
VO-GCSE: Verification Optimization through Global Common
Subexpression Elimination

Rafael Sá Menezes∗,§, Norbert Tihanyi†, Ridhi Jain†, Alexander Levin‡, Rosiane de Freitas§, and Lucas C. Cordeiro∗,§
∗The University of Manchester, UK, †Technology Innovation Institute, UAE, ‡Nvidia, USA, §UFAM, Brazil

ABSTRACT
Compiler optimizations enhance machine code efficiency while
maintaining functionality. Global Common Subexpression Elimina-
tion (GCSE) removes redundant expressions using Available Expres-
sion (AE) data flow based on points-to-analysis. Despite its success
in compilers such as GCC and LLVM, GCSE remains unexplored in
Formal Verification (FV) due to domain-specific challenges. This
paper is the first to introduce “Verification Optimization through
GCSE" (VO-GCSE), a GCSE algorithm designed for FV, considering
symbolic memory models and the unique attributes of FV tools. We
integrated VO-GCSE into the Efficient SMT-based Context-Bounded
Model Checker (ESBMC), leveraging its existing logic-based infras-
tructure, including Value-Set Analysis (VSA) and Abstract Interpre-
tation (AI). We transformed AE data flow into an AI challenge and
simplified VSA into points-to-analysis. VO-GCSE was evaluated
using three diverse sources: the SV-COMP benchmarks, the FormAI
dataset comprising 330, 000 C samples, and real-world verification
cases from Intel®. The experimental results show that (a) VO-GCSE
reduces verification time for programs with similar dereferences,
and (b) AE computation through AI does not complicate the analy-
sis. Video: https://www.youtube.com/watch?v=6QKGcDfp5is
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1 INTRODUCTION
Compiler optimization techniques improve the efficiency and per-
formance of generated machine code without altering its functional-
ity [25]. These optimization techniques focus on reducing code size,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE’25, June 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

boosting execution speed, or enhancing memory efficiency [21].
Common compiler optimization techniques include Inlining [27],
which replaces function calls with the actual function body to re-
duce call overhead, Dead Code Elimination (DCE) [3], focused on
removing code segments that do not impact the program’s out-
come, or Constant Folding [10], which entails evaluating constant
expressions at compile time. Furthermore, the technique of Opera-
tor Strength Reduction[11] involves substituting resource-intensive
operations with more cost-effective but functionally equivalent
ones or Global Value Numbering (GVN) [19], optimizing redundant
calculations throughout the program. Loop invariants [16, 26] facili-
tate inductive verification; however, they have limited applicability
and high overhead. Loop unwinding and Global Common Subex-
pression Elimination (GCSE) are compiler optimization techniques
designed to enhance program performance [4]. GCSE, introduced
by Cocke in 1970 [9], reduces redundant calculations by identifying
and replacing repeated expressions across basic blocks. Although
loop unwinding is integral to Formal Verification (FV), particu-
larly in Bounded Model Checking (BMC) [8], GCSE has not been
adopted in this specific domain before. Methods such as BMC and
Abstract Interpretation (AI) [15] are commonly used to verify criti-
cal software components [30], with BMC reducing false positives
by generating concrete counterexamples. However, it can increase
the verification time due to the extra effort required to reach a fixed-
point [14]. In such cases, integrating GCSE could accelerate the
verification process, particularly in memory-safety verifications.

This paper is the first to introduce Verification Optimization
through Global Common Subexpression Elimination (VO-GCSE), a
novel framework integrating GCSE into FV, specifically within the
Efficient SMT-based Context-Bounded Model Checker (ESBMC) [17].
To the best of our knowledge, this marks the first application of
GCSE in FV, significantly improving verification time in critical
domains such as firmware, Linux kernels, and embedded systems.
Figure 1 illustrates the VO-GCSE framework’s architecture within
ESBMC. The motivation for incorporating GCSE into the verifi-
cation arose from practical challenges in an industrial project. In
contrast to traditional compiler optimizations, FV demands addi-
tional constraints to ensure semantic preservation while maintain-
ing a unique exploration tree, complicating GCSE adaptation. The
primary scientific contributions of this paper are as follows.
(1) Adapting the GCSE algorithm for formal software verification, consid-

ering factors such as symbolic models and the unique capabilities of
various verification tools;

(2) Integration of VO-GCSE into the SMT-based model checker, ESBMC
(publicly available since version 7.5.0);

(3) An AI domain to compute AE over programs. This algorithm considers
symbolic memory models for its analysis, resulting in more suitable
results for FV tools;

(4) Experimental evaluation of the VO-GCSE algorithm on the Software
Verification Competition (SV-COMP) [7], demonstrating performance
gains in memory verification;
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(5) Comparative testing of ESBMC with and without VO-GCSE, ensuring
consistency and robustness in results.

2 MOTIVATION
Software verification guarantees that a program satisfies a given
safety property across all execution paths [5], in contrast to software
testing, which only provides correctness based on sampled cases. In
industry, FV methods such as BMC are widely used, with ESBMC
being a prominent tool to verify C and C++-based software compo-
nents, including firmware and embedded systems [17, 23, 24, 30].

During a real system analysis, Intel® developers observed that
modifying a specific type of C code significantly improved software
verification time and memory usage, enabling the verification of
embedded components that were previously unattainable. Initially,
all modifications were applied manually, but this eventually led to a
collaboration between ESBMC developers and Intel domain experts,
which resulted in the identification of further optimizations and
automation of the process to improve verification efficiency. Al-
though some of these optimizations are domain-specific, some (e.g.,
loop unfolding and instruction reordering [3]) could be applied in
general. A notable example of efficient optimization was using an
intermediate variable to cache dereferences. For a practical illustra-
tion, refer to the real-life application code fragment in Listing 1 as
a motivating example.

typedef struct { unsigned Flags;} Aux;
typedef struct { Aux Aux; unsigned Wc; unsigned V;} RegEntry;
typedef struct {RegEntry *Map;} table;
void write(table *tbl, unsigned EntryIndex);
int main() {

RegEntry e[10000]; table M; M.Map = e;
for (int i = 0; i < 10000; i++) write(&M, i);
return 0; }

void write(table *tbl, unsigned EntryIndex) {
unsigned Data64 = 42;
tbl->Map[EntryIndex].Aux.Flags &= 1;
tbl->Map[EntryIndex].Wc++;
tbl->Map[EntryIndex].V = Data64;}

Listing 1: Motivating Example (Original)

ESBMC’s symbolic memory model [12, 13] complicates pointer
tracking, as each dereference requires validating pointer safety.
The complexity surges with consecutive dereferences. Introduc-
ing intermediate variables to store dereference results simplifies
this process, dramatically accelerating verification. Common in
hardware-specific C programs, this approach, combined with GCSE,
could deliver substantial benefits in various scenarios. For instance,
our motivating example contains multiple dereferences of tbl . For
each dereference, ESBMC will do the full target computation from
scratch (which also adds the same assertions). The unoptimized
write function repeatedly dereferences tbl , leading to redundant
target computations.

void write_optimized(table *tbl, unsigned EntryIndex) {
unsigned Data64 = 42;
RegEntry *pMap = &(tbl->Map[EntryIndex]);
pMap->Auxiliary.Flags &= 1; pMap->Wc++; pMap->V = Data64;}

Listing 2: Motivating Example (Optimized write function)

Optimizing it with an intermediate variable improves efficiency,
as the unoptimized version took 105 seconds for symbolic execution
with 270015 assignments using ESBMC 7.8.1. Replacement of the
write function with the write_optimized function (see Lisit-
ing 2) allows the verification to be completed in less than 7 seconds
—a 1500% speedup. This small example highlights the effectiveness
of GCSE optimization in eliminating redundant calculations.

The optimization was initially applied manually, but this ap-
proach can be automated by calculating AE [18] through data-flow
analysis and modifying the Control-flow Graph (CFG) [3]. How-
ever, not all verifiers, including ESBMC, have a data-flow solver.
ESBMC uses an Abstract Interpreter[15] for computing program
properties. Implementing VO-GCSE with the Abstract Interpreter,
without a data-flow solver, presents challenges, which we explore
in this research and the associated experimental results.

3 RESEARCH DESIGN AND METHODOLOGY
The optimization requires two key tasks: (1) computingAE in GOTO
language [12, 22] (ESBMC’s intermediate representation), and (2)
applying GCSE to the GOTO code while preserving its original se-
mantics. A prototype of the VO-GCSE algorithm has been developed
and successfully integrated into ESBMC since version 7.5.

3.1 Computing AE
We use value-set analysis (VSA) as a static pointer analysis to com-
pute AE, identifying which expressions become unavailable due to
dereferencing. In the following code snippet: int sum = x + 42;

int *ptr = &x; *ptr = 0; sum = x + 42; , a cached subexpres-
sion 𝑥 + 42 is invalidated by the dereference operation ∗𝑝𝑡𝑟 = 0; .
The analysis considers the set of all possible expression combina-
tions in the program, i.e., (𝒫(E)). Although this domain can reach
exponential sizes, we only store hashes of the expression (ESBMC
contains an internal SHA256 to hash its expressions). In this do-
main, the infimum is the empty set, while the supremum is all the
expressions in the program. However, computing the supremum is
unnecessary, as we can always check whether the set has grown
with a new expression. Nontrivial expressions (e.g., 𝑥 + 42 ) are
recursively added to the domain, while trivial expressions (e.g., 𝑥 )
are excluded. Expressions dependent on invalidated pointers are
removed due to the values being indirectly updated.

3.2 Applying GCSE
Optimization occurs in two key steps: (1) identifying the maxi-
mum available sub-expression for each program statement and
(2) initializing expressions. This process is applied to each GOTO
function [22], as illustrated in Figure 3.

3.2.1 Obtaining Max sub-expressions. Expressions are generated
by iterating through function statements, recursively evaluating
operands against the AE set until an expression is found or the
empty expression is reached. Sub-expressions are then instrumented
into new temporary variables, declared but not initialized. If the
LHS is a dereference, the intermediate variable is initialized for
assignment. The decision on when to initialize relies on program-
specific details, such as recomputed expressions (e.g., in loops) or
those initialized late due to dereferences. Initialization occurs if the
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Figure 1: VO-GCSE: An Enhanced ESBMC Architecture with GCSE for Safety Evaluation Using a Decision Procedure [20].

start

1: 𝑥 ← 𝑎 + 𝑏
2: 𝑦 ∶← 𝑎 + 𝑏 + 𝑐

3: 𝑦 > 𝑎 + 𝑏 ?

4: 𝑎 ← 𝑎 + 1
5: 𝑥 ∶← 𝑎 + 𝑏

end

Figure 2: Original

start

1: 𝑔𝑐𝑠𝑒$0← 𝑎 + 𝑏

2: 𝑥 ← 𝑔𝑐𝑠𝑒$0

3: 𝑦 ∶← 𝑔𝑐𝑠𝑒$0 + 𝑐

4: 𝑦 > 𝑔𝑐𝑠𝑒$0 ?

5: 𝑎 ← 𝑎 + 1
6: 𝑔𝑐𝑠𝑒$0← 𝑎 + 𝑏

7: 𝑥 ∶← 𝑔𝑐𝑠𝑒$0

end

Figure 3: GCSE optimized

sub-expression was unavailable in the previous statement, trigger-
ing an assignment.

3.2.2 Short-circuit expressions. In C, boolean expressions can short-
circuit from the left. This may be exploited by creating expressions
that can only be computed if the previous condition was met, e.g.,
ptr != NULL && *ptr == 42 . This behavior affects the GCSE
algorithm, as precomputing expressions can cause errors. Thus, we
only make the first operand (i.e., the leftmost one) available.

4 EXPERIMENTAL EVALUATION
We conducted a series of experiments to measure the effectiveness
of the VO-GCSE algorithm for software analysis and answer the
following experimental questions:
EQ1: Does VO-GCSE algorithm allows ESBMC to verify unique

benchmarks?
EQ2: What types of benchmarks does the VO-GCSE causes im-

provement or degradation?
Our analysis includes two distinct evaluations: a performance eval-
uation using the Software Verification Competition (SV-COMP) [7]
benchmark, consisting of 9,340 test-cases across 19 sub-categories,
and an implementation evaluation on the FormAI-v2 dataset [28],
which contains 330, 000 C samples.

4.1 Implementation Verification using FormAI
The FormAI dataset [28, 29] does not contain many cases where the
GCSE algorithm is particularly advantageous. However, its 330, 000
C samples are highly effective for identifying implementation bugs
when discrepancies arise between verification results with and
without GCSE. We uncovered three bugs in ESBMC 7.5.0 VO-GCSE
that led to segmentation faults stemming from missing exception

handling for failed VSA computations. Across the 330, 000 samples,
195 cases (0.059%) showed discrepancies, leading to a manual re-
view. In 103 cases, verification without GCSE timed out (120 s on
an Intel® Xeon®Platinum8375C 32-core CPU with 128, GBRAM),
whereas GCSE finished on time. In seven cases, Boolector crashed,
but switching to Z3 yielded consistent results; in 75, GCSE slightly
increased verification time. The remaining 10 cases were the most
interesting: verification passed without GCSE yet failed with GCSE,
demanding a deeper investigation. We used bounded model check-
ing with loop unwinding set to 1; without GCSE, counterexamples
beyond this bound are labeled “SUCCESSFUL,” but GCSE introduces
intermediate variables that lower the bound, exposing hidden bugs.
After we fixed the VSA computation issues (since ESBMC7.8.1), no
further discrepancies emerged in verification outcomes.

4.2 Performance Analysis on SV-COMP
Tests on the FormAI dataset focused on identifying discrepancies in
verification results or implementation errors. However, a robust per-
formance analysis was required to address our research questions
and assess scenarios where GCSE offers advantages. Therefore, we
used the SV-COMP benchmark [7]. The benchmarks were executed
using benchexec [6] with the below configuration:

● 32-core vCPU with the single-threaded operation. Both ESBMC
and the SMT solver do not utilize multiple cores, therefore, each
thread handles a separate verification task;
● 120 seconds timeout, based on SVCOMP-23 results [7], where
95% of benchmarks were solved within this time;

The SV-COMP benchmarks assess verifiers against common vul-
nerabilities, such as memory corruption, arithmetic overflows, and
assertion failures. Here, we selected all Memory and Reachabil-
ity categories, excluding concurrency-related tasks because the
current implementation is not thread-aware. Our results, summa-
rized in Table 1, are based on 9340 benchmarks across 19 sub-
categories. 𝐶𝑇 and 𝐶𝐺𝐶𝑆𝐸

𝑇 denote correct true results (no violation
found), 𝐶𝐹 and 𝐶𝐺𝐶𝑆𝐸

𝐹 denote correct false results (a violation is
found), 𝐼𝑇 and 𝐼

𝐺𝐶𝑆𝐸
𝑇 denote incorrect true results, 𝐼𝐹 and 𝐼

𝐺𝐶𝑆𝐸
𝐹

denote incorrect false results. The table categorizes the benchmarks
by Category (type of property being verified) and Sub-Category
(type of benchmarks). The dataset is imbalanced, with categories
such as Memsafety-Other, containing 38 benchmarks, compared to
Memsafety-Juliet with 2828. To account for this, SV-COMP normal-
izes scores across all sub-categories. Enabling VO-GCSE resulted in
an overall time increase of about 3%, while categories with perfor-
mance gains showed a 3% reduction. Notably, Reachability-Arrays
experienced a 52% improvement in average for verification time
(from start to verdict). Some gains were also observed in categories
such as Memory-Heap, Arrays, BitVectors, and Recursive.
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Table 1: Aggregated Results for the SV-COMP benchmark verification.
Category Sub-Category Quantity 𝐶𝑇 𝐶𝐹 𝐼𝑇 𝐼𝐹 𝐶

𝐺𝐶𝑆𝐸
𝑇 𝐶

𝐺𝐶𝑆𝐸
𝐹 𝐼

𝐺𝐶𝑆𝐸
𝑇 𝐼

𝐺𝐶𝑆𝐸
𝐹 CPU(s) CPU(s)-GCSE

Memory Arrays 43 0 18 0 1 0 18 0 1 5.81 5.83
Memory Heap 153 38 76 0 1 38 76 0 1 316 314
Memory LinkedLists 79 25 27 0 0 25 27 0 0 242 249
Memory Other 38 2 19 0 0 2 19 0 0 130 143
Memory Juliet 2828 1438 1390 0 0 1438 1390 0 0 9770 9880
Memory MemCleanup 61 1 59 0 0 1 59 0 0 68.4 69.4

Reachability Arrays 300 11 74 0 0 10 74 0 0 257 169
Reachability BitVectors 49 19 13 0 0 19 13 0 0 165 163
Reachability ControlFlow 22 12 6 0 0 12 6 0 0 216 236
Reachability ECA 1263 305 108 0 0 311 102 0 0 8640 8540
Reachability Floats 434 356 32 0 0 356 33 0 0 1490 1460
Reachability Heap 159 45 59 0 0 45 59 0 0 252 222
Reachability Loops 685 218 142 0 0 218 143 0 1 4060 4080
Reachability ProductLines 597 170 263 0 0 170 263 0 0 685 704
Reachability Recursive 59 8 22 0 0 8 22 0 0 196 186
Reachability Sequentialized 563 32 133 0 0 30 129 4 0 1110 1250
Reachability XCSP 114 50 44 0 0 50 44 0 0 369 358
Reachability Combinations 671 19 249 0 0 18 245 0 0 5240 5640
Reachability Hardware 1222 83 169 0 0 83 163 0 0 7030 7710

4.3 Discussion
The efficiency of GCSE is assessed by comparing verification results
with and without it, considering its semantic equivalence, impact
on the solver, and optimization cost. To address the experimental
questions, we analyze benchmarks affected positively or negatively
and compare preprocessing times for the optimized GOTO program.

Additionally, some benchmarks in the Hardware and ECA cat-
egories incurred a 5× time penalty due to unbounded loops with
thousands of lines. These loops caused multiple interactions during
AI, increasing time and memory. This limitation arises from ES-
BMC’s AI handling on a per-statement basis, rather than at the CFG
level. Generally, AI remains effective in computing AE. Significant
performance gains were observed in the Arrays sub-category of
reachability (c.f. Table 1), where the optimization reduced total time,
especially during safety proofs. Similarly, the category with multi-
ple dereferences to the same array position had reduced total time.
This is likely due to the combination of ESBMC’s Invariant Genera-
tion and k-induction. While ECA and Hardware had more timeouts,
the optimization allowed the verification of new benchmarks that
ESBMC previously failed to verify.
● EQ1: Yes, it allows ESBMC to verify programs that it previously could
not due to computational constraints. When looking at the verdicts
themselves, the method just accelerated ESBMC in finding them. The
main limitation and difficulty of the method regarding soundness is the
previous pointer analysis of ESBMC, which can cause crashes and limit
the effectiveness.

● EQ2: The optimizationworks the best when the benchmarksmanipulate
pointers predictably (e.g., struct initialization), specially if the pointer
operand is constant. The worst case occurs in functions on unbounded
loops with thousands of statements due to how long the pointer analysis
takes. For example, the hardware category emulates bitwise operations
that change the state of a system. These hardware operations contain
thousands of variables changed in an unbounded loop with thousands
of statements.

Our analysis shows that VO-GCSE introduces a 3% increase in
overall verification time, primarily due to delays in the Hardware
category. After an initial human-led verification analysis, this over-
head can be mitigated by selectively disabling VO-GCSE. As a side
note, even in compilers like GCC or Clang, determining whether
to enable optimization levels from 𝑂0 to 𝑂3 and identifying which
level performs better remains an open problem and is not a triv-
ial task to resolve. Despite the time increase, VO-GCSE delivers

significant performance improvements— up to 52%—in memory-
related verification tasks (i.e., makes heavy use of pointer
dereference), enabling previously infeasible verifications, as
demonstrated in our motivating example. The AI method effec-
tively computes AE, and benchmark results confirm that VO-GCSE
preserves the verification status, ensuring soundness.

4.3.1 Threats to Validity.

● Althoughwe conducted rigorous testing using the FormAI dataset
and SV-COMP to address potential implementation issues, no
code can be guaranteed to be entirely bug-free. We encourage
the research community to report any issues by opening a new
ticket on the ESBMC GitHub page.
● ESBMC offers several optimizations, and combining GCSE with
techniques like Interval Analysis can yield stronger invariants
through interval propagation. Further behavioral analysis using
various methods will be carried out to evaluate the potential of
GCSE across different categories.

4.3.2 Availablility. ESBMC with VO-GCSE optimization is avail-
able for public access on the ESBMC GitHub webpage [1] along
with a real-world-like example [2]. Option flag --gcse enables the
GCSE optimization within ESBMC (since version 7.5.0). Tool demon-
stration video: https://www.youtube.com/watch?v=6QKGcDfp5is

5 CONCLUSIONS
We introduced the VO-GCSE algorithm to optimize C program ver-
ification by capturing AE using an Abstract Domain. It enhances
ESBMC’s handling of repeated dereferences, yielding significant
performance gains, particularly in the SV-COMP Arrays subcat-
egory. The algorithm accelerates reachability verification in pro-
grams with frequent dereferences. Our results suggest that VO-
GCSE could further improve ESBMC’s support for Kotlin and C++,
which rely on virtual pointers and tables for polymorphism. Future
work could explore optimizations such as anticipated expressions,
partial redundancy elimination, and constant propagation to assess
their impact on verification challenges. Additionally, addressing the
challenge of reaching a fixpoint could involve developing heuristics
to selectively skip loops based on features like unboundedness, pro-
gram types, or verification properties. Implementing the Abstract
Interpreter at the CFG level could expedite fixpoint computation
while balancing precision and performance.

https://www.youtube.com/watch?v=6QKGcDfp5is
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APPENDIX - WALKTHROUGH GUIDELINE
(1) The first step is to download the latest Efficient SMT-based Context-Bounded Model Checker (ESBMC) from the GitHub page. We

have released a new version, ESBMC 7.8.1 [1], incorporating all available GCSE fixes and features for this FSE submission. We will
use a precompiled binary in this demonstration to avoid installing multiple dependencies. The demonstration will be conducted on
Ubuntu 24.04.

# Command to update the system and install the build -essential package along with unzip.
sudo apt update && sudo apt upgrade -y && sudo apt install build -essential unzip -y
# Command to download ESBMC
wget https :// github.com/esbmc/esbmc/releases/download/v7.8.1/ esbmc -linux.zip
#Command to unzip ESBMC
unzip esbmc -linux.zip
#Command to grant execute (+x) permission for ESBMC
chmod +x linux -release/bin/esbmc

(2) From the previous STEP, we should have a working ESBMC that we can run

# Command to run ESBMC
linux -release/bin/esbmc

OUTPUT:

ESBMC version 7.8.0 64-bit x86_64 linux
Target: 64-bit little -endian x86_64 -unknown -linux with esbmclibc
ERROR: Please provide a program to verify

(3) We can compare the performance of running ESBMC with and without GCSE. Our tests evaluate two scenarios: a small motivating
example and a real-world one. The real-world example fails verification without GCSE due to an out-of-memory error, specifically
on an Intel Xeon Platinum 8375C 32-core CPU with 128 GB of RAM. First, we download the two GCSE examples from the ESBMC
GitHub page.

# Command to download the two examples: GCSE_real_example.c and GCSE_motivating_example.c

wget https ://raw.github.com/esbmc/esbmc/refs/heads/master/docs/examples/GCSE_motivating_example.c
wget https ://raw.github.com/esbmc/esbmc/refs/heads/master/docs/examples/GCSE_real_example.c

(4) Next, we can run ESBMC on the examples, beginning with the motivating example.

# Command to run ESBMC on GCSE_motivating_example.c WITHOUT GCSE
linux -release/bin/esbmc GCSE_motivating_example.c

OUTPUT:

....
Encoding to solver time: 1.874s
Solving with solver Boolector 3.2.3
Runtime decision procedure: 0.000s
BMC program time: 71.835s

VERIFICATION SUCCESSFUL

# Command to run ESBMC on GCSE_motivating_example.c WITH GCSE
linux -release/bin/esbmc GCSE_motivating_example.c --gcse

OUTPUT:

....
Slicing time: 0.106s (removed 80013 assignments)
Generated 100000 VCC(s), 0 remaining after simplification (1 assignments)
BMC program time: 4.830s

VERIFICATION SUCCESSFUL
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(5) The difference is clear in the two outputs. Without GCSE, the verification time in our test environment was 71.83 seconds,
whereas with GCSE, it was reduced to 4.83 seconds. Similarly, the same performance improvement is observed when testing
the GCSE_real_example.c. To discover more examples where GCSE can help reduce verification time, one can explore the FormAI
dataset and perform the verification both with and without GCSE on more than 330, 000 samples.
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