FuSeBMC_IA: Interval Analysis and Methods for Test
Case Generation
(Competition Contribution)

Mohannad Aldughaim® 4@, Kaled M. Alshmrany!-®@®, Mikhail R. Gadelha?,
Rosiane de Freitas®, and Lucas C. Cordeiro!?

L University of Manchester, Manchester, UK
2 Tgalia, A Coruiia, Spain
3 Federal University of Amazonas, Manaus, Brazil
4 King Saud University, Riyadh, Saudi Arabia
5 Institute of Public Administration, Jeddah, Saudi Arabia
mohannad.aldughaim@manchester.ac.uk

Abstract. The cooperative verification of Bounded Model Checking and Fuzzing
has proved to be one of the most effective techniques when testing C programs.
FuSeBMC is a test-generation tool that employs BMC and Fuzzing to produce
test cases. In Test-Comp 2023, we present an interval approach to FuSeBMC_IA,
improving the test generator to use interval methods and abstract interpretation
(via Frama-C) to strengthen our instrumentation and fuzzing. Here, an abstract
interpretation engine instruments the program as follows. It analyzes different
program branches, combines the conditions of each branch, and produces a Con-
straint Satisfaction Problem (CSP), which is solved using Constraint Program-
ming (CP) by interval manipulation techniques called Contractor Programming.
This process has a set of invariants for each branch, which are introduced back
into the program as constraints. Experimental results show improvements in re-
ducing CPU time (37%) and memory (13%), while retaining a high score.

Keywords: Automated Test-Case Generation - Bounded Model Checking - Fuzzing
- Abstract Interpretation - Constraint Programming - Contractors.

1 Introduction

In Test-comp 2022 [1], cooperative verification tools showed their strength by being
the best tools in each category. FuSeBMC [9, 10] is a test-generation tool that employs
cooperative verification using fuzzing and BMC. FuSeBMC starts with the analysis to
instrument the Program Under Test (PUT); then, based on the results from BMC/AFL,
it generates the initial seeds for the fuzzer. Finally, FuSeBMC keeps track of the goals
covered and updates the seeds, while producing test cases using BMC/Fuzzing/Selec-
tive fuzzer. This year, we introduce abstract interpretation to FuSeBMC to improve the
test case generation. In particular, we use interval methods to help our instrumentation
and fuzzing by providing intervals to help reach (instrumented) goals faster. The selec-
tive fuzzer is a crucial component of FuSeBMC, which generates test cases for uncov-
ered goals based on information obtained from test cases produced by BMC/fuzzer [9].
This work is based on our previous study, where CSP/CP by contractor techniques are
applied to prune the state-space search [12]. Our approach also uses Frama-C [4, §] to

http://orcid.org/0000-0003-1708-1399
http://orcid.org/0000-0002-5822-5435
http://orcid.org/0000-0002-6235-4272

2 M. Aldughaim et al.

obtain variable intervals, further pruning the state space exploration. Our original con-
tributions are: (1) improve instrumentation to allow abstract interpretation to provide
information about variable intervals; (2) apply interval methods to improve the fuzzing
and produce higher impact test cases by pruning the search space exploration; (3) re-
duce the usage of resources (incl. memory and CPU time).

2 Interval Analysis and Methods for Test Case Generation

FuSeBMC_IA improves the original FuSeBMC using Interval Analysis and Methods [3].
Fig. 1 illustrates the FuSeBMC_IA’s architecture. Our approach starts from the analy-
sis phase of FuSeBMC [9, 10]. It parses statement conditions required to reach a goal,
to construct a Constraint Satisfaction Problem/Constraint Programming (CSP/CP) [5]
with three components: constraints (program conditions), variables (used in a condi-
tion), and domains (provided by the static analyzer Frama-C via eva plugin [7]). We
instrument the PUT with Frama-C intrinsic functions to obtain the domains, which gen-
erate intervals of a given set of variables at a specific program location. Then, we apply
the contractor to each goal’s CSP and output the results to a file used by the selective
fuzzer. Contractor Programming is a set of interval methods that estimate the solution

FuSeBMC_IA: Interval Analysis and Methods for Test Case Generation

Interval Analysis & Methods

T—. s o o
[Create CSP/CP }— Domains reduction —[Apply Contractors
: AP é
L |
———— y - " |"|— —————————
!} Static Analyser
| fnstumented Bl - - - i L maC ova) Intervals files
- Wozzzzzoozs
FuSeBMC v4

Test-Generation

Selective J [.
Engine

FuSeBMC analysis fuzzer

Analyze and
Inject
C Code I Property II

Fig. 1: FuSeBMC_IA’s architecture. The changes introduced in FuSeBMC_IA for Test-Comp 2023 are highlighted in green.
The new Interval Analysis & Methods component generates intervals to be used by the selective fuzzer.

of a given CSP [5]. The used contractor technique is the Forward-Backward contractor,
which is applied to a CSP/CP with a single constraint [3], which is implemented in the
IBEX library [6]. IBEX is a C++ library for constraint processing over real numbers that

—

FuSeBMC_IA: Interval Analysis and Methods for Test Case Generation 3

implement contractors. More details regarding contractors can be found in our current
work-in-progress [12].

Parsing Conditions and CSP/CP creation for each goal. While traversing the PUT
clang AST [2], we consider each statement’s conditions that lead to an injected goal: the
conditions are parsed and converted from Clang expression [2] to IBEX expression [6].
The converted expressions are used as the constraints in CSP/CP to create a contractor.
After parsing the goals, we have a CSP/CP for each goal. In case of a goal does not have
a CSP/CP, the intervals for the variables are left unchanged. We also create a constraint
for each condition in case of multiple conditions and take the intersection/union. At the
end of this phase, we have a list of each goal and its contractor. Also, a list of variables
for each contractor will be used to instrument the Frama-C file in the next phase.

int main() {
fuSeBMC_init:;
int x = _ VERIFIER nondet_int(); int main() {
Ot ¥ =10; int x = __VERIFIER_nondet_int(); Goal 1:
if (x <= y) { int y = 0; X
GOAL_L:; if (x <= y) { -2147483648 000000
XS Frama_C_show_each_GOAL_1_2_(x, y); 0.000000
? X+ y
i (x>=) 1 } .000000
if (x <= 0) { if (x >=y) *
GOAL_2:; 4 0.000000
Ty if (x <= @) { Goal 2:
} X =Y Frama_C_show_each_GOAL_2_2_(x, y); X .
1 X =y;
} } y 1 0.000000
if (x> 18 x < -1) { P (x> 188 x < 1) { 0.000000
GOAL_3:; Frama_C_show_each_GOAL_3_1_(x); 12y
yi; y++; 0.000000
0.000000
1 return 0; 1 return 0; Goal 3:
} } Unreachable
Instrumented file Instrumented file for Frama-C Intervals file

Fig. 2: The figure illustrates an example of files produced. We are starting from the instrumented file that shows the goals
injected. Then, we instrument the file with the Frama-C intrinsic function. Finally, we produce a file with each goal and the
intervals to satisfy the conditions for each goal.

Domains reduction. In this step, we attempt to reduce the domains (primarily starting
from (—o0, 00)) to a smaller range. This is done via Frama-C eva plugin (evolved value
analysis) [7]. First, during the instrumentation, we make an instrumented file aimed to
be used by Frama-C using its intrinsic functions Frama_c_show_each () (cf. Fig. 2).
This function allows us to add custom text to identify goals and how many variables are
in each call. Second, we run Frama-C to obtain the new variable intervals. Finally, we
update the domains for the corresponding CSP/CP.

Applying contractors. Contractors will help prune the domains of the variables by
removing a subset of the domain that is guaranteed not to satisfy the constraints. With all
the components for a CSP/CP available, we now apply the contractor for each goal and
produce the output file in Figure 2. The result will be split per goal into two categories.
The first category lists each variable and the possible intervals (lower bound followed
by upper bound) to enter the condition given. The second category contains unreachable
goals, i.e. when the contractor result is an empty vector.

Selective Fuzzer. The Selective Fuzzer parses the file produced by the analyzer, ex-
tracts all the intervals, applies these intervals to each goal, and starts fuzzing within the
given interval. Thus, pruning the search space from random intervals to informed inter-
vals. The selective fuzzer will also prioritize the goals with smaller intervals and set a
low priority to goals with unreachable results.

4 M. Aldughaim et al.

3 Strengths and Weaknesses

Using abstract interpretation in FuSeBMC_IA improved the test-case generation regard-
ing resources. The new contractors generated by the Interval Analysis and Methods
component are used by our selective fuzzer: (1) the information provided helps the
selective fuzzer to start from a given range of values rather than a random range (as
was our strategy in the previous version); (2) the selective fuzzer uses the information
about unreachable goals to set their priority low for reachability; (3) when compared
to FuSeBMC v4, this improvement helped saving CPU time by 37% and memory by
13%, which leads to saving 40% of energy; (4) although our approach produces fewer
test cases for a given category, the impact of these test cases is higher in terms of reach-
ing instrumented goals; (5) there is potential for future work to use the information
provided by Frama-C, especially regarding overflow warnings. Finally, the intervals
provided may not affect the FuSeBMC_IA’s outcome in the worst case. i.e., the selec-
tive fuzzer performs no better than not having interval information for seed generation.
The time it takes to generate the intervals is only a tiny fraction of the time it takes to
produce the test cases; its impact when the information is not useful is negligible.

Our approach suffers from a significant technical limitation: FuSeBMC_IA cannot
create complementary contractors; we can only create intervals that satisfy the con-
straints of a branch (i.e., outer contractors). In practice, we can only create intervals
to i f-statements and ignore its el se-statements (the inner contractor). We also skip
any if-statement inside e 1 se-statements, as this may lead to unsound intervals. This
is a technical limitation rather than a theoretical one: we use run-time type informa-
tion (RTTI) to identify ibex expressions. However, we link our tool with Clang, which
requires compilation with no RTTI information. We are investigating approaches to
address this limitation, e.g., to encapsulate all ibex expressions and manually store ex-
pression information, but currently, no proper fix has been implemented. Additionally,
a bug has been found that caused FuSeBMC_IA to crash on some benchmarks that made
FuSeBMC_IA scores much less than FuSeBMC in the coverage category.

4 Tool Setup and Configuration

When running FuSeBMC_IA, the user is required to set the architecture with —-a, the
property file path with —p, and the benchmark path, as:

fusebmc.py [-a {32, 64}] [-p PROPERTY FILE]
[-s {kinduction, falsi,incr, fixed}] [BENCHMARK_PATH]

For Test-Comp 2023, FuSeBMC_IA uses incr for incremental BMC, which relies on
the ESBMC’s symbolic execution engine [11]. The fusebmc . py and FuSeBMC . xml
files are the Benchexec tool info module and the benchmark definition file respectively.

5 Software Project

FuSeBMC_IA is publicly available on GitHub' under the terms of MIT License. In the
repository, FuSeBMC_IA is implemented using a combination of Python and C++. Build
instructions and dependencies are all available in README . md file. FuSeBMC_IA is a
fork of the main project FuSeBMC available on GitHub?.

"https://github.com/Mohannad- Aldughaim/FuSeBMC_IA
Zhttps://github.com/kaled-alshmrany/FuSeBMC

https://github.com/Mohannad-Aldughaim/FuSeBMC_IA
https://github.com/kaled-alshmrany/FuSeBMC

6

FuSeBMC_IA: Interval Analysis and Methods for Test Case Generation 5

Data-Availability Statement

All files necessary to run the tool are available on Zenodo [13].

Acknowledgment

King Saud University, Saudi Arabia' supports the FuSeBMC_IA development. The
work in this paper is also partially funded by the UKRI/IAA project entitled “Using
Artificial Intelligence/Machine Learning to assess source code in Escrow”.

References

1.

2.

(@)}

10.

11.

12.

13.

Beyer, D. Advances in Automatic Software Testing: Test-Comp 2022. FASE. pp. 321-335
(2022) DOI:https://doi.org/10.1007/978-3-030-99429-7_18

The Clang Team, Clang documentation. (2022), https://clang.llvm.org/docs/UsersManual.
html, accessed: 19-12-2022

. Jaulin, L., Kieffer, M., Didrit, O. & Walter, E. Applied Interval Analysis. Springer London.

pp. 11-100 (2001) DOTI:https://doi.org/10.1007/978-1-4471-0249-6_2

. Cuoq, P, Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J. & Yakobowski, B. Frama-

C. International Conference On Software Engineering And Formal Methods. pp. 233-247
(2012) DOIL:https://doi.org/10.1007/978-3-642-33826-7_16

. Mustafa, M., Stancu, A., Delanoue, N. & Codres, E. Guaranteed SLAM—An interval ap-

proach. Robotics And Autonomous Systems. 100 pp. 160-170 (2018) DOIL:https://doi.org/10.
1016/j.robot.2017.11.009

. Chabert, G. ibex-lib.org. , http://www.ibex-lib.org/, accessed: 19-12-2022
. Biihler, D. EVA, an evolved value analysis for Frama-C: structuring an abstract inter-

preter through value and state abstractions. (Rennes 1,2017) DOI:https://doi.org/10.1007/
978-3-319-52234-0_7

. Baudin, P., Bobot, F., Biihler, D., Correnson, L., Kirchner, F., Kosmatov, N., Maroneze, A.,

Perrelle, V., Prevosto, V., Signoles, J. & Others The dogged pursuit of bug-free C programs:
the Frama-C software analysis platform. Communications Of The ACM. 64, 56-68 (2021)
DOTI:https://doi-org.manchester.idm.oclc.org/10.1145/3470569

. Alshmrany, K., Aldughaim, M., Bhayat, A. & Cordeiro, L. FuSeBMC: An energy-efficient

test generator for finding security vulnerabilities in C programs. International Conference
On Tests And Proofs. pp. 85-105 (2021) DOI: https://doi.org/10.1007/978-3-030-79379-1_6
Alshmrany, K., Aldughaim, M., Bhayat, A. & Cordeiro, L. FuSeBMC v4: Smart Seed Gen-
eration for Hybrid Fuzzing. International Conference On Fundamental Approaches To Soft-
ware Engineering. pp. 336-340 (2022) DOI: https://doi.org/10.1007/978-3-030-99429-7_19
Gadelha, M., Monteiro, F., Morse, J., Cordeiro, L., Fischer, B. & Nicole, D. ESBMC 5.0:
An Industrial-Strength C Model Checker. ASE. pp. 888-891 (2018) DOI: https://doi-org.
manchester.idm.oclc.org/10.1145/3238147.3240481

Aldughaim, M., Alshmrany, K., Menezes, R., Stancu, A. & Cordeiro, L. Incremental Sym-
bolic Bounded Model Checking of Software Using Interval Methods via Contractors.
Aldughaim, M., Alshmrany, K., Gadelha, M., Freitas, R. & Cordeiro, L. FuSeBMC v.5: In-
terval Analysis and Methods for Test Case Generation. DOI:https://doi.org/10.5281/zenodo.
7473124(Zenodo,2022,12)

"https://ksu.edu.sa/en/

https://doi.org/10.1007/978-3-030-99429-7_18
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://doi.org/10.1007/978-1-4471-0249-6_2
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1016/j.robot.2017.11.009
https://doi.org/10.1016/j.robot.2017.11.009
http://www.ibex-lib.org/
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi-org.manchester.idm.oclc.org/10.1145/3470569
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi-org.manchester.idm.oclc.org/10.1145/3238147.3240481
https://doi-org.manchester.idm.oclc.org/10.1145/3238147.3240481
https://doi.org/10.5281/zenodo.7473124
https://doi.org/10.5281/zenodo.7473124
https://ksu.edu.sa/en/

	FuSeBMC_IA: Interval Analysis and Methods for Test Case Generation

