
BMCLua: Verification of Lua Programs in Digital

TV Interactive Applications

Francisco A. P. Januario, Lucas C. Cordeiro,

and Vicente F. de Lucena Jr.
Federal University of Amazonas − UFAM

Email: {franciscojanuario,lucascordeiro,vicente}@ufam.edu.br

Eddie B. de Lima Filho
Science, Technology and Innovation Center

for the Industrial Pole of Manaus − CT-PIM

Email: eddie@ctpim.org.br

Abstract—The present paper describes a novel scheme for
checking for potential defects in Lua programs, by using Bounded
Model Checking (BMC). Such an approach, called BMCLua,
translates a Lua program into an ANSI-C one, which is then
verified by the Efficient SMT-Based Bounded Model Checker
(ESBMC). BMCLua is able to check for safety properties related
to array bounds, division by zero, and user-specified assertions,
in Lua programs. This paper marks the first application of
BMC to Lua programs. The experimental results show that the
performance of BMCLua is similar to that of ESBMC, in about
70% of the benchmarks used for evaluation.

Keywords—Digital TV, Model Checking, Lua.

I. INTRODUCTION

The advent of digital TV allowed viewers to interact with
television programming. The Brazilian Digital TV System
(Sistema Brasileiro de Televisão Digital - SBTVD), which is
based on the Integrated Services Digital Broadcasting (ISDB),
enabled the development of interactive applications, with the
use of programming languages such as the Nested Context
Language (NCL) [1], which is declarative, and the Lua script
language [2], which is imperative. As other programming
languages, errors that are not detected in Lua programs may
cause problems, during application execution in digital TV
receivers (e.g., the application may simply freeze).

This paper describes a novel approach for checking
possible violations of safety properties in Lua programs, which
is based on the Efficient SMT-Based Bounded Model Checker
(ESBMC) [3]. Such an approach is implemented in a tool
called Bounded Model Checking of Lua programs, which is
called BMCLua. Lua is a powerful and light script language,
which was designed to extend applications written in other
programming languages, mainly for interactive applications
and games. In this work, the ANSI-C programming language
is used as modelling language for the translator module of the
BMCLua tool, since ESBMC supports C/C++ programs. To
the best of our knowledge, this is the first work that applies
BMC to the Lua programming language.

II. THE LUA PROGRAMMING LANGUAGE

Lua is a programming language that is typically used for
developing games and digital TV applications [4]. In practice,
however, it is an extension language that can be used together
with other programming languages (e.g., NCL) [1]. It is worth
noticing that Lua is quite fast and easy to code, which is
very important for the development of digital TV interactive
applications, in real-time. The Lua syntax is small, clean, and

straightforward. Additionally, it extends features of digital TV
applications via the use of the NCLua library (e.g., in order
to respond to remote control keys). Some programming errors
that are common in Lua programs include incorrect implicit
conversion of variable types, returning null from functions with
multiple values, and arithmetic overflow. In NCLua scripts,
potential programming errors can occur during event handling
or graphic-object drawing.

The Lua programming language does not define the data
type of a variable declaration, i.e., it is not a strongly-typed
language. In Lua, a variable can accept values of different
types, hindering the translation of assignment statements. The
“table” data type incurs additional complexity in its translation,
since it is used to create other structures (e.g., arrays and
structs that are typically used in C). Moreover, functions are
particularly difficult to translate, because they are considered
value types and are used as objects or elements of a table.

III. ESBMC

ESBMC is a Context-Bounded Model Checker based on
Satisfiability Modulo Theories (SMT), which is used for
ANSI-C/C++ programs [3]. ESBMC verifies sequential and
multi-threaded programs and checks for properties related to
arithmetic overflow, division by zero, out-of-bounds index,
pointer safety, deadlocks, and data races. In ESBMC, the
verification process is completely automated and does not
require the user to annotate programs with pre/post-conditions.

GOTO

symex

Select

SMT solver

Convert contraints

Convert properties

Logical

Context

Interpret

counter-example

SMT

solver

Property

holds up to

bound k

Property

violation

Parse

tree

IRep

trees

GOTO

program

type

check

control-flow

graph C/C++

source

scan

SSA

form

symbolic

execution

OK

Fig. 1. Overview of the ESBMC architecture.

Fig. 1 shows the ESBMC architecture. As depicted,
ESBMC converts an ANSI-C/C++ program into a GOTO-
program, which simplifies statement representations (e.g.,
replacement of while by if and goto statements). Then, the
GOTO-program is executed symbolically by the GOTO-symex,



which generates a Single Static Assignment (SSA) form that
is later converted into a first-order logic formula; the latter is
finally checked by an SMT solver. If a property violation is
found, then a counterexample is provided by ESBMC, which
assigns values to the program variables to reproduce the error.

IV. ANTLR

The ANother Tool for Language Recognition (ANTLR) [5]
is a syntax and lexical analyzer generator for programming
languages, which automates the development of languages
recognizers (e.g., translators and interpreters). From a grammar
that is built from the syntax of a given target language, ANTLR
generates classes in Java programming language, which are the
lexical analyzer (i.e., the lexer) and the syntax analyzer (i.e.,
the parser).

For a translator built by ANTLR, the lexer generates
a symbol stream (i.e., tokens) from a sequence of input
characters. The parser, in turn, checks the syntax of the
input characters, by analyzing an Abstract Symbol Tree (AST)
structure, which is generated by ANTLR. Additionally, from
the parser, the output can be easily converted to an ANSI-C
program or to the syntax of a domain-specific language.

V. BMCLUA

The BMCLua is an efficient model checker for programs
written in Lua, which was developed using the Java program-
ming language. The basic functions of BMCLua are related to
the translation of Lua into ANSI-C code and to the verification
of the resulting ANSI-C code, using the ESBMC tool.

Translator ESBMC

Result of the

verification

Lua code ANSI-C code

Success ?Counterexample
NO

YES

Lua code OK

Start

Fig. 2. Overview of the BMCLua architecture.

As shown on the top of Figure 2, BMCLua translates Lua
code into ANSI-C code, which is then verified by ESBMC.
Here, the counterexample informs the code line where an error
occurred, as well as the property violation that was detected.
The BMCLua translator is built using the generated classes
from the ANTLR tool (i.e., the “parser” and the “lexer”).

VI. EXPERIMENTAL EVALUATION

The experiments performed with the BMCLua consist of
using standard benchmarks from the related literature, in order
to check its performance and correctness. The benchmarks
include Bellman-Ford, Prim, BublleSort, SelectionSort, and
Factorial. For each benchmark, loop and array limits are
defined and verified via assertions.

Table I shows the experimental results, in seconds. The
acronym E identifies the total number of elements of the array,
L is the total number of lua code lines, B shows the limit of
performed loop iterations, P means the total number of checked

properties, TL is the total verification time, which includes
translation and verification, and TE is the total verification
time used for checking the respective ANSI-C code, in the
ESBMC tool, which is used for comparison purposes with TL.

TABLE I. EXPERIMENTAL RESULTS OF THE BMCLUA TOOL

Benchmark E L B P TL TE

Bellman-Ford

10 43 11 1 < 1 < 1

15 43 16 1 < 1 < 1

20 43 21 1 < 1 < 1

Prim

10 43 11 1 < 1 < 1

15 43 16 1 < 1 < 1

20 43 21 1 < 1 < 1

BubbleSort

50 30 51 1 6 5

70 30 71 1 12 10

140 30 141 1 68 52

200 30 201 1 225 163

SelectionSort

50 33 51 1 3 2

70 33 71 1 6 4

140 33 141 1 42 25

200 33 201 1 177 89

Factorial

50 17 51 1 < 1 < 1

100 17 101 1 < 1 < 1

150 17 151 1 < 1 < 1

200 17 201 1 < 1 < 1

400 17 401 1 2 1

The experimental results show the notable performance of
the BCMLua verification time. In particular, the verification
time reported in the TL and TE columns are comparable
to each other. Additionally, the verification time in the TL
column, which is higher than the verification time in the TE
one, occurs due to the increase of code lines when translating
Lua into ANSI-C code. In most cases, however, the translation
time is typically less than one second. In all experiments,
BMCLua did not report any false-positive or false-negative
result, proving its correctness to verify Lua programs.

VII. CONCLUSIONS

The experimental results show the efficiency and cor-
rectness of BMCLua to verify Lua programs. In particular,
BMCLua is able to detect, in all benchmarks, properties
related to division by zero and user-specified assertions without
reporting any false-negative result. On average, the verification
time of BMCLua is comparable to that of ESBMC; indeed,
only 21% of the benchmarks present a verification time that is
higher than the ESBMC verification time. Nevertheless, it is
worth noticing that improvements in the BMCLua translator
could further reduce such a difference. As a future work,
BMCLua will be integrated into the Eclipse tool, which
will then allow Lua program verification during development.
BMCLua will also be integrated into the Ginga middleware,
in order to check for Lua programs in interactive applications.

Acknowledgements. This research was supported by Samsung,
CNPq, and FAPEAM grants.

REFERENCES

[1] ABNT (Brazilian Association of Technical Standards), NBR 15606-
2:2007: Digital terrestrial television − Data coding and transmission
specification for digital broadcasting. Rio de Janeiro: ABNT, 2007.

[2] J. Kurt and B. Aaron, Beginning Lua Programming. Indianapolis: Wiley
Publishing, 2007, p. 644.

[3] L. Cordeiro and et al., SMT-Based Bounded Model Checking for
Embedded ANSI-C Software. In TSE, v. 38, n. 4, pp. 957–974, 2012.

[4] R. Brandão and et al., Extended Features for the Ginga-NCL Environ-
ment: Introducing the LuaTV API, In ICCCN, pp. 1–6, 2010.

[5] T. Parr, The Definitive ANTLR Reference - Building Domain-Specific
Languages. North Carolina: The Pragmatic Bookshelf, 2007.


