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ABSTRACT
While fuzz testing is a popular choice for testing open-source soft-

ware, it might not effectively detect bugs in programs that feature

many symbols due to the significant increase in exploration of the

program executions. Fuzzers can be more effective when they con-

centrate on a smaller and more relevant set of symbols, focusing

specifically on the key executions. We present rapid Taint Assisted

Concolic Execution (TACE), which utilizes the concept of taint in

symbolic execution to identify all sets of dependent symbols. TACE

can evaluate a subset of these sets with a significantly reduced

testing effort by concretizing some symbols from selected subsets.

The remaining subsets are explored with symbolic values. TACE

significantly enhances speed, achieving a 50x constraint-solving

time improvement over SymQEMU in binary applications. In our

fuzzing campaign, we tested five popular open-source libraries

(minizip-ng, TPCDump, GifLib, OpenJpeg, bzip2) and identified a

new heap buffer overflow in the latest version of GifLib 5.2.1 with an

assigned CVE-2023-48161 number. Under identical conditions and

hardware environments, SymCC could not identify the same issue,

underscoring TACE’s enhanced capability in quickly discovering

real-world vulnerabilities.
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• Software and its engineering; • Security and privacy→ Soft-
ware security engineering;
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1 INTRODUCTION
Symbolic execution (symbex) has been around since the 1970s [10,

17], but its application is limited due to high-performance over-

head [7]. While symbolic and concolic executions have the po-

tential to address critical program analysis challenges [16, 19, 25],

achieving scalable execution faces difficulties, including constraint

solving and path explosion [4]. Researchers have suggested strate-

gies to address bottlenecks, such as mitigating path explosion [5,

9] and enhancing constraint-solving [11, 29]. SymCC [23] and

SymQEMU [24] port the problem of constraint collection to compile

time, thus improving the execution of symbex by not symbolically

executing the application. Constraint bloat is a major challenge,

making constraint-solving prohibitively expensive [28]. Popular

concolic execution solutions symbolize the entire input and emu-

late all instructions on these symbolized bytes, resulting in many

irrelevant constraints. LeanSym [21] (LSym) is an efficient hybrid

fuzzer incorporating constraint debloating into symbolic execution

through taint flow analysis. Constraint debloating, a technique

that involves pruning, simplifying, or optimizing the symbolic

constraints, emerges as a crucial approach to mitigate the com-

plexity and overhead associated with symbolic execution. LSym

optimizes the concolic component of hybrid fuzzing by conser-

vatively eliminating constraint bloat without sacrificing concolic

execution soundness. However, apart from the unavailability of the

tool, LSym relies on manual summary creation of relevant syscalls

and library functions for function-level tracing.

We present rapid Taint Assisted Concolic Execution(TACE), an
automated system that builds on recent advancements in symbex
technologies, such as SymQEMU and SymCC, but with a notable en-

hancement in reducing constraint-solving times. We showcase the

capabilities of TACE using the most recent versions of five popular

libraries in the fuzzer community: minizip-ng, TPCDump, GifLib,

OpenJpeg, and bzip2. TACE debloats and optimizes symbolic con-

straints, facilitating a streamlined symbolic execution process that

emphasizes the critical aspects of program behavior. This approach

leads to a more feasible and scalable method for uncovering vul-

nerabilities in real-life scenarios within a reasonable time frame.

Recent techniques, including constraint optimization [18, 20, 21],

constraint-based sampling [12], and path pruning [9], target con-

straint bloat reduction during symbolic execution while still main-

taining accurate and complete analysis results. As test applications

grow in size and complexity, the number of execution paths rapidly

increases, elevating execution time and memory usage. TACE com-

bines taint flow analysis with existing symbex engines (SymCC

and SymQEMU) and assists in debloating constraints collected dur-

ing real execution. This technique reduces the SAT/SMT solver’s
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load to solve the constraints reasonably, thus improving the overall

performance of the symbex. This process accelerates symbolic ex-

ecution, aiding in faster vulnerability detection, input generation,

and overall program analysis. From our experience, this approach

has proven very effective in today’s rapidly evolving environment,

where swift and prompt identification of software bugs is essential.

The main original contributions of this work are:

(1) An end-to-end design and implementation of TACE, a tool
that leverages taint analysis-based constraint-debloating for

efficient symbolic execution;

(2) An extensive evaluation of TACE against the state-of-the-art

symbolic execution tool SymCC on five widely-used open-

source libraries;

(3) Applying TACE, we discovered a new heap buffer overflow

in GifLib 5.2.1, with an assigned CVE-2023-48161
1
number,

a bug that SymCC missed, highlighting TACE’s efficiency in

quickly detecting real bugs.

In the rest of the paper, Section 2 discusses the related work to

TACE. Section 3 presents our proposed tool’s design and implemen-

tation details. The experimental setup and results are presented in

Section 4. Section 5 discusses our findings on a real-world crash.

Finally, we conclude this paper in Section 6.

2 RELATEDWORK
Software testing is pivotal for ensuring the quality of software ap-

plications by identifying defects, bugs, and potential vulnerabilities

early in the development lifecycle [2, 13]. Symbolic and concolic

executions have been popular among testers for their systematic

and automated exploration of multiple execution paths within a

program. Researchers have proposed improvements to symbolic

execution, including KLEE’s [5] use of path pruning techniques and

MergePoint’s [3] alternating between static and dynamic symbolic

execution. Other approaches include using compiler optimization

recommendations [15] and selected symbolic execution [9]. How-

ever, path explosion remains a persistent issue, and pure symbolic

execution is limited by the imprecision of static analysis and the-

orem provers [14]. Concolic execution [6, 14, 26] addresses this

by combining symbolic and concrete execution with recent tools

such as SymSan [8], SymCC [23], and SymQEMU [24] embedding

symbolic processing in the target program. Nagy et al. [22] propose

a guided tracing, reducing tracing expenses by filtering and focus-

ing only on test cases that increase coverage, yielding substantial

performance improvements in fuzzing. Despite limited tests, the

number of constraints can rapidly increase with depth. While path

explosion has received extensive research attention, few studies

specifically target constraint bloat. LSym [21] utilizes taint analysis

to symbolize input bytes influencing the target branch. It employs

a hybrid fuzzing technique integrating conservative constraint de-

bloating. However, LSym separately executes symbex and taint flow

analysis, resulting in higher overhead. As a solution, TACE groups
related constraints with common variables. Further, to eliminate

redundancies, TACE iteratively merges the constraint groups with

common or dependent variables across two constraint groups.

1
https://nvd.nist.gov/vuln/detail/CVE-2023-48161
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Figure 1: The hybrid fuzzing architecture of TACE on source code with SymCC. A similar
architecture is followed by TACE on binaries with SymQEMU.

Example of Taint Assisted Constraint Grouping

Instruction 1: I1 = I2 + I3

Instruction 2: I3 = I8

Instruction 3: I4 = 2 * I6

Instruction 4: I7 = I4 + I6

I1 I2 I3 I4 I5 I6 I7 I8

I1 = I2 + I3

I1 = I2 + I3

I1 = I2 + I3

1

I1 I2 I3 I4 I5 I6 I7 I8

I1 = I2 + I3

2

I3 = I8 I3 = I8

3

I1 = I2 + I3

I1 I2 I3 I4 I5 I6 I7 I8

I3 = I8

4

I1 = I2 + I3
I3 = I8

I4 = 2 + I6 I4 = 2 + I6

I1 I2 I3 I4 I5 I6 I7 I8

5

I3 = I8
I4 = 2 + I6I1 = I2 + I3

I1 I2 I3 I4 I5 I6 I7 I8

I7 = I4+ I6

I7 = I4+ I6I7 = I4+ I6

6

I3 = I8
I4 = 2 + I6I1 = I2 + I3

I1 I2 I3 I4 I5 I6 I7 I8

I7 = I4+ I6

Figure 2: A four-instruction example to understand TACE.

3 DESIGN AND IMPLEMENTATION
TACE is implemented as an extension of the state-of-the-art symbex

tools SymCC [23] and SymQEMU [24]. This section discusses the

architectural design and implementation of TACE.

3.1 The hybrid fuzzing architecture of TACE
Figure 1 illustrates the hybrid fuzzing architecture of TACE on

source code with SymCC. The input source project is compiled

with TACE and AFL-clang to generate a TACE-instrumented binary

and an AFL-instrumented binary, respectively. As TACE uses the

underlying architecture of SymCC, it uses SymCChelper to generate
inputs from the TACE-instrumented binary. AFL [30] generates the

initial seed for the AFL-instrumented binary. TheAFL-instrumented

binary is fuzzed to explore unique crashes and generate new inputs.

The seeds generated by SymCChelper are only retained if they ex-

plore previously unseen paths. The collected seeds are used to fuzz

the input program and generate new seeds.

https://nvd.nist.gov/vuln/detail/CVE-2023-48161
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3.2 Taint Assisted Constraint Grouping
Consider the four-instruction example in Figure 2 to understand

TACE. TACE uses taint labels to group dependent constraints. Taint

labels are program variables. Each taint label is one byte, and the

maximum number of taint labels for TACE is the total number of

bytes in the input program. The taint labels are then associated

with the dependent constraints. The constraints are merged, link-

ing them with only one taint label, as illustrated in Figure 2. This

approach creates non-overlapping sets of related constraints.

Instruction 1 uses symbols I1, I2, and I3; thus, its associated taint

labels are I1, I2, and I3 in ascending order. In the next step, since

I1, I2, and I3 interact in the constraint of Instruction 1, the set of

constraints associated with I3 is moved to (and attached with) I2,

and then the set of constraints related to I2 is moved to I1. The

above process is repeated for each instruction as it is encountered.

The systematic handling of constraints based on instruction

interactions and taint labels facilitates a precise assessment of the

overall taint propagation within the program, contributing to a

deeper comprehension of TACE and its implications for security

and analysis in program execution.

4 EXPERIMENTAL EVALUATION
4.1 Experimental setup and Benchmarks
The experiments were conducted on Ubuntu 22.04.1 (5.15.0-67-

generic) with 256 GB RAM, AMDRyzen Threadripper PRO 3955WX

16-Cores CPU. We evaluate TACE against SymCC on five widely

used open-source C++ libraries: GifLib, TCPdump, minizip, Open-
jpeg, and bzip2. The selected libraries are compiled with afl-clang
and TACE to generate AFL and TACE instrumented binaries, respec-

tively. AFL assists in seed generation and fuzzing.

4.2 Research Questions
• RQ1: What performance gains are offered by TACE compared

to state-of-the-art tools, SymCC and SymQEMU?

• RQ2: Does TACE report correct and reproducible bugs?

4.3 Results
4.3.1 Constraints Solving Time. Reducing constraint-solving time

significantly expedites bug discovery in actual applications. To ex-

hibit TACE’s practical efficiency, we crafted symex2.c2, a small sam-

ple code resembling real-world projects with multiple if-then-else

branches, making achieving full code coverage quite challenging.

We evaluated TACE’s constraint debloating capabilities by com-

paring the time taken by SymQEMU and TACE at varying depth

levels for the symex2.c program. The results, as shown in Table 1,

highlight TACE’s substantial improvement in solving symbolic con-

straints compared to the state-of-the-art tool SymQEMU.

Particularly, TACE’s performance exhibits notable improvement

as the program’s depth increases, mainly due to introducing more

variables during deeper analysis, escalating the complexity of con-

straints for SymQEMU. However, TACE’s constraint debloating strat-
egy leads to an exponential reduction in constraint-solving time. The

data in Table 1 indicates that as the program’s depth grows, TACE
observes more concrete dependencies while symbolic dependencies

2
https://github.com/tacetool/TACE/blob/main/tace/symcc/test/symex2.c

Table 1: SymQEMU vs. TACE: Constraint Solving Time at Various Depths

Depth
SymQEMU

(Sec)
TACE
(Sec)

Symbolic
Dep

Concrete
Dep

Improvement
(x times)

1 4.28 4.30 3 2 0.99

2 7.44 5.69 4 3 1.30
3 9.76 6.26 4 4 1.55
4 15.02 7.84 4 6 1.91
5 26.11 9.35 4 10 2.79
6 122.65 7.81 4 18 15.70
7 145.50 4.38 4 34 33.21
8 280.48 5.59 4 66 50.17

remain relatively stable. This reduction in symbolic dependencies

by TACE significantly decreases solving time and facilitates the

generation of pertinent inputs.

4.3.2 Fuzzing Results. Fuzzing dynamically explores possible soft-

ware behaviors as per the inputs provided. The relevance of these

inputs directly affects the new paths explored. Code coverage of a

fuzz campaign is directly linked to the quality of inputs. Identifying

unique and relevant inputs for bigger constraints is much harder

than curating the inputs from smaller constraints. We measure the

following metrics as indicators of the target exploration quality:

• Unique Timeouts are cases where the fuzzed program ex-

ceeds a defined time limit for execution;

• Unique Hangs refer to instances where the fuzzed program
becomes unresponsive or “hangs". The default timeout for

all experiments was set to 1 second;

• Unique Crashes represent distinct instances where the

program being fuzzed crashes;

• Paths represent the unique sequences of operations or code
executed during a fuzzing session;

• Edges ar breakable, e the transitions or branches taken

within the program during fuzzing;

• Cycles indicate revisiting a previously encountered state.

If persistent with diverse seeds, fuzzers unveil numerous unex-

plored paths over time. Yet, the real advantage is in an efficient

fuzzer that generates highly effective seeds, enabling the early de-
tection of crashes and hangs. To serve this objective, we fuzz test

each project (minizip-ng, TPCDump, GifLib, OpenJpeg, bzip2) for
24 hours. Our experiments indicate TACE provides higher coverage

than existing state-of-the-art tools, thus uncovering newer bugs in

fewer explorations. TACE’s intelligent debloating approach gener-

ates relevant inputs by modifying only impactful variables.

Table 2 presents our experimental findings for five chosen open-

source libraries, contrasting TACE against SymCC. The data outlines

unique hangs, timeouts, and crashes encountered during fuzzing. It

also includes metrics regarding newly discovered edges, cycles, and

explored paths. TACE outperforms SymCC in several key aspects.

For instance, in a 24-hour analysis of the minizip-ng project, TACE
identified a significantly greater number of new edges, totaling

3, 631 compared to just five new edges discovered by SymCC. TACE
also surpasses SymCC regarding unique hangs and crash detec-

tion. For instance, in our experiments, TACE detected 36 hangs in

TCPDump and 10 hangs in OpenJpeg, compared to 14 and 0 hangs

detected by SymCC, respectively. Similarly, TACE reported 1201

unique time-outs for TCPDump and 894 time-outs for OpenJpeg as

opposed to 336 and 1 reported by SymCC, respectively, in the same

experimental setup. TACE identified seven distinct crashes in GifLib

5.2.1, whereas SymCC reported none. To confirm these findings,

https://github.com/tacetool/TACE/blob/main/tace/symcc/test/symex2.c
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Table 2: Comparision hybrid fuzzing statistics from SymCC and TACE.

Test Details SymCC TACE

Target Project
Time

(hh:mm:ss)
#Unique
Hangs

#Unique
tmouts

#Unique
Crashes

#New
Edges #Cycles #Unique

Hangs
#Unique
tmouts

#Unique
Crashes

#New
Edges #Cycles

minizip-ng 24:00:00 0 4 0 5 391 0 203 0 204 3.6k

TCPDump 24:00:00 14 336 0 4148 223 36 1201 0 7 286

GifLib 24:00:00 2 71 0 78 108k 13 62 7 72 181k

OpenJpeg 24:00:00 0 1 0 3 89 10 894 0 71644 104k

bzip2 24:00:00 0 2 0 4 76.2 0 2 0 4 229k

an exhaustive manual verification is vital. After verification, this

information must be communicated to the developers (if valid).

The results of this verification and detailed explanations will be

presented in the following section.

5 EXPLORING CVE-2023-48161: A CASE STUDY
GifLib, a widely used library for handling GIF image files, is crucial

in various applications and systems. GifLib is included in the Fe-

dora project, thereby is a default library in both Fedora and Ubuntu

Linux distributions. To ensure that GifLib resists various input sce-

narios and edge cases, TACE generates random and mutated inputs,

including malformed GIF files, by combining mutation algorithms

with the initial seed corpus. These inputs are systematically fed

into GifLib, executing multiple test cases with varied inputs. TACE
monitors the execution of each test case and detects crashes or

unexpected behaviors, indicating potential vulnerabilities.

5.1 Results
After running TACE against GifLib 5.2.1 over 24 hours, the following
results were obtained:

(1) Unique Crashes As illustrated in Figure 3, TACE can detect

crashes in GifLib early in its analysis as it generates more

relevant inputs.

(2) Unique Hangs In our experiments on GifLib, as shown

in Figure 3, the unique hangs grow persistently with time,

especially in later inputs, indicating that the early inputs are

more useful in detecting crashes.

(3) Levels The depth of the test application explored is referred

to as level. The saturation in levels indicates that the maxi-

mum depth is explored.

Figure 3: Unique crashes, hangs, and levels in mili-seconds (GifLib fuzzing).

The fuzzing case study with TACE on GifLib 5.2.1 demonstrated

its effectiveness in identifying potential vulnerabilities, crashes, and

memory leaks.

5.2 Validating Results for Correctness
TACE found 7 distinct crashes in GifLib 5.2.1, all stemming from a sin-

gle heap buffer overflow. The findings were reported to the develop-

ers after manual verification via Google’s AddressSanitizer [27].

The overflow within the dynamic memory allocation of the Gi-

fLib program led to a situation where data was written past the

allocated memory region in the heap, triggering a critical fault. A

similar heap overflow vulnerability in this application was previ-

ously documented under the CVE identifier CVE-2022-28506. Fe-

dora implemented a patch for that vulnerability
3
, however the

issue recently pinpointed by TACE, specifically in the image-saving

process at line 321 of the gif2rgb.c file, continues to exist. The

vulnerability is now officially reported and given the CVE number

CVE-2023-48161.
Tables 2 and 1 combinedly answer RQ1. Table 1 showcases the

speed-up offered by TACE compared to pure symbolic execution

employed by SymQEMU. Table 2 emphasizes the crash discovery

capability of TACE compared to SymCC, which does not discover

any in the given 24-hours period. Our experiments show that TACE
reports real and reproducible crashes corresponding to RQ2.

5.3 Reproducibility
We have made TACE accessible to the research community [1]. We

offer the necessary resources for compiling TACE from its source

code and have also created a Dockerfile to simplify its usage. The

repository also contains the symex2.c example discussed in Ta-

ble 1. We provide detailed instructions in the same repository

for replicating the CVE-2023-48161 heap buffer overflow, as de-

scribed in this section. A demo video for TACE is available at:

https://www.youtube.com/watch?v=FZpxPNsp_IE.

5.4 Threat to validity
Although TACE offers a significant performance gain over existing

techniques, it also inherits shortcomings of concolic execution. The

approach can detect vulnerabilities and bugs faster than existing

approaches, yet it is not a complete solution and, thus, may not

report all existing vulnerabilities. In addition, TACE maintains the

taint information and, thus, is memory intensive.

6 CONCLUSION
TACE is a platform-independent approach that can be applied to any

existing tool for performance enhancement. TACE is evaluated as an
extension on SymCC and SymQEMU, thereby accepting source files

and binaries, respectively. TACE shows promising results in debloat-

ing program constraints, surpassing the performance of current

methods. Real-world case studies demonstrate TACE’s effectiveness
in uncovering hidden vulnerabilities and enhancing the robustness

of software projects, evidenced by its detection of a new heap buffer

overflow, CVE-2023-48161, in the well-tested GifLib project. We

envision a future of continual refinement and innovation for our

tool and encourage collaboration and community contributions.

3
https://bodhi.fedoraproject.org/updates/FEDORA-2022-964883b2a5
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