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SUMMARY

We present ESBMC-GPU tool, an extension to the Efficient SMT-Based Context-Bounded Model Checker
(ESBMC), which is aimed at verifying Graphics Processing Unit (GPU) programs written for the Compute
Unified Device Architecture (CUDA) platform. ESBMC-GPU uses an operational model, that is, an abstract
representation of the standard CUDA libraries, which conservatively approximates their semantics, in order
to verify CUDA-based programs. It then explicitly explores the possible interleavings (up to the given
context bound), while treats each interleaving itself symbolically. Additionally, ESBMC-GPU employs the
monotonic partial order reduction and the two-thread analysis to prune the state space exploration. Experi-
mental results show that ESBMC-GPU can successfully verify 82% of all benchmarks, while keeping lower
rates of false results. Going further than previous attempts, ESBMC-GPU is able to detect more properties
violations than other existing GPU verifiers due to its ability to verify errors of the program execution flow
and to detect array out-of-bounds and data race violations. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Compute Unified Device Architecture (CUDA) is a parallel computing platform and Application
Programming Interface (API) model created by NVIDIA [1], which extends C/CCC and Fortran,
in order to create a computational model that aims to harness the computational power of Graph-
ical Processing Units (GPUs) [2]. As in other programming languages, errors in CUDA programs
eventually occur, in particular, due to array out-of-bounds, arithmetic overflow, and division by
zero violations. Additionally, because CUDA is a platform that deals with parallel programming,
specific concurrency errors related to data race and barrier divergence can be exposed due to the
non-deterministic behavior of the threads interleavings [3].

Here, we describe and evaluate an approach for verifying CUDA programs based on the Efficient
SMT-Based Context-Bounded Model Checker (ESBMC) [4–6], named as ESBMC-GPU, using
a CUDA operational model (COM), which is an abstract representation of the standard CUDA
libraries (i.e., the native API) that conservatively approximates their semantics. We describe the
implementation of COM, its preconditions and postconditions, and simulation features (e.g., how
elements are manipulated), and how these are applied to verify CUDA applications. In contrast to
previous attempts [3, 7–9], we combine symbolic model checking, based on Bounded Model Check-
ing (BMC) [10] and Satisfiability Modulo Theories (SMT) [11] techniques, with explicit state-space
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exploration, similar to Cordeiro et al. [4]. In particular, we explicitly explore the possible interleav-
ings (up to the given context bound), while we treat each interleaving itself symbolically w.r.t. a
given property.

To prune the state-space exploration, we apply Monotonic Partial Order Reduction (MPOR) [12]
to CUDA programs, which eliminates redundant interleavings without missing any behavior that
can be exhibited by the program. We have modified the MPOR algorithm to identify transitions
between threads that accessed different memory locations in the same array. Because CUDA ker-
nels typically produce regular and independent access to explore the benefits of the GPU execution
model, the application of MPOR routinely leads to substantial performance improvements in most
benchmarks. Thus, using operational models that simulate CUDA libraries, together with MPOR
implementation in ESBMC-GPU, we achieve significant (correct) results of CUDA kernels verifi-
cation, primarily when compared with other state-of-the-art GPU verifiers [3, 7–9]. Additionally,
the present approach considers low-level aspects related to dynamic memory allocation, data trans-
fer, memory deallocation, and overflow. Such violations are typically present in CUDA programs,
however, they are routinely ignored by most GPU verifiers. Thus, we provide a more precise veri-
fication than other existing approaches, considering soundness of data passed by the main program
to the kernel, with the drawback of leading to a higher verification time.

1.1. Contributions

We make four major contributions:

� we extend benefits of SMT-based context-bounded model checking for CUDA programs, in
the context of parallel programming for GPUs, to detect more failures than other existing
approaches, while keeping lower rates of false results; although SMT-based context-bounded
model checking is not a novel technique, we have not seen in the literature its application to
verify CUDA programs.
� this work marks the first application of MPOR to CUDA programs to identify array accesses,

which are independent, leading to significant performance improvements.
� we provide an effective and efficient tool implementation (ESBMC-GPU) to support the

checking of several CUDA programs. ESBMC-GPU tool and all benchmarks used during the
evaluation process are available at http://esbmc-gpu.org.
� we provide an extensive experimental evaluation of our approach against GKLEE [8], GPUVer-

ify [3], PUG [7], and CIVL [9] using standard CUDA benchmarks, which are extracted from
the literature [1, 3, 13]. Experimental results also show that our present approach outperforms
all existing GPU verifiers with respect to the number of correct results.

This paper extends our previous work [14, 15]. The version of ESBMC-GPU described and eval-
uated here has been optimized and extended. It now expands our operational model to support more
CUDA libraries (e.g., math functions) and includes new SMT solvers as back-end for ESBMC-
GPU (e.g., Boolector, Yices, MathSAT, and CVC4). We also provide additional details about our
operational model, the application of MPOR to CUDA programs, and the two-thread analysis. We
have also significantly expanded the experimental basis, including a new GPU verifier (CIVL), and
evaluate ESBMC-GPU with (respectively, compare it against) the most recent stable versions of the
GPU verifiers.

1.2. Organization of this work

The remainder of the paper is organized as follows: In Section 2, we first give a brief introduction to
the CUDA programming language, existing verifiers for GPU, and the ESBMC verifier. In Section 3,
we describe our operational models for CUDA libraries, the application of MPOR to CUDA pro-
grams, and our two-threads analysis. In Section 4, we present the results of our experiments using
several publicly available benchmarks. In Section 5, we conclude and describe future work.
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2. PRELIMINARIES

2.1. Compute unified device architecture programming language

Compute unified device architecture is a general-purpose parallel computing platform (developed by
NVIDIA) to represent a programming model for GPUs [1, 13]. In the CUDA programming model,
the kernel concept is used for a function that runs n copies concurrently in the GPU, where n is the
product between the number of blocks and threads. A kernel is defined by a __global__ specifier
and uses the notation kernel<<< B,T >>>, where B and T are the number of blocks and
threads per block, respectively. Each kernel runs in the GPU as thread and each thread receives an
unique identifier (ID), which is formed by thread and block numbers. The thread ID is used to index
its tasks (i.e., memory positions and cooperation); and threads are typically organized by blocks in
the GPU. Inside a block, the thread hierarchy is defined by a variable called threadIdx. This
variable is a vector of three components, which allows the use of uni-dimensional, two-dimensional,
and three-dimensional indexes [13].

Blocks can also be defined in three dimensions, where each dimension can be accessed by
the blockIdx variable. This variable is also composed by three components that allow CUDA
programs to use uni-dimensional, two-dimensional, and three-dimensional blocks.The maximum
number of threads per block depends on the hardware platform, but it usually ranges from 1024 to
2048 [13]. In addition, blocks have a feature that permits them to be executed in any order; and they
can also be allocated in any processor. As a result, a kernel may also be executed by multiple blocks,
and the total number of threads represents the number of blocks multiplied by the number of threads
per block.

In the CUDA programming model, the GPU is refereed as a device and the Central Processing
Unit (CPU) is refereed as a host. __device__ is a specifier for functions, which are executed and
called only by the GPU, while __host__ is a specifier for functions, which are executed and called
only by the CPU. __global__ is a function specifier that operates as an entry point for executing
the kernels. The data allocation in the device is carried out by the host, using the cudaMalloc, cud-
aFree, and cudaMemcpy functions. Importantly, these are essential functions for CUDA programs,
to transfer data from the host to the device and vice-versa.

2.2. Existing graphics processing unit verifiers

GPUVerify [3] proposes a new operational semantics, known as Synchronous Delayed Visibility
(SDV) semantics to verify kernels, which aims to detect data race and barrier divergence. It uses
the Boogie verification system [16] to generate verification conditions (VC), which are solved by
Z3 [17] or CVC4 [18] SMT solvers. GPUVerify accepts only kernel function as input, and it dis-
regards the main function, which thus exposes incorrect results for verifying low-level aspects of
CUDA programs.

Symbolic Executor with Static Analysis (SESA) [19] and GPU + KLEE (GKLEE) [8] are ver-
ifiers based on the concolic (concrete, but symbolic) execution of CUDA programs; nevertheless
they use different approaches to determine symbolic variables. While SESA performs an automatic
evaluation, GKLEE needs inputs from the user to define those variables. On the one hand, SESA
checks real applications using original configuration of the number of threads and its focus is on
data race detection, but it presents inconclusive results regarding access to memory positions. On
the other hand, GKLEE supports checks related to barrier synchronization, functional correctness,
performance, and data race. Importantly, SESA does not verify the main function, while GKLEE
considers both kernel and main functions.

Prover of User GPU Programs (PUG) [7] analyzes kernels automatically using SMT solvers and
it detects data race, barrier synchronization, and conflicts on shared memory. PUG faces problems
with invariant derivation for loops, which can lead to incorrect results, and thus requires the user to
provide those invariants. In addition, problems are also found in arithmetic operations of pointers
and advanced CCC features.

CIVL [9] is a framework for static analysis and concurrent program verification, which sup-
ports MPI, POSIX, OpenMP, and CUDA. CIVL recognizes programs written in C++11, CUDA–C,
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and CIVL–C, which is an intermediate language that represents ANSI-C programs based on the
aforementioned libraries. CIVL is the tool that is closer to ESBMC-GPU in terms of verification
techniques, verifying the concurrent program with partial order reduction, in order to eliminate
unnecessary interleavings. The verified properties include: user-specified assertions, deadlocks,
memory leaks, invalid pointer dereference, array out-of-bounds, and division by zero. The support of
CIVL for CUDA libraries is still in progress, being effective and efficient in programs with kernels
that do not use many CUDA functionalities.

2.3. Efficient SMT-based context-bounded model checker

Efficient SMT-based context-bounded model checker is an open source, permissively licensed,
award-winning context-bounded model checker for C/CCC programs based on SMT solvers [4, 5,
20, 21]. It is able to verify single-threaded and multi-threaded software with shared variables and
locks using the Phtread/POSIX. In particular, ESBMC is one of the most prominent BMC tools for
verifying ANSI-C programs according to the last editions of the International Competition on Soft-
ware Verification (SV-COMP) [22, 23]. ESBMC can verify programs that contain bit-level, arrays,
structs/unions, pointers, dynamic memory allocation, as well as fixed-point arithmetic. It can reason
about arithmetic overflows, pointer safety, memory leaks, array out-of-bounds, atomicity and order
violations, local and global deadlocks, data races, and user-specified assertions.

In ESBMC, ANSI-C/C++ programs are typically represented as a state transition system M D
.S;R; s0/, which are extracted from the Control Flow Graph (CFG). S represents the set of states,
R � S � S represents the set of transitions, and s0 � S represents the set of initial states. A
state s 2 S consists of the value of the program counter pc and the values of all program vari-
ables. An initial state s0 assigns the initial program location of the control flow graph to pc. Each
transition � D .si ; siC1/ 2 R between two states si and siC1 is identified with a logical formula
�.si ; siC1/, which captures constraints on the corresponding values of the program counter and the
program variables.

In particular, consider the transition system M, a safety property �, a context bound C , and a
bound k, ESBMC constructs a Reachability Tree (RT), which represents the program unfolding for
C , k, and �. A VC  �

k
is then derived for each given interleaving � D ¹�1; : : : ; �kº, such that  �

k
is satisfiable iff � has a counterexample of depth k, which is exhibited by � .  �

k
is given as follows

 �k D I.s0/ ^

k_

iD0

i�1̂

jD0

�.sj ; sjC1/ ^ :�.si / (1)

I characterizes the set of initial states of M and �.sj ; sjC1/ is the transition relation of M between
time steps j and jC1. Hence, I.s0/^

Vi�1
jD0 �.sj ; sjC1/ represents executions ofM of length i and

 �
k

can be satisfied if and only if for some i 6 k there exists a reachable state along � at time step
i in which � is violated.  �

k
is a quantifier-free formula in a decidable subset of first-order logic,

which is checked for satisfiability by an SMT solver. If  �
k

is satisfiable, then � is violated along �
and the SMT solver provides a satisfying assignment, from which the program variables values can
be extracted, in order to construct a counterexample. A counterexample for a particular property �
is a sequence of states s0; s1; : : : ; sk with s0 2 S0, sk 2 S , and � .si ; siC1/ for 0 � i < k. If  �

k
is unsatisfiable, one can conclude that no error state is reachable in k steps or less along � . Finally,
we can define  k D

V
�  

�
k

and use this to check all paths.
ESBMC combines symbolic model checking with explicit state space exploration; in particular,

it explicitly explores the possible interleavings (up to the given context bound) while it treats each
interleaving itself symbolically. ESBMC simply traverses the RT depth-first, and calls the single-
threaded BMC procedure on the interleaving whenever it reaches an RT leaf node. It stops when it
finds a bug, or has systematically explored all possible RT interleavings.

2.3.1. Software architecture. Figure 1 shows the ESBMC architecture. Rounded white rectangles
represent input and output; Squared gray rectangles represent the verification steps.
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Figure 1. Efficient SMT-based context-bounded model checker architecture.

Efficient SMT-based context-bounded model checker offers two front-ends to parse and gener-
ate the Intermediate Representation (IR) of the program. On the old front-end, based on one from
CBMC [24], ESBMC would first parse the program using flex/bison [25] to generate an Abstract
Syntax Tree (AST), which is converted to IR. The IR is then type-checked, which is language-
specific. During the type-checking, the code is statically analysed, including assignment checks,
type-cast checks, pointer initialisation checks, function call checks, and template instantiation.

The new front-end offers a much simpler and stronger alternative, but it does not support C++
yet. In particular, the new front-end uses clang [26] to generate an AST, which is then converted to
an IR. Clang is a state-of-art compiler for C/C++/ObjectiveC/ObjectiveC++ that it is already heavily
used in industry [27]. The compiler offers an industry level static analyser and an API to access and
traverse its internal AST, which is used by ESBMC to generate its IR. By using clang, we avoid the
need to maintain our own front-end (a real challenge, given that the ANSI-C and C++ standards are
rapidly evolving nowadays), and can focus on the main objective of the tool, the formal verification
of a program. ESBMC currently can only convert the AST generated for ANSI-C programs.

The subsequent steps are the same as already described us in previous papers [5]. Regardless
of the chosen front-end, the output is the IR that will be used by the GOTO converter to generate
the GOTO program, which is a simplified version of the original program. The symbolic execution
executes the GOTO program (unrolling loops up to bound k) and converts the expressions to Static
Single Assignments (SSA) [28]. Finally, two sets of quantifier-free formula are created based on the
SSA expressions (C for the constraints and P for the properties), and used as input for an SMT solver
that will produce a counterexample if there is a violation of a given property, or an unsatisfiable
answer (i.e., verification successful) if the property holds.

3. VERIFYING CUDA PROGRAMS

3.1. Operational models for compute unified device architecture libraries

In order to correctly support CUDA functionalities, operational models are developed to reliably
simulate the behavior of the CUDA libraries. Such approach was previously attempted in the formal
verification of C++ programs [6], Qt-based applications [29, 30], and Android mobile applica-
tions [31, 32]. In particular, our operational model consists of an abstract representation of a set
of methods and data structures, which conservatively approximate the CUDA libraries semantics;
every method simulates the library’s real behavior, including preconditions and postconditions by
means of assertions to ensure the correct operation. Thus, the operational model contains only
methods for verification, ignoring irrelevant calls (e.g., screen-printing methods), where there is
no relevant property to be checked in terms of software. As a result, our verification focuses
on the operational model of the CUDA libraries, and how it is used to verify real-world CUDA
programs; this simplifies significantly the model verification and consequently reduces the verifica-
tion time. The operational model also includes built-in assertions, which check specific properties
(e.g., array out-of-bounds, arithmetic overflow, pointer safety, and data races). As shown in Figure 2,
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Figure 2. Link between compute unified device architecture (CUDA) operational model and efficient SMT-
based context-bounded model checker (ESBMC).

Figure 3. dim3 implementation.

the operational model is passed to ESBMC’s front-end together with the source code to be verified,
in order to produce reliable AST with all relevant information for a trustful verification process.

In our CUDA operational model (COM), methods, data types, qualifiers, and CUDA directives
were implemented in CCC. As an example, Figure 3 shows the implementation of the data type
dim3, which is represented by a struct with three variables: x, y, and ´. The dim3 model has
a default constructor, a constructor that receives a variable uint3 as parameter (this variable is
modeled by a struct with three uint variables), and a constructor that is initialized by a dim3
variable. In addition to the (typical) primitive data types of ANSI-C/CCC, COM supports specific
data types of CUDA (e.g., char1, short2, and float2).

COM also models methods typically used to develop real CUDA applications. In this sense,
we support most CUDA driver and runtime APIs; in particular, ESBMC-GPU supports the
CUDA call kernel (device_launch_parameters and vector_types), driver_types (math_functions,
cuda_runtime_api, and host_definitions), sm_atomic_functions (vector_types), and curand_kernel
(curand). Figure 4 shows the CUDA operational model organization (internally) implemented in
ESBMC-GPU.

Here, we describe three essential functions in CUDA programs: cudaMalloc, cudaMemcpy, and
cudaFree. Algorithm 1 shows an example of an operational model developed for the cudaMalloc
function, which abstracts the GPU memory hierarchy and accepts as input arguments, a pointer to
allocate memory on the device (i.e., devPtr) and the size in bytes needed for memory allocation
(i.e., si´e). In order to allocate memory for devPtr pointer (in step 3), this algorithm uses the malloc
function, which represents the memory allocation on device, checking whether there is a successful
allocation (in step 4). If so, the function returns CUDA_SUCCESS; otherwise, it returns an error
specified by CUDA_ERROR_OUT_OF_MEMORY. The variable lastError is global and stores the
last cudaError_t value to be used in the cudaLastError(). In addition, cudaMalloc() has, as
precondition, a positive memory size allocation; step 2 of Algorithm 1 includes an assertion in which
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Figure 4. Compute unified device architecture operational model organization.

the size to be allocated must be greater than zero. If there is a violation in this precondition, then
ESBMC-GPU returns an error message, specifying the error together with the counterexample. As
postcondition, we check whether the memory has been successfully allocated (in step 7).

Algorithm 1 Algorithm of cudaMalloc operation.
1: function CUDAMALLOC(void ** devPtr, size_t size)
2: Check precondition: si´e must be greater than zero
3: Allocate a block of memory, which its magnitude is equal to si´e, for the devP tr pointer
4: If �devP tr is equal to NULL, go to step 5, otherwise go to step 6
5: Assign CUDA_ERROR_OUT_OF_MEMORY status to the global variable lastError
6: Assign CUDA_SUCCESS status to the global variable lastError
7: Check postcondition: devP tr must be different than NULL
8: Return lastError and terminates
9: end function

Algorithm 2 presents the cudaMemcpy./ function operational model. It checks, as precondition,
the memory size to be copied (in step 2). Then, two local variables named as cdst and csrc are used
to receive arguments, which represent destination and source of the data copying (in steps 3 and 4).
This model defines the number of bytes to be copied (in step 5); the data copy is actually performed
(in step 6) between device and host. As postcondition, we check whether cdst and csrc contain the
same data (in step 7). Finally, cudaMemcpy function returns CUDA_SUCCESS value.

Algorithm 2 Algorithm of cudaMemcpy operation.
1: function CUDAMEMCPY(void *dst, const void *src, size_t size, cudaMemcpyKind kind)
2: Check precondition: si´e must be greater than zero
3: Initialize cdst variable with dst ’s content
4: Initialize csrc variable with src’s content
5: Initialize numbytes variable with the number of bytes to be copied (i.e., si´e)
6: Copy numbytes positions from csrc to cdst
7: Check postcondition: cdst and csrc must contain the same data
8: Assign CUDA_SUCCESS status to the global variable lastError
9: Return lastError and terminates

10: end function
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Similarly to cudaMalloc and cudaMemcpy, we also provide the implementation of the cudaFree
function. Algorithm 3 shows the operational model, where a pointer to a variable is passed as an
input argument so that the allocated memory is released. As precondition, we check whether the
pointer devP tr , which points to the memory block previously allocated with malloc, is not NULL
in order to avoid double free. Additionally, as we can see (in step 3), the cudaFree function is
referenced to the free function of the ANSI-C programming language, however, in this case the
memory is freed by the GPU. Importantly, this situation does not affect the verification results,
because the memory allocation and deallocation model is represented by a tuple in the background
theories of the (supported) SMT solvers, and properties that are analyzed do not take into account
the memory hierarchy [33]. Finally, we assign CUDA_SUCCESS to lastError, which has the same
functionality as in cudaMalloc.

Note that the operational models are implemented according to the NVIDIA Programming
Guide [13]. The behavior of those functions can be represented in C/CCC programming languages
using native functions, which are already supported by ESBMC (e.g., malloc, free, and assert).
The soundness proof for those native functions supported by ESBMC can be found in Cordeiro
et al. [5]. In particular, the cudaMalloc function operates similarly to the malloc function, which
accepts as input argument the size of the variable to be allocated; the behavior of this function is in
compliance with the ANSI-C semantics. However, the conceptual difference for CUDA programs
is that the memory allocation is carried out in the GPU, which is abstracted because neither hard-
ware functions nor memory hierarchy are included into our operational model, as also performed
by [3, 7, 8]. The cudaMemcpy function is implemented similar to Memcpy function; the only differ-
ence is one additional parameter, which determines whether the operation is from device to host or
vice-versa.

3.1.1. Correctness of the CUDA operational model (COM). The idea of making an environ-
ment operational model to perform model checking of real applications has been performed
before [29–32], and the correctness of such model to trust in the verification results is actually the
major issue. Consequently, the usefulness of our approach relies on the fact that COM correctly
represents the original CUDA libraries. In that sense, all developed COM modules were manually
verified and exhaustively compared with the original ones to ensure the same behavior; they all
contain precondition and postcondition to ensure that a (given) predicate holds before and after the
execution of a (given) function, respectively.

Additionally, although COM is a new implementation, it consists in (reliably) constructing a sim-
plified model of the related CUDA libraries, using the same language and by means of the original
code and documentation (preconditions and postconditions are tested using assertions within the
code itself), which thus tends to decrease the resulting number of errors. Note further that the behav-
ior of the CUDA libraries functions are actually represented in C/CCC programming languages
using native functions (e.g., malloc, free, and assert). The soundness proof for those native func-
tions, which are already supported by ESBMC, can be found in Cordeiro et al. [4, 5]. Although
proofs regarding the soundness of the entire COM could be carried out, it represents a hard task
due to the (adopted) memory model [34]. To further improve the correctness of COM, conformance
testing could be employed in practice [35, 36]; however, that option is not available in the present
case, although it is an interesting possibility for future work.
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3.2. Modeling kernel with pthread functions

The ESBMC’s architecture is designed to handle concurrent programs in the C/CCC programming
languages using the Pthread/POSIX library [37]. Thus, ESBMC’s verification model is guided by
the processing method used by the CPU using that library, where thread instructions can interleave
to form (different) execution paths. To apply this methodology to CUDA kernel verification, it is
necessary to apply code transformations to the kernel call using ESBMC’s intrinsic functions. In
particular, the kernel call provides the thread/block configuration in a CUDA program; the param-
eters used by the (intrinsic) function are obtained from the same struct in that kernel call. As a
result, the first step to verify a CUDA kernel is to create a new function ESBMC_verify_kernel using
templates, in order to support different data types and parameters.

Algorithm 4 shows the implementation of ESBMC_verify_kernel function, which supports six
input parameters. The kernel parameter is a pointer to the original program kernel function, the
blocks and threads parameters receive the blocks and threads configuration, which can be of type int
or dim3, and the arg1, arg2, and arg3 parameters correspond to values sent to the (respective) func-
tion. As preconditions, we check whether kernel is a valid pointer and blocks and threads are
greater than zero. Internally, there are two variables, gridDim (step 3) and blockDim (step 4), which
receive the output of the dim3 constructor used to configure the blocks and threads dimension. The
function ESBMC_verify_kernel_wta (in step 5) particularizes the argument type to int and deter-
mines the type of the kernel function pointer. Lastly, there is a loop (in step 6), which synchronizes
by means of the pthread_join function, the threads that are created at the end of the kernel process.
The ESBMC_verify_kernel function is implemented to operate with a real number of threads in the
program. However, with the reduction to the two-threads analysis (Section 3.4), the respective loop
in step 6 is bounded to two unwindings.

Algorithm 5 shows the reasoning behind the ESBMC_verify_kernel_wta function, which is
responsible for translating GPU threads into POSIX threads. The threads_id pointer (in step 2)
stores the thread IDs of pthread_t type, the dev_three variable (in steps 3 to 6) is an instance
of struct and stores a pointer to the kernel function, and the assignIndexes function (in step 7)
calculates the thread position in the grid using the ID of a thread (pthread) and a configuration of
blocks and threads in the CUDA program; such values are stored in a dim3 vector and are statically
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calculated to reduce paths generated during the verification. Lastly, there is a loop (in step 8), where
threads are created by means of pthread_create function call and the function that will correspond
to the thread is called via ESBMC_execute_kernel_t.

Algorithm 6 shows the implementation of ESBMC_execute_kernel_t function. It checks the orig-
inal kernel function using its parameters, which are passed as arguments by the struct dev_three.
ESBMC-GPU then verifies this function and interleaves its possible execution paths using its
native functions.

3.2.1. Thread synchronization. Note that in our proposed approach, each CUDA thread is actu-
ally mapped to a thread using the internal representation of ESBMC (via Pthread library) [4]. In
ESBMC, a thread t is a sublist of commands between begin_thread and end_thread, which repre-
sent just scoping constructs and do not contribute to the expansion of the RT. Threads are created
via asynchronous procedure calls (start_thread), which return an integer that can be used as thread
identifier for synchronization (join_thread); hence, dynamic thread creation is allowed. Thus, the
thread representation of ESBMC follows a similar approach to the official CUDA scheduler [1–3].

One feature of CUDA related to thread synchronization supported by ESBMC-GPU is the
__syncthreads() intrinsic function, which specifies synchronization points in the GPU kernel.
Such alternative guarantees that all threads in a certain block wait before any of them is allowed to
proceed [1]. As described in Algorithm 7, we implement this feature in our operational model using
Pthread functions. First of all, a count global variable is initialized to control how many times the
syncthreads function is actually called. In its first call, a mutex is initialized and a condition
variable is set up (steps from 2 to 5). Then, on each subsequent call, the count variable is incre-
mented (step 6) and the calling thread is put on hold until it receives a signal (step 8). When all GPU
threads are on hold, the pthread_cond_signal function sends a signal to all threads waiting on
a specific condition variable (step 9) and the mutex is then unlocked (step 10).

3.2.2. Illustrative example. The code fragment shown in Figure 5 has 1 block and 2 threads, that
is, M D 1 and N D 2, respectively. This CUDA program has a kernel (lines 4 to 6), which
assigns thread’s index values to an array passed as an input argument. The goal is to instantiate array
positions, according to the thread index. Despite that, there is a mistake in the array index, as the
value 1 is accidentally added to the thread index (in line 5). As shown in the main function, array
positions are assigned with value 0 (line 14), and after the kernel call (line 16), it is expected by the
programmer that aŒ0� DD 0; aŒ1� DD 1.
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Figure 5. Code snippet to index array.

In this example, however, ESBMC-GPU detects an array out-of-bounds violation. Indeed, this
CUDA program retrieves a memory region that has not been previously allocated, so that when
threadIdx:x D 1, the program tries to access the position aŒ2�. Analyzing the cudaMalloc()
function operational model, there is a precondition that checks if the memory size to be allocated is
greater than zero. Assertions check if the result matches the expected postconditions (line 19). The
verification of this specific program produces 34 successful and six failed interleavings in ESBMC-
GPU. One possible failed interleaving is represented by the threads executions t0 W aŒ1� D 0I t1 W
aŒ2� D 1, where aŒ2� D 1 represents an incorrect access to the array index a.

ESBMC-GPU and GKLEE are able to detect this array out-of-bounds violation, but GPUVerify
and PUG fail to detect such violation, presenting a true incorrect (missed bug), and CIVL does not
support this benchmark because it does not handle the identifier threadIdx.

The cudaMalloc function (line 12) verifies the precondition, in order to check whether size is
greater than zero. Internally, the allocation of this memory area is converted to a malloc function,
which is interpreted by ESBMC-GPU as an ANSI-C function. The cudaMemcpy function (lines
15 and 17) also checks whether size is greater than zero and, if so, it performs a copy using the
memcpy function.

The ESBMC_verify_kernel function receives as parameter the kernel function name (kernel), the
number of blocks (M) and threads (N), and the int parameter dev_a. This function runs the grid
configuration, creating a dim3 representation and saving it in the gridDim and blockDim variables.
In that particular point, the assignIndexes function is executed to create a vector with prepro-
cessed thread IDs, avoiding state overgrowth at the verification paths. A loop triggers those threads
with pthread_create and, after concluding its execution, the pthread_join thread synchronizes and
finalizes the ESBMC_verify_kernel execution. The assert function checks whether there is any unex-
pected value in the kernel. Lastly, the cudaFree function releases the memory allocated by variables,
verifying the occurrence of errors (e.g., doublefree).

Figure 6 shows the steps executed by the ESBMC-GPU tool, in order to verify the program shown
in Figure 5. Firstly, the main function instructions are modeled and converted to C/CCC native
functions together with COM. C/CCC variables and functions are also recognized by the ESBMC-
GPU without the need for converting them (e.g., lines 10 and 11). The CUDA functions cudaMalloc,
cudaMemcpy, cudaFree, and ESBMC_verify_kernel are part of the COM, which are thus converted
to C/C++ and POSIX threads.

3.3. Monotonic partial order reduction

To reduce the number of threads interleavings in CUDA programs, ESBMC-GPU implements the
MPOR, which was initially proposed by Kahlon et al. [12]. In particular, the implementation of
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Figure 6. COM conversion steps.

MPOR in ESBMC-GPU is inherited from its predecessor (ESBMC) [38]. This algorithm classifies
transitions inside a multi-threaded program as dependent or independent, which determines whether
interleaving pairs always compute the same state, thus removing duplicate states in the RT. For
dependent transitions, MPOR considers possible thread execution orders to ensure that all program
states are reached. If one transition is independent, then the MPOR algorithm considers only one
order, because the program state is the same for other execution orders. As MPOR depends on the
next state, ESBMC-GPU then verifies the previous state from the current one to verify whether any
dependency between threads exists.

In particular, the MPOR implementation is applied to identify accesses to different positions in
(shared) arrays. Typically, threads access unique positions in those global (global) arrays, which
do not have dependency between them, thus allowing us to remove redundant states that are gen-
erated by the possible thread execution orders. Based on this observation, we have extended the
MPOR algorithm in ESBMC to identify transitions in which threads access different array locations.
This type of access results in the same state independently of the thread execution order. Multi-
ple accesses to specific memory positions in CUDA programs happen due to its concurrent nature,
based on the linearized configuration of threads and blocks [1].

Next, we describe the MPOR algorithm to identify transitions in which threads access different
array locations and also outline its execution using a running example. Let … be the RT, each node
� in … be represented as a tuple � D .Ai ; Ci ; si / for a given time step i , where Ai represents the
currently active thread; Ci represents the context switch number; and si represents the current state.
Algorithm 8 shows the main steps of MPOR in ESBMC-GPU.

Algorithm 8 MPOR algorithm to identify accesses to different positions in shared arrays.
1: function MPOR(�, …)
2: Check whether si exists in …; otherwise, go to step 4.
3: Check whether Ai has read/write access to si ; otherwise, go to step 5
4: Analyze whether � .si�1; si / is independent on …; otherwise, go to step 6
5: Return ‘independent’ on … and terminates.
6: Return ‘dependent’ on … and terminates.
7: end function

As example, Figure 7(a) shows the application of MPOR to a CUDA kernel, where the global
variable a is written in a position relative to the thread ID; in particular, this variable determines the
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Figure 7. Monotonic partial order reduction applied to a kernel with independent (Figure 7a) and dependent
(Figure 7b) transitions.

program execution state. On the first interleaving, thread t1 reaches v1 resulting in a D Œ0; 0�. Thread
t2 runs and reaches v2 resulting in a D Œ0; 1�. The MPOR algorithm then checks whether v2 does
not exist (step 2) and whether transition t1 ! t2 is defined as independent (step 4). Both conditions
do not hold and transition t1 ! t2 is defined as dependent (step 6). ESBMC-GPU thus performs
all possible interleavings, and the next execution starts with thread t2 from v0, which changes the
array’s content to a D Œ0; 1�. Thread t1 runs and reaches v4, which is similar to v2. Algorithm 8 then
checks whether thread t1 has reached a redundant state (step 2). As thread t1 has only reached v1,
then the algorithm concludes that the transition t2 ! t1 is independent, disregarding it (represented
in Figure 7(a) by dotted lines).

Figure 7(b) shows another example in which the thread execution results in different states. On the
first interleaving, the thread execution t1 reaches v1 and the thread execution t2 reaches v2. Because
the content of aŒ1� is different in both RT nodes, the condition (step 2) does not hold. On the second
interleaving, thread t2 modifies the array a to a D Œ0; 1� and thread t1 accidentally writes to aŒ2�.
Algorithm 8 then checks whether v4 exists on … (step 2). Because the condition (step 4) does not
hold, transition t2 ! t1 is then defined as dependent. In this particular case, both interleavings are
considered and those two thread execution orders result in an array out-of-bounds violation because
the array a is of length 2 (e.g., v4 in dotted lines).

In our experimental evaluation, we observed that the application of MPOR to CUDA programs
leads to a substantial performance improvement in ESBMC-GPU. The main reason for this improve-
ment is that our MPOR implementation symbolically encodes the interleavings only if transitions
are defined as dependent. In particular, when SMT formulae are built, ESBMC-GPU disregards
those interleavings that lead to redundant states and only pass to the SMT solver the ones that have
dependent transitions, which thus lead to new program states. With the MPOR analysis, we firstly
define the first interleaving and only consider further interleavings if they are not redundant (the
proof is described in Kahlon et al. [12]).

3.3.1. Differences from MPOR to other interleaving reduction methods. There are software veri-
fiers that apply interleaving reduction methods to CUDA program verification. As example, GKLEE
implements a technique named as ‘canonical scheduling’, which records all reads and writes that are
run by each thread within barrier interval before continuing to the next thread. Records are related

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



P. PEREIRA ET AL.

in pairs that can have conflicts and, by means of an SMT solver query, those conflicts are checked to
detect whether data race condition exists. If conflicts are not detected, then the canonical schedule
is defined to represent the barrier interval for the verification of other properties. The MPOR algo-
rithm performs its analysis and reduction on verification time and checks the properties violation
on-the-fly, by encoding (small) SMT formulae. GKLEE first checks data race condition to reduce
schedules and then verifies other properties. We can observe that both approaches call several times
its back-end verification engine, being GKLEE with canonical scheduling and ESBMC-GPU with
BMC and Pthread using MPOR.

3.4. Two-threads analysis

GPU architectures are composed by multiprocessors built upon Processing Elements (PE) sets [1,
13]. Those PEs are typically arranged in subgroups (named as warps), which run in the same lock-
step, ensuring that threads inside those PEs can synchronize using barriers, while threads from one
subgroup run independently [3] to threads from another subgroup.

Similar to GPUVerify [3] (for checking race-freedom and divergence-freedom) and PUG [7], we
also reduce the CUDA program verification to two threads for improving verification time and avoid-
ing the state-space explosion problem. Because CUDA kernels typically manipulate one element
of the array, and for each element one thread is used, the two-threads analysis ensures that, errors
(e.g., data races) that are detected between two threads in a given subgroup, due to unsynchronized
accesses to shared variables, are enough to justify the property violation in the program.

In order to demonstrate the reasoning upon two-threads analysis, a NVIDIA Fermi GPU [13]
composed by 32 processing cores is shown in Figure 8. Importantly, Figure 8(a) shows the archi-
tecture model of that GPU with 16 processing cores (highlighted in gray boxes), because the thread
processing is performed in half-warps [39], that is, 16 threads of the same warp are scheduled,
ensuring synchronization when a barrier occurs. Figure 8(b) demonstrates the thread representa-
tion, which accesses the GPU shared memory. First of all, the numbered white boxes represent
the shared memory positions to be accessed, trn are the thread-readers, and twn are the thread-
writers, where n is the index of each thread; it is worth noticed that the threads are executed on a

Figure 8. Comparison between the NVIDIA Fermi GPU architecture and the two-threads approach used by
used to handle data.
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streaming multiprocessor. In the first case of Figure 8(b) (i.e., S1), the threads, whose kernel is
correctly implemented, do not present a data race condition, once they access different memory
positions. In the second case of Figure 8(b) (i.e., S2), the threads execution of a kernel results in a
data race condition, where several threads read or write in the same memory position, at the same
lock-step. Finally, the third case of Figure 8(b) is quite similar to the situation occurred in S2, how-
ever, instead of using multiple threads to analyse data-race conditions, ESBMC-GPU ensures that
such errors can be detected through the analysis of the behavior of two threads that are operating
over the same memory location.

Note that the two-threads analysis affects mostly the data race verification, where program states
must be analyzed with respect to their possible threads interleavings, which lead to an execution
order of statements that results in error. In our benchmarks, we observed a substantial performance
improvement, considering only two threads, while keeping true incorrect results at low rates.

4. EXPERIMENTAL EVALUATION

4.1. Experimental setup

This section describes the experiments to investigate ESBMC-GPU performance for verifying
CUDA programs. We also compare ESBMC-GPU to GKLEE [8], GPUVerify [3], PUG [7], and
CIVL [9]. In particular, we evaluate ESBMC-GPU’s ability to verify 154 benchmarks‡, which are
extracted from [1, 3, 13]; we added a main function to those benchmarks that do not contain it. The
kernels typically exploit the support for: arithmetic operations, pointer assignment, __device__
function calls, general ANSI-C functions (e.g., memset and assert), general CUDA functions (e.g.,
atomicAdd, cudaMemcpy, cudaMalloc, cudaFree, __syncthreads), general libraries in CUDA (e.g.,
curand.h, curand_kernel.h, curand_mtgp32_host.h) and the ability to work with variables int, float,
char as well as type modifiers (e.g., long and unsigned), pointers to that variables, function pointers,
type definitions, and intrinsic CUDA variables (e.g., uint4).

Note that we used benchmarks from a variety of sources to evaluate ESBMC-GPU’s precision
and performance, which include CUDA benchmarks suite to check basic functions that are com-
monly used by real CUDA applications. Our benchmarks suite comprises of 20 CUDA kernels from
NVIDIA GPU Computing SDK v2.0 [40], 20 CUDA kernels from Microsoft CCC AMP Sample
Projects [41], and 104 CUDA programs that explore a wide range of CUDA functionalities [1, 13].
Although there are some CUDA benchmarks that do not implement real CUDA applications, they
are still valuable to analyze to which extent ESBMC-GPU is able to handle and detect (known)
errors; in particular, those benchmarks have been previously used for comparing the performance
and precision of different GPU verifiers [3]. It is worth notice that the benchmarks related to
OpenCL [42] were not applied to our experimental evaluation, once ESBMC-GPU does not support
it yet.

Our experiments answer two research questions: RQ1 (sanity check) which results does ESBMC-
GPU obtain upon verifying benchmarks that compose the specified suite? RQ2 (comparison with
other tools) what is ESBMC-GPU performance when compared to GKLEE, GPUVerify, PUG,
and CIVL?

To answer RQ1, ESBMC-GPU is executed with: -force-malloc-success, which consid-
ers that there is always enough memory available in the device; -context-switch C§, which
considers a context-switch bound among all threads; and -I libraries, which specifies the
library directory. We also replace the kernel call by the respective ESBMC_verify_kernel func-
tion using one block and two threads per block. As example, we call ESBMC-GPU as: esbmc
file.cu -force-malloc-success -context-switch 2 -I libraries.

To answer RQ2, we apply GKLEE, GPUVerify, PUG, and CIVL to the ESBMC-GPU bench-
marks suite. With GKLEE, we use two commands: gklee-nvcc and gklee. The first one checks the

‡ESBMC-GPU and benchmarks are available at http://esbmc-gpu.org
§The value of C ranges from 2 to 4 context switches.
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file to be verified, with the extension ‘.cu’. When this command is executed, two new files are gen-
erated: a ‘.cpp’ file and a runnable file (without extension). Then, the second command is used with
the generated runnable file. We call GKLEE as: gklee-nvcc file.cu -libc=uclibc or
gklee-nvcc file.cu -libc=klee; gklee file.

To the verification of GPUVerify, the following modifications are required: (i) remove the main
function; (ii) check if the variable initialization performed by the main function is responsible for
controlling some conditional declaration inside the kernel; if so, such variable must be initialized by
__requires() function; (iii) check if there is any assertion in the kernel; if so, this assertion must
be replaced by __assert(); (iv) check if there are specific functions to C/CCC libraries; if so,
they must be removed, as they are not supported by GPUVerify. To run GPUVerify, two options must
be used: -gridDim=M and -blockDim=N to assign the number of blocks and threads (per block),
respectively. We call GPUVerify as: gpuverify file.cu -blockDim=2 -gridDim=1.

Additional options for ESBMC-GPU and GPUVerify are necessary to check for data races and
array out-of-bounds, respectively.

Some additional changes to the benchmarks are necessary to use PUG: (i) the file extension is
changed from ‘.cu’ to ‘.c’; (ii) given that PUG is unable to verify main functions, these must be
removed, in order to keep the kernel function only; (iii) PUG’s proprietary libraries my_cutil.h and
config.h must be called inside the ‘.c’ file. The first library has definitions of structs, qualifiers, and
datatypes. The second one defines the number of blocks and threads (per block); (iv) The kernel
function’s name has to be renamed to ‘kernel’. As example, we call PUG as: pug kernel.c.

To verify CUDA programs with CIVL, we use the command civl verify file.cu. If the
benchmark contains the malloc and free functions, we must manually add the standard ANSI-C
library stdlib.h to the CUDA program, although it is not mandatory to declare it according to the
CUDA documentation [1].

All experiments were conducted on an otherwise idle Intel Core i7-4790 CPU 3.60 GHz, 16 GB
of RAM, and Linux OS. All times given are wall clock time in seconds as measured by the UNIX
time command.

4.2. Evaluating satisfiability modulo theories solvers for verifying CUDA programs

ESBMC-GPU now supports five different SMT solvers: Z3 v4.0 [17], Boolector v2.0.1 [43], Yices
v2.3.1 [44], MathSAT v5 [45], and CVC4 [46]. The flag ��solver (e.g.,��boolector) is used to
define an SMT solver, which is different from the standard ESBMC-GPU configuration.

The solvers’ performance is shown in Table I, where the ‘tool’ column describes the tool name,
‘true correct’ shows the result in which no error has been found for bug-free benchmarks, ‘false
correct’ shows the results in which the tool correctly detected a bug, ‘true incorrect’ shows the results
in which the tool did not detect a bug, ‘false incorrect’ shows the results in which the tool incorrectly
detected a bug, ‘not supported’ shows the results which are not supported by the respective tool, and
‘time’ shows the total verification time.

Table I. Results of the SMT Solvers Performance. True Correct represents the
number of flawless benchmarks correctly verified, while True Incorrect repre-
sents the ones verified incorrectly. Similarly, False Correct represents the number
of faulty benchmark verified correctly, while False Incorrect represents the ones
verified incorrectly. Not Supported represents the number of benchmarks unsuc-
cessfully verified, Time represents the total verification time for each solver, and

bold numbers represent the best results in each category.

Result/Tool Z34:0 Boolector 2.0.1 Yices 2.3.1 CVC 4 MathSAT 5

True Correct 56 56 56 35 56
False Correct 63 63 63 60 61
True Incorrect 2 2 2 4 2
False Incorrect 5 5 4 28 2
Not supported 28 28 29 27 33
Time (s) 1828 4614 1894 3326 8398
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Table II. Results of ESBMC-GPU, GKLEE, GPUVerify, PUG, and CIVL.
True Correct represents the number of flawless benchmarks correctly veri-
fied, while True Incorrect represents the ones verified incorrectly. Similarly,
False Correct represents the number of faulty benchmarks verified correctly,
while False Incorrect represents the ones verified incorrectly. Not Sup-
ported represents the number of benchmarks unsuccessfully verified, Time
represents the total verification time for each verifier, and bold numbers

represent the best results in each category.

Result/Tool ESBMC-GPU GKLEE GPUVerify PUG CIVL

True Correct 60 53 58 39 23
False Correct 67 57 30 15 24
True Incorrect 1 14 9 7 0
False Incorrect 3 8 8 11 3
Not Supported 23 22 49 82 104
Time (s) 811 128 147 12 158

Table I shows that Z3, Boolector, Yices, and MathSAT produce exactly the same number of true
correct results (56). Additionally, Z3, Boolector, and Yices present 63 false correct results, while
MathSAT produced only 61. These results ensure that Z3, Boolector, and Yices are the most effective
SMT solvers for verifying CUDA programs in ESBMC-GPU, where correctness is an important
parameter for evaluating the solvers performance. Additionally, if we consider verification time,
then Z3 has an improved performance of 3; 6% over Yices. Thus, we defined Z3 as the (default)
SMT solver to verify CUDA programs in ESBMC-GPU.

4.3. Experimental results

Table II shows the results of ESBMC-GPU v1.25, GKLEE (LLVM v3.2), GPUVerify 2, PUG
(ROSE v0.9) and CIVL v1.6; each row means: tool name (Tool); total number of benchmarks in
which the program was analyzed to be free of errors (True Correct); total number of benchmarks in
which the error in the program was found and an error path was reported (False Correct); total num-
ber of benchmarks in which the program had an error, but the verifier did not find it (True Incorrect);
total number of benchmarks in which an error is reported for a program that fulfills the specification
(False Incorrect); total number of benchmarks which are not supported (Not Supported); verification
time, in seconds, for all benchmarks (Time).

ESBMC-GPU is able to correctly verify 82:5% of the benchmarks, GKLEE 71:4%, GPUVerify
57:1%, PUG 35:1%, and CIVL 30:5%. Note that ESBMC-GPU produces 1 true incorrect results,
while GKLEE produces 14, GPUVerify produces 9, PUG produces 7 and CIVL does not pro-
duce any true incorrect result. With ESBMC-GPU, this result is due to a null pointer access. With
GKLEE, errors are due to failure in detecting data race (10), unsuccessful detection of attempts to
modify constant memory (2), incorrect detected assertion (1), and null pointer access (2). GPUVer-
ify does not detect data race (7), does not detect an array bounds violation (1), and does not detect
an assertion violation (1).

PUG does not detect access to null pointer (1), data race (4), array bounds violation (1), and
incorrect detected assertion (1). ESBMC-GPU generated 3 false incorrect results, due to assertions
included in the kernel, which should return true, but it fails (2), and the partial coverage of the cud-
aMalloc function for copies of float-type variables (1). GKLEE generated 7 false incorrect results,
which are caused by incorrectly detected assertions (4), data-races (1), array out-of-bounds (1) and
solver call failure (1). GPUVerify generated eight false incorrect results, due to incorrectly detected
assertion (2) and data-races (6). PUG produces 11 false incorrect results due to data races incor-
rectly detected. CIVL produces three false incorrect results due to detection of memory allocation
error (2) and assertions (1).

ESBMC-GPU had 23 benchmarks that were not supported. These are related to constant mem-
ory access (3), the use of CUDA’s specific libraries (e.g., curand.h) (7), and the use of pointers
to functions, structures, and char type variables used as kernel call arguments (13). GKLEE has
22 benchmarks that were not supported, which are due to incorrectly detected assertions (2);
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function pointers (11), either used as kernel arguments or as in any other parts of the CUDA
program; specific CUDA libraries curand.h (7), and switch-case functions (2).

GPUVerify did not support 49 benchmarks. Because it does not support main functions, this
explains most cases (39); it also does not support the use of memset function (2), the array bounds
detection (2), the use of math_functions (1), while other cases are explained by the absence of
support to function pointers, either as kernel function arguments or as in any other part of the CUDA
program (5).

PUG does not support 82 benchmarks. As GPUVerify, PUG does not verify main functions
and this explains most unsupported cases (31), while others are explained by the lack of support
to __syncthreads function (12), function pointers (9), and the curand.h library (7); additionally,
PUG does not support the use of unsigned type modifier as argument to the function atomi-
cAdd (6); changes in variables stored in constant memory (3), and inability to handle structs (2),
variables with __device__ qualifier (2), and size_t type (1), in addition to other cases that PUG
aborted by returning a false null pointer access (7) or because it did not recognize the NULL
identifier (2).

CILV does not support 104 benchmarks, this is caused by the use of atomic functions (18),
cudaThreadSynchronize (10), threadIdx (10), function typedef (8), curand functions (7), dim3 (6),
math_functions (5), uint4 (5), __constant__ variables (5), __attribute__ (5), __restrict (2), structs
(2), scanf (2), boolean functions (e.g., AND and OR) (2), uint (2), extern C (1), __threadfence (1),
typecast (1). Other benchmarks could not be verified due to the existence of data-race in benchmarks
(11) and undefined cases (1).

4.3.1. ESBMC-GPU effectiveness over existing GPU verifiers. MPOR produced an improved per-
formance of approximately 80% in our benchmarks; in particular, it reduced the verification time
from 16 to 3 h. With two-threads analysis, we further reduced the verification time from 3 h
to 811 s. Although the application of these techniques has considerably improved the ESBMC-
GPU performance, it still takes more (verification) time than all other existing tools. This is due
to the actual execution of the threads interleavings (which combines symbolic model checking
with explicit state space exploration), while in GPUVerify the analysis is fully symbolic, per-
formed only in the kernel level, without considering threads interleavings with the main thread.
PUG lower verification time is due to the two-threads analysis and because it does not perform the
main function verification. GKLEE presents a low verification time due to its directed state/path
reduction method.

Additionally, in order to improve the verification performance, ESBMC-GPU uses an abstract
representation of the CUDA libraries that properly reflects their semantics. This abstract represen-
tation includes pre/postconditions and simulation features that consider only relevant behavior to
be explored from the verification perspective, that is, irrelevant code fragments that unnecessar-
ily complicate the generated VCs are actually abstracted. As a result, during the ESBMC-GPU
verification process, the COM replaces the real CUDA libraries, which thus improves its effec-
tiveness to detect more properties violations than other existing GPU verifiers, as shown in our
experimental evaluation.

5. CONCLUSIONS

ESBMC-GPU is able to verify CUDA programs using SMT-based context-bounded model check-
ing and operational models, which recognize CUDA directives and further simplify the verification
model. This work marks the first application of symbolic model checking with explicit state space
exploration using MPOR for verifying CUDA programs. In particular, MPOR led to 80% of per-
formance improvement in our benchmarks. ESBMC-GPU also presents an improved ability to
detect array out-of-bounds and data race violations if compared with GKLEE, GPUVerify, PUG,
and CIVL. Additionally, ESBMC-GPU provides fewer incorrect results than all other existing GPU
verifiers. Experimental results also show that ESBMC-GPU presents a successful verification rate
of 82:5%, compared with 71:4% of GKLEE, 57:1% of GPUVerify, 35:1% of PUG, and 30:5% of
CIVL. For future work, we will improve our support to argument types of kernel functions, support
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stream interleaving, and apply techniques to reduce the number of threads interleavings. Besides,
conformance testing procedures will be developed for further validating COM, which could also be
applied to CUDA modules.
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