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Abstract. Neural networks are essential components of learning-based
software systems. However, their high compute, memory, and power re-
quirements make using them in low resources domains challenging. For
this reason, neural networks are often quantized before deployment. Ex-
isting quantization techniques tend to degrade the network accuracy.
We propose Counter-Example Guided Neural Network Quantization Re-
finement (CEG4N). This technique combines search-based quantization
and equivalence verification: the former minimizes the computational re-
quirements, while the latter guarantees that the network’s output does
not change after quantization. We evaluate CEG4N on a diverse set of
benchmarks, including large and small networks. Our technique success-
fully quantizes the networks in our evaluation while producing models
with up to 72% better accuracy than state-of-the-art techniques.

Keywords: Robust Quantization, Neural Network Quantization · Neu-
ral Network Equivalence · Counter Example Guided Optimization

1 Introduction

Neural networks (NNs) are becoming essential in many applications such as
autonomous driving [6], security, medicine, and business [2]. However, current
state-of-the-art NNs often require substantial compute, memory, and power re-
sources, limiting their applicability [9].

In this respect, quantization techniques help reduce the network size and
its computational requirements [9,24,16]. Here, we focus on quantization tech-
niques, which aim at reducing the number of bits required to represent the neural
network weights [16]. A desirable quantization technique produces the smallest
neural network possible from the quantization perspective. However, at the same
time, quantization affects the functional behavior of the resulting neural network
by making them more prone to erratic behavior due to loss of accuracy [18]. For
this reason, existing techniques monitor the degradation in the accuracy of the
quantized model with statistical measures defined on the training set [16].
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However, statistical accuracy measures do not capture the network’s vulner-
ability to malicious attacks. Indeed, there may exist some specific inputs for
which the network performance degrades significantly [19,27,3]. For this reason,
we reformulate the goal of guaranteeing the accuracy of a quantized model un-
der the notion of equivalence [12,17,11,20]. This formal property requires that
two neural network models both produce the same output for every input, thus
ensuring that the two networks are functionally equivalent [28,30].

We are the first to explore the combination of quantization techniques and
equivalence checking in the present work. Doing so guarantees that the quantized
model is functionally equivalent to the original one. More specifically, our main
scientific contributions are the following:

– We model the equivalence quantization problem as an iterative optimization-
verification cycle.

– We propose CEG4N, a counter-example guided neural network quantization
technique that provides formal guarantees of NN equivalence.

– We evaluate CEG4N on both large (ACAS Xu [23] and MNIST [26]) and
small (Iris [13] and Seeds [8]) benchmarks.

– We demonstrate that CEG4N can successfully quantize neural networks and
produce models with similar or better accuracy than a baseline state-of-the-
art quantization technique (up to 72% better accuracy).

2 Preliminaries

2.1 Neural Network

NNs are non-linear mapping functions f : I ⊂ Rn → O ⊂ Rm consisting of a
set of L linked layers, organized as a direct graph. Each layer l is connected with
the directly preceding layer l − 1, i.e., the output of the layer l − 1 is the input
of the layer l. Exceptions are the first and last layers. The first layer is just a
placeholder for the input for the NN while the last layer holds the NN function
mapping f . A layer l is composed by a matrix of weights Wl ∈ Rn×m and a bias
vector bl ∈ Rm.

The output of a layer is computed by performing the combination of an
affine transformation, followed by the non-linear transformation on its input
xl ∈ Rn(see Eq. (1)). Formally, we can describe the function yl : Rn → Rm that
computes the output of a layer l as follows:

yl(xl) = Wl · xl + bl (1)

and the function that computes the activated output of a layer l as follows:

yσl (xl) = σ(yl(xl)) (2)

where σ : Rm → Rm is the activation function. In other words, the output l
is the result of the activation function σ applied to the dot product between
weight and input, plus the bias. The most popular activation functions are:
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namely, ReLU, sigmoid (Sigm), and the re-scaled version of the latter known as
hyperbolic tangent(TanH) [10]. We focus on the rectified linear unit activation
function ReLU = max {0,yl}.

Considering the above, let us denote the input of a NN with L layers as
x ∈ I , and f(x) ∈ O as the output; thus, we have that:

f(x) = σ (yL(σ (yL−1(...(σ (y1(x)))))))) (3)

2.2 Quantization

Quantization is the process of constraining high precision values (e.g., single-
precision floating-point values) to a finite range of lower precision values (e.g.,
a discrete set such as the integers) [1,16]. The quantization quality is usually
determined by a scalar n (the available number of bits) that defines the lower
and upper bounds of the finite range. Let us define quantization as a mapping
function Qn : Rm×p → Im×p, formulated as follow:

Q (n,A) = clip

(⌊
A

q(A,n)

⌉
,−2n−1, 2n−1 − 1

)
(4)

where A ∈ Rm× p denotes the continuous value– notice that A can be a single
scalar, a vector, or a matrix; n denotes the number of bits for the quantization,
q(A,n) denotes a function that calculates the scaling factor for A in respect to a
number of bits n, and ⌊·⌉ denotes rounding to the nearest integer. Defining the
scaling factor (see Eq. 5) is an important aspect of uniform quantization [22,25].

The scaling factor is essentially what divides a given range of real values
A into an arbitrary number of partitions. Thus, let us define a scaling factor
function by qn(A), a number of bits (bit-width) to be used for the quantization
by n, a clipping range by [α, β], the scaling factor can be defined as follow:

q(A,n) =
β − α

2n − 1
(5)

The min/max of the signal are often used to determining the clipping range
values, i.e., α = minA and β = maxA. But as we are using symmetric quan-
tization, the clipping values are defined as α = β = max([|minA|, |maxA|]).
In practice, the quantization process can produce an integer value that lies out-
side the range of [α, β]. To prevent that, the quantization process will have an
additional clip step.

Eq. (6) shows the corresponding de-quantization function, which computes
back the original floating-point value. However, we should note that the de-
quantization approximates the original floating-point value.

Â = q(A, 2)Q (n,A) (6)
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2.3 NN quantization

In this section, we discuss how a convolutional or fully-connected NN layer can
be quantized in the symmetric mode. Considering l to be any given layer in a
NN, let us denote xl, Wl, and bl as the original floating-point input vector,
the original floating-point weight matrix, and the original floating-point bias
vector, respectively, of the layer l. And applying the de-quantization function
from Eq. (6), where, we assume that A = Â. Borrowing from notations used
in Sections 2.1 and 2.2. We can formalize the quantization of a NN layer l as
follows:

y1(xl) = Wl · xl + bl

≈ q(Wl, nl)Q (nl,Wl) · xl + q(bl, nl)Q (nl,bl)
(7)

Notice that the bias does not need to be re-scaled to match the scale of the
dot product. Since we consider maximum scaling factor between q(Wl, nl) and
q(bl, nl)), both the weight and the bias share the same scaling factor in Eq. (7).
With that in mind, the formalization of a NNf in Eq. (3) can be reused to
formalize a quantized NN as well.

2.4 NN Equivalence

Let F and T be two arbitrary NNs, and let I ∈ Rn be the common input space of
the two NNs and O ∈ Rm be their common output space. Thus, NN equivalence
verification is the problem of proving that F and T , or more specifically, their
corresponding mathematical functions f : I → O, t : I → O are equivalent. In
essence, by proving the equivalence between two neural networks, one can prove
that both NNs produce the same outputs for the same set of inputs. Currently,
the literature reports the following definition of equivalence.

Definition 1 (Top-1-Equivalence [7,30]). Two NNs f and t are Top-1-
equivalent, if argmax f(x) = argmax t(x), for all x ∈ I.

Let us formalise the notion of Top-1 Equivalence in first-order logic. This is
necessary for the comprehension of the equivalence verification explained in the
following sections of the paper. But first, we formalize some essential assumptions
for the correctness of the equivalence properties.

Assumption 1 Let f(x) be the output of the NN F in real arithmetic (without
quantization). It is assumed that argmax f(x) = y such that x ∈ H.

Assumption 2 Let fq(x) be the output of the NN F in a quantized form. There
is set of numbers of bits N such that argmax f(x) = argmax fq(x) = y for all
x ∈ H.
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Note that the quantization of the NN f that results in the NN fq(x) depends
on the number of bits N . Refer to Eq. (7) to understand the relationship between
N and fq.

An instance of a equivalence verification is given by a conjunction of con-
straints on the input ψx(x), the output ψy(y) and the NNs f and fq. ψ(f, fq, x, y) =
ψx(x) → ψy(y). We denote ψy(y) the equivalence constraint. Let x̄ = x+ x̂ such
that |x+ x̂|∞ ≤ ϵ, consider x̄ ∈ H and y ∈ G. Taking from Definition 1, we have
that:

– ψx(x) is an equivalence property such that ψx(x) ↔ x̄ ∈ H
– ψy(y) is an equivalence property such that ψy(y) ↔ argmax fq(x) = y

Note that, to prove the equivalence of f and fq, one may prove that the
property ψ(f, fq, x, y) holds for any given x and y. This approach may not be
feasible. But proving that ψ(f, fq, x, y) does not hold for some x and y is a more
tractable approach. If we do so, we can provide a counter-example.

2.5 Verification of NN properties

In this paper, we use the classic paradigm of SMT verification. In this paradigm,
the property to check (e.g., equivalence) and the computational model (e.g., the
neural networks) are encoded as a first-order logic formula, which is then checked
for satisfiability. Moreover, to keep the problem decidable, SMT restricts the full
expressive power of first-order logic to a decidable fragment.

SMT formulas can capture the complex relationship between variables, hold-
ing real, integer values and other data types. If it is possible to assign values to
such variables that a formula is evaluated as true, then the formula is said to
be satisfiable. On the other hand, if it’s not possible to assign such values, the
formula is said to be unsatisfiable.

Given a NN F and its mathematical function f , a set of safe input instances
H ∈ Rn, and a safe domain G ⊆ Om– both defined as a set of constraints, safety
verification is concerned with the question of whether there exist an instance
x ∈ H such that f(x) /∈ G. An instance of a safety verification is given by a
conjunction of constraints on the input ψx(x), the output ψy(y) and the NN f .
ψ(f, x, y) = ψx(x) → ψy(y) is said to be satisfiable if there exists some x ∈ H
such that f(x) returns y for the input x and ψ(f, x, y) does not hold.

3 Counter-Example Guided Neural Network
Quantization Refinement (CEG4N)

We define robust quantization (RQ) to describe the problem of maximizing the
quantization of a NN while keeping the equivalence between the original model
and the quantized one (see Definition 2). Borrowing from the notations used in
Section 2, we formally define RC as follows.
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Definition 2 (Robust Quantization). Let f be the reference NN and H ∈
Rn be a set of inputs instances. We define robust quantization as a process that
performs the quantization of f hence resulting in a quantized model fq such that
argmax f(x) ⇐⇒ argmax fq(x) ∀ x ∈ H.

From the definition discussed in Section 2.4, we preserve the equivalence
between the mathematical functions f and fq associated with the NNs. In the
RC, we shift the focus from the original NN to the quantized NN, i.e., we assume
that f is safe (or robust) and use it as a reference to define the safety properties
we expect for fq. By checking the equivalence of f and fq, we can state that
fq is robust, and therefore, we achieve a robust quantization. In more details,
consider a NN f with L layers. The quantization of f assumes there is a set
N = {n1, n2, · · · , nL}, where nl ∈ N represents the number of bits that should
be used to quantize the l-th layer in f . In our robust quantization problem,
we obtain a sequence N for which each n ∈ N is minimized (e.g., one could
minimize the sum of all n ∈ N ) and the equality between f and fq is satisfied.

3.1 Robust quantization as a minimization problem

We consider the robust quantization of a NN as an iterative minimization prob-
lem. Each iteration is composed of two complementary sub-problems. First, we
need to minimize the quantization bit widths, that is, finding a candidate set
N . Second, we need to verify the equivalence property, that is, checking if a
NN quantized with the bit widths in N is equivalent to the original NN. If the
latter fails, we iteratively return to the minimization sub-problem with additional
information. More specifically, we formalize the first optimization sub-problem
as follows.

Optimization sub-problem o:

Objective: N o = argmin
no
1,...,n

o
L

∑
l∈Nl≤L

nl

s.t: argmax f(x) = argmax fq(x), ∀ x ∈ Ho
CE

nl ≥ N ∀ nl ∈ N o

nl ≤ N ∀ nl ∈ N o

(8)

where f is the mathematical function associated with the NN F and fq is the
quantized mathematical function associated with the NN F , Ho

CE is a set of
counter-examples available at iteration o. ConsiderN andN as the minimum and
the maximum bit width allowed to be used in the quantization; these parameters
are constant. N ensures two things, it gives an upper bound to the quantization
bit width, and provides a termination criteria, if a candidate N o such that
nl = N for every nl ∈ N o, the optimization is stopped because it reached
our Assumption 2. In particular, our Assumption 2 ensures the termination
of CEG4N, and it is build over the fact that there is a set of N for which
the quantization introduces a minimal amount of error to NN. In any case, if
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CEG4N proposes a quantization solution equal to the N , this solution is verified
as well, and in case the verification returns a counter-example, CEG4N finishes
with failure. Finally, note that Ho

CE is an iterative parameter, meaning its value
is updated at each iteration o. This is done based on the verification sub-problem
(formalized below).

Verification sub-problem o:
In the verification sub-problem o, we check whether the N o generated by the
optimization sub-problem o satisfies the following equivalence property:

ψ(f, fq, x, y) = ψx(x) → ψy(y)

if ψx(x) → ψy(y) holds for the candidate N o, the optimization halts and N o is
declared as solution; otherwise, a new counter-example xCE is generated. Itera-
tion o+1 starts where iteration o stopped. That is, the optimization sub-problem
o+ 1 receives as parameter a set of Ho+1

CE such that Ho+1
CE = Ho

CE ∪ xCE.

3.2 The CEG4N framework implementation

We propose CEG4N framework, which is a counterexample-guided optimization
approach to solve the robust quantization problem. In this approach, we consider
combining two main modules to solve the two sub-problems presented in Section
3.1: the optimization of the bit widths for the quantization and the verification of
the NN equivalence. The first module that solves the optimal bit width problem
roughly takes in a NN and generates quantized NN candidates. Then, the second
module takes in the candidates and verifies their equivalence to the original
model.

Figure 1 illustrates the overall architecture of the CEG4N framework. It
also shows how each framework’s module interacts with the other and in what
sequence. The GA module is an instance of a Genetic Algorithm. The GA module
expects two main parameters, NN and a set of counter-examples H.

CE We can
also specify a maximum number of generations the algorithm is allowed to run
and lower and upper bounds to restrict the possible number of bits. Once the
GA module produces a candidate, that is, a sequence of bit widths, for each
layer of the neural network, CEG4N generates the C-Abstraction code for the
original model and the quantized candidate and then checks their equivalence.
Each check for this equivalence property is exported to a unique verification test
case. Then, it triggers the execution of the verifier for each verification test case
and awaits the verifier output. Here, Verifier module is an instance of a formal
verifier (i.e., a Bounded Model Checker (BMC), namely, ESBMC [15]). This step
is done sequentially, meaning each verification is run once the last verification
terminates.

Once all verification test cases terminate, CEG4N collect and process all
outputs and checks whether any counter-example has been found. If so, it up-
dates the set of counter-examples H,

CE and triggers the GA module execution
again, thus initiating a new iteration of CEG4N. If no counter-example is found,
CEG4N considers the verification successful and terminates the quantization
process outputting the found solution.
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Fig. 1. CEG4N architecture overview, highlighting the relationship between the main
modules, and their inputs and outputs.

We work with two functional versions of the NN. The GA module works
with a functional NN written in Python, while the verifier module works with
a functional version of the NN written in C. The two models are equivalent
since they share the same parameters; the python model loads the parameters
to a framework built over Pytorch [29]. The C version loads the weights into a
framework designed and developed in C to work correctly with the verifier idioms
and annotations. We provide more details regarding the C implementations of
the NNs in Section A.2.

4 Experimental Evaluation

This section describes our experimental setup and benchmarks, defines our ob-
jectives, and presents the results.

4.1 Description of the Benchmarks

We evaluate our methodology on a set of feedforward NN classification models
extracted from the literature [10,23,26]. We chose these specific ones based on
their popularity in previous NN robustness and equivalence verification studies
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[30,10]. Additionally, we include a few other NN models to cover a broader range
of NN architectures (e.g., NN size, number of neurons).

ACAS Xu The airborne collision avoidance system for unmanned aircraft
ACAS Xu dataset [23] is derived from 8 specifications (features boundaries
and expected outputs). ACAS Xu features are sensor data indicating the speed,
present course of the aircraft, and the position and speed of any nearby intruder
aircraft. An ACAS Xu NN is expected to give appropriate navigation advi-
sories for a given input sensor data. The expected outputs indicate that either
the aircraft is clear-of-conflict, or it should take soft or hard turns to avoid the
collision. We evaluated CEG4N on 5 pre-trained NNs, each containing 8 lay-
ers and 300 ReLU nodes each. The pre-trained NNs were obtained from the
VNN-COMP2021 [5] benchmarks3

MNIST MNIST is a popular dataset [26] for image classification. The dataset
contains 70,000 gray-scale images with uniform size of 28x28 pixels, where the
original pixel values from the integer range [0, 255] are rescaled to the floating-
point range [0, 1]. We evaluated CEG4N on two NNs with 2 layers, one with 10
ReLU nodes each and another with 25 and 10 ReLU nodes. The NNs followed
the architecture of models described by the work of Eleftheriadis et al. [10].

Seeds The Seeds dataset [8] consists of 210 samples of wheat grain belong-
ing to three different species, namely Kama, Rosa and Canadian. The input
features are seven measurements of the wheat kernel geometry scaled between
[0,1]. We evaluated CEG4N on 2 NNs, containing 1 layer, one containing 15
ReLU nodes, and the other containing 2 ReLU nodes. Both NNs were trained
for the CEG4N evaluation.

Iris The Iris flower dataset [13] consists of 50 samples from three species of Iris
flower (Iris setosa, Iris virginica and Iris versicolor). The dataset is a popular
benchmark in machine learning for classification, and the data is composed of
records of real value measurements of the width and length of sepals and petals
of the flowers. The data was scaled to [0,1]. We evaluated CEG4N on 2 NNs, one
of them containing 2 layers with 20 ReLU nodes and the other having only one
layer with 3 ReLU nodes. Both NNs were trained for the CEG4N evaluation.

4.2 Setup

Genetic Algorithm. As explained in Section 3.1, we quantize the NNs with
a NSGA-II Genetic Algorithm module. We set the upper and lower bounds for
the allowed bit widths to 2 and 52 in all experiments. The lower bound was

3 The pre-trained weight for the ACAS Xu benchmarks can be found in the following
repository: https://github.com/stanleybak/vnncomp2021

https://github.com/stanleybak/vnncomp2021
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chosen because 2 is the first valid integer that does not break our quantization
formulas. The upper bound was chosen to match the significand of the double-
precision float format IEEE 754-1985 [21]. The upper bound value could be
higher depending on the precision of weights parameters of the NN, as the scaling
factor could lead the quantization to large integer values. However, as we wanted
the framework to work on every NN in our experimentation setup without further
steps, we restricted the clipping range to a comfortable number to avoid integer
overflow.

Furthermore, we allow the GA to run for 110 generations for each layer in the
NN. This number of generations was defined after extensive preliminary tests,
which confirmed that GA could reach the optimal solution in most cases (see
Table 3 in Appendix A.4). Lastly, we randomly select the initial set of counter-
examples H from the benchmark set of each case study. The samples in H do
not necessarily have to be counter-examples, and any valid concrete input can
be specified. Our choice is justified by the practical aspect of using samples from
the benchmark set.

Equivalence Properties. One input sample was selected for each output class
and used to define the equivalence properties. Due to the high dimensional num-
ber of the features in the MNIST study case, we proposed a different approach
when specifying the equivalence properties for the equivalence verification. We
considered three different approaches: 1) one in which we considered all features
in the input domain; 2) another one in which we considered only a subset of 10
out of the 784 features in the input domain; 3) a last one in which we considered
only a subset of 4 out of the 784 features in the input domain. The subset of
features in cases 2 and 3 was randomly selected.

Availability of Data and Tools. Our experiments are based on a set of
publicly available benchmarks. All tools, benchmarks, and results of our evalua-
tion are available on a supplementary web page https://zenodo.org/record/
6791964.

4.3 Objectives

Considering the benchmarks given in Section 4.1, our evaluation has the following
two experimental goals:

EG1 (robustness) Show that the CEG4N framework can generate robust
quantized NNs.

EG2 (accuracy) Show that the quantized NNs do not have a significant
drop in accuracy compared to other quantization techniques.

https://zenodo.org/record/6791964
https://zenodo.org/record/6791964
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4.4 Results

In our first set of experiments, we want to achieve our first experimental goal
EG1. We want to show that our technique CEG4N can successfully generate
quantized NNs that are verifiably equivalent to the original NNs. As a sec-
ondary goal, we want to perform an empirical scalability study to help us eval-
uate the computational demands for quantizing and verifying the equivalence of
NNs models. Our findings are summarized in Table 1.

Table 1. Summary of the CEG4N executions, including the models, number of fea-
tures, the number of bits per layer, and the status.

Model Features Equivalence Properties Iterations Bits Status

iris 3 4 3 1 4, 3 completed
seeds 2 7 3 1 4, 3 completed
seeds 15 7 3 1 4, 2 completed
acasxu 1 5 6 1 6, 8, 7, 7, 9, 7, 6 completed
acasxu 2 5 7 1 10, 9, 9, 9, 7, 7, 10 completed
acasxu 3 5 7 1 5, 9, 10, 7, 8, 8, 5 completed
acasxu 4 5 7 1 8, 9, 14, 9, 10, 10, 7 completed
acasxu 5 5 7 1 6, 12, 8, 8, 10, 10, 10 completed

mnist 10
5 10 1 4, 3 completed
10 10 1 4, 3 completed
784 10 0 4, 3 timeout

mnist 25
5 10 1 3, 3 completed
10 10 1 3, 3 completed
784 10 0 3, 3 timeout

All the CEG4N runs that were completed successfully took only 1 iteration to
find a solution. However, we observed that four of the CEG4N attempts to find a
solution for MNIST models resulted in a timeout. We attribute this observation
to a mix of factors. First is the high number of features in the MNIST problem.
Second, the network’s overall architecture requires many arithmetic operations
to compute the model’s output. Finally, we also observed that it took only a few
minutes for CEG4Nto find a solution to the Iris, Seeds, and Acas Xu benchmarks.
In contrast, on MNIST, it took hours to either find a solution or fail with a
timeout.

These results answer our EG1: overall, these experiments show that
CEG4N can successfully produce robust quantized models. Although, one
should notice that for larger NNs models, scalability should be a point of
concern due to our verifier stage.

In our second set of experiments, we want to achieve our second experimen-
tal goal EG2. We primarily want to understand the impact of the quantization
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performed by CEG4N on the accuracy of the NNs compared to other quan-
tization techniques. Due to our research’s novelty, no existing techniques lend
themselves to a fair comparison. For this reason, we take a recent post-training
quantization technique called GPFQ [31] and modify it to our needs. GPFQ [31]
is a greedy path-following quantization technique that also produces quantized
models with floating/double-precision values. It works by iterating over each
layer of the NN and quantizing each neuron sequentially. More specifically, a
greedy algorithm minimizes the error between the original neural output and
the quantized neuron.

Table 2 summarizes the accuracy of the models quantized using CEG4N and
GPFQ. Note that we do not report the accuracy of the Acas Xu models because
the original training and test datasets are not public.

Table 2. Comparison of Top-1 accuracy for NNs quantized using CEG4N and GPFQ

Model Method Ref Acc (%) Quant Acc (%) Acc Drop (%)

iris 3
CEG4N

93.33
83.33 10.0

GPFQ 23.33 70.0

seeds 2
CEG4N

88.09
85.71 2.38

GPFQ 64.28 23.81

seeds 15
CEG4N

90.04
85.71 4.33

GPFQ 40.47 49.57

mnist 10
CEG4N

91.98
86.7 5.28

GPFQ 91.29 0.69

mnist 25
CEG4N

93.68
92.57 1.11

GPFQ 92.59 1.09

Our findings show that the highest drops in accuracy happen on the Iris
benchmark (10% for CEG4N and 70% drop for GPFQ). In contrast, the lowest
drops in accuracy happen on mnist 25 for CEG4N and on mnist 10 for GPFQ.
Overall, the accuracy of models quantized with CEG4N are better on the Iris
and Seeds benchmarks, while the accuracy of models quantized with GPFQ are
better on the mnist benchmarks, but only by a small margin. Our understanding
is that GPFQ shows high drops in accuracy for smaller NNs because the number
of neurons in each layer is small. As GPFQ focuses on each neuron individually,
it may not be able to find a good global quantization.

These results answer our EG2: overall, these experiments show that
CEG4N can successfully produce quantized models with superior or sim-
ilar accuracy to other state-of-the-art techniques.
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4.5 Limitations

Although we showed in our evaluation that the CEG4N framework can generate
a quantized neural network while keeping the equivalence between the original
NN and the quantized NN, we note that the architecture of the NN used in the
evaluation does not fully reflect state-of-the-art NN architectures. The NNs used
in our evaluation have few layers and only hundreds of ReLU nodes, while state-
of-the-art NNs may have hundreds of layers and thousands of ReLU nodes. The
main bottleneck is state-of-the-art verification algorithms, which currently do
not scale to large neural networks. As it is, our technique could only quantized
80% of the NN in our experimental evaluation.

In addition, the field of research on NN equivalence is relatively new and
there is no well-established set of benchmarks that works in this field could
benefit from [10]. Furthermore, our work is the first to propose a framework that
mixes NN quantization and NN equivalence verification. There is no comparable
methodology in the literature we could compare our approach with.

5 Conclusion

We presented a new method for NN quantization, called CEG4N, a post-training
NN quantization technique that provides formal guarantees of NN equivalence.
This approach leverages a counter-example guided optimization technique, where
an optimization-based quantizer produces quantized model candidates. A state-
of-the-art C verifier then checks these candidates to prove the equivalence of
the quantized candidates and the original models or refute that equivalence by
providing a counter-example. This counter-example is then passed back to the
quantized to guide it to search for a feasible candidate.

We evaluate the CEG4N method on four benchmarks, including large models
(ACAS Xu and MNIST) and smaller models (Iris and Seeds). We successfully
demonstrate the application of the CEG4N for NN quantization, where it could
successfully quantize the networks while producing models with up to 72% better
accuracy than state-of-the-art techniques. However, CEG4N can only handle a
restricted set of NNs models, and further work needs to scale the CEG4N appli-
cability on a broader set of NNs models (e.g., NNs models with a more significant
number of layers and neurons and higher numbers of input features).

For future work, we could explore other quantization techniques, which are
not limited to search-based quantization and other promising equivalence verifi-
cation techniques using a MILP approach [30] or an SMT-based approach [10].
Combining different quantization and equivalence verification techniques can en-
able CEG4N to achieve better scalability and quantization rates. Another inter-
esting future work relates to the possibility of mixing quantization approaches
that generate quantized models, which operate entirely on integer arithmetic;
this can potentially improve the verification step scalability of the CEG4N.
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A Appendices

A.1 Implementation of NNs in Python.

The NNs were built and trained using the Pytorch library [29]. Weights of the
trained models were then exported to the ONNX [4] format, which can be inter-
preted by Pytorch and used to run predictions without any compromise in the
NNs performance.

A.2 Implementation of NNs abstract models in C.

In the present work, we use the C language to implement the abstract represen-
tation of the NNs. It allows us to explicitly model the NN operations in their
original and quantized forms and apply existing software verification tools (e.g.,
ESBMC [14]). The operational C-abstraction models perform double-precision
arithmetic. Although, we must notice that the original and quantized only di-
verge on the precision of the weight and bias vectors that are embedded in the
abstractions code.

A.3 Encoding of Equivalence Properties

Suppose, a NN F , for which x ∈ H is a safe input and y ∈ G is the expected
output of f the input. We now show how one can specify the equivalence prop-
erties. For this example, consider that the function f can produce the outputs of
F in floating-point arithmetic, while fq produces the outputs of F in fixed-point
arithmetic (i.e. quantization). First, the concrete NN input x is replaced by a
non-deterministic one, which is achieved using the command nondet float from
the ESBMC.

Listing 1.1. Definition of concrete and symbolic input domain in EBMC.

f loat x0 = −1.0;
f loat x1 = 1 . 0 ;
f loat s0 = nonde t f l o a t ( ) ;
f loat s1 = nonde t f l o a t ( ) ;
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Listing 1.2. Definition of input constraints in EBMC.

const f loat EPS = 0 . 5 ;
ESBMC assume ( x0 − EPS <= s0 && s0 <= x0 + EPS) ;
ESBMC assume ( x1 − EPS <= s1 && s1 <= x1 + EPS) ;

Listing 1.3. Definition of output constraints in EBMC.

ESBMC assert ( f ( s0 , s1 ) == fq ( s0 , s1 ) ) ;

A.4 Genetic Algorithm Parameters Definition

In Table 3, we report a summary of experiments conducted to tune the param-
eters of the Genetic Algorithm, more precisely, the number of generations. For
example, a NN with 2 layers would require a brute force algorithm to search
for 522 combinations of bits widths for the quantization. Similarly, a NN with
7 layers would require a brute force algorithm to search for 527 combinations
of bits widths. We conducted a set of experiments where we ran the GA one
hundred times with a different number of generations options ranging from 50
to 1000. In addition, we fixed the population size to 5. From our findings, the
GA needs about 100 to 110 generations per layer to find the optimal bit width
solution for each run.

Table 3. Summary of experiments for tuning Genetic Algorithm Parameters.

Number of Layers Generations Population Percentage of optimal solutions

7 800 5 100
7 750 5 100
7 700 5 98
7 50 5 0
2 250 5 100
2 200 5 100
2 150 5 96
2 50 5 30
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