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Abstract. Private inference on neural networks requires running all the
computation on encrypted data. Unfortunately, neural networks contain
a large number of non-arithmetic operations, such as ReLU activation
functions and max pooling layers, which incur a high latency cost in
their encrypted form. To address this issue, the majority of private infer-
ence methods replace some or all of the non-arithmetic operations with
a polynomial approximation. This step introduces approximation errors
that can substantially alter the output of the neural network and de-
crease its predictive performance. In this paper, we propose a Lipschitz-
Guided Abstraction Refinement method (LiGAR), which provides strong
guarantees on the global approximation error. Our method is iterative,
and leverages state-of-the-art Lipschitz constant estimation techniques to
produce increasingly tighter bounds on the worst-case error. At each iter-
ation, LiGAR designs the least expensive polynomial approximation by
solving the dual of the corresponding optimization problem. Our prelim-
inary experiments show that LiGAR can easily converge to the optimum
on medium-sized neural networks.

Keywords: Privacy-Preserving Machine Learning · Homomorphic En-
cryption· Deep Neural Networks · Lipschitz Constant · Polynomial Ap-
proximation · Abstract Interpretation

1 Introduction

The rise of very large neural network models has made it attractive to offload all
the related computation to remote servers in the cloud [27]. While this config-
uration eases the computational burden on the client side, it opens the door to
privacy concerns, as the user is forced to send their private data to a third-party
machine [22]. An ideal solution would involve a private inference scheme (see
Figure 1), where the server evaluates the neural network on encrypted data and
the client decrypts the result afterwards.

⋆ This work is funded by the EPSRC grant EP/T026995/1 entitled “EnnCore: End-
to-End Conceptual Guarding of Neural Architectures” under Security for all in an
AI enabled society.
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Fig. 1: Private inference requires running a neural network on encrypted data.

In order to realise such vision, each operation performed by the neural net-
work needs to be adapted for operating on ciphertext. Homomorphic encryp-
tion schemes enable this translation as follows. For a given encryption scheme
E = (Gen,Enc,Dec), we say that E is additively homomorphic if for two cipher-
texts c1 ← Enc(m1) and c2 ← Enc(m2), one can compute c3 = c1 + c2 where
Dec(c3) = m1+m2. One example of such scheme is due to Paillier [21]. Similarly,
we say that E is multiplicative homomorphic if for two ciphertexts c1 ← Enc(m1)
and c2 ← Enc(m2), one can compute c3 = c1 · c2 where Dec(c3) = m1 ·m2. The
RSA encryption scheme [23] is of this flavor. A Fully Homomorphic Encryption
(FHE) scheme is one that combines both operations. In particular, it allows for
a client to compute an encryption of its secret input x and a server to homo-
morphically evaluate any circuit C over the ciphertext; as an output the server
produces an encryption of the evaluation of C(x) while it never learns anything
about x. The first construction of FHE by Gentry [7] is based on the hardness
of lattices problems and it is extremely inefficient. Since then, a lot of work has
been done trying to bring FHE closer to the practical realm [2, 3, 15].

In this regard, neural networks contain a significant number of operations
that cannot be represented as a combination of additions and multiplications:
e.g. ReLU, hyperbolic tangent, sigmoid, softmax and maxpool [1]. In order to
avoid the computational cost of directly executing these in FHE, existing private
inference methods propose to approximate them with polynomials [4, 18, 16, 14,
13]. Such polynomial conversion introduces some approximation error at every
layer of the neural network. For some inputs, the error can accumulate and
drastically distort the output of the network [6]. While most existing works claim
that the approximated network has similar predictive accuracy to the original
one, some authors express the need for stronger guarantees on the approximation
error [6]. To the best of our knowledge, this need has not been met so far. The
only exception is the theoretical analysis in [14], which proves that the output
error is bounded, but does not provide a constructive algorithm to compute it.

In this paper, we address this research gap by designing neural network ap-
proximations with formal guarantees on the maximum output error. Essentially,
we recognise that this research objective is fundamentally a problem of equiv-
alence verification. As such, we leverage state-of-the-art verification techniques,
and we adapt them to the polynomial approximation setting. More specifically,
our contributions are the following:
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– we propose an abstraction technique to represent the polynomial error;
– we adapt state-of-the-art reachability and Lipschitz estimation techniques to

the architecture of our abstracted network;
– we derive a closed-form solution to the problem of optimal error allocation;
– we introduce our Lipschitz-Guided Abstraction Refinement (LiGAR) method

to iteratively minimise the over-estimation caused by our abstraction;
– we show that LiGAR can easily converge on medium-sized neural networks;
– we discuss the practical limitations of a worst-case method like LiGAR.

All the code for the experiments in this paper is publicly available at [17].

2 Related Work

The literature on privacy-preserving machine learning is vast. Here, we only
cover the main research trends on the topic of private inference.

Neural Architecture Search (NAS). Since the main bottleneck is executing non-
arithmetic operations on encrypted data, some works propose to select neural
architectures that contain the bare minimum of them. Delphi [18] uses NAS to
select which ReLUs we can approximate with degree-2 polynomials. The rest is
replaced with garbled circuits to avoid accuracy drop. Similarly, SAFENet [16]
uses NAS to replace a subset of the ReLUs with polynomials of degree in [0, 3].
Other methods include a finetuning phase after altering the network architecture:
DeepReDuce [9] uses pruning and distillation techniques, while SNL [5] replaces
some ReLUs with the identity function before re-training.

Low-degree approximations. Earlier approaches aimed at replacing all non-arith-
metic operations with low-degree polynomials. CryptoNets [8] replaces all activa-
tion functions with x2. Similarly, the authors of [4] use degree-2 polynomials but
includes batch normalisation layers to keep the input distribution centred with
the polynomial approximation. As discussed in [6], these low-degree approxima-
tion only allow for shallow neural networks, as it is very challenging to fine-tune
the approximations without incurring in the gradient explosion problem.

High-degree approximations. An alternate approach is approximating non-arith-
metic operations with high-degree polynomials [14]. This way, the approximated
network does not require any fine-tuning. The major obstacle to such goal is
obtaining stable high-degree approximations of the sign operator [12]. From it,
a number of popular non-arithmetic operations can be derived, including ReLU
and max-pooling. A recent example of this line of research is [13], which focuses
on the challenge applying fully-homomorphic encryption to large-scale networks.

3 Preliminaries

3.1 Neural Network Definitions and Notation

In this paper, we focus on feedforward fully-connected neural networks with
ReLU activation functions. This neural architecture encapsulates all the chal-
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lenges in designing private inference methods. Extension of our method to gen-
eral neural networks is possible, but we leave it for future work.

Definition 1 (ReLU Layer). Define the Rectified Linear Unit (ReLU) as the
function σ(zi) = max(zi, 0) with potential zi ∈ R. A ReLU layer is a mapping
h : Rn → Rn that applies σ element-wise, i.e. (h(z))i = σ(zi).

Definition 2 (Affine Layer). An affine layer is a mapping g : Rm → Rn such
that g(z) = Wz+b where W ∈ Rn×m is a matrix and b ∈ Rn is a column vector.

Definition 3 (Feedforward Fully-Connected ReLU Neural Network).
A feedforward fully-connecte ReLU neural network f(x) is the composition of an
alternating sequence of affine and ReLU layers:

y = f(x) = gk ◦ hk−1 ◦ gk−1 ◦ · · · ◦ h1 ◦ g1(x) (1)

3.2 Univariate Polynomial Approximation

The ReLU function is non-arithmetic and thus necessitates replacement. This is
a classic problem of univariate polynomial approximation [26], with the goal of
minimising the maximum error over a finite interval [z, z]:

p∗d = argmin
pd

{
max
z∈[z,z]

{
|pd(z)− σ(z)|

}}
(2)

where d is the polynomial degree. The solution of Equation 2 can be computed
via Remez’s algorithm, of which many implementations exist (e.g. [20]); we
present an example of it in Figure 3a. Crucially, univariate polynomial approxi-
mation becomes numerically unstable as the degree d grows into the hundreds.
The authors of [12] address this issue by decomposing the minimax polynomial
into a composition of lower-degree ones.

4 LiGAR: Lipschitz-Guided Abstraction Refinement

We define the problem of finding the optimal polynomial approximation of a
neural network f(x) as follows:

Definition 4 (Optimal Polynomial Approximation). Given a (possibly in-
finite) set of inputs X and a target output error δy, find the least computationally
expensive polynomial approximations p∗di

≈ σ(zi) of each ReLU function i in

f(x), such that the maximum output error satisfies ||f(x)− f̂(x)||∞ ≤ δy, where

all the ReLUs in f̂(x) have been replaced with their respective approximations.

Here, we interpret the least expensive computation objective in terms of min-
imising the sum of all degrees dtot =

∑
i di. However, we note that other choices

are possible (e.g. multiplication depth in [13]). These are correlated with the
polynomial degree, but not equivalent to it.
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Fig. 2: We abstract away the details of the polynomial approximation by intro-
ducing an additional error input ϵi to the output of each ReLU activation.

4.1 Approximation Error Abstraction

Substituting a ReLU activation functions with a polynomials introduces some
input-dependent approximation error ϵ(zi) = |σ(zi) − p∗di

(zi)|. In order to fa-
cilitate the solution of the optimisation problem in Definition 4, we propose to
remove the dependency of ϵ(zi) on zi by letting its value vary freely in the interval
ϵi ∈ [−δi,+δi]. In this way, we can isolate the contribution of each approximation
p∗di

on the output error (see Section 4.4).
We present a high-level picture of our abstraction in Figure 2. The abstracted

network uses the same weights, biases and activations of the original network.
However, a new input ϵi is added to the output of each activation function:

Definition 5 (Polynomial Neural Network Abstraction). Call f̂(x) the
polynomial approximation of neural network f(x), such that |σ(zi)−pdi(zi)| ≤ δi
for each ReLU i with potentials zi ∈ [zi, zi]. Define f(x, ϵ) as the abstraction of

f̂(x) if each ReLU layer hℓ of the abstraction takes the following form:
(
ĥℓ(z)

)
i
= σ(zi) + ϵi (3)

where ϵi ∈ [−δi,+δi] and zi ∈ [zi, zi] for all i and x ∈ X .

4.2 Potential Range Estimation

Note that estimating the range of the potentials zi for each ReLU neuron i
corresponds to the classic reachability problem in neural network verification
[29, 25]. In our experiments, we use the FastLin bound propagation technique in
[28] to compute linear bounds on the output of the affine layers gℓ. Differently
from the standard definition therein, the bounds depend on both the original
input vector x and the error vector ϵ:

Sℓx+ U ℓϵ+ vℓ ≤ gℓ(x, ϵ) ≤ Sℓx+ U ℓϵ+ vℓ (4)

Note that the matrices U ℓ and U ℓ have non-zero entries only in the columns

j ∈ [1,
∑ℓ−1

k=0 nk], where nk is the number of ReLU neurons in layer k. Further-
more, we derive the concrete range of the ReLU potentials (gℓ(x, ϵ))i ∈ [zi, zi]
by maximising (resp. minimising) the right-hand side (resp. left-hand side) of
Equation 4 over both x ∈ X and ϵi ∈ [−δi,+δi].
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4.3 Local Lipschitz Constant Estimation

In order to compute the optimal polynomial approximation of each ReLU, we
need both the potential range [zi, zi] and the optimal approximation error ϵi
(see Section 4.4). In this regard, we can inform our decision by estimating the
impact of each ϵi on the output error. We achieve this goal by computing the
local Lipschitz constant of ϵi:

Definition 6 (Lipschitz Constant). The local Lipschitz constant of ϵi is:

L∞
i = max

x,ϵ,ϵ′

|f(x, ϵ)− f(x, ϵ′)|∞
|ϵi − ϵ′i|∞

(5)

where x ∈ X , ϵj , ϵ′j ∈ [−δj ,+δj ] for all j and ϵj = ϵ′j for all j ̸= i.

In other terms, Definition 6 quantifies the maximum rate of change in the output
as we modify one single error input ϵi. Thanks to it, we can bound the total
approximation error as follows:

||f(x)− f̂(x)||∞ ≤ max
ϵ

{
||f(x)− f(x, ϵ)||∞

}
≤

∑

i

L∞
i max

ϵi
{|ϵi|} (6)

Computing the Lipshitz constant of a neural network is highly non-trivial, and
it is currently an area of active research [24, 10]. In our experiments, we adapt
the algorithm in [24] to the architecture of our abstracted neural network, by
extracting the Jacobian of ϵ from the intermediate results of the backward pass.

4.4 Optimal Error Allocation

Recall that our objective is approximating the neural network f(x) in such a
way that the output error never exceed a given margin δy (see Definition 4).
With the Lipschitz estimates from Section 4.3, we can decide how to optimally
distribute the local approximation error ϵi as follows:

Minimise dtot =
∑

i

di(ϵi, zi, zi) (7)

Subject to
∑

i

L∞
i ϵi ≤ δy (8)

And 0 ≤ ϵi ≤ δi, ∀i (9)

where ϵi is a shorthand for maxϵi{|ϵi|} from Equation 6, i.e. the maximum
approximation error of each ReLU function in [zi, zi].

Crucially, the objective function estimates the inference cost of replacing each
activation i with a polynomial of degree di. We give an example of such poly-
nomial in Figure 3a. Clearly, the degree is a monotonically increasing function
in the size of the potential range [zi, zi], and monotonically decreasing in the
required precision ϵi. Furthermore, we know that the minimax approximation
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Fig. 3: Approximating a ReLU activation with polynomials (3a) and the resulting
error (3b). Note that the example on the left has (σ(zi)−σ(zi))/(zi− zi) = 0.4.

p∗di
(zi) of degree di of any continuous non-differentiable function σ(zi) guarantees

a maximum approximation error ϵi ∝ O(d−1) [26]. As a result, we can compute
the exact relation between ϵi and di = 1 and extend it to any di > 1:

ϵi ≈
Ci

di
where Ci =

1

2

(
σ(zi)− zi

σ(zi)− σ(zi)

zi − zi

)
(10)

which is exact for di = 1 and overestimated for di > 1, unless the constant Ci

is very close to 0 or 1 (see example for di = 5 in Figure 3b). We show how to
derive the corresponding optimal solution in Appendix A.

4.5 Abstraction Refinement Cycle

Now, we can discuss the key idea behind our LiGAR method. When we compute
the Lipschitz constants L− i∞ and potential ranges [zi, zi], we need to specify a
domain ϵi ∈ [−δi,+δi] for the approximation error. If we choose a domain that
is too large, our estimates will be conservative. If we choose it too small, the
values of ϵi will also be small, thus yielding a larger cost Ci/ϵi.

We solve this issue by making our abstraction-optimisation process iterative
(see Algorithm 1). More specifically, we start with a large user-defined error
domain (Line 2). Then, we estimate the potential ranges and Lipschitz estimates
accordingly (Lines 5-10). Next, we solve the dual optimisation problem (Line 11),
which gives us the optimal error allocation given the current estimates. With this
result, we can tighten the error domain (Line 12) and repeat the process.

Note that the error domain is always kept larger than any of the solutions
found so far, and smaller than all error domains that did not activate the con-
straint ϵ∗i ≤ δi. In our experiments, LiGAR converges after 20-30 iterations.
Finally, we use an indirect definition for the input domain in Lines 5-10. That
is, akin to many neural network verification settings [19], we select a finite set of
concrete inputs X , and consider a norm-∞ ball of size δx around each of them.
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Algorithm 1 LiGAR

Input: network abstraction f(x, ϵ), finite input set X , input domain δx, error domain
δϵ, output precision δy, convergence threshold h.

Output: optimal error allocation ϵ∗, potential ranges z, z.
1: t← 0
2: δi(1)← δϵ, ∀i ▷ Largest error domain
3: repeat
4: t← t+ 1
5: for all x ∈ X do
6: z(x), z(x)← ComputePotentials(f, x, δx, δi(t)) ▷ Forward pass
7: L∞(x)← ComputeLipschitz(f, z, z) ▷ Backward pass
8: end for
9: Ci ← C(minx{zi(x)},maxx{zi(x)}), ∀i ▷ Cost coefficients
10: L∞

i ← maxx{L∞
i (x)},∀i ▷ Lipschitz estimates

11: ϵ∗(t), v(t)← OptimalAllocation(C,L∞, δi(t), δy) ▷ Solve dual problem
12: δi ← 1

2
(maxt{ϵ∗i (t)}+mint:ϵ∗i (t)<δi(t){ϵ

max
i (t)}),∀i ▷ Tighter error domain

13: until v(t− 1)− v(t) ≤ h ▷ Stop if no progress
14: t∗ ← argmint{v(t)}
15: return ϵ∗(t∗), v(t∗) ▷ Return best allocation

5 Empirical Analysis

Here, we present our preliminary experimental results. Our main goal is twofold:
demonstrate the behaviour of LiGAR on medium-size networks; gather evidence
on the practical utility of worst-case approximations for private inference.

5.1 Experimental Setting

Neural Network Model. We select the MNIST (fc) image classification network
from VNN-COMP’21.3 This network has six hidden layer containing 256 neurons
each. The inputs are grey-scaled images with 784 pixels, whose values are scaled
to the interval [0, 1]. The outputs are ten scores that represent the log-likelihood
of the image containing a hand-written digit between zero and nine [11].

LiGAR Parameters. For reasons of time, we run LiGAR with X containing
only 1000 random samples from the MNIST training set [11]. We set the initial
error domain to δϵ = 0.1, the convergence threshold to h = 0.01 and the output
precision to δy = 0.01, unless otherwise specified.

5.2 Experimental Results

Potential Ranges and Lipschitz Constants. Computing worst-case guarantees
on the potential ranges and Lipschitz constants incur a cost regarding over-
estimation. In Figure 4, we show what happens when we increase the input δx

3 https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks
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Fig. 4: Potential ranges (Fig. 4a) and Lipschitz constants (Fig. 4b) on the MNIST
(fc) network. The values become more conservative as δx and δϵ increase.
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Fig. 5: Optimal error allocation for different input domain sizes (Fig. 5a) and
output precision requirements (Fig. 5b) on the MNIST (fc) network. ReLU neu-
rons have been omitted in their linear state (always active or inactive).

and error δϵ domains. As expected, the bound propagation yields fairly tight
estimates for the potential range zi− zi over the first layers of the network until
the over-approximation caused by the FastLin abstraction technique begins to
accumulate. Similarly, Lipschitz constants are tight for the final few layers but get
increasingly worse as the backward estimation procedure reaches earlier layers.
Note that LiGAR can iteratively reduce the over-estimation caused by δϵ, but
not the one caused by δx.

LiGAR Error Allocation. We report the optimal error allocation computed by
LiGAR in Figure 5. Note how increasing the input domain δx forces LiGAR to be
more conservative in its estimates. Interestingly, this conservative behaviour is
more pronounced for earlier layers. We believe this is caused by the corresponding
over-estimation of the Lipschitz constants (see Figure 4b). In constrast, the error
allocation is proportional to the output precision δy. This is not surprising, since
δy appears only in one constraint of the optimization problem (see Equation 8).
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Linearly Removable ReLU Activations. It has been claimed in the literature that
many ReLU activations in a given network can be replaced by a linear function
[5]. We test this claim by checking how many ReLUs are either always active or
always inactive according to LiGAR’s potential range estimates. The results in
Table 1 show that the number of ReLUs we can remove quickly falls to zero as
we cover a larger portion of the input space by increasing δx.

Table 1: Number of ReLUs in the always-active or always-inactive state.

MNIST (fc) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

δx = 0 23 11 53 81 238 162
δx = 0.001 23 11 53 76 161 0
δx = 0.01 17 7 0 0 0 0
δx = 0.1 0 0 0 0 0 0

Inference-Time Output Error. LiGAR guarantees that the output approximation
error is never greater than δy. Here, we estimate the practical performance of the
approximated network by measuring both the maximum observed output error
and the change in predictive accuracy. Note that due to numerical instability
in existing univariate polynomial approximation libraries (see Section 3.2) we
report only the result for the abstracted network. In Table 2 we show results for
both the 1000-sample LiGAR train set X (see Section 5.1), and the full 10000-
sample MNIST test set. Note how the accuracy matches the original network,
and the maximum error is at least two orders of magnitude smaller than the
LiGAR guarantee δy = 0.01. This shows that using worst-case estimates in
designing neural network approximations leads to very conservative solutions.

Table 2: Output error and inference accuracy of the abstracted network.

LiGAR Train Set Test Set

|f(x)−f(x, ϵ)| Accuracy |f(x)−f(x, ϵ)| Accuracy

Original f(x) - 0.980 - 0.969
δx = 0 2.64× 10−4 0.980 7.26× 10−4 0.969
δx = 0.001 4.90× 10−6 0.980 5.67× 10−6 0.969
δx = 0.01 3.36× 10−5 0.980 4.00× 10−5 0.969
δx = 0.1 1.26× 10−4 0.980 1.30× 10−4 0.969

6 Conclusions

In this paper, we propose the Lipschitz-Guided Abstraction Refinement (LiGAR)
method, which can compute the optimal neural network approximation with
a given worst-case output error. We show that LiGAR converges quickly on
medium-sized networks and could in principle scale to larger ones. At the same
time, the worst-case guarantees come at the price of conservative solutions. We
believe that this is a major obstacle for the adoption of worst-case methods like
LiGAR for the purpose of private inference.
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A Closed-Form Dual Solution

The objective function dtot ≈
∑

i Ci/ϵi is convex, and it is possible to derive its
global minimum in closed form as follows. First, let us write the Lagrangian of
our optimization problem:

L(ϵ, µ, λ) =
∑

i

Ci

ϵi
+

∑

i

µi(ϵi − δi) + λ(
∑

i

L∞
i ϵi − δy) (11)

where we omit the constraints ϵi ≥ 0 for simplicity. Now, we can derive the
minimum of the Lagrangian over ϵ by equating its derivative to zero:

ϵ∗i = argmin
ϵ
{L(ϵ, µ, λ)} =

√
Ci

µi + λL∞
i

(12)

for all i, which already satisfies the implicit constraint ϵi ≥ 0. Finally, the values
of the dual variables µi ≥ 0 and λ ≥ 0 can be found by maximizing ϵ∗i . This
operations requires satisfying the following system of equations:

∑

i

√
Ci

µi + λL∞
i

L∞
i = δy (13)

µi = max

(
Ci

(ϵ∗i )
2
− λL∞

i , 0

)
(14)

which can be done iteratively by first solving Equation 13 with a binary search,
and then computing Equation 14. In our experience, very few iterations are
required until convergence.


