ESBMC++ is a Context-Bounded Model Checker based on
SMT solvers, which is used for ANSI-C/C++ programs [4].

ESBMC++ verifies single- and multi-threaded programs and
checks for properties related to arithmetic under- and overflow,
division by zero, out-of-bounds index, pointer safety, dead-
locks, and data races. In ESBMC++, the verification process is
completely automated and does not require the user to annotate
programs with pre- or post-conditions.

Figure 1. Overview of the ESBMC++ architecture.

Fig. 1 shows the ESBMC++ architecture used for veri-
fying C/C++ programs. ESBMC++ converts ANSI-C/C++

programs into equivalentGOTO-programs, which simplify
statement representations (e.g., replacement ofwhile by if
and goto statements). TheGOTO-program is symbolically
executed by theGOTO-symex, which generates a Single Static
Assignment form that is later converted into an SMT formula
and then checked by an SMT solver. If a property violation
is found, a counterexample is provided by ESBMC++, which
assigns values to the program variables to reproduce the error.

III. V ERIFYING C++ PROGRAMSBASED ON THEQT
CROSS-PLATFORM FRAMEWORK

In the first step of the verification process, the Qt program
is converted into an intermediate representation (IRep) tree.
However, since Qt is a robust framework, the set of stand-
ard Qt libraries contains hierarchical and complex structures,
which make Qt programs verification an unfeasible task. Due
to this particular reason, the use of an operational model,
written in C++ and containing only structures needed for
verifying properties related to the Qt framework, represents
a feasible alternative. Additionally, the use of assertions is
indispensable for verifying properties related to methodsfrom
the Qt framework and their execution, which is not covered by
standard libraries. Such assertions are integrated into respective
methods, in order to detect violations related to the incorrect
use of the Qt framework. In summary, ESBMC++ is able
to verify specific properties of the operational model. For
example, the proposed methodology can check if a parameter,
which represents a certain time period, is positive.

Figure 2. Verification process for Qt programs using an operational model.

Fig. 2 shows the proposed verification process for Qt pro-
grams. In the first step, the model is connected to ESBMC++

and the Qt program to be verified, via a parameterδ1. After
that, ESBMC++ automatically checks all pre- and post-
conditions and, if there is no bug, it claimsVerification
Successfulup to the analysed depth; otherwise, ESBMC++

returns a counterexample, reporting the line containing the
error, the violated property, and the execution steps.

Based on the framework documentation [5], the operational
model was developed, which considers the structure of each
library and its classes, including attributes, method signa-
tures, and function prototypes. From this simplified structure,
assertions are integrated into the operational model for en-
suring that each property is formally checked. Indeed, there
are many properties to be verified, such as invalid memory
access, negative time-period values, access to missing files, and
null pointers. Additionally, there are pre- and post-conditions,
which are necessary for the correct execution of QT methods.

1 QList<i n t> m y l i s t ;
2 m y l i s t . p u s h f r o n t (3 0 0) ;
3 a s s e r t(m y l i s t . f r o n t () == 3 0 0) ;
4 m y l i s t . p u s h f r o n t (2 0 0) ;
5 a s s e r t(m y l i s t . f r o n t () == 2 0 0) ;

Figure 3. Code fragment usingQList class

In the example shown in Fig. 3, the methodfront() handles
a precondition [5]. Indeed, an assertion was added to check
whether the respective list is not empty (line13 of Fig. 4)
and contains the assigned value. When thefront() method
is called, ESBMC++ interprets its behavior as implemented
in the operational model. As shown in Fig. 3, the operation
is valid and, consequently, the assertion evaluates totrue;
however, if an invalid operation is performed, like an emptylist
calling front(), then the assertion would evaluate tofalse. In
that case, ESBMC++ would return a counterexample with all
execution steps needed to reproduce the violation, in addition
to the error described in the respective assertion.

Nonetheless, some methods not only contain properties
that must be handled as preconditions, but also properties
that are considered as postconditions. For instance, in the
code fragment shown in Fig. 3, an element is inserted into
the beginning of a certain list (mylist) and, later on, the
first element of the same list is checked with an assertion.
From the operational model ofpush front(), in Fig. 4, it
is clear that if only preconditions are checked, then there
is no evidence that elements are properly inserted into the
respective list. This way, one needs to simulate the behavior of
the respective method to consistently verify properties related
to the manipulation or storage of values in a container. As a

1-I /libraries/Qt/

1 template<c l a s s T>
2 c l a s s QLis t {
3 . . .
4 vo id p u s h f r o n t (cons t v a l u e t y p e& x){
5 i f (t h i s−> s i z e != 0) {
6 f o r (i n t i = t h i s−> s i z e −1; i > −1; i−−)
7 t h i s−> l i s t [i +1] = t h i s−> l i s t [i] ;
8 }
9 t h i s−> l i s t [0] = x ;

10 t h i s−> s i z e ++;
11 }
12 T& f r o n t () {
13 ESBMC assert (! isEmpty () ,
14 ‘ ‘ The l i s t must not be empty ’ ’) ;
15 re turn t h i s −> l i s t [0] ;
16 }
17 . . .
18 }

Figure 4. Operational model for thepush front() andfront() methods

consequence, the operational model must strictly follow the
specification described in the official documentation [5].

IV. EXPERIMENTAL EVALUATION

All experiments were conducted on an otherwise idle Intel
Core i7-4790, with 3.60 GHz clock and16 GB of RAM,
running Ubuntu OS (64 bits) and ESBMC++2 1.25.4.The time
and memory limits, for each test case, were set to600 seconds
and 16 GB (14 GB of RAM and 2 GB of virtual memory),
respectively3. The indicated time periods were measured using
the time command. As an operational model was developed,
benchmarks were included into an automatic test suite called
esbmc-qt, in order to validate this implementation. Currently,
esbmc-qtcontains52 benchmarks (1767 code lines), which
take about48 seconds to be verified. ESBMC++ presents a
successful rate of94.45% for the developed test suite, a “false
incorrect” rate of1.85%, which occurs when there is no error
and ESBMC++ finds a violation, and a “failed” rate of3.70%,
which happens when ESBMC++ crashes during verification.

V. CONCLUSION

This paper proposes an approach to verify C++/Qt pro-
grams using an operational model, which includes pre- and
post-conditions, simulation features (e.g., how element values
of containers are manipulated and stored), and also how those
are used in order to verify Qt applications, in consumer elec-
tronics devices. The experimental results show the efficiency
and effectiveness of this approach for verifying Qt programs
and present, for the developed test suite, a success rate of
94.45%. As future work, more classes and libraries will be
integrated into the developed operational model, in order to
increase Qt framework coverage and validate its properties.
Acknowledgements.Part of the results presented in this paper were
sponsored by Samsung Eletrônica da Amaẑonia Ltda. under the terms
of Brazilian federal law No. 8.387/91 (SUFRAMA).

REFERENCES

[1] B. Berard, M. Bidoit, and A. Finkel,Systems and Software Verification:
Model-Checking Techniques and Tool. Springer Publishing, 2010.

[2] E. M. Clarke and et al.,Model Checking. Springer Publishing, 1999.
[3] P. C. Mehlitz, N. Rungta, and W. Visser, “A hands-on java pathfinder

tutorial,” in ICSE, 2013, pp. 1493–1495.
[4] M. Ramalho, M. Freitas, F. Sousa, H. Marques, L. C. Cordeiro, and

B. Fischer, “SMT-based bounded model checking of C++ programs,” in
ECBS, 2013, pp. 147–156.

[5] The Qt Framework, http://www.qt.io/qt-framework/, April, 2015.

2The tool and benchmarks are available at http://www.esbmc.org
3--unwind 10--no-unwinding-assertions-I /libraries/Qt/--memlimit

14000000--timeout 600

