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Abstract We present a novel proof by induction algorithm, which com-
bines k -induction with invariants to model check embedded C software
with bounded and unbounded loops. The k -induction algorithm consists
of three cases: in the base case, we aim to find a counterexample with
up to k loop unwindings; in the forward condition, we check whether
loops have been fully unrolled and that the safety property P holds in
all states reachable within k unwindings; and in the inductive step, we
check that whenever P holds for k unwindings, it also holds after the
next unwinding of the system. For each step of the k -induction algo-
rithm, we infer invariants using affine constraints (i.e., polyhedral) to
specify pre- and post-conditions. The algorithm was implemented in two
different ways, with and without invariants using polyhedral, and the
results were compared. Experimental results show that both forms can
handle a wide variety of safety properties in typical embedded software
applications from telecommunications, control systems, and medical de-
vices domains; however, the k -induction algorithm adopting polyhedral
solves more verification tasks, which demonstrate an improvement of the
induction algorithm effectiveness.

1 Introduction

The Bounded Model Checking (BMC) techniques based on Boolean Satisfiability
(SAT) [8] or Satisfiability Modulo Theories (SMT) [2] have been successfully
applied to verify single- and multi-threaded programs and to find subtle bugs in
real programs [11,25,12]. The idea behind the BMC techniques is to check the
negation of a given property at a given depth, i.e., given a transition system M,
a property φ, and a limit of iterations k, BMC unfolds the system k times and
converts it into a Verification Condition (VC) ψ such that ψ is satisfiable if and
only if φ has a counterexample of depth less than or equal to k.

Typically, BMC techniques are only able to falsify properties up to a given
depth k ; however, they are not able to prove the correctness of the system, unless
an upper bound of k is known, i.e., a bound that unfolds all loops and recur-
sive functions to their maximum possible depth. In particular, BMC techniques
limit the visited regions of data structures (e.g., arrays) and the number of loop
iterations. This limits the state space that needs to be explored during verifica-
tion, leaving enough that real errors in applications [11,25,12,21] can be found;
BMC tools are, however, susceptible to exhaustion of time or memory limits
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for programs with loops whose bounds are too large or cannot be determined
statically.

Consider for example the simple program in Listing 1.1 (left), in which the
loop in line 2 runs an unknown number of times, depending on the initial non-
deterministic value assigned to x in line 1. The assertion in line 3 holds indepen-
dent of x’s initial value. Unfortunately, BMC tools like CBMC [11], LLBMC [25],
or ESBMC [12] typically fail to verify programs that contain such loops. Sound-
ness requires that they insert a so-called unwinding assertion (the negated loop
bound) at the end of the loop, as in Listing 1.2 (right), line 5. This unwinding
assertion causes the BMC tool to fail if k is too small.

1 unsigned int x=∗;
2 while (x>0) x−−;
3 a s s e r t ( x==0) ;

Listing 1.1: Unbounded loop

1 unsigned int x=∗;
2 i f (x>0)
3 x−−;

}

k copies
4 . . .
5 a s s e r t ( ! ( x>0) ) ;
6 a s s e r t ( x==0) ;

Listing 1.2: Finite unwinding

In mathematics, one usually attacks such unbounded problems using proof
by induction. A variant called k -induction has been successfully combined with
continuously-refined invariants [6], to prove that (restricted) C programs do not
contain data races [15,14], or that design-time time constraints are respected [16].
Additionally, k -induction is a well-established technique in hardware verification,
where it is easy to apply due to the monolithic transition relation present in
hardware designs [16,18,32]. This paper contributes a new algorithm to prove
correctness of C programs by k -induction in a completely automatic way (i.e.,
the user does not need to provide the loop invariant).

The main idea of the algorithm is to use an iterative deepening approach
and check, for each step k up to a maximum value, three different cases called
here as base case, forward condition, and inductive step. Intuitively, in the base
case, we intend to find a counterexample of φ with up to k iterations of the
loop. The forward condition checks whether loops have been fully unrolled and
the validity of the property φ in all states reachable within k iterations. The
inductive step verifies that if φ is valid for k iterations, then φ will also be valid
for the next unfolding of the system. For each step of the algorithm, we infer
program invariants using affine constraints to prune the state space exploration
and to strengthen the induction hypothesis.

These algorithms were all implemented in the Efficient SMT-based Context-
Bounded Model Checker tool (known as ESBMC3), which uses BMC tech-
niques and SMT solvers (e.g., [13,10]) to verify embedded systems written in
C/C++ [12]. In Cordeiro et al. [12] the ESBMC tool is presented, which de-
scribes how the input program is encoded in SMT; what the strategies for un-
rolling loops are; what are the transformations/optimizations that are important
for performance; what are the benefits of using an SMT solver instead of a SAT

3 Available at http://esbmc.org/
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solver; and how counterexamples to falsify properties are reconstructed. Here
we extend our previous work in Rocha et al. [29] and Ramalho et al. [17]; and
focus our contribution on the combination of the k -induction algorithm with
invariants. First, we describe the details of an accurate translation that extends
ESBMC to prove the correctness of a given (safety) property for any depth with-
out manual annotations of loops invariants. Second, we adopt program invariants
(using polyhedra) in the k -induction algorithm, to speed up the verification time
and to improve the quality of the results by solving more verification tasks in
less time. Third, we show that our present implementation is applicable to a
broader range of verification tasks, which other existing approaches are unable
to support [15,14,18].

2 Motivating Example

As a motivating example, a program extracted from the benchmarks of the SV-
COMP [3] is used as a running example as shown in Listing 1.3, which already
includes invariants using polyhedra.

1 int main ( int argc , char ∗∗ argv )
2 {
3 u in t 64 t i =1, sn = 0 ;
4 assume ( i==1 && sn==0 ) ; // Invar i an t
5 u in t 32 t n ;
6 assume (n>=1) ;
7 while ( i<=n) {
8 assume ( 1<=i && i<=n ) ; // Invar i an t
9 sn = sn+a ;

10 i++;
11 }
12 assume ( 1<=i && n+1<=i ) ; // Invar i an t
13 a s s e r t ( sn==n∗a ) ;
14 }

Listing 1.3: Running example for the k -induction algorithm.

In Listing 1.3, a is an integer constant and note that variables i and sn are
declared with a type larger than the type of the variable n to avoid arithmetic
overflow. Mathematically, the code above represents the implementation of the
sum given by the following equation:

Sn =

n
∑

i=1

a = na, n ≥ 1 (1)

In the code of Listing 1.3, the invariants produced by PIPS are included as
assume statements; the property (represented by the assertion in line 13) must
be true for any value of n (i.e., for any unfolding of the program). In contrast
from our k -induction algorithm, BMC techniques have difficulties in proving the
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correctness of this (simple) program since the upper limit value of the loop,
represented by n, is non-deterministically chosen (i.e., the variable n can assume
any value from one to the size of the unsigned int type, which varies between
different types of computers). Due to this condition, the loop will be unfolded
2n − 1 times (in the worst case, 232 − 1 times on 32 bits integer), which is thus
impractical. Basically, the bounded model checker would symbolically execute
several times the increment of the variable i and the computation of the variable
sn by 4, 294, 967, 295 times. To solve the problem of unfolding the loop 2n − 1
times, the translations previously described are performed.

3 Induction-based Verification of C Programs using
Invariants

The transformations in each step of the k -induction algorithm take place at the
intermediate representation level, after converting the C program into a GOTO-
program, which simplifies the representation and handles the unrolling of the
loops and the elimination of recursive functions.

3.1 The Proposed k-Induction Algorithm

Listing 1.4 shows an overview of the proposed k -induction algorithm. We do not
add additional details about the transformations in each step of the algorithm;
we keep it simple and describe the details in the next subsections so that one
can have a big picture of the proposed method. The input of the algorithm is a
C program P together with the safety property φ. The algorithm returns true
(if there is no path that violates the safety property), false (if there exists a
path that violates the safety property), and unknown (if it does not succeed in
computing an answer true or false).

In the base case, the algorithm tries to find a counterexample up to a maxi-
mum number of iterations k. In the forward condition, global correctness of the
loop w.r.t. the property is shown for the case that the loop iterates at most k
times; and in the inductive step, the algorithm checks that, if the property is
valid in k iterations, then it must be valid for the next iterations. The algorithm
runs up to a maximum number of iterations and only increases the value of k if
it cannot falsify the property during the base case.

The Difference to other k-Induction Algorithms Our k -induction algo-
rithm is slightly different than those presented by Große et al. [18], Donaldson
et al. [15], and Hagen et al. [19]. In Große et al., the forward condition and
the inductive step are computed differently from our approach (as described in
Section 3.1) and the value of k is increased only at the end of the algorithm;
in this particular case, computational resources are thus wasted since loops are
usually unfolded at least two times. Donaldson et al. [15] and Hagen et al. [19]
propose the k -induction with two steps only (i.e., the base case and the inductive
step); however, the inductive step of the approach proposed by Donaldson et al.
requires annotations in the code to introduce loops invariants. It is worth noting
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that Donaldson et al. improve the method and reduce the annotation overhead
[14]. However, our method is completely automatic as in Hagen et al [19]. Ad-
ditionally, as observed in the experimental evaluation (see Section 4), the use
of the forward condition, in our proposed method, improves significantly the
quality of the results, because some programs that are hard to be proved by the
inductive step can be proved by the forward condition using affine constraints.

1 input : program P and sa f e t y property φ

2 output : true , f a l s e , or unknown
3 k = 1
4 while k <= max i t e r a t i on s do

5 i f base case (P, φ , k ) then

6 show counterexample s [ 0 . . k ]
7 return f a l s e
8 else

9 k=k+1
10 i f f o rward cond i t i on (P, φ , k ) then

11 return t rue
12 else

13 i f i n du c t i v e s t ep (P, φ , k ) then

14 return t rue
15 end−i f

16 end−i f

17 end−i f

18 end−while

19 return unknown

Listing 1.4: An overview of the k -induction
algorithm.

Loop-free Programs In the k -induction algorithm, the loop unwinding of the
program is done incrementally from one to max iterations (cf. Listing 1.4), where
the number of unwindings is measured by counting the number of backjumps [27].
In each step of the k -induction algorithm, an instance of the program that con-
tains k copies of the loop body corresponds to checking a loop-free program,
which uses only if -statements in order to prevent its execution in the case that
the loop ends before k iterations.

Definition 1 (Loop-free Program) A loop-free program is represented by a
straight-line program (without loops) by providing an ite (θ, ρ1, ρ2) operator, which
takes a Boolean formula θ and, depending on its value, selects either the second
ρ1 or the third argument ρ2, where ρ1 represents the loop body and ρ2 repre-
sents either another ite operator, which encodes a k-copy of the loop body, or an
assertion/assume statement.

Therefore, each step of our k -induction algorithm transforms a program with
loops into a loop-free program, such that the correctness of the loop-free program
implies the correctness of the program with loops.
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If the program consists of multiple and possibly nested loops, we simply set
the number of loop unwindings globally, that is, for all loops in the program
and apply these aforementioned translations recursively. Note, however, that
each case of the k -induction algorithm performs different transformations at the
end of the loop: either to find bugs (base case) or to prove that enough loop
unwindings have been done (forward condition).

Program Transformations In terms of program transformations, which are
all done completely automatically by our proposed method, the base case simply
inserts an unwinding assumption, to the respective loop-free program P ′, con-
sisting of the termination condition σ after the loop, as follows I ∧ T ∧ σ ⇒ φ,
where I is the initial condition, T is the transition relation of P ′, and φ is a
safety property to be checked.

The forward case inserts an unwinding assertion instead of an assumption
after the loop, as follows I ∧ T ⇒ σ ∧ φ. The forward condition, proposed by
Große et al. [18], introduces a sequence of commands to check whether there is
a path between an initial state and the current state k, while in the algorithm
proposed in this paper, an assertion (i.e., the loop invariant) is automatically
inserted by our algorithm, without the user’s intervention, at the end of the loop
to check whether all states are reached in k steps. Our base case and forward
condition translations can easily be implemented on top of plain BMC.

However, for the inductive step of the algorithm, several transformations are
carried out. In particular, the loop while(c) {E; } is converted into

A;while(c) {S;E;U ; }R; (2)

where A is the code responsible for assigning non-deterministic values to all loop
variables, i.e., the state is havocked before the loop, c is the exit condition of
the loop while, S is the code to store the current state of the program variables
before executing the statements of E, E is the actual code inside the loop while,
U is the code to update all program variables with local values after executing
E, and R is the code to remove redundant states.

Definition 2 (Loop Variable) A loop variable is a variable v ⊆ V , where
V = Vglobal ∪ Vlocal given that Vglobal is the set of global variables and Vlocal is
the set of local variables that occur in the loop of a program.

Definition 3 (Havoc Loop Variable) A nondeterministic value is assigned
to a loop variable v if and only if v is used in the loop termination condition
σ, in the loop counter that controls iterations of a loop, or repeatedly modified
inside the loop body.

The intuitive interpretation of S, U , and R is that if the current state (after
executing E) is different than the previous state (before executing E), then new
states are produced in the given loop iteration; otherwise, they are redundant
and the code R is then responsible for preventing those redundant states to
be included into the states vector. Note further that the code A assigns non-
deterministic values to all loop variables so that the model checker can explore
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all possible states implicitly. In contrast, Große et al. [18] havoc all program
variables, which makes it difficult to apply their approach to arbitrary programs
since they do not provide enough information to constrain the havocked variables
in the program. Similarly, the loop for can easily be converted into the loop while
as follows: for(B; c;D) {E; } is rewritten as

B; while(c) {E;D; } (3)

where B is the initial condition of the loop, c is the exit condition of the loop,
D is the increment of each iteration over B, and E is the actual code inside
the loop for. No further transformations are applied to the loop for during the
inductive step. Additionally, the loop do while can trivially be converted into
the loop while with one difference, the code inside the loop must execute at least
once before the exit condition is checked.

The inductive step is thus represented by γ∧σ ⇒ φ, where γ is the transition
relation of P̂ ′, which represents a loop-free program (cf. Definition 1) after ap-
plying transformations (2) and (3). The intuitive interpretation of the inductive
step is to prove that, for any unfolding of the program, there is no assignment of
particular values to the program variables that violates the safety property being
checked. Finally, the induction hypothesis of the inductive step consists of the
conjunction between the postconditions (Post) and the termination condition
(σ) of the loop.

Invariant Generation To infer program invariants, we adopted the PIPS [24]
tool, which is an interprocedural source-to-source compiler framework for C and
Fortran programs and relies on a polyhedral abstraction of program behavior.
PIPS has been developed for almost twenty years to analyze large size programs
automatically [28]. PIPS performs a two-step analysis: (1) each program instruc-
tion is associated to an affine transformer, representing its underlying transfer
function. This is a bottom-up procedure, starting from elementary instructions,
then working on compound statements and up to function definitions; (2) poly-
hedral invariants are propagated along with instructions, using previously com-
puted transformers.

In our proposed method, PIPS receives the analyzed program as input and
then it generates invariants that are given as comments surrounding instruc-
tions in the output C code. These invariants are translated and instrumented
into the program as assume statements. In particular, we adopt the function
assume(expr) to limit possible values of the variables that are related to the in-
variants. This step is needed since PIPS generates invariants that are presented
as mathematical expressions (e.g., 2j < 5t), which are not accepted by C pro-
grams syntax and invariants with #init suffix that is used to distinguish the old
value from the new value.

Algorithm 1 shows the method proposed, which receives as inputs the code
generated by PIPS (PIPSCode) with invariants as comments, and it generates
as output a new instance of the analyzed code (NewCodeInv) with invariants,
adopting the function assume(expr), where expr is a expression supported by
the C programming language. The time complexity of this algorithm is O(n2),
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where n is code size with invariants generated by PIPS. The algorithm is split
into three parts: (1) identify the #init structure in the PIPS invariants; (2) gen-
erate code to support the translation of the #init structure in the the invariant;
and finally (3) translate mathematical expressions contained in the invariants,
which is performed by the invariants transformation in the PIPS format to the
C programming language.

Input: PIPSCode - C code with PIPS invariants
Output: NewCodeInv - New code with invariant supported by C programs
// dictionary to identify #init

1 dict variniteloc ← { }
// list for the new code generated in the translation

2 NewCodeInv ← { }
// Part 1 - identifying #init in the invariants

3 foreach line of the PIPSCode do

4 if is a PIPS comment in this pattern // P(w,x) {w == 0, x#init > 10} then

5 if the comment has the pattern ([a-zA-Z0-9 ]+)#init then

6 dict variniteloc[line]← the variable suffixed #init
7 end

8 end

9 end

// Part 2 - code generation to support #init structure

10 foreach line of PIPSCode do

11 NewCodeInv ← line
12 if is the beginning of a function then

13 if has some line number of this function ∈ dict variniteloc then

14 foreach variable ∈ dict variniteloc do

15 NewCodeInv ← Declare a variable with this pattern type var init =
var;

16 end

17 end

18 end

19 end

// Part 3 - correct the invariant format

20 foreach line of NewCodeInv do

// list to the translated invariants

21 listinvpips ← { }
22 NewCodeInv ← line
23 if is a PIPS comment in this pattern // P(w,x) {w == 0, x#init > 10} then

24 foreach expression ∈ {w == 0, x#init > 10} do

25 listinvpips ← Reformulate the expression according to the C programs
syntax and replace #init by init

26 end

27 NewCodeInv ← ESBMC assume(concatenate the invariants in listinvpips with
&&)

28 end

29 end

Algorithm 1: Translation algorithm of PIPS invariants

Line 3 of Algorithm 1 performs the first part of the invariant translation,
which consists of reading each line of the analyzed code with invariants and
identifying whether a given comment is an invariant generated by PIPS (line 4).
If an invariant is identified and it contains the structure #int, then the invariant
location (the line number) is stored, as well as, the type and name of the variable,
which has the structure prefix #int (line 6).
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After identifying the #int structures in the invariants, the second part of
Algorithm 1 performs line 10, which consists of reading again, each line of the
analyzed code with invariants (PIPSCode), and identifying the beginning of each
function in the code. For each identified function, the algorithm checks whether
that function has identified some #int structure (line 13). If it has been identi-
fied, for each variable that has the suffix #int, a new line of code is generated
at the beginning of the function, with the declaration of an auxiliary variable,
which contains the old variable value, i.e., its value at the beginning of the
function. The new created variable has the following format type var init =
var , where type is the identified variable type, and var is the identified vari-
able name. During the execution of this algorithm, a new instance of the code
(NewCodeInv) is generated.

In the third (and final part) of Algorithm 1 (line 20), each line of the new
code instance (NewCodeInv) is read to convert each PIPS invariant into expres-
sions supported by the C programming language. This transformation consists
in applying regular expressions (line 25) to add operators (e.g., from 2j to 2 ∗ j)
and replacing the structure #int to int. For each analyzed PIPS comment/in-
variant, we generate a new line of code to the new format, where this line is
concatenated with the operator && and added to the ESBMC assume function.

3.2 Running Example

In this section, we explain how the k -induction algorithm (see Listing 1.4) can
prove correctness of the C program shown in Listing 1.3.

The Base Case The base case initializes the limits of the loop’s termination
condition with non-deterministic values so that the model checker can explore
all possible states implicitly. The pre- and postconditions of the loop shown in
Listing 1.3, in static single assignment (SSA) form [27], are as follows:

Pre :=

[

n1 = nondet uint ∧ n1 ≥ 1
∧ sn1 = 0 ∧ i1 = 1

]

Post :=
[

ik ≥ 1 ∧ ik > n1 ⇒ snk = n1 × a
]

where Pre and Post are the pre- and postconditions to compute the sum given
by Equation (1), respectively, and nondet uint is a non-deterministic function,
which can return any value of type unsigned int. In the preconditions, n1 repre-
sents the first assignment to the variable n, which is a non-deterministic value
greater than or equal to one. This ensures that the model checker explores all
possible unwindings of the program. Additionally, sn1 represents the first as-
signment to the variable sn and i1 is the initial condition of the loop. In the
postconditions, snk represents the assignment n+ 1 for the variable sn in List-
ing 1.3, which must be true if ik > n1. The code that is not pre- or postcondition
is represented by the variable Q (i.e., the sequence of commands inside the loop
for) and it does not undergo any transformation during the base case. The re-
sulting code of the base case transformations can be seen in Listing 1.5 (cf.
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Definition 1). Note that the assume (in line 11), which consists of the termina-
tion condition, eliminates all execution paths that do not satisfy the constraint
i > n. This ensures that the base case finds a counterexample of depth k without
reporting any false negative result. Note further that other assume statements,
shown in Listing 1.3, are simply eliminated during the symbolic execution by
propagating constants and checking that the resulting expression evaluates to
true [12].

1 int main ( int argc , char ∗∗ argv ) {
2 u in t 64 t i , sn=0;
3 u in t 32 t n=nondet u int ( ) ;
4 assume (n>=1) ;
5 i =1;
6 i f ( i<=n) {
7 sn = sn + a ;

}

k copies
8 i++;
9 }

10 . . .
11 assume( i>n) ; // unwinding assumption
12 assert ( sn==n∗a ) ;
13 }

Listing 1.5: Example code for the proof by mathematical
induction - during base case.

The Forward Condition In the forward condition, the k -induction algorithm
attempts to prove that the loop is sufficiently unfolded and whether the property
is valid in all states reachable within k steps. The postconditions of the loop
shown in Listing 1.3, in SSA form, can then be defined as follows:

Post :=
[

ik > n1 ∧ snk = n1 × a
]

The preconditions of the forward condition are identical to the base case. In
the postconditions Post, there is an assertion to check whether the loop is suffi-
ciently expanded, represented by the constraint ik > n1, where ik represents the
value of the variable i at iteration n+ 1. The resulting code of the forward con-
dition transformations can be seen in Listing 1.6 (cf. Definition 1). The forward
condition attempts to prove that the loop is unfolded deep enough (by checking
the loop invariant in line 11) and if the property is valid in all states reachable
within k iterations (by checking the assertion in line 12). As in the base case,
we also eliminate assume expressions by checking whether they evaluate to true
by propagating constants during symbolic execution.
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1 int main ( int argc , char ∗∗ argv ) {
2 u in t 64 t i , sn=0;
3 u in t 32 t n=nondet u int ( ) ;
4 assume (n>=1) ;
5 i =1;
6 i f ( i<=n) {
7 sn = sn + a ;

}

k copies
8 i++;
9 }

10 . . .
11 assert ( i>n) ; // check loop i n va r i an t
12 assert ( sn==n∗a ) ;
13 }

Listing 1.6: Example code for the proof by mathematical
induction - during forward condition.

The Inductive Step In the inductive step, the k -induction algorithm attempts
to prove that, if the property is valid up to depth k, the same must be valid for
the next value of k. Several changes are performed in the original code during this
step. First, a structure called statet is defined, containing all variables within the
loop and the exit condition of that loop. Then, a variable of type statet called
cs (current state) is declared, which is responsible for storing the values of a
given variable in a given iteration; in the current implementation, the cs data
structure does not handle heap-allocated objects. A state vector of size equal to
the number of iterations of the loop is also declared, called sv (state vector) that
will store the values of all variables on each iteration of the loop.

Before starting the loop, all loop variables (cf. Definitions 2 and 3) are ini-
tialized to non-deterministic values and stored in the state vector on the first
iteration of the loop so that the model checker can explore all possible states
implicitly. Within the loop, after storing the current state and executing the
code inside the loop, all state variables are updated with the current values of
the current iteration. An assume instruction is inserted with the condition that
the current state is different from the previous one, to prevent redundant states
to be inserted into the state vector; in this case, we compare svj [i] to csj for
0 < j ≤ k and 0 ≤ i < k. In the example we add constraints as follows:

sv1 [0] 6= cs1

sv1 [0] 6= cs1 ∧ sv2 [1] 6= cs2

· · ·

sv1 [0] 6= cs1 ∧ sv2 [1] 6= cs2 ∧ . . . svk [i] 6= csk

(4)

Although we can compare svk [i] to all csk for i < k (since inequalities are not
transitive), we found the encoding shown in Equation (4) to be more efficient,
leading to fewer timeouts when applied to the SV-COMP benchmarks.

Finally, an assume instruction is inserted after the loop, which is similar to
that inserted in the base case. The pre- and postconditions of the loop shown in
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Listing 1.3, in SSA form, are defined as follows:

Pre :=











n1 = nondet uint ∧ n1 ≥ 1
∧ sn1 = 0 ∧ i1 = 1
∧ cs1.v0 = nondet uint

∧ . . .

∧ cs1.vm = nondet uint











Post :=
[

ik > n1 ⇒ snk = n×a
]

In the preconditions Pre, in addition to the initialization of the variables,
the value of all variables contained in the current state cs must be assigned
with non-deterministic values, where m is the number of (automatic and static)
variables that are used in the program. The postconditions do not change, as
in the base case; they only contain the property that the algorithm is trying to
prove. In the instruction set Q, changes are made in the code to save the value
of the variables before and after the current iteration i, as follows:

Q :=







sv[i − 1] = csi ∧ S
∧ csi.v0 = v0i
∧ . . .
∧ csi.vm = vmi







In the instruction set Q, sv[i − 1] is the vector position to save the current
state csi, S is the actual code inside the loop, and the assignments csi.v0 =
v0i ∧ . . . ∧ csi.vm = vmi represent the value of the variables in iteration i being
saved in the current state csi. The modified code for the inductive step, using
the notation defined in Section 3.1, can be seen in Listing 1.7. Note that the if -
statement (lines 18–26) in Listing 1.7 is copied k -times according to Definition 1.
As in the base case, the inductive step also inserts an assume instruction, which
contains the termination condition. Differently from the base case, the inductive
step proves that the property, specified by the assertion, is valid for any value of
n.

Lemma 1 If the induction hypothesis {Post ∧ ¬ (i ≤ n)} holds for k + 1
consecutive iterations, then it also holds for k preceding iterations.

After the loop while is finished, the induction hypothesis {Post ∧ ¬ (i ≤ n)}
is satisfied on any number of iterations; in particular, the SMT solver can easily
verify Lemma 1 and conclude that sn == n ∗ a is inductive relative to n. As in
previous cases, we also eliminate assume expressions by checking whether they
evaluate to true by propagating constants during symbolic execution.
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1 // v a r i a b l e s i n s i d e the loop
2 typedef struct s t a t e {
3 long long int i , sn ;
4 unsigned int n ;
5 } s t a t e t ;
6 int main ( int argc , char ∗∗ argv ) {
7 u in t 64 t i , sn=0;
8 u in t 32 t n=nondet u int ( ) ;
9 assume (n>=1) ;

10 i =1;
11 // dec l a ra t i on o f curren t s t a t e
12 //and s t a t e v e c t o r
13 s t a t e t cs , sv [ n ] ;
14 //A: ass i gn non−de t e rm in i s t c va l u e s
15 cs . i=nondet u int ( ) ;
16 cs . sn=nondet u int ( ) ;
17 cs . n=n ;
18 i f ( i<=n) { //c : e x i t cond i t i on
19 sv [ i−1]=cs ; //S : s t o r e curren t s t a t e
20 sn = sn + a ; //E: code i n s i d e the loop

}

k copies
21 //U: update v a r i a b l e s wi th l o c a l v a l u e s
22 cs . i=i ; cs . sn=sn ; cs . n=n ;
23 //R: remove redundant s t a t e s
24 assume( sv [ i −1]!= cs ) ;
25 i++;
26 }
27 . . .
28 assume( i>n) ; //unwinding assumption
29 assert ( sn==n∗a ) ;
30 }

Listing 1.7: Example code for the proof by mathematical induction -
during inductive step.

4 Experimental Evaluation

This section is split into two parts. The setup is described in Section 4.1 and
Section 4.2 describes a comparison among DepthK 4, ESBMC [12], CBMC [23],
and CPAchecker (Configurable Software-Verification Platform) [7] using a set of
C benchmarks from SV-COMP [4] and embedded applications [26,30,33].

4.1 Experimental Setup

The experimental evaluation is conducted on a computer with Intel Xeon CPU
E5− 2670 CPU, 2.60GHz, 115GB RAM with Linux 3.13.0− 35-generic x86 64.
Each verification task is limited to a CPU time of 15 minutes and a memory

4 https://github.com/hbgit/depthk
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consumption of 15 GB. Additionally, we defined the max iterations to 100 (cf.
Listing 1.4). To evaluate all tools, we initially adopted: 142 ANSI-C programs of
the SV-COMP 2015 benchmarks5; in particular, the Loops subcategory; and 34
ANSI-C programs used in embedded systems: Powerstone [30] contains a set of
C programs for embedded systems (e.g., for automobile control and fax appli-
cations); while SNU real-time [33] contains a set of C programs for matrix and
signal processing functions such as matrix multiplication and decomposition,
quadratic equations solving, cyclic redundancy check, fast fourier transform,
LMS adaptive signal enhancement, and JPEG encoding; and the WCET [26]
contains C programs adopted for worst-case execution time analysis. Addition-
ally, we present a comparison with the tools:

– DepthK v1.0 with k-induction and invariants using polyhedra, the parame-
ters are defined in the wrapper script available in the tool repository;

– ESBMC v1.25.2 adopting k-induction without invariants. We adopted the
wrapper script from SV-COMP 20136 to execute the tool;

– CBMC v5.0 with k-induction, running the script provided in [5];
– CPAChecker7 with k-induction and invariants at revision 15596 from its SVN

repository. The options to execute the tool are defined in [5]. To improve the
presentation, we report only the results of the options that presented the
best results. These options are defined in [5] as follows: CPAchecker cont.-
ref. k-Induction (k-Ind InvGen) and CPAchecker no-inv k-Induction.

4.2 Experimental Results

In preliminary tests with the DepthK, for programs from the SV-COMP 2015
loops subcategory, we observed that 4.92% of the results are false incorrect.
We believe that, in turns, this is due to the inclusion of invariants, which over-
approximates the analyzed program, resulting in incorrect exploration of the
states sets. We further identify that, in order to improve the approach imple-
mented in DepthK tool, ones needs to apply a rechecking/refinement of the result
found by the BMC procedure. Here, we re-check the results using the forward
condition and the inductive step of the k-induction algorithm.

In DepthK, the program verification with invariants modifies the k-induction
algorithm (Listing 1.4), as presented in Algorithm 2. In this new k-induction
algorithm, we added the following variables: last result, which stores the
last result identified in the verification of a given step of the k induction, and
force basecase, which is an identifier to apply the re-checking procedure in the
base case of the k-induction. The main difference in the execution of Algorithm 2
is to identify whether in the forward condition (line 18) and the inductive step
(line 23), the verification result was TRUE, i.e., there was no property violation
in a new k unwindings.

5 http://sv-comp.sosy-lab.org/2015/
6 http://sv-comp.sosy-lab.org/2013/
7 https://svn.sosy-lab.org/software/cpachecker/trunk
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Input: Program P ′ with invariants and the safety proprities φ
Output: TRUE, FALSE, or UNKNOWN

1 begin

2 k = 1;
3 last result = UNKNOWN ;
4 force basecase = 0 ;
5 while k <= max iterations do

6 if force basecase > 0 then

7 k=k+5 ;
8 end

9 if baseCase (P ′, φ, k) then

10 show the counterexample s[0 . . . k] ;
11 return FALSE ;

12 end

13 else

14 if force basecase > 0 then

15 return last result ;
16 end

17 k=k+1
18 if forwardCondition (P ′, φ, k) then

19 force basecase = 1 ;
20 last result = TRUE ;

21 end

22 else

23 if indutiveStep (P ′, φ, k) then

24 force basecase = 1 ;
25 last result = TRUE ;

26 end

27 end

28 end

29 end

30 return UNKNOWN ;

31 end

Algorithm 2: The k -induction algorithm with a recheck in base case.

After running all tools, we obtained the results shown in Table 1 for the SV-
COMP 2015 benchmark and in Table 2 for the embedded systems benchmarks,
where each row of these tables means: name of the tool (Tool); total number of
programs that satisfy the specification (correctly) identified by the tool (Cor-
rect Results); total number of programs that the tool has identified an error for
a program that meets the specification, i.e., false alarm or incomplete analysis
(False Incorrect); total number of programs that the tool does not identify an
error, i.e., bug missing or weak analysis (True Incorrect); Total number of pro-
grams that the tool is unable to model check due to lack of resources, tool failure
(crash), or the tool exceeded the verification time of 15 min (Unknown and TO);
the run time in minutes to verify all programs (Time).
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Tool DepthK
ESBMC +
k-induction

CPAchecker
no-inv

k-Induction

CPAchecker cont.-ref.
k-Induction (k-Ind

InvGen)

CBMC +

k-induction

Correct Results 94 70 78 76 64

False Incorrect 1 0 0 1 3

True Incorrect 0 0 4 7 1

Unknown and TO 47 72 60 58 74

Time 190.38min 141.58min 742.58min 756.01min 1141.17min

Table 1: Experimental results for the SVCOMP’15 loops subcategory.

Tools DepthK
ESBMC +
k-induction

CPAchecker
no-inv

k-Induction

CPAchecker cont.-ref.
k-Induction (k-Ind

InvGen)

CBMC +

k-induction

Correct Results 17 18 27 27 15

False Incorrect 0 0 0 0 0

True Incorrect 0 0 0 0 0

Unknown and TO 17 16 7 7 19

Time 77.68min 54.18min 1.8min 1.95min 286.06min

Table 2: Experimental results for the Powerstone, SNU, and WCET benchmarks.

We evaluated the experimental results as follows: for each program we identi-
fied the verification result and time. We adopted the same scoring scheme that is
used in SVCOMP 20158. For every bug found, 1 score is assigned, for every cor-
rect safety proof, 2 scores are assigned. A score of 6 is subtracted for every wrong
alarm (False Incorrect) reported by the tool, and 12 scores are subtracted for
every wrong safety proof (True Incorrect). According to [6], this scoring scheme
gives much more value in proving properties than finding counterexamples, and
significantly punishes wrong answers to give credibility for tools. Figures 1 and 2
present the comparative results for the SV-COMP and embedded systems bench-
marks, respectively. It is noteworthy that for the embedded systems programs,
we have used safe programs [12] since we intend to check whether we have pro-
duced strong invariants to prove properties.

The experimental results in Figure 1 show that the best scores belong to the
DepthK, which combines k-induction with invariants, achieving 140 scores, ES-
BMC with k-induction without invariants achieved 105 scores, and CPAchecker
no-inv k-induction achieved 101 scores. In Figure 2, we found that the best scores
belong to the CPAchecker no-inv k-induction with 54 scores, ESBMC with k-
induction without invariants achieved 36 scores, and DepthK combined with k-
induction and invariants, achieved 34 scores. We observed that DepthK achieved
a lower score in the embedded system benchmarks. However, the DepthK results
are still higher than that of CBMC and in the SV-COMP benchmark, DepthK

8 http://sv-comp.sosy-lab.org/2015/rules.php
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Figure 2: Score to embedded systems

achieved the highest score among all tools. In DepthK, we identified that, in
turns, the lower score in the embedded system benchmarks is due to 35.30% of
the results identified as Unknown, i.e., when it is not possible to determine an
outcome or due to a tool failure. We also identified failures related to invariant
generation and code generation that is given as input to the BMC procedure. It is
noteworthy that DepthK is still under development (in a somewhat preliminary
state), so we argue that the results are promising.

To measure the impact of applying invariants to the k-induction based ver-
ification, we classified the distribution of the DepthK and ESBMC results, per
verification step, i.e., base case, forward condition, and inductive step. Addi-
tionally, we included the verification tasks that result in unknown and timeout

(CPU time exceeded 900 seconds). In this analysis, we evaluate only the results
of DepthK and ESBMC, because they are part of our solution, and also because
in the other tools, it is not possible to identify the steps of the k-induction in
the standard logs generated by each tool. Figure 3 shows the distribution of
the results, for each verification step, to the SVCOMP loops subcategory, and
Figure 4 presents the results to the embedded systems benchmarks.

The distribution of the results in Figures 3 and 4 shows that DepthK can
prove more than 25.35% and 29.41% of properties, during the inductive step,
than ESBMC, respectively. These results lead to the conclusion that invariants
helped the k -induction algorithm to prove that loops were sufficiently unwound
and whenever the property is valid for k unwindings, it is also valid after the next
unwinding of the system. We also identified that DepthK did not find a solution
in 33.09% of the programs in Figure 3, and 50% in Figure 4 (adding Unknown and
Timeout). This is explained by the invariant generated from PIPS, which could
not generate invariants strong enough to the verification with the k-induction,
either due to a transformer or due to the invariants that are not convex; and
also due to some errors in the tool implementation. ESBMC with k-induction
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Figure 3: Results for loops.
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Figure 4: Results for embedded pro-
grams.

did not find a solution in 50.7% of the programs in Figure 3, i.e., 17.61% more
than DepthK (adding Unknown and Timeout); and in Figure 4, ESBMC did not
find a solution in 47.06%, then only 3.64% less than the DepthK, thus providing
evidences that the program invariants combined with k-induction can improve
the verification results.

In Table 1, the verification time of DepthK to the loops subcategory is typi-
cally faster than the other tools, except for ESBMC, as can be seen in Figure 5.
This happens because DepthK has an additional time for the invariants genera-
tion. In Table 2, we identified that the verification time of DepthK is only faster
than CBMC, as shown in Figure 6. However, note that the DepthK verification
time is proportional to ESBMC, since the time difference is 23.5min; we can
argue that this time difference is associated to the DepthK invariant generation.

We believe that the DepthK verification time can be significantly improved in
two directions: fix some errors in the tool implementation, because some results
generated as Unknown are related to failures in the tool execution; and adjust-
ments in the PIPS script parameters to generate invariants, since PIPS has a
broad set of commands for code transformation, which might have a positive
impact in the invariant generation for specific class of programs.
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Figure 6: Verification time to the embedded systems programs.

5 Related Work

The application of the k -induction method is gaining popularity in the soft-
ware verification community. Recently, Bradley et al. introduce “property-based
reachability” (or IC3) procedure for the safety verification of systems [9,20]. The
authors have shown that IC3 can scale on certain benchmarks where k -induction
fails to succeed. However, we do not compare k -induction against IC3 since it
is already done by Bradley [9]; we focus our comparison on related k -induction
procedures.

Previous work on the one hand have explored proofs by mathematical in-
duction of hardware and software systems with some limitations, e.g., requiring
changes in the code to introduce loop invariants [15,14,18]. This complicates the
automation of the verification process, unless other methods are used in combina-
tion to automatically compute the loop invariant [31,1]. Similar to the approach
proposed by Hagen and Tinelli [19], our method is completely automatic and
does not require the user to provide loops invariants as the final assertions af-
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ter each loop. On the other hand, state-of-the-art BMC tools have been widely
used, but as bug-finding tools since they typically analyze bounded program
runs [11,25]; completeness can only be ensured if the BMC tools know an upper
bound on the depth of the state space, which is not generally the case. This
paper closes this gap, providing clear evidence that the k -induction algorithm
can be applied to a broader range of C programs without manual intervention.

Große et al. describe a method to prove properties of TLM designs (Trans-
action Level Modeling) in SystemC [18]. The approach consists of converting
a SystemC program into a C program, and then it performs the proof of the
properties by mathematical induction using the CBMC tool [11]. The difference
to the one described in this paper lies on the transformations carried out in
the forward condition. During the forward condition, transformations similar to
those inserted during the inductive step in our approach, are introduced in the
code to check whether there is a path between an initial state and the current
state k; while the algorithm proposed in this paper, an assertion is inserted at
the end of the loop to verify that all states are reached in k steps.

Donaldson et al. describe a verification tool called Scratch [15] to detect data
races during Direct Memory Access (DMA) in the CELL BE processor from
IBM [15]. The approach used to verify C programs is the k -induction technique.
The approach was implemented in the Scratch tool that uses two steps, the base
case and the inductive step. The tool is able to prove the absence of data races,
but it is restricted to verify that specific class of problems for a particular type
of hardware. The steps of the algorithm are similar to the one proposed in this
paper, but it requires annotations in the code to introduce loops invariants.

Kahsai et al. describe PKIND, a parallel version of the tool KIND, used to
verify invariant properties of programs written in Lustre [22]. In order to verify
a Lustre program, PKIND starts three processes, one for base case, one for
inductive step, and one for invariant generation, note that unlike ESBMC, the
k-induction algorithm used by PKIND does not have a forward condition step.
This because of PKIND is for Lustre programs that do not terminate. Hence,
there is no need for checking whether loops have been unrolled completely. The
base case starts the verification with k = 0, and increments its value until it
finds a counterexample or it receives a message from the inductive step process
that a solution was found. Similarly, the inductive step increases the value of
k until it receives a message from the base case process or a solution is found.
The invariant generation process generates a set of candidates invariants from
predefined templates and constantly feeds the inductive step process, as done
recently by Beyer et al. [6].

6 Conclusions

The main contributions of this work are the design, implementation, and eval-
uation of the k -induction algorithm, adopting invariants using polyhedra in a
verification tool, as well as, the use of the technique for the automated verifi-
cation of reachability properties in embedded systems programs. To the best of
our knowledge, this paper marks the first application of the k -induction algo-
rithm to a broader range of embedded C programs. To validate the k -induction
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algorithm, experiments were performed involving 142 benchmarks of the SV-
COMP 2015 loops subcategory, and 34 ANSI-C programs from the embedded
systems benchmarks. Additionally, we presented a comparison to the ESBMC
with k-induction, CBMC with k-induction, and CPAChecker with k-induction
and invariants.

The experimental results are promising, the proposed method adopting k -
induction with invariants (implemented in DepthK tool) determined 11.27%
more accurate results than that obtained by CPAChecker, which had the sec-
ond best result in the SV-COMP 2015 loops subcategory. The experimental
results also show that the k -induction algorithm without invariants was able to
verify 49.29% of the programs in the SV-COMP benchmarks in 141.58 min,
and k -induction with invariants using polyhedra (i.e., DepthK) was able to
verify 66.19% of the benchmarks in 190.38 min. Therefore, we identified that
k -induction with invariants determined 17% more accurate results than the k -
induction algorithm without invariants.

For embedded systems benchmarks, we identified some improvements in the
DepthK tool, related to defects in the tool execution, and possible adjustments
to invariant generation with PIPS. This is because the results were inferior com-
pared to the other tools for the embedded systems benchmarks, where DepthK
only obtained better results than CBMC tool. However, we argued that the
proposed method, in comparison to other state of the art tools, showed promis-
ing results indicating its effectiveness. In addition, both forms of the proposed
method were able to prove or falsify a wide variety of safety properties; however,
the k -induction algorithm, adopting polyhedral solves more verification tasks,
which demonstrate an improvement of the induction k -algorithm effectiveness.
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