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Abstract. FuSeBMC is a test generator for finding security vulnerabilities in C
programs. In Test-Comp 2021, we described a previous version that incremen-
tally injected labels to guide Bounded Model Checking (BMC) and Evolutionary
Fuzzing engines to produce test cases for code coverage and bug finding. This
paper introduces an improved version of FuSeBMC that utilizes both engines to
produce smart seeds. First, the engines run with a short time limit on a lightly
instrumented version of the program to produce the seeds. The BMC engine is
particularly useful in producing seeds that can pass through complex mathemati-
cal guards. Then, FuSeBMC runs its engines with extended time limits using the
smart seeds created in the previous round. FuSeBMC manages this process in two
main ways. Firstly, it uses shared memory to record the labels covered by each
test case. Secondly, it evaluates test cases, and those of high impact are turned into
seeds for subsequent test fuzzing. In this year’s competition, we participate in the
Cover-Error, Cover-Branches, and Overall categories. The Test-Comp 2022 re-
sults show that we significantly increased our code coverage score from last year,
outperforming all tools in all categories.
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1 Overview

Software testing is one of the most crucial phases in software development [11]. Tests
often expose critical bugs in software applications. In earlier work [4], we presented
FuSeBMC, an automated test generation tool that exploits the combination of Fuzzing
and BMC. FuSeBMC achieved second place in Test-Comp 2021 [5,3] and first place in
the Cover-Error category. It ranked fourth in the Cover-Branches category. This year,
we introduce a new version of FuSeBMC (v4) that adds smart seed generation and
shared memory amongst other improvements and features. The new version signifi-
cantly improves on the previous version, particularly relating to code coverage. One
of the primary contributions of this paper is the linking of a grey-box fuzzer with a
bounded model checker. A bounded model checker works by treating a program as a
state transition system and then checking whether there exists a transition in this system
of length less than a bound k that violates the property to be verified [6,8]. We leverage
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this power of model checkers as a method for smart seed generation. Here, we rate seeds
on two metrics. First, the depth of the deepest goal covered by the seed. Second, the
number of goals covered uniquely by the seed. Seeds that rate highly on these metrics
are called smart. During grey-box fuzzing, if a particular branch has not been explored,
BMC can be used to provide a model (set of assignments to input variables) that reaches
the branch. This model is a smart seed since it covers a previously unexplored branch.
It is then added to a seed store. Periodically seeds are selected from the store for further
grey-box fuzzing based on the criteria as mentioned above. However, BMC can be slow
and resource-intensive. As an alternative, we also carry out a lightweight static program
analysis to recognize certain restricted forms of input verification. We analyze the code
for conditions on the input variables and ensure that seeds are only selected if they pass
these conditions. Together, these contributions turn FuSeBMC into a world-class fuzzer.

2 Test Generation Approach
Figure 1 provides an overview of the components within FuSeBMC and how these inter-
act. FuSeBMC makes use of the Clang tooling infrastructure [1] to instrument programs.
In addition, FuSeBMC employs three engines in its reachability analysis: one BMC and
two fuzzing engines. ESBMC [9,10] is a state-of-the-art SMT-based bounded model
checker. For the two fuzzers, one is based on the American Fuzzy Lop (AFL) [7,2],
and the other is a custom fuzzer, which we refer here to as selective fuzzer (see [4] for
details). In the sections below, we detail how these components work together.
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Fig. 1. FuSeBMC v4 Framework. This figure illustrates the major components of the FuSeBMC
test generator and how they interact. Note in particular the seed store, which interacts with the
BMC/AFL and the shared memory to produce test cases.

Code Instrumentation FuSeBMC front-end uses Clang tooling infrastructure [1] to
parse a C program and produce an Abstract Syntax Tree (AST). While traversing the
AST, FuSeBMC injects labels into each branch, including every conditional statement,
loop, and function. Using these labels, FuSeBMC can measure the code coverage.

Reachability Graph Analysis After instrumenting the C program, FuSeBMC analyzes
it and produces a reachability graph. The graph assigns each goal label to the code block
it is located in. Then, FuSeBMC ranks goals depending on the strategy chosen. For
example, one strategy, which we used in Test-Comp 2022, is to prefer deeper goals over
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shallower goals. This strategy improves the performance of FuSeBMC since a test case
that covers a deep goal will also cover shallower goals on the path to it. FuSeBMC also
ranks coverage metrics over others, such as conditional coverage over loop coverage.

Seed Generation A unique aspect of the latest version of FuSeBMC is a seed genera-
tion phase that is run prior to the start of the principal reachability analysis. In this phase,
FuSeBMC first lightly instruments the code under test by limiting loop bounds and as-
suming a narrow range of values for input variables. The bounds on input variables are
further limited by carrying out a lightweight static analysis to recognize code that ap-
plies verification conditions to input variables. After instrumenting the code, FuSeBMC
runs its fuzzing and BMC engines with concise time limits (60 s for Test-Comp 2022).
The test cases generated by these engines are ranked, and the highest impact test cases
are selected as smart seeds for the next round. The selected seeds are added to the seed
store. The impact of a test case is measured using two metrics.
1. The number of labels covered uniquely by that test case.
2. The maximum program depth achieved by the test case.

ESBMC is particularly effective at seed generation as its underlying SMT solvers can be
used to discover test cases that circumvent complex mathematical guards. Note that we
do not rely on any specific features of the models returned by the SMT solvers. Instead,
the strength of the method lies in the solvers’ ability to return some model that can
satisfy a guard and cover goals lying beyond. A fuzzer on its own, randomly mutating
a seed, struggles to explore program sections occurring behind complex guards [12].

Reachability Analysis Engines In its primary phase, FuSeBMC carries out reacha-
bility analysis. Essentially, this involves running the engines in parallel with longer
timeouts on the original, non-instrumented code with the fuzzer making use of the smart
seeds. ESBMC is run using an incremental BMC strategy with some fixed time limit for
each goal it attempts. FuSeBMC’s Tracer component coordinates the various engines
through the use of shared memory. In this shared memory, we have two components.
The first component is a “goals covered array” that stores the goals covered so far dur-
ing the execution. Its purpose is to ensure there is no wasting effort through duplication
of work. Secondly, the Tracer maintains a set of the currently most effective seeds for
the fuzzer to use.

As the engines run and produce new test cases, the Tracer monitors these and eval-
uates them, adding those with the highest impact, as measured by the metrics above, to
the seed store. Thus, the seed store is dynamically updated as the analysis progresses.
Periodically, it selects a number of the most effective seeds from the store and adds
them to shared memory for the fuzzers to use in their next fuzzing round. In parallel,
ESBMC uses the “goals covered array” to select an as yet uncovered goal and attempts
to find a test case that covers it. Test cases produced by ESBMC are passed directly to
the store because they are likely to be beneficial for future fuzzing attempts.

For example, assume that the fuzzers are unable to cover some goal L due to a
complex condition guarding it. ESBMC can be used to create a seed that covers L. This
seed is then passed to the store and later selected for fuzzing. The fuzzers, armed with a
seed that covers L, may well now be able to reach goals deeper than L along L’s path.
Thus, FuSeBMC combines the strengths of both types of engines. The BMC engine
produces seeds that bypass complex guards and thereby help the fuzzers explore paths
deep within the program.
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3 Strengths and Weaknesses
The strengths of the latest version of FuSeBMC are as follows. It runs a dedicated seed
generation phase to start the main fuzzing effort with high-quality, high-impact seeds.
Furthermore, these seeds are constantly being updated during the main test-generation
phase. Beyond this, it incorporates a dedicated subsystem, the Tracer, that uses a shared
memory store to manage the various engines. By combining the engines, the Tracer
ensures that FuSeBMC far outperforms the individual engines or even the running of
the engines in parallel, but isolated. The outcome of these improvements can be seen
in the ECA and Combination benchmark sets. Previously, these posed a challenge to
FuSeBMC. With the latest changes, FuSeBMC achieved first place in the Combination
subcategory and took second place in the ECA subcategory of the 2022 Test-Comp
competition. Since the benchmarks in the ECA category have remained stable between
last year’s and this year’s competitions, we can measure FuSeBMC’s improvement in
terms of the combined coverage it achieves across the 29 tasks. This improvement
stands at a remarkable 60%. The 2022 Test-Comp results also show that FuSeBMC
has achieved first place in the Cover-Branches category with high coverage and valida-
tion statistics. However, one of the weaknesses of FuSeBMC that we plan to work on is
that for large programs, particularly for programs that redefine C library functions, seed
generation can be slow and consume too much of the tool’s time.

4 Tool Setup and Configuration

FuSeBMC can be run using the command below. The user is required to set the archi-
tecture, the property file path, the competition strategy, and the benchmark path, as:

fusebmc.py [-a {32, 64}] [-p PROPERTY FILE]
[-s {kinduction,falsi,incr,fixed}]
[BENCHMARK PATH]

where -a sets the architecture to 32 or 64, -p sets the property file to PROPERTY -
FILE, where it has a list of all the properties to be tested. -s sets the BMC strat-
egy to one of the listed strategies{kinduction,falsi,incr,fixed}. For Test-
Comp’22, FuSeBMC uses incr for incremental BMC, which relies on the ESBMC’s
symbolic execution engine to increasingly unwind the program loops using an iterative
technique. The incr strategy verifies the program for each unwind bound up to a max-
imum default value of 50 or indefinitely (until it exhausts the time or memory limits).
The Benchexec tool info module is fusebmc.py and the benchmark definition file is
FuSeBMC.xml.

5 Software Project

FuSeBMC is implemented using C++, and it is publicly available under the terms of the
MIT License at GitHub1. The repository includes the latest version of FuSeBMC (ver-
sion 4.1.14). FuSeBMC dependencies and instructions for building from source code
are all listed in the README.md file. Test-Comp 2022 provides the script, benchmarks,
and FuSeBMC binary to reproduce the competition’s results2.

1https://github.com/kaled-alshmrany/FuSeBMC
2https://test-comp.sosy-lab.org/2022/

https://github.com/kaled-alshmrany/FuSeBMC
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mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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