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Abstract The extensive use of fixed-point digital controllers demands a grow-
ing effort to prevent design errors that appear in the discrete-time domain. The
present article describes a novel verification methodology, which employs Bounded
Model Checking (BMC) based on Satisfiability Modulo Theories (SMT) to verify
the occurrence of the design errors, because of the finite word-length (FWL) for-
mat, in fixed-point digital controllers. Here, the performance realizations of the
digital controllers realizations that use delta operators are compared to those that
use traditional direct forms. The experimental results show that the delta-form
realization substantially reduces the digital controllers’ fragility when compared
to the direct-form realization. Additionally, the proposed methodology can be very
effective and efficient to verify real-world digital controllers, where conclusive re-
sults are obtained in nearly 98% of the benchmarks.

Keywords fixed-point digital controllers · direct and delta forms · formal
methods · bounded model checking

1 Introduction

Digital controllers are now widely used by the control engineering community
because of various advantages over analog controllers such as improved reliability,
sensitivity, flexibility, and cost. However, there are some disadvantages in the use of
digital controllers, for example, errors that are introduced during the quantization
process. In this context, there are some initiatives to solve problems that appear in
the discrete-time domain; in particular, problems related to the finite word-length
(FWL) effects [1, 2].
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Digital controllers are generally implemented in microcomputers, micropro-
cessors, digital signal processors [3], and field programmable gate arrays [4]. Ac-
cording to the hardware choice, the format and arithmetic used to represent and
manipulate numbers might change (e.g., number of bits, fixed- or floating-point
arithmetic); these representations directly influence the precision and performance
of the digital controller.

Floating-point processor has a numerical representation that approximates the
real number values and offers an enhanced precision if compared to fixed-point
processors. In particular, floating-point processors can represent numbers with
smaller magnitude than the fixed-point processors; however, fixed-point processor
is the fastest and cheapest solution and consequently, it is largely used in practice.
The scenario aforementioned thus requires better understanding and handling of
typical problems in the realizations of digital controllers so that quantizations
and FWL effects can potentially be reduced when designing a digital controller.
Several factors can influence, intensify, or attenuate these effects (e.g., via the use
of realization structures such as direct and delta forms as well as the definition of
the number of bits and sample rate). The possible influences of these effects bring
important stability and eigenvalues sensitiveness issues to the digital controller,
which have been previously investigated by several authors [5–9].

To avoid performance degradation, control engineers usually invest in time
and effort at the design phase, solving problems caused by the FWL effects with
more robust and arduous solutions. Previous studies propose appropriate scaling
using special metrics [8,10]. Others developed different methodologies to estimate
the optimal word-length to avoid FWL effects [11–14]. There are some initiatives
that propose more complex controllers to maintain the performance inside an
error bound or uncertainty bounds (e.g., the robust and non-fragile controllers [15,
16]). Automated verification tools have also been applied to find design errors
in discrete-time systems (e.g., UPPAAL [17], Open-Kronos [18], CPN [19], and
Maellan [20]). However, there is still a gap in formal verification of embedded
systems; in particular in digital controllers, which are in a continuous interaction
with the environment.

Differently from others, this study presents a novel methodology to formally
verify the occurrence of design errors in realization of digital controllers. In par-
ticular, BMC based on the SMT is used to verify five types of properties, which
include overflow, limit cycle, time constraints, stability, and minimum-phase. Ad-
ditionally, six different realizations structures are considered, which include three
direct forms and three delta forms.

The main objective of this research is thus to demonstrate that an SMT-based
BMC method can be a very powerful tool in the design and verification of digi-
tal controllers, aiding the control engineer with an efficient verification tool that
is more reliable and less laborious than traditional simulation tools (e.g., Mat-
lab [21] and LabVIEW [22]), as simulation tools depend on a set of input stimuli
to improve the state space coverage and significantly require manual intervention
from designers. In particular, simulations tools [14,23] either generate false alarms
or neglect some failures because of the low coverage achieved during simulations
(coverage problem) [24, 25]. Our verification methodology then replaces typical
validation processes currently used by control engineers.

In summary, this article describes three important contributions. It marks the
first study that applies an SMT-based BMC technique to verify the occurrence of
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various design errors related to FWL and quantization effects in numerical fixed-
point digital controllers. Second, we demonstrate with the aid of an SMT-based
BMC tool that the use of the delta-form realization presents a higher maintenance
capability of important properties (e.g., stability and minimum phase) than the
direct-form realization using an appropriate FWL format. Finally, we show that
our verification methodology can be very effective and efficient to verify real-world
digital controllers than other existing approaches.

This article is a substantially revised and extended version of the study pub-
lished in previous conferences [26,27]. The major difference is that the present ar-
ticle includes more benchmarks to confirm the methodology feasibility. The delta
operator properties and their advantages in relation to the shift operator are better
investigated with more benchmarks. Furthermore, the experiments are performed
in a newer Efficient SMT-Based Context-Bounded Model Checker (ESBMC) ver-
sion with a different SMT-solver (Boolector [28]), resulting in better performance
when compared to the SMT solver Z3 [29]. Last but not least, we also describe
the stability and minimum-phase verification for delta-form digital controllers.

The remainder of the article is organized as follows: Section 2 provides funda-
mental aspects of digital controllers, and issues related to their implementation,
especially in fixed-point architectures. Section 3 presents the proposed methodo-
logy for verification of digital controllers and the respective techniques involved.
Section 4 presents the results of our experiments using several benchmarks, com-
paring the performance of delta and direct forms implementations. In Section 5,
we discuss the related studies and we conclude and describe future research in
Section 6.

2 Fixed-Point Digital Controllers

This section introduces the main concepts about digital controllers, including their
representations and realizations; in particular, the fixed-point representation and
the related problems. The delta-form realization is also presented and its advantage
is conceptually compared to the direct form.

2.1 Fixed-Point Digital Controllers Representations and Implementations

A digital controller is a linear time-invariant causal discrete-time dynamic sys-
tem, which deals with discrete numerical signals; its implementation is a program
executed by a microprocessor. There are various mathematical controller represen-
tations (e.g., transfer functions, state equations, and difference equations). These
representations are studied in several books on signals and systems (e.g., [30,31]).
An important representation for digital controllers is the difference equation, which
can be described as

y(n) = −
N∑
k=1

aky(n− k) +
M∑
k=0

bkx(n− k) (1)

where y(n) and x(n) are the output and input, respectively, in instant n [31]. Using
the z-transform in Eq. (1), the digital controller can be represented by a transfer
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function

H(z) =
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
(2)

where z is called forward-shift operator and z−1 is called backward-shift operator.
There are many ways to implement a digital controller in software; the realization
structure of controllers influences their performance. Different realizations of digi-
tal controllers are studied in [1, 32].

In this study, however, the delta form is considered and its performance is
compared to the direct form, from the formal verification perspective. Others types
of realizations to implement a digital controller are explained by Åström and
Wittenmark, and Hilaire et al. [32, 33].

The direct realization uses directly the coefficients in Eq. (1) in its implementa-
tion. The advantage of this implementation is that states variables are derivations
of delayed inputs and outputs, using the shift operator. However, direct-form im-
plementations make the controller extremely sensitive to numerical errors, which
are strongly evident in fixed-point implementations; as a result, it may specially
harm the system’s stability and performance. The different direct forms (e.g., DFI,
DFII, and TDFII) might present different numerical performance, given that these
realizations implement the same controller, but with different operations numbers
and orders. Figures 1, 2, and 3 show three different direct representations; in these
structures, the gains ai and bi are the coefficients and the z−1 represents the shift
operations in Equations (1) and (2).

b0

b1

b2

a1

a2

Fig. 1: Direct Form I Realization

The delta form, originally proposed by Middleton and Goodwin [8], represents
a viable alternative to prevent the violation of the system’s properties from the
numerical errors perspective, which are typically caused by the quantizations and
FWL effects.

2.1.1 Implementation of Digital Controllers Using the Delta Forms

Middleton and Goodwin proposed an alternative to minimize FWL effects in fixed-
point digital controller, using the delta operator (δ), which is defined by

δ =
q − 1

∆
(3)
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Fig. 2: Direct Form II Realization
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Fig. 3: Transposed Direct Form II Realization

where q is a shift operator (e.g., the z) and δ is the Euler approximation to
a derivative [8]. A discrete system represented by Eq. (1) in z-domain presents
different coefficients in δ-domain, which can be described by the following transfer
function

H(δ) =
b̄0 + b̄1δ

−1 + ...+ ¯bMδ
−M

1 + ā1δ−1 + ...+ āNδ−N
, (4)

and each coefficient āi with 0 ≤ i ≤ N and similarly for b̄j with 1 ≤ j ≤ M can
be described by

āi =

(
k + i

i

)
N∑
k=i

ak∆
i. (5)

A system in delta form has exactly the same behavior as a continuously sampled
system. However, this realization presents an improved round-off performance,
a sensitive-less controller, more accurate coefficients representation, and a greater
region of convergence so that the discrete stability domain is close to the continuous
domain.

The delta operator is equivalent to the shift operator and all analysis done for
the shift operator can be translated into the delta form. However, the delta opera-
tor is the forward-difference approximation of the differential continuous operator;
therefore, the delta form is closer to the continuous behavior than the ordinary
direct form, which uses the shift operator. Furthermore, the z-domain region of
convergence (i.e., the region where the stability is guaranteed) is only the unitary



6 Iury V. Bessa et al.

radius circle and the δ-domain region of convergence is a circle inversely propor-
tional to the sample period; it means that the set of coefficients values for which
a polynomial is stable may be much greater with the delta operator.

2.2 Problems Related to Fixed-Point Implementation

Implementations of digital controllers are subject to FWL effects; these effects are
amplified in a fixed-point processor. The FWL effects are related to small impreci-
sions or functional problems such as instability. The most common error sources are
round-offs and quantizations [31]. Quantization occurs during the analog-to-digital
conversion, which consists of approximating analog signal values to quantized (dis-
crete) values. This process generates a rounding error, whose maximum value is
2−b−1, where b is the number of bits in the fractional part.

A realistic model of a FWL system must include the quantization of every nu-
merical value, including each arithmetic result (sums and products), input signals,
and system coefficients; the last are narrowly related to the system’s dynamics.
These accumulated errors might affect the position of the poles and zeros of the
digital controller (mainly in direct forms) and make the controller lose the stabil-
ity or the minimum phase characteristics; in the control literature, this is called
controller’s fragility [1].

In the design phase, control engineers avoid poles and zero positions that might
be fatally affected by the FWL effects (i.e., they seek positions slightly away from
the unitary circle); however, sometimes, it cannot be done easily or simply it may
not be desired in the context. An example is given by resonant controllers, in
which the poles must be positioned next to the stability border. The fixed-point
arithmetic influence in these controllers is studied by Harnefors and Peretz et
al. [10, 34].

A particular fixed-point representation < k, l >, where k is the number of
bits of the integer part and l is the number of bits of the fractional part, can
only represent values in the range from 2k−1 − 2−l to −2k−1. An overflow occurs
when an addition or multiplication operation returns a result outside the range
of representable values. A microprocessor generally handles an overflow via wrap-
around (i.e., allow the numerical representation wrapping it) or saturation (i.e.,
hold the maximum representation). These round-offs or overflow errors might lead
to periodic oscillations called limit cycles. There are books that explain completely
the fixed-point theory and operations, as in Granas and Dugundji [35]. Addition-
ally, problems related to FWL effects on fixed-point format can be extensively
found in the literature [1,31,36,37]. Understanding the presence of these phenom-
ena might degrade the controller’s performance; this study proposes a verification
methodology that improves the design process to guarantee that a designed con-
troller is immune to FWL effects.

2.2.1 Round-off Effect and Poles and Zeros Sensitivity

The problems related to the precision of digital controllers are well-known [1,5,6,8,
38]. There are essentially two alternatives to handle them: the first one is a simple
but expensive technique that consists of increasing the word-length, using more
expensive and improved hardware, with the drawback of increasing the product
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price; the second one consists of optimizing and minimizing the FWL effects via
deep knowledge and understanding of the phenomena related to round-off effects
with the drawback of it being a quite laborious task. Some authors give an overview
of the main techniques to minimize the performance degradation in digital filters,
controllers, and identifiers, because of quantizations and effects of round-offs, and
how to achieve optimal realization [1, 2, 39].

The round-off effects may be especially harming when coefficients are affected,
because they might displace poles and zeros and consequently change the desired
system’s behavior [5]. Although, optimal FWL techniques, improved hardware, and
special representation (with larger number of bits for coefficients) have been used,
the poles and zeros sensitivity to FWL still presents a challenge. There are several
tools and techniques to handle model uncertainty and perturbation (e.g., H∞ con-
trol), producing optimal and robust controllers. However, Keel and Bhattacharyya
showed that these controllers may still present an undesired property [40]: fragility
or sensitivity to implementation aspects (e.g., the FWL representation of the digi-
tal controllers). The fragility of digital systems may be reduced by generating only
small output errors, or may be very harmful by affecting the system’s stability. To
minimize controllers’ fragility, some techniques such as the nonfragile control were
proposed [2].

2.2.2 Arithmetic Overflow

The arithmetic overflow is a well-known problem in digital controllers. The overflow
may occur in any node of the digital controller realization, when an operation result
exceeds the limited range of the processor’s word-length, resulting in undesirable
nonlinearities at the output. In particular, these events may be avoided with a
correct scaling of the input signals. Jackson et al. show that if the computation
result of a digital controller, implemented with two-complement arithmetic, does
not exceed the numerical range, then the intermediate steps of the computation
may be allowed to overflow any number of times without causing an erroneous
accumulation [41]; the overflow distortions because of the sums can be recovered
by subsequent additions. The overflow can be avoided if one ensures that it will
not occur in the final node, which can be done by scaling the multipliers’ inputs.
The necessary and sufficient condition to avoid overflow for any input signal is to
ensure that the output will be bounded by a vm, where vm represents the bound
of the processor’s representative range.

Lemma 1 Consider a digital controller with output y(n) and input x(n), bounded
in magnitude by vm, for all n, multiplied by a scale factor λ. The output y(n) will
be also bounded by vm for all n for values for λ such that

λ ≤ 1

‖h(n)‖1
, (6)

where the h(n) is the impulse response of the digital controller, and ‖•‖ is defined

by ‖u(n)‖ =
∞∑
k=0

|u(k)|.

This condition is rarely used in practice as it generally results in a very stringent
scaling, which may be harmful to the accuracy of the output signal, once the word-
length is finite. There are previous studies that present efforts to optimize the
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number of bits used in the fixed-point format [12, 14, 42–48] or to present more
relaxed norms [36,49,50] to minimize round-off effects. In any case, the accuracy
is directly related to the dynamical behavior and to the stability of the system,
which might present fragility because of the FWL effects and round-offs. Some
researchers focus their efforts on the design phase, developing controllers with an
adequate performance after FWL effects [2, 39, 51–53]; other authors investigate
different implementation forms [54,55].

2.2.3 Limit Cycle

The limit cycle oscillations (LCOs) in digital controllers are defined by the presence
of oscillations occurring in the output, even when the input sequence is a constant
value [1]. These oscillations may be very harmful to the control system, because of
the signal-to-noise ratio of the controller’s output, degrading control actions and
causing damages to the physical plant (especially in mechanical systems), harming
surround products, and increasing the material losses [56].

Some authors have studied the consequences of limit cycles; Peterchev and
Sanders show that the presence of limit cycle oscillations in pulse-width modu-
lation (PWM) power converters can increase the energy waste and decrease the
lifespan of the electronic devices [57]. The same problem was also studied for res-
onant controllers by Peretz and Ben-Yaakov [34].

A LCO may be classified as granular or overflow limit cycles. The granular
limit cycles are autonomous oscillations, originating from quantization performed
in the least significant bits [36]. The absence of overflow limit cycles may be
assured by preventing overflows or by treating overflows via saturation, holding
the maximum (or minimum) value achieved. The granular LCOs are most hardly
avoided by means of the following lemma, which is proved by Vaidyanathan and
Liu [58]:

Lemma 2 Consider any digital controller with transfer function C(z), which may
be represented in state-space by means of the following equations{

x(n+ 1) = Ax(n) +Bu(n)
y(n) = Cx(n) +Du(n)

(7)

where x(n), u(n), y(n), and (A,B,C,D) are respectively the state vector, the input,
the output, and the state-space realization. A condition necessary and sufficient to
ensure that the realization (A,B,C,D) is completely free of self-sustained oscilla-
tions is some diagonal matrix that exists with positive diagonal entries such that
the following matrix Q is

Q = T −At ∗ T ∗A � 0. (8)

This condition is not so easily met; there is intensive research effort for systems
free of oscillations. Since the 1960s, different initiatives have been proposed to test
the limit cycle absence. In particular, the initial initiatives proposed tests for the
absence of LCOs based on frequency domain conditions [59, 60] and in Lyapunov
functions [58,61–64]. The first study that proposed the usage of exhaustive search
to ensure the absence of LCOs in digital filters and controllers implementations
appeared only after the 1990s [65–68], and some related research is used to optimize
the search space by means of bounds and heuristics [68–70]. More recently, Monte
Carlo algorithms are used to detect LCOs [23].
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2.2.4 Sampling effect

The sample time is an important factor to be considered in a digital controller
design. Obviously, the choice of a slow sampling implies difficulties in the signal
reconstruction, increasing the reconstruction error. The minimum criterion is the
Shannon’s theorem below:

Theorem 1 Any signal y(t) that presents frequency components in the interval[
−ωs

2 ,
ωs

2

]
can be exactly reconstructed, from the sample values y(kT ), where T is

the sampling period and ωs = 2π
T ,

y(t) =
∞∑

k=−∞

y(kT )
sin ωs

2 (t− kT )
ωs

2 (t− kT )
. (9)

This theorem is not practical; the sum in Eq. (9) is complicated to be evaluated
and may accumulate large errors after the signal reconstruction. For this reason,
polynomial interpolation are more commonly used in signal reconstruction (e.g.,
zero-order hold); for this approach, a superior sample rate is necessary, which is
extended to almost ten times the bandwidth to avoid the loss of information [38].
Furthermore, with the use of delta operator, small sample times can approximate
the convergence region from the continuous one [8].

However, the use of excessively high sampling might result in undesirable per-
formance, leading to greater numerical errors because of the FWL effects. In a
real-time system, which may consist of other tasks beyond the control actions,
high sample rates will require more processing resources; therefore, the use of high
sample rates may be insufficient to execute the tasks and may degrade the sys-
tem’s performance. Recommended sample rates are between 10 and 50 times of
the bandwidth [38].

3 Verification of Fixed-point Digital Controllers

This section describes our verification methodology for realization of digital con-
trollers, which uses BMC based on SMT. In particular, we check for properties
related to overflow, limit cycle, time constraints, stability, and minimum phase
using direct- and delta-forms realizations.

3.1 Bounded Model Checking (BMC)

Formal verification of software and systems is an important task to ensure that a
designed model meets its requirements; this task may be very hard and laborious
with the complex growth of the systems. As model-checking techniques do not
require proofs (algorithmic rather than deductive in nature), they have an im-
portant place in the verification paradigm, whenever systems are becoming more
complex, especially with the growth of the cyber-physical systems, which demand
short development cycles and high-level of reliability [71].

The International Competition on Software Verification (SV-COMP) is an an-
nual competition of software verification tools, which evaluates and presents sev-
eral testing and verification techniques [72] . One important verification technique,
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which is presenting many of interesting results over the last years, is the BMC.
The BMC techniques, based on Boolean Satisfiability (SAT) [73] or SMT [74],
have been successfully applied for verifying single- and multi-threaded programs,
and also for finding subtle bugs in real programs [75–78]; however, applications
aiming to ensure correctness of discrete-time systems are only recent [24–27,79].

The basic idea of BMC is to check for the negation of a given property at a
given depth. Supposing a transition system M has a property φ and a bound k,
BMC unrolls the system k times and translates it into a verification condition
(VC) ψ in such a way that ψ is satisfiable if and only if φ has a counterexample of
depth less than or equal to k. SMT solvers such as Z3 [29] and Boolector [28] can
be used to check whether ψ is satisfiable. In the BMC of digital controllers, the
bound k limits the number of loop iterations and recursive calls in the controller’s
realization, leaving enough that real errors can be found. BMC thus generates
VCs that reflect the exact path in which an instruction is executed, the context in
which a given controller function is called, and the bit-accurate representation of
arithmetic expressions [76]. BMC tools are, however, susceptible to exhaustion of
time or memory limits for digital controllers with loops whose bounds are too large
or cannot be determined statically. From our benchmarks, we noted that a bound
of k = 10 is enough to find many errors in digital controllers implementation.

In this study, we use the ESBMC tool as the verification engine, as it repre-
sents one of the most efficient BMC tools that participated in the last software
verification competitions [80–82]; in particular, ESBMC is the most efficient tool
to reason about programs that make use of bit-vector arithmetic according to the
SV-COMP 2015 edition.

ESBMC is an SMT-based bounded model checker for C/C++ programs. ES-
BMC finds property violations such as pointer safety, array bounds, atomicity,
overflows, deadlocks, data race, and memory leaks in single- and multi-threaded
software (with shared variables and locks). It also verifies programs that make
use of bit-level, pointers, structs, unions, and fixed-point arithmetics; it has been
used in a previous studies to verify properties of digital filters [79] and digital con-
trollers [26]. Inside ESBMC, the associated problem is formulated by constructing
the following logical formula

ψk = I(S0) ∧
k∨
i=0

i−1∧
j=0

γ(sj , sj+1) ∧ φ(s1) (10)

where φ is a property (e.g., overflow and limit cycle) and S0 is a set of initial
states of M , and γ(sj , sj+1) is the transition relation of M between time steps j
and j + 1. Hence, I(S0) ∧

∧i−1
j=0 represents the executions of a transition system

M of length i. The above VC ψ can be satisfied if and only if, for some i ≤ k
there exists a reachable state at time step i in which φ is violated. If the logical
formula (10) is satisfiable (i.e., returns true), then the SMT solver provides a
satisfying assignment, from which the values of the digital controller’s variables
can be extracted to construct a counterexample.

Definition 1 A counterexample for a property φ is a sequence of states s0, s1, . . . , sk
with s0 ∈ S0, sk ∈ S, and γ (si, si+1) for 0 ≤ i < k.

If it is unsatisfiable (i.e., returns false), then one can conclude there is no error
state in k steps or less.
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3.2 Digital Controller Verification Methodology

This study describes a novel methodology to verify digital controllers. In partic-
ular, this verification methodology is supported by the Digital Systems Verifier
(DSVerifier)1, which is a tool to model check properties related to overflow, limit
cycle, time constraints, stability, and minimum phase in the implementation of
digital controllers. Using DSVerifier, the control systems engineer verifies that a
designed digital controller presents the desired performance, when it is embed-
ded into a given hardware with resource limitations. An overview of the proposed
methodology can be seen in Fig. 4.

In step 1, a digital controller is initially designed with typical control system
techniques [56, 83]. As this controller will be implemented in a fixed-point pro-
cessor, one has to define a specific fixed-point representation, in particular, the
number of bits and precision (k integer bits and l fractional bits) and a com-
putational realization structure (direct or delta form) as shown in steps 2 and
3 of Fig. 4. Initially, the DSVerifier receives the fixed-point representation, the
realization structure, and the hardware specification as well as other verification
parameters such as the verification time (i.e., maximum time that the verification
process takes) and the category that indicates the property to be verified. Once
the configuration has been set in step 4, the verification process is started with a
model checking tool (step 5); here we use ESBMC as back-end for DSVerifier.

DSVerifier then checks whether the properties, mentioned above, hold in the
digital controller implementation. In step 6, DSVerifier returns verification success-
ful if there is no property violation in the proposed implementation; otherwise, it
returns verification failed and shows a counterexample with inputs and states that
lead the system to the property violation. With this counterexample, another im-
plementation (i.e., realization and representation) can be chosen to avoid that
failure. This process is repeated until the digital controller implementation does
not present any failure as shown in Fig. 4.

In order to explain the DSVerifier workflow, the following second-order con-
troller, which can be found in a set of benchmarks available online2, will be used:

H(z) =
1.5610z − 1.485

z − 0.9
. (11)

This digital controller was designed for an induction motor plant, extracted from
an example available in Ogata [83], with a sampling period of 0.5s. The transfer
function definition corresponds to the first step of the methodology, which is shown
in Fig. 4. The second step is to choose the FWL representation. For this particular
example, the 〈3, 5〉 fixed-point format with dynamical range between −3 and 3 is
employed. A scale factor of 10 is used for the numerator coefficients. These fixed-
point parameters are computed according to the classical method described by
Carletta et al. [11], in order to avoid overflows.

For the DSVerifier usage, users must provide the specification in a ANSI-C file,
as shown in Fig. 5, for the digital controller represented by Eq. (11). This file con-
tains the digital-system specification (ds), with numerator (ds.b = {1.561, −1.485
}) and denominator (ds.a = {1.0, −0.9}), and the implementation specification

1 Available at http://dsverifier.org
2 http://www.dsverifier.org/benchmarks
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Fig. 4: Proposed methodology for digital controller implementation verification.

itself (impl), which contains the number of bits in the integer (impl.int bits =
3) and precision (impl.frac bits = 5) parts, the input range (impl.min = -3 and
impl.max = 3), and the scaling factor (impl.scale = 10). The third step is to choose
the realization form; for this example, Direct Form I realization (DFI) is chosen.
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#inc lude<d s v e r i f i e r . h>

d i g i t a l s y s t e m ds = {
. a = { 1 . 0 , −0.9 } , /∗ denominator ∗/
. a s i z e = 2 , /∗ denominator l ength ∗/
. b = { 1 .561 , −1.485 } , /∗ numerator ∗/
. b s i z e = 2 /∗ numerator l ength ∗/

} ;

implementation impl = {
. i n t b i t s = 3 , /∗ i n t e g e r b i t s ∗/
. f r a c b i t s = 5 , /∗ p r e c i s i o n b i t s ∗/
. min = −3.0 , /∗ minimum input ∗/
. max = 3 . 0 , /∗ maximum input ∗/
. s c a l e = 10

} ;

Fig. 5: A digital-system verification input file for DSVerifier.

In Step 4, the configuration must be set. As example, the limit cycle occurrence
is verified, with a timeout of 1 hour and a bound of 10 cycles. These parameters
must be provided when the DSVerifier is called, as follows:

dsverifier <filename> --realization DFI --property LIMIT CYCLE

--x-size 10 --timeout 1h --boolector

Note that DSVerifier is called using Boolector (Step 5). After a few seconds,
DSVerifier concludes the verification process, indicating a failure together with the
counterexample (Step 6). As a consequence, the designer has to go back to Step
2 to avoid the limit cycle reported by DSVerifier. In this particular example, a
simple change of realization, e.g., adopting the Direct Form II (DFII) in Step 3,
can rectify the controller implementation. For this realization, the verification in
Step 6 is successfully completed.

The DSVerifier might also be used via Graphical User Interface (GUI), which
is available in the DSVerifier website 3. More details about the GUI and command-
line usage of DSVerifier can be found in Ismail et al. [87].

3.3 Arithmetic Overflow Verification

When dealing with fixed-point arithmetic processors, one needs to take care about
overflows, which is difficult to detected without computational tools, as they usu-
ally occur at run-time during the quantization process. In the present study, asser-
tions are coded in the quantizer block, and the verification engine is configured to
use nondeterministic inputs in the specified range to detect overflows in a digital
controller, for a given fixed-point word-length. For any addition or multiplication
result, during controller operation, if there exists a value that exceeds the range
representable by the fixed-point, an assert statement detects that as an under or
overflow violation. As a consequence, a literal lsigned overflow is generated, with
the goal of representing the validity of each addition and multiplication operation,

3 http://www.dsverifier.org/downloads
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n 1 2 3 4 5 6 7 8

x(n) 0.9375 0.1250 0.6875 0.7500 0.9375 0.5000 1.0000 −1.0000

y(n) 0.9375 −0.6875 0.4375 −0.1250 −0.3125 −1.3125 −1.0000 −4.0625

Table 1: An example of overflow for the digital controller represented by (13).

according to the constraint

lsigned overflow ⇔ (FP ≥MIN) ∧ (FP ≤MAX), (12)

where FP is the fixed-point approximation, for the result of adders and multipliers,
and MIN and MAX are the minimum and maximum values that are representable
for the given fixed-point bit format, respectively. Therefore, in the overflow veri-
fication, it can never happen that an expression of a fixed-point type is evaluated
to a value that is not in the range of the fixed-point bit format.

An example of arithmetic overflow failure can be seen in the following digital
controller

C(z) =
1.0− 2.819z−1 + 2.637z−2 − 0.8187z−3

1.0− 1.97z−1 + 1.033z−2 − 0.06068z−3
. (13)

If this controller is implemented in direct form 1, with 7 bits < 3, 4 > (i.e.,
3 bits for the integer part and 4 bits for the fractional part) and with the input
range limited to [−1, 1], the controller will present an overflow output of −4.0625
if a input sequence shown in Table 1 is given. However, the number of bits for this
digital controller is chosen based on a conservative method, which is the impulse

response sum, described by Carletta [11]. The impulse response sum
∞∑

k=−∞
|hk| for

this digital controller is given by

∞∑
k=−∞

|hk| = 2.30172. (14)

Since this controller is stable, Carletta et al. [11] show that the maximum value
for the output is given by

||y||∞ ≤ xmax ∗
∞∑

k=−∞

|hk| = 1× 2.30172 = 2.30172, (15)

Note that the maximum value chosen for this controller is greater than that ob-
tained by means of Eqs. (14) and (15). However, the instantaneous change in the
input leads to an overshooting that exceeds the maximum representable value,
without turning the system into unstable. One can easily see that the application
of BMC techniques to digital controllers can detect overflow failures that are not
detected by conservative methods.
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3.4 Limit Cycle Verification

To verify the presence of limit cycles, in a particular fixed-point controller reali-
zation, the quantizer block routine is configured by setting a flag variable on it
to enable the wrap around on overflows, which means that the verification engine
is not expected to detect overflow failures, as in the previous case. Additionally,
the controller is configured to use a zero input signal and a nondeterministic ini-
tial state, for previous outputs. The controller execution is then unrolled, for a
bounded number of entries, and an assert statement is added to detect a failure,
if a set of previous outputs states (that repeats during the zero-input response) is
found.

The zero input limit cycle occurrence is represented by a literal lLCO, with the
goal of determining whether a set of previous outputs states is found, according
to the constraint

lLCO ⇐⇒ ∃n, k ∈ N|xm = 0 =⇒ ∃yk+i = yk+n+i,

∀i ∈ {0, 1, 2, ..., n},m ∈ {k, k + 1, k + 2, ..., k + 2n}.
(16)

The limit cycle absence is then verified by checking ¬lLCO, that is, there exists
no execution of the digital controller on which a set of previous outputs states is
found.

An example of limit cycle failure is shown in Fig. 6. This is a digital controller
(see the test case 11)1 in DFI realization, with output range of [4, 4], and with
fixed-point representation < 2, 13 >. The verification engine checks for the limit
cycle occurrence (lLCO) and then gives the following counterexample: if the system
receives a zero-sequence, following a {2, 2, 2, 2} sequence of past outputs, the limit
cycle will occur, as shown in Fig. 6. In this figure, a simulation with 2 seconds of
duration is shown, reproducing the counterexample provided by the verification
engine.

Fig. 6: Limit Cycle in a Digital Controller.

1 Available at http://dsverifier.org/benchmarks/
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3.5 Time Constrains Verification

The sample time is a very important parameter to be chosen in a digital control
system. In particular, all the system’s dynamic is changed with a modification
in the sample time. A precise selection of sample period is thus essential for a
computer-controlled system. On the one hand, too short sample times require a
higher performance and consequently processors with a high clock frequency; this
can impose technical limitation in the design of the digital controller. On the
other hand, too long sample times do not permit the reconstruction of continuous
signals [83].

In principle, the sample time choice depends on the physical plant, where the
control system is applied. The right choice of the computational implementation of
a controller may thus reduce the number of arithmetic operations and consequently
the computational costs. As control systems are typically real-time systems, they
cannot take more time to process tasks than a sample period. In practical applica-
tions, the controller is designed with a reasonable sample period to produce good
simulations results. Thereafter, it is implemented in a computer-based system,
where samples are scheduled at every sample period; this is the maximum time
that the processor takes to perform all control tasks and corresponding operations.
If an operation cannot terminate on time, then the results might not be correct
and the control system might not work as expected.

For this particular reason, a time constraint verification for a particular pro-
cessor, i.e., central processing unit (CPU) time verification, becomes a very use-
ful controller design tool, which may indicate if the chosen sample period and
the computational realization are compatible, before the physical implementation,
thus avoiding serious malfunctions of the system. As a result, the needed time to
execute a specific code can be roughly estimated (discounting I/O time, other jobs’
shares), once each instruction can be broken into a set of assembly instructions;
in particular, every processor has a table of clock cycles spent on each assembly
instruction. Currently, DSVerifier supports digital controllers realizations imple-
mented and compiled to run on a MSP430G2231, which is an ultra-low-power
16-bit RISC-CPU based microcontroller [84].

Since the loops of the controller implementation are bounded, the instruction
count for a particular (controller) realization form is computed by means of BMC
technique [85]; additionally, given that the cycles per instruction and clock cycle
time are known parameters, it is assumed here that the timing behavior is re-
peatable and predictable [86]. Actually, DSVerifier has been designed to support
different processors based on the Instruction Set Architecture [87].

So, with the assembly file generated from the compilation, this can be compared
with the source code, with the goal of identifying instructions for each segment
of the program. Then, a worst case execution time (WCET) analysis can be per-
formed in the controller function, considering the number of cycles required to
execute instructions and iterations. Kim et al. [88] describes a method using static
analysis and the model-checking technique to check for program-segment timing,
similarly to what is done here.

As an example, the code fragment shown in Figure 7(a) is used to perform
multiplications involving coefficients bk and previous entries, in Eq. (1). Figure
7(b) shows the code in Figure 7(a) converted into some assembly instructions,
using the compiler CCS v4 [89].
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sum += ∗ b ptr++ ∗ ∗ x ptr−−;

(a)

MOV.W @r9+, r12 5 c y c l e s
MOV.W @r9+, r13 5 c y c l e s
SUB.W # 4 , r10 5 c y c l e s
MOV.W 4( r10 ) , r14 3 c y c l e s
MOV.W 6( r10 ) , r15 3 c y c l e s
CALL # fs mpy 5 c y c l e s
MOV.W r7 , r14 1 c y c l e
MOV.W r8 , r15 1 c y c l e
CALL # f s a d d 5 c y c l e s
MOV.W r12 , r7 1 c y c l e
MOV.W r13 , r8 1 c y c l e

(b)

Fig. 7: (a) C code fragment of the digital controller. (b) Assembly instructions of
the code fragment shown in (a).

One can then realize that each instruction takes a different number of clock
cycles to execute; based on that information, it is possible to compute the number
of clock cycles that will be needed for each operation. For MSP430G2231, the
internal frequency is up to 16 MHz, which gives a cycle time of 62.5 ns. Once the
total processing time for associated instructions is available, then it can be used
to increment a timer variable and add an assert statement, in order to detect any
time-constraint violation.

The constraint value can be estimated, based on the sample rate of the system;
for instance, if it operates using a sample rate of 48 KHz, then it means that
after each 20.8µs window, new data are obtained from the system input, and the
controller function has to process output samples within this time. Formally, a
literal lCPU time is generated to represent the validity of the CPU execution time,
with a constraint

lCPU time ⇔ ((N × T ) ≤ D), (17)

where N is the number of cycles spend by the controller, T is the cycle time, and
D is the deadline.

It is worthwhile to mention that once the instruction count for a particular
controller implementation is provided, the time constrain verification is automati-
cally performed by DSVerifier. In particular, the procedure illustrated in Figure 7
is carried out for every code line of the controller implementation, i.e., C code
expressions are translated into assembly instructions by the compiler just once;
after that, the total number of instructions is automatically computed by means
of BMC. Note further that the CPU execution time spent by the controller is also
automatically computed in DSVerifier, by multiplying the number of cycles by the
cycle time, as described in Eq. (17). The execution time computed by DSVerifier
is actually an estimation that considers only CPU execution time, and discounts
time losses due to cache, jitter, and scheduling; further improvements could be
considered for a more realistic verification.
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row zn zn−1 ... zn−k ... z1 z0

1 an an−1 ... an−k ... a1 a0

2 a0 a1 ... ak ... an−1 an

3 b0 b1 ... bn−k ... bn−1 0

4 bn−1 bn−2 ... bk ... b0 0

5 c0 c1 ... ... cn−2 0 0

6 cn−2 cn−3 ... ... c0 0 0

... ... ... ... ... ... ... ...

2n− 1 r0 0 0 0 0 0 0

Table 2: Digital controller denominator coefficients distributed in a Jury’s table.

3.6 Stability Verification

The stability is a basic requirement, but is very important during designing the
digital controller. In particular, digital controllers are updated every sampling
period and one has to ensure that the system will be stable during its execution.
A discrete system is stable if all its poles are in the interior region of the unitary
circle of z-plane (i.e., the poles must have the module less than one) [32].

In previous studies [26,79], stability verification using Schur Decomposition is
used and implemented in the ESBMC tool using the Eigen Library [90]. Such a
method, however, involves many matrix operations that make it computationally
expensive. In this study, we choose another method to check for stability. We use
the Jury’s Stability criteria [91], as it is computationally less expensive than the
Schur Decomposition and does not require the use of an external library. The
advantage of the Jury’s algorithm can easily be observed via its complexity, which
is O(n2), whereas the complexity of the previous stability verification, based on
the Schur decomposition, is O(n3) [90].

The Jury’s algorithm can be used for a given polynomial of the form

F (z) = anz
n + an−1z

n−1 + ...a1z + a0 = 0, an > 0, (18)

where an until a0 represent the digital controller denominator coefficients. In par-
ticular, these coefficients are distributed in a Jury’s table using the format shown
in Table 2.

Considering the Jury’s table as a matrix m with dimensions [2n− 1][n] where
n is the number of coefficients. We have some considerations for the algorithm:

1. The first line of matrix m has the digital controller denominator coefficients.
2. The even number lines have the inverse order of their previous lines (i.e.,

despising final zeros).
3. The b0 is in line 3 of column 1 and its value is b0 = m[3 − 2][1] − (m[3 −

2][p]/m[3− 2][1]) ∗m[3− 1][1].
Generalizing bj and cj leads to m[i][j] = m[i− 2][j]− (m[i− 2][p]/m[i− 2][1]) ∗
m[i− 1][j], where p is the last nonzero column number for line i− 2.

4. The line 2n− 1 has only one element nonzero in the first column.

With the Jury’s table filled in, it is necessary to check the stability using the
following two definitions:
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row z2 z1 z0

1 1.0 1.068 0.1239

2 0.1239 1.068 1.0

3 0.984649 0.935675 0

4 0.935675 0.984649 0

5 0.095512 0 0

Table 3: Jury’s table of the digital controller represented by Eq. (19) using denom-
inator coefficients.

Definition 2 If the element m[1][1] is positive, then F(z) will be stable iff all the
first elements in odd lines (i.e., m[3][1], m[5][1], ..., m[2n− 1][1]) are positive too.

Definition 3 If the element m[1][1] is negative, then F(z) will be stable iff the
first elements in odd lines (i.e., m[3][1], m[5][1], ..., m[2n−1][1]) are negative too.

As a running example, we check for the stability of the following digital con-
troller, which is extracted from our benchmarks:

H(z) =
2.813z2 − 0.0163z − 1.872

z2 + 1.068z + 0.1239
(19)

This digital controller has the Jury’s table shown in Table 3. Analyzing Table 3
and considering Definition 2, one can easily conclude that the digital controller
represented by Eq. (19) is stable, once m[1][1], m[3][1], and m[5][1] are positive
numbers.

The stability verification condition, according to the Jury’s criteria, is repre-
sented by a literal lstability with the following constraint

lstability ⇐⇒ ((sgn(m[i][1]) 6= sgn(m[i+ 2][1]))∨
(sgn(m[i][1]) = sgn(m[i+ 2][1]))),∀i,

(20)

where sgn(•) is a function that indicates the operand signal.

3.7 Minimum Phase Verification

A minimum phase system is defined by a stable system with all the zeros stable.
Conceptually, a minimum-phase system has all poles and zeros inside the unitary
circle [91]. Minimum-phase is a desirable property in digital controllers because
in a closed-loop system, a feedback-controlled system shows the controllers zeros
as the general system’s poles (i.e., a digital control system with a nonminimum-
phase controller is potentially unstable). The verification engine for this particular
property is similar to the stability verification and also uses the Jury’s stability
test, but instead of using digital filter denominator coefficients, we use digital filter
numerator coefficients to check for the minimal phase.

As a running example, we check whether the digital controller represented by
Eq. (19) has minimum phase. The Jury’s table using numerator coefficients, for
this controller, is shown in Table 4:
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row z2 z1 z0

1 2.813 −0.0163 −1.872

2 −1.872 −0.0163 2.813

3 1.567218 −0.027147 0

4 −0.027147 1.567218 0

5 1.566748 0 0

Table 4: Jury’s table of the digital controller represented by Eq. (19) using numer-
ator coefficients.

Analyzing the Jury’s table above and considering Definition 2, one can con-
clude that the digital controller represented by Eq. (19) has minimum phase, once
m[1][1], m[3][1], and m[5][1] are positive numbers. Note that the minimum phase
is checked similar to the stability verification.

3.8 Stability and minimum phase verification for delta-form digital controllers

The Jury criteria are easy and is a useful method for verifying convergence in
discrete time polynomials in z-domain. However, these criteria do not provide
any guarantee for polynomials in δ-domain. For that particular reason, a different
stability criteria has to be established for the stability verification of controllers
implemented in delta forms. These criteria are described by Definitions 4 and
Lemma 3:

Definition 4 A linear dynamical system represented by Eq. (4), of the N-th order,
is asymptotically stable iff its poles (λ1, λ2, ..., λN ) is a convergent sequence that
satisfies the property (the proof is provided by Feue and Goodwin [92])

limk→∞

N∑
i=1

ci(1 +∆λi)
k = 0, (21)

where ci is a complex non-zero coefficient.

Analyzing Eq. (21), one can conclude that the sum is convergent only if the
exponential part presents convergence. Thus, the stability can be verified as

Lemma 3 A digital system in delta form modeled by Eq. (4) is asymptotically
stable iff all the eigenvalues λi, i = 1, 2, ...N (either multiple or single) satisfy

|1 +∆λi| < 1. (22)

The same idea can be applied for minimum phase verification, but must be
applied to the numerator polynomial.
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4 Experimental Evaluation

The experimental evaluation of our study consists of three parts. Section 4.1 des-
cribes the mathematical models of the plants and summarizes the characteristics
of the digital controllers for the respective plants. Section 4.2 describes the exper-
iment’s configuration, whereas Section 4.3 analyzes and summarizes the experi-
mental results.

4.1 Digital Controllers’ Design

We designed 33 digital controllers for the verification of three different plants,
where 16 of these controllers are designed for a commercial ball and beam plant,
which has the following mathematical model

G1(z) =
1.0067× 10−8(z + 9.256)(z + 0.9324)

(z − 1)3(z − 0.7041)
. (23)

where the sample time is 0.01s. Other 8 controllers are designed for an A/C motor
plant, extracted from Ogata [83] and described by

G2(s) =
1

s(s+ 1)
. (24)

This plant is discretized by different sample rates. Finally, 9 controllers are
designed for another plant, also extracted from Ogata [83],

G3(s) =
1

s(s+ 0.4)
(25)

discretized by different sample times too. The FWL format of the controllers is
chosen via the methodology presented by Carletta [11], which is based on impulse
response sum (

∑
h(k)).

Other digital controllers provided by Harnefors [10] are also considered in ver-
ifications. These are resonant controllers, with applications for voltage converters,
designed in the delta form. Resonant controllers are specially sensitive to the FWL
effects, because they present poles next to the stability limit.

4.2 Experimental Setup

For the following verifications, the hardware used for the controller is a 16-bits
micro-controller with a clock rate of 16 MHz. This study employs ESBMC v1.241,
with the SMT solver Boolector v2.0.12. To prevent overflows, scaling factors are
considered during the implementation. All controllers are checked against five types
of properties, as described in Section 3. In this study, the performance of the delta-
form realizations using different delta values is compared to the direct-form real-
izations. As a result, all test cases are verified in nine different realizations, which
include: Direct Form I (DFI), Direct Form II (DFII), Transposed Direct Form II

1 Available at http://esbmc.org
2 Available at http://fmv.jku.at/boolector/
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(TDFII), Delta Direct Form I (DDFI), Delta Direct Form II (DDFII), and Trans-
posed Delta Direct Form II (TDDFII), where each delta form was implemented
using delta values 1/4 and 1/8, respectively.

DSVerifier is called for each benchmark, as follows:
dsverifier <file> --realization <i> --property <j> --x-size <k>

where < file > is the digital-system specification file, < i > is the chosen reali-
zation form, < j > is the property to be verified, and < k > is the verification
bound, i.e., the number of times the digital system will be unwound.; the test
cases are not determined successful or failed if a timeout occurs. The experiments
are executed in a computer with the following hardware configurations: Intel Core
i7 − 2600 3.40 GHz processor, 32 GB of RAM, Fedora 17 Beefy Miracle 64-bits
OS.

4.3 Experimental Results

Approximately 1100 verifications are performed with the digital controllers de-
signed in the previous subsection. Here, the experiments are split into five veri-
fication categories: overflow, limit cycle, stability, minimum phase, and timing.
Three different implementations are considered: direct forms (DFI, DFII, and
TDFII) and the corresponding delta forms with two ∆ values (delta 1/8, where
∆ = 0.125, and delta 1/4, where ∆ = 0.25).

Figure 8 shows the results for overflow and limit cycle verification using direct
and delta realizations, where the horizontal axis represents properties divided into
three groups of realizations, the first one is the direct realizations, whereas the
second and third ones are the delta realizations using 1/4 (∆ = 0.25) and 1/8
(∆ = 0.125), respectively. The vertical axis represents the property violations
percentage (%) for DFI, DFII, and TDFII, which is found by DSVerifier, for each
realization group. In particular, the horizontal axis shows groups of realizations
(i.e., direct, Delta 1/4, and Delta 1/8) and the vertical axis shows the failure
percentage for each realization form (i.e., DFI, DFII, and TDFII) in three different
groups of realizations. As a result, the combination of horizontal and vertical axis
show nine different implementations (e.g., Direct DFI, Delta 1/4 DFI, and Delta
1/8 DFI) to be checked for overflow and limit cycle.

For each property, we executed 99 tests (i.e., 33 for direct, 33 for delta 1/4,
for 33 in delta 1/8). According to Fig. 8, DSVerifier can detect several errors in
direct and delta forms.

For overflow verification, DSVerifier found 80% of violations in direct form.
Using ∆ = 1/4, this number decreases to 56%, a failed reduction of 24%. However,
if we consider ∆ = 1/8, the violation percentage reduces to 52% (i.e., 28% less
violations than in direct form). With respect to realizations, the TDFII forms (both
delta 1/4 and delta 1/8) presented the best results (only 13% of overflows failures),
where the number of failures decreased to 54% if compared to the representation
with the worst results (i.e., DFI with 28% of overflow failures). For limit cycle
verification, DSVerifier found 71% of violations in direct form. For ∆ = 1/4 and
∆ = 1/8, this number decreases to 67% and 65%, respectively.

Figure 9 shows the stability and minimum phase verification results. The
horizontal axis represents the stability and minimum phase properties, which is
grouped by the realization of the controllers. Vertical axis shows the success and
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Fig. 8: Verification Results for Overflow and Limit Cycle using Direct and Delta
Realizations.

failures percentage. Differently from Fig. 8, this graph does not produce results
by each form because the results are based on the controller coefficients only.
According to the verification results, 15% of the benchmarks had stability problems
in direct form. After delta transformation, using ∆ = 1/4, this number decreases
to 9% of the benchmarks (a reduction of 6%), but changing the delta value to 1/8,
this number increases to 12%. For the minimum phase property, the direct form
presented 52% violations. Applying delta to 1/4 and 1/8, this number decreased
to 36% in both cases.

The time constraints property verification is not shown in any graph, as all tests
returned success for direct form, delta 1/4, and 1/8 realizations. In particular, time
constrains verifications do not present failures, because the order of the controllers
is relatively low and the sample time is reasonably high.

Figure 10 shows a comparison of the verification time between SMT-Solvers Z3
v4.0 and Boolector v2.0.1. Note that the overall verification time for Z3 is 391352
seconds, whereas for Boolector, it is 175585 seconds. This difference represents
a reduction of 55% of the total verification time, which significantly reduces the
number of timeouts (i.e., DSVerifier cannot provide a conclusive response within
the time limit).

The verifications results show that various factors can influence the perfor-
mance of the digital controllers: number of bits, sample time, implementation
form and domain, and others that are not within the scope of this study. The
optimal and failures-free design, taking into account all these factors, is a very
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Fig. 9: Verification Results of Stability and Minimum Phase in Direct and Delta
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challenging design task, even using a consolidated control theory for digital con-
trol systems design. The proposed methodology can give a strong support for the
control designer with the aid of a reliable and efficient verification tool, which
allows reaching a safe and reliable implementation of digital controllers by means
of a verification process.

Note that changes to the parameters can impact in the system performance
(e.g., the ∆ value in delta-form realizations). The results show that lowers values
of ∆ can provide better round-off performance, resulting in less fragile controllers
(i.e., with less implementation failures). All experimental results show better per-
formance of delta controllers when compared to direct realizations, and better per-
formance of ∆ = 1/8 when compared to ∆ = 1/4. However, excessive reduction
of the ∆ demands more bits for the fractional part representation of controllers’
coefficients; that will present lower numbers with greater orders of the controllers.

There is clearly a trade-off between improved performance offered by the delta
representations and the number of bits demanded. Figs. 12 and 13 show the effect
of the ∆ in the coefficients of the numerator and the denominator of a digital
controller. It shows the number of underflows in these coefficients represented by
double precision (i.e., the truncation to zero of these values). With a value of 1/64
for ∆ (less than a sample period) almost 60% of the digital controllers present
underflows in coefficients, and this amount would grow to three-quarters of the
controller if the double precision is not applied. Most processors are provided
with double-precision registers, which can be used for saving coefficients of the
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digital controllers, thus improving their precision, but double-precision registers
are useless for controllers with order greater than three, and for this reason the
graphics in Figs. 12 and 13 shows that elevated number of underflows.

The experimental results also show that DSVerifier is a useful design tool to de-
termine the most optimized fixed-point structure realization for digital controllers.
For instance, the results for test case 9, a digital controller for the ball and beam
Quanser plant, show that a control engineer can easily conclude that the controller
should be implemented in the TDFII or delta forms to avoid LCOs, once this con-
troller failed in the LC verification for DFI and DFII, but it passes in TDFII or
delta forms. Note that some failures that appear in the counterexamples are diffi-
cult to be detected by simulation tools, similar to limit cycles, which only occur
for some few input combinations.

As example, one can analyze in SIMULINK the stability of a closed-loop control
system using the following digital controller represented by Eq. (26) and conclude
that the closed-loop system is stable. This controller is designed by emulating and
mapping analog poles and zeros with the following zero-poles-gain representation

C(z) =
50[(z − 1)2(z − 0.81873)]

(z − 0.9704)(z − 0.9329)(z − 0.067032)
(26)

Two zeros on 1 can be observed in this controller to cancel two poles in 1 of
the ball and beam plant, which then stabilizes the closed-loop system. When this
closed-loop system is simulated, the poles and zeroes cancellation occurs and the
systems response is acceptable (the step response is shown in Fig. 14). However,
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if the transfer function with quantized coefficients is simulated, then the response
is totally different (see Fig. 15).

When the closed-loop system model is formally verified, the stability test fails
because of the noncancellation of unstable poles on 1; note that the cancella-
tion does not occur because of errors caused by the FWL effects. The standard
SIMULINK/Matlab operations do not consider the quantization effect, and the de-
sign tools in the Control System Toolbox do not consider the controllers fragility,
and these harming effects of quantization cannot be detected easily using these
tools. After the quantization effects, the proposed methodology and tool can ensure
the correctness after the quantization effects with a formally verified implementa-
tion of a designed digital controller.

5 Related Studies

The FWL effects in digital controllers are well-known in the control systems lit-
erature. Most control systems researchers tried to prevent these problems with an
additional effort in the design phase, as pointed out in Section 2. These efforts
involve the implementation of nonfragile controllers and the pursuit for the opti-
mal FWL format. An overview about these techniques can be seen in Istepanian
and Whidborne [1]. Indeed, only a few researchers developed tools to verify the
occurrence of FWL effects; however, most initiatives have focused their effort on
how to prevent them. There are particular examples of the application of formal
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Fig. 12: Results of truncation after delta realization for numerator coefficients.

methods for monitoring and diagnostics of control systems, but they are usually
applied to high-level properties related to real-time specifications. In fact, tests
and simulations are the most used techniques in control systems, but they are dif-
ficult to ensure correctness, as only some system behaviors are explored (coverage
problem).

An example of simulation tool is proposed by Sung and Kum who developed
a tool to determine the minimum bound of the word-length fixed-point repre-
sentation via simulation techniques [14]. Similar to any other simulation tool, it
only offers partial validation, as not all scenarios are explored; as a result, some
FWL-related problems might be ignored. Another interesting study is presented
by Anta et al. [93], where a tool called Costan finds errors in the implementation of
a mathematical model and verifies whether the error is tolerated, considering the
quantization effects and the fixed-point implementation. The authors focus their
verification on the stability of the system. Most recently, Luengo et al. present a
simulation tool, which is enhanced with the Monte Carlo algorithm to detect and
predict limit cycles in digital filters [23]. This study is a very interesting alterna-
tive in terms of efficiency and time, but probabilistic methods might also present
errors.

Additionally, there are several related studies about the development of tools to
evaluate the performance of digital controllers and filters, estimate their round-off
noise, and pursue optimal implementation with respect to FWL effects [94–99].

Alur et al. [100, 101] introduced the earliest application of model checking for
digital systems, represented by timed automata. Those influential studies inspired
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Fig. 14: Step response without quantization effects.

the development of various model checking tools for verifying hybrid automatas
and real-time systems. An example is the UPPAAL [17], which is a model checker
based on the theory of timed automata and it is designed to verify systems that
are modeled via a timed automata network; this tool has a large and successful
application in communication protocols verification. Another similar tool is the
Open-Kronos [18], which is able to check for the reachability of timed automata
and the emptiness of timed Buechi automata. The CPN tools [19] are also used
to verify systems modeled via a colored (timed and untimed) Petri Net. How-
ever, such approaches are usually employed for high-level verification and have



Verification of Fixed-Point Digital Controllers 29

Fig. 15: Step response with quantization effects.

not been used for verifying resilience, i.e., system robustness related to imple-
mentation aspects [87]. On the one hand, state-of-the-art BMC tools are able to
directly handle the C implementation of digital controllers; they are thus suitable
for verifying low-level properties (e.g., overflow and limit cycle), which depend on
the hardware architecture. On the other hand, verification tools such as UPPAAL
would demand an additional effort to model the implementation aspects of the
controllers by means of (timed) automata. Thus, one may notice there is still a
gap, regarding verification tools and methodologies to check for implementation
aspects of embedded systems.

Some particular examples of the use of BMC techniques to control systems may
be cited. Dutertre et al. show the advantages of formal methods over traditional
debugging tools [102]. The authors use SMT-based tools to diagnose and monitor
aircrafts systems. Simko and Jackson demonstrate that digital controllers can be
formally verified with a combination of SMT solving (to verify the control software)
and Taylor models (to predict the continuous plant dynamic) [103]. In Prabhu and
Dasgupta [104], model-checking is used in discrete controllers that only react to
specific events and that can be represented via a finite-state machine. The authors
use a combination of SMT solvers and existing industrial model-checking tools.

Some recent studies use SMT-based BMC techniques to verify properties of
digital filters and controllers. Cox et al. [24, 25] show that simulation tools are
useful, but insufficient to detect design errors. The authors propose the use of
SMT-based bounded and unbounded tools to verify digital filters. The BMC tool
used in this study, called ESBMC, has been recently used to verify discrete-time
systems. In Abreu et al. [79], properties of digital filters are verified using ESBMC,
where overflows, limit cycles, time constrains, stability, and frequency response are
checked.

Recently, Bessa et al. [26] apply SMT-based BMC to verify overflows, limit
cycles, and time constrains in digital controllers. Here, an extension of Bessa et
al. [26,27] is presented, which applies SMT-based BMC techniques to verify FWL
effects on a wide variety of digital controllers properties and realization forms. To
the best of our knowledge, there is no other verification tool that can be directly
used to check for the different digital controllers properties and realization forms,
described in this study, considering implementation aspects. In fact, this is the
first work to describe and evaluate a comprehensive SMT-based BMC procedure
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to support the checking of various digital controllers implementations, taking into
account the platform in which the (embedded) system software operates.

6 Conclusion

The contributions of this study can be split into three main categories: the intro-
duction of BMC techniques in digital control systems validation and verification;
the analysis and evaluation of implementation of digital controllers by taking into
account variables and parameters that may affect their performance; and the pro-
posal of a novel verification methodology for a safe design of digital controllers.

Firstly, this article shows the potential of an SMT-based BMC approach to ver-
ify and validate digital controllers. An extensive verification of different properties
and realization forms of digital controllers is carried out. The ESBMC tool, used in
this study, is able to provide conclusive results about the absence of failures in the
system, with reliable results for the successful verification and with error traces
for the failures, in nearly 98% of the verifications (a timeout reduction higher
than 50% when compared to our previous studies [26, 27]). Thus, the use of ES-
BMC represents an automated and reliable alternative if compared to traditional
simulation tools.

Secondly, an extensive number of benchmarks allowed a comparative analysis
between direct-form and delta-form realizations for implementation of digital con-
trollers using an SMT-based BMC approach to verify properties that are difficult
to be checked with simulation tools. The experimental results show that delta-
form realizations present a superior performance when compared to the direct-
form realizations, reducing the occurrence of FWL-related errors and preserving
the stability and minimum-phase properties, which are important indicators of a
system’s nonfragility. However, the better performance of delta-form realizations
demands more fractional bits to avoid underflows in coefficients representations.

Finally, this study provides a simple and iterative methodology for design veri-
fication of digital controllers, supported by the DSVerifier. With the proposed
methodology, a controller design can verify, in the design phase, if the proposed
digital controller will present an expected behavior when it is embedded in a known
hardware architecture, with resource limitations. Note that this approach does not
remove all design errors once the verification is performed unrolling the system for
a limited number of samples, but it decreases them substantially. The methodology
and respective tool presented here were used only to verify digital controllers, but
their usage should be expanded for any digital system in future study, including
closed-loops systems and design requirements related to the digital control system.
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