

Studienarbeit

Lucas Carvalho Cordeiro 1928 SA

Development real time
applications with LEGO Mindstorms

Stuttgart, 30th October 2003

Tutors: Prof. Dr.-Ing. Dr. h. c. Peter Göhner
M.Sc. Paulo Urbano
Dipl.-Ing. Thomas Wagner

Acknowledgements

The material in this these has been developed over the last three months and its results
were driven in a valuable way.

I would like to thank my family who supported me over the last years to the

completion of my studies.

I would also like to thank Prof. Göhner for giving me an opportunity to complete my

undergraduate project at IAS. I am very thankful to my advisor Paulo Urbano for sharing his
ideas and helping to complete my project.

Finally, I thank Ursula Habel for essential support throughout the UNIBRAL project

and by the grammatical correction of my abstract in German. Especially thanks to CAPES for
the scholarship offered over the UNIBRAL project.

 2

Abstract

As the computers became smaller, faster, cheaper and more reliable their range of
application is expanding. Computers are used to control a wide range of systems ranging from
simple home appliances to entire manufacturing. These computers interact directly with
hardware device controlling a physical, dynamic process. The software in these systems is an
embedded real-time system that must react to events occurring in the control process and
issue control signals in response to these events. It is embedded in some larger system and
must respond, in real time, to changes in the system’s environment.

The LEGO MINDSTORMS kit allows a wide variety of physical models to be

built, which may be programmed via the RCX processor integrated into them. Using its
standard firmware, the RCX device may be programmed through several different specialist
languages. However, the additional availability of bytecode-compatible replacement firmware
for the RCX makes the use of languages such as C++ and Java possible as the programming
languages for this particularly attractive environment. The C++ and Java programming
languages provide features to develop real-time applications as parallelism, synchronization,
input and output of process values and bit operations. Within the scope of this research
project, some of the issues associated with choosing an Integrated Development Environment
to program MINDSTORMS models are investigated using C++ and Java within the context of
real-time systems.

 3

Zusammenfassung

Sowie Computer kleiner, schneller, billiger und zuverlässiger wurden, verbreiterte sich
auch das Spektrum ihrer Anwendungsmöglichkeiten. Computer werden benutzt, um eine
breite Palette von Systemen zu kontrollieren, die von einfachen Haushaltsgeräten bis hin zu
ganzen Herstellungsabläufen reicht. Diese Computer interagieren direkt mit Hardware-Gerät,
das einen dynamischen und physischen Prozeß kontrolliert. Die Software in diesen Systemen
ist ein eingebettetes Echtzeitsystem, das auf Ereignisse reagieren muß, die im Kontroll-Prozeß
auftreten und daraufhin Kontroll-Signale aussendet. Es ist eingebettet in irgendein größeres
System und muß – in Echtzeit – auf Ereignisse aus der System-Umgebung reagieren.

Das LEGO MINDSTORMS Werkzeug erlaubt den Bau einer breiten Vielfalt
physischer Modelle, die über den RCX Prozessor, der in sie integriert wird, programmiert
werden können. Das RCX Gerät kann durch mehrere verschiede Spezialsprachen
programmiert werden, indem man seine Standardfirmware benutzt. Jedoch macht die
zusätzliche Verfügbarkeit von bytecode-kompatibler Ersatz-Firmware für den RCX die
Verwendung von Sprachen wie C++ und Java möglich, die als Programmiersprachen dafür
besonders attraktiv sind. Die C++ und die Java Programmiersprachen stellen Merkmale
bereit, um Echtzeit-Anwendungen wie Parallelismus, Synchronisierung, Input und Output von
Prozeß-Werten und Bit-Operation zu entwickeln. Innerhalb des Bereichs dieses Forschung-
Projektes werden einige der Themen, die mit der Wahl, MINDSTORMS Modelle zu
programmieren in Verbindung gebracht werden, erforscht. Dazu werden C++ und Java
innerhalb des Kontextes von Echtzeitsystemen benutzt.

 4

Table of Contents

Acknowledgements... 2
Abstract ... 3
Zusammenfassung.. 4
1 Introduction .. 7

1.1 Motivation .. 7
1.2 General Purpose ... 7
1.3 Requirements to the software... 7

2 Basics ... 9
2.1 Hardware and Firmware... 9

2.1.1 The Robotics Invention System 2.0 ... 9
2.2 Software ... 14

2.2.1 The RIS programming environment .. 14
2.2.2 LEGO Programming Languages.. 17
2.2.3 Introduction to real-time systems... 19

3 Development of the Spring Mass System ... 26
3.1 Start Situation... 26
3.2 Fundamental Design Decisions.. 29
3.3 System Architecture ... 30

3.3.1 System Overview ... 30
3.3.2 State Diagram... 31

3.4 Software Components .. 32
3.4.1 Send Signal... 32
3.4.2 Check Signal .. 37
3.4.3 Oscillate.. 39
3.4.4 Detect Obstacle .. 40
3.4.5 Play Sound.. 40

3.5 Test Specification... 41
3.5.1 Introduction .. 41
3.5.2 Test Requirements.. 41
3.5.3 Test Methods .. 42
3.5.4 Test Criteria.. 42
3.5.5 Test Cases... 43
3.5.6 Test results... 43

4 Using the Software ... 44
4.1 Installation.. 44

4.1.1 Prerequisites .. 44
4.1.2 Accessing the embedded microcontroller of Robot .. 44
4.1.3 NQC Installation ... 45
4.1.4 BrickOS Installation.. 46
4.1.5 LeJOS Installation ... 47

4.2 Operation.. 49
4.2.1 Preparation of the robot... 49
4.2.2 Running NQC programs.. 50
4.2.3 Running BrickOS programs .. 51
4.2.4 Running LeJOS programs ... 51

4.3 Control Elements.. 53
4.3.1 Batteries... 53

4.4 Functions .. 54
5 Conclusion and Outlook .. 54

 5

5.1 Summary .. 54
5.1.1 Introduction .. 54
5.1.2 Programming languages comparison to the LEGO Mindstorms 55
5.1.3 An application scenario with real-time characteristics 55

5.2 Experiences .. 56
5.3 Problems... 56

Appendix A Index of Figures .. 58
Appendix B Index of Tables .. 59
Appendix C Abbreviations .. 60
Appendix D Terminology .. 61
Appendix E Literature... 63
Appendix F Troubleshooting... 65

F.1 I do not have access the embedded microcontroller over the IR Tower........................ 65
F.2 The IR Tower still does not work .. 65
F.3 I cannot store other firmware ... 66
F.4 My compiler does not work ... 67
F.5 My robot does not work as desired .. 67

 6

1 Introduction

1.1 Motivation

Real-time systems are becoming increasingly important in our society. There are many
applications whose correctness is time dependent. They range from safety-critical systems
such as nuclear reactors and automotive controller, to entertainment software such as games
and graphics animation. Nowadays real-time computer systems replace many mechanical and
hydraulic control systems with high requirements and dependability applications.

The microelectronic evolution and the CPUs becoming cheaper, smaller and more
reliable can be used as computer systems in several appliances. These computers are different
from our computers that we have at home, they are designed to perform a main task and it is
not necessary to have a hard and floppy disk or keyboard. For instance, household,
communication and maintenance devices only become functional using integrated
microprocessor-based controls. A microprocessor-controlled wash machine is a good
example, which prime function is to wash clothes, but it depends which clothes will be
washed, then there are different “wash programs” that must be executed. These types of
computer application are examples of real-time and embedded.

1.2 General Purpose

Apart from the standard software delivered with the Mindstorms kit, several
independent groups have released development environments and operating system to the
RCX microcomputer. The purpose of this undergraduate project was the investigation of the
available methodologies, techniques and tools to develop real time applications based on the
LEGO MINDSTORMS kit. In order to illustrate their characteristics, an application scenario
with real time characteristics was defined and implemented with the different tools.

1.3 Requirements to the software

The LEGO MINDSTORMS kit comes with software that provides a graphical
programming environment. Unfortunately, the software that comes with them is, although
visually attractive, rather limited in functionality. Hence, it can only be used for simple tasks.
To unleash the full power of the kit, we need a different programming environment.
Therefore, the investigation of the available tools to develop real time applications based on
the LEGO Mindstorms was extremely important.

 7

The robot developed during this work has to perform several processes (tasks) in
parallel and respond to stimuli that occur at different times. We have to consider carefully the
synchronization of all this process, so that there are no interferences between them. The
architecture must therefore be organized so that control is transferred to the appropriate
handler for that stimulus as soon as it is received. In this sense, our software has a set of
concurrent and cooperating process.

 8

2 Basics

2.1 Hardware and Firmware

2.1.1 The Robotics Invention System 2.0

The core product of the LEGO Mindstorms series is the Robotics Invention System
(RIS). It intended to teach children and adults the basics of robotics using familiar LEGO
Bricks. With the RIS we can build robots that move and react to inputs from their
environment, e.g. touch and light. The robot’s programs are written on a host computer,
downloaded to the robot via infrared connection as depicted in figure 1 and then executed
autonomously. The latter is probably the most fascinating regarding the Mindstorms – no
cables or any other connection to a stationary computer is required for the robots to move
around.

Lego Mindstorms

Programming Languages
to Lego Mindstorms

Microcontroller RCX

Sensors Actuators

IR
Tower

I/O Port

Figure 1 - System Interface

2.1.1.1 The RCX and the Lego firmware

The most important part of the Robotics Invention System is the Robotic Command
Explorer (RCX). This is a special Lego brick with an integrated Hitachi H8/3292
microcontroller (running at 16 MHZ), three sensor inputs, three motors outputs, an IR
transceiver, an LCD, and four control buttons as depicted in figure 2. A simple speaker for
sound output is also integrated. The RCX requires six batteries of type AA to run.

 9

Figure 2 - RCX Microcomputer

Besides low-level hardware access routines, the 16 KB on-chip ROM of the RCX only

provides basic communication logic to download a firmware that serves as the runtime
environment for any user-written programs. Additionally, the RCX contains 32KB of RAM
that is shared by the firmware and the actual programs.

The following pages describe the features of the RCX in the context of the current
LEGO firmware (version 2.0). Most of the features are available in other execution
environments as well, but organized differently.

Besides the RCX, LEGO offers two other programmable bricks (short P-bricks) called
Cyber-Master and Scout. The latter is included in the Robotic Discovery Set. Of all P-bricks,
the RCX is the most advanced.

Commands and programs The LEGO firmware is basically a byte code interpreter. A user
program must be downloaded into one of five slots (using the IR interface) before it can be
executed by the firmware. All byte codes are documented in the RCX 2.0 Beta SDK[1].
Besides downloading a complete program, individual commands can also be executed directly
via the IR link.

All commands consist of an opcode (1 byte) and, whether required, parameters (up to
5 bytes). The RCX secures every command transmission by performing a logical not
operation on the command byte and sending back the result (except for bit 4 which has a
special meaning). Downloads of firmware and programs are secured by simply adding up the
bytes and performing a module operation on the result (mod 256 for programs, mod 65536 for
firmware) [26].

 10

Task, resources and events One of the outstanding features of the RCX (or rather the LEGO
firmware) is built-in in multitasking. Up to 10 concurrent tasks per slot are possible. The
priority of each task can be adjusted between 0 (highest) and 255 (lowest).

Since multitasking can lead to conflicts – e.g. when two tasks want to play sound at
the same time, the LEGO firmware manages four resources: the three motors outputs and
sound output. Each task can request access to these resources. Access is granted if no task of
higher priority owns the resources in question. Access is denied (or taken away if granted
before) as soon as a task with equal or higher priority requests the same resources. A task can
specify a handler routine that is executed when it loses any of its acquired resources, so it can
act appropriately. It should be noted that access control is not mandatory. Whether a low
priority task uses motor commands without applying for access first, these commands are
executed even if another task currently “owns” the motors.

A task can also monitor up to 16 different events. These events are freely configurable,
i.e. we can specify which event source to monitor and what type of event we want to receive
[26]. The possible event sources are:

• A physical sensor (touch, light, rotation, temperature or self-made).
• A timer.
• A counter.
• An incoming IR message.

In addition to the event source, we must specify what of change should trigger the
event. For example, whether we specify EVENT_TYPE_LOW, the event is triggered when a
(configurable) lower limit is reached. The firmware that comes with the LEGO Mindstorms
kit supports 11 different event types, including clicks (a value goes from low to high and back
to low), rapid changes, and incoming IR messages. To receive events, a task specifies an
event handler that interrupts normal execution as soon as an event is triggered.

Sensor inputs As already mentioned, the RCX has three sensor inputs. We can connect one
or more sensors to each input. Whether more than one is connected, we may or may not be
able to differentiate between them [2], so the usual case is having one sensor on one input.
Sensors are connected to the RCX with special cables that have small Lego bricks with metal
contacts at both ends. Some sensors (e.g. the light sensor) have cables where one end is
hardwired to the sensor.

There are five types of sensors that can be used with the RCX (this number may grow
with future firmware versions): touch, light, temperature, rotation and generic. Generic means

 11

that, unlike the other types, the sensor signal is not pre-processed in any way. This is useful
for self-made sensors. Sensor values can be used as event resources or queried directly.

Timers and counters The RCX has four timers with 10 ms resolution. Timers can be cleared
(i.e. set to 0), set to a specific value, queried directly, and used as event resources. Counters
are similar to variables. However, counters can only be incremented or decremented by one.
What makes them interesting is that they can be used as event sources.

Motor outputs The RCX can drive motors through its three 9V outputs. Only one motor can
be connected per output. The behaviour of the motors is determined by the mode, direction,
and power attributes. Mode can be one of on, off or float. “On” means the motor is turning
with the current power setting, “off” means the motor actually breaks, and float (switches the
motors smoothly) lets it more freely, but without turning on its own. The motor direction can
be forward and reverse. The power of a motor is a constant between 0 (low) and 7 (high).

The RCX’s three outputs are independent, so the attributes just described can be
specified per motor. For example, a robot with one motor on each side can turn around by
setting one to forward and one to reverse direction.

Motors can also be globally disabling, set to a specific direction, and limited regarding
their maximum power. Whether the motors is disabling, none of the regular motor commands
has an effect. Whether the motors are globally set to reverse direction, all direction commands
are interpreted inversely, i.e. forward as reverse and reverse as forward.

Besides motors, other actuators can be connected to the outputs as well. For instance,
Lego offers a small “lamp” the brightness of which can be regulated through the output
power. Naturally, directional settings do not make sense in this case.

The IR transceiver Communication from the RCX to a host computer or another RCX is
realized through the integrated IR transceiver. The supported baud rates are 2400 and 4800.
Other settings that can be specified programmatically include sending power (long vs. short
range), carrier frequency, and packet format. Details concerning the IR protocol can be found
in [3].

Besides uploads and downloads from and to the host, the firmware supports the
exchange of simple messages between RCX bricks where each message consists of a single
byte. Received messages are stored in a 1-entry buffer from where the currently running
program can read them. Another message can only be received when the program has cleared
the buffer.

 12

In [2], Mark Overmars also shows a way to combine the IR transceiver and a light
sensor to get a rough proximity sensor. Unfortunately, there is no other way to measuring
distances, except with self-made sensors.

Miscellaneous In addition to the features already mentioned, the RCX supports sound
generation. First, there are built-in system sounds (like frequency sweeps up and down). The
second way of producing sound is by specifying a frequency/duration pair.

What is really annoying concerning the current LEGO firmware version is its
enormous size. If you subtract the 24 KB of the firmware from the available 32 KB, only 8
KB are left for own programs. Also, performance can be an issue at times since all commands
are interpreted [26].

Finally, there is an integrated watch in 24-hour format. Probably its only useful
purpose is being displayed on the LCD.

2.1.1.2 LEGO Technique parts and sensors

Most of the RIS consists of standard Lego Technique parts. Only the two included
motors seem slightly different, and there are a few special parts some of which are shown in
figure 3. Additionally, the RIS contains two touch sensors and one light sensor that can be
connected to the RCX.

Figure 3 - Special Mindstorms parts

With more than 700 pieces, one RIS set already allows for rather complex robot

constructions. Whether that is not enough, one can always purchase additional Lego
Technique sets or one of the Mindstorms Expansion sets (see the LEGO Mindstorms
Homepage [4]). More and different sensors can be purchased individually, most notably a
rotation and a temperature sensor.

 13

2.1.1.3 The IR Tower

An important part of the RIS is the so-called IR Tower, which serves as a
communication facility between a PC and the RCX. Like the RCX transceiver, the tower has
two ranges setting (near and far). With both the tower and the RCX set to far, we have been
able to cover a distance of 1.6 meters.

In the 2.0 version of the RIS, the IR Tower is also available in Universal Serial Bus
(USB). The great advantage is that the USB provides enough power to run the tower without
a battery.

2.1.1.4 LEGO Mindstorms Robotic Invention System Costs

The table 1 depicts the Robotic Invention system prices in the time I was writing my
undergraduate project.

Table 1 - LEGO Mindstorms Robotic Invention System (RIS) 2.0 Costs

Company Price Country
HobbyTron.com $ 189.00 USA

Amazon.com $ 199.99 USA
KBToys $ 199.99 USA

DesignTyme Toy Store $ 199.99 USA
MyToys.de € 249.99 GER

SpielShop.de €249,99 GER

2.2 Software

2.2.1 The RIS programming environment

The following sections are based on version 2.0 of the RIS [1]. The Software
Development Kit (SDK) contains:

9 Protocol information for the new USB IR communication tower (select Custom
installation);

9 API headers and documentation for the new Windows PC based communication stack,
Ghost;

9 Complete documentation for all LEGO Assembly (LASM) commands;
9 Interactive help for LASM & MindScript programming;
9 A dual-interface COM server component that wraps Ghost, LASM & MindScript;

 14

9 A number of example programs in Microsoft Visual Basic and Visual C++;
9 An example IDE for writing LASM & MindScript programs.

2.2.1.1 - User Interface

The software that comes with RIS provides a complete environment for programming
Mindstorms robots. The core of the RIS software is an interactive visual flow charter shown
in figure 4. LEGO bricks represent actions (e.g. turning on a motor), sensors, and flow control
(like conditional processing or loops). The whole user interface is designed for case of use,
including step-by-step tutorials with videos accompanying each step.

Figure 4 - The Robotics Invention System programming environment

Sensor inputs can be processed with so called sensor watchers. The light sensor

watcher, for example, has two connection points – one for dark and one for bright values. The
commands under the dark connection point are executed whenever the sensor value enters a
configurable “dark” range. The commands under the light connection point are executed
whenever the sensor value enters a configurable “light” range. There is a test panel will let
you take readings from your sensors and even test motors attached to the RCX unit. Using the
test panel you can calibrate specific values for your robot to respond to using up to 3 sensors.
The figure 5 shows a measured that represents the value of light falling one the light sensor
attached to the RCX unit.

 15

Figure 5 – Test Panel shows the value measured of light sensor

The RIS software only provides a single counter that can just be incremented and reset
to 0 again. The only way to react to the counter’s value is a sensor watcher with a
configurable range of values and a single connection point. Whenever the counter enters the
specified range, the commands under the connection point are executed. The RIS software has
no support for variables.

Only one of the RCX’s timers is available in the RIS environment, and only with 100
ms resolution. All we can do with the timer is reset it and use it as an event source
(represented by the timer watcher). Commands that should be executed directly after pressing
the Run button on the RCX – rather than waiting for an event - must be placed under the
“program” brick.

2.2.1.2 Generated programs

The programs generated from the flow chart consist of three kinds of tasks:

9 The main task initializes timer and counter, the sensor inputs, and the motor
outputs. Afterwards, it continuously monitors the events;

9 The program task executes the commands placed under the “program” brick. It is
started by the main task after initialisation is complete;

9 One task per sensor watcher connection point. As soon as the corresponding event
is triggered, the task is started. If it is still running when the next event arrives, it is
restarted abruptly.

 16

2.2.1.3 Additional features regarding the Firmware RCX 2.0 BETA SDK

There are several features included in RCX 2.0 firmware (version 03.28) and the
most noticeable are indicated below:

9 Event monitoring on physical and a number of virtual sensors (timers, IR message
and counter variables);

9 Priority-based access control to shared resources;
9 Local variable tasking, for example, safe parameter passing to subroutines that

execute within the environment of the calling task;
9 Global motor and sound control;
9 Play tones with the frequency taken from a variable;
9 Display and track the value of internal RCX data with or without the program

running. (Great for demonstrating or debugging.);
9 The ability, under program control, to switch to another program slot and start it

running - just as you can with the LEGO MINDSTORMS Remote Control Unit;
9 Simple support for data arrays/variable pointers.

2.2.2 LEGO Programming Languages

Apart from the standard software delivered with the Mindstorms kit, several
independent groups have released development environments and operating system to the
RCX microcontroller. The next three subsections present a short description concerning the
programming languages.

2.2.2.1 Not Quite C

NQC created by Dave Baum [5] stands for Not Quite C, and is a simple language for
programming several LEGO Mindstorms products. Some of the NQC features depend on
which Mindstorms product you are using. This product is referred to as target for NQC.
Nowadays, NQC supports four different targets: RCX, CyberMaster, Scout, and RCX2 (an
RCX running 2.0 firmware).

The pre-processor and control structures of NQC are very similar to C. NQC is
defined as two separate pieces. The NQC language describes the syntax to be used in writing
programs. The NQC API describes the system functions, constants, and macros that can be
used by programs. This API is defined in a special file built in to the compiler. By default,
this file is always processed before compiling a program.

 17

The RCX has a Hitachi H8 microcontroller with 32 KB of external memory. An on-
chip, 16 KB ROM contains a driver that is run when the RCX is first powered up. The on-
chip driver is extended by downloading 16 KB of firmware to the RCX. Thus, NQC allows
user programs are downloaded to the RCX as byte-code and stored in a 6 KB region of
memory.

2.2.2.2 Brick Operating System

BrickOS created by Markus [6] is an open source embedded operating system and
provide a C and C++ programming environment to the LEGO Mindstorms Robotics kit,
allowing the use of the languages such as C and C++ instead of the standard LEGO
programming Language. BrickOS has a multi-tasking system running on the RCX hardware
and providing an API to all the RCX sensors and actuators.

BrickOS consists of an alternative operating system for the Mindstorms RCX and
demonstration programs written in C and C++. The operating system (OS) and the compiled
programs are downloaded to the RCX and executed autonomously. The brickOS distribution
provides the sources for the operating system, demo programs and utilities.

BrickOS allows running the RCX in native mode1 (the data-structure is represented by
a series of logical records and do not need to save data in files); this means that you can use
full 32 KB memory.

2.2.2.3 LeJOS Virtual Machine

LeJOS2 created by Solorzano [7] is an implementation part of the Java Virtual
Machine (JVM) running on the RCX hardware. LeJOS comes with firmware that replaces the
original RIS firmware; the new firmware implements many core Java classes. The JVM is
analogous to the standard LEGO firmware. It is the component that must first be uploaded to
the RCX to accommodate Java programs.

Like any programming language, it allows you to control the program flow. The
LEJOS API mirrors the basic functionality of LEGO code, controlling motors, sensors, and
other elements of the RCX brick. LeJOS includes a trimmed-down version of the standard
Java API with general classes to help out with programming as the vector class.

As mentioned before, the RCX has a total of 32 KB of RAM (figure 6) and about 4
KB is off limit because the ROM routines use it. That leaves about 28 KB free to be

1 The native mode is complemented in BrickOS by one "emulator mode".

 18

exploited. LeJOS has a footprint of about 16 KB, which means there is a total of 12 KB of
free memory for user code. That number is usually more than enough for most robotics
programs, unless the RCX is heavily collecting and storing data, such as navigation.

12KB User Programs 4 KB Off Limits

16 KB LeJOS JVM

16 KB ROM

Figure 6 - The LeJOS JVM memory map

2.2.3 Introduction to real-time systems

This section is concerned with definitions, examples and characteristics of real-time
systems. It studies the particular characteristics of these systems and remarks are made
regarding the real-time applications.

2.2.3.1 Definition of real-time systems

There are many definitions of real-time systems, nevertheless they have in common
the notion of response time. The Oxford Dictionary of Computing has the following definition
of real time-system: “Any system in which the time at which output is produced is significant.
This is usually because the input corresponds to some movement in the physical world, and
the output has to related to that same movement. The lag from input time to output time must
be sufficiently small for acceptable timeliness”.

The Institute of Industrial Automation and Software Engineering (IAS) has defined
‘real-time’ programming as: creation of programs in such a way that the time requirements
on the compilation of input data, on the processing and on the delivery of output data are
fulfilled [17].

Experts in the field of real-time computer system classify two categories of real-time
system: hard and soft real-time system. Hard real-time systems are those where it is

2 Some authors consider the name LeJOS as a play of word on LEGOs, with “g” replaced by “j” for Java. Other
authors consider as Java Operating System.

 19

absolutely imperative that responses occur within the specified deadline3 [14]. A typical
example is an autopilot on an aircraft, the failure of which to check the altitude at prescribed
times may have catastrophic consequences. Soft real-time systems are those where response
times are important but the system will still function correctly if deadlines are occasionally
missed [14]. A typical example of soft is a data acquisition system with many sensors for a
process control in industry, because sampling of input sensor in a single activity has regular
intervals but tolerate delays.

2.2.3.2 Generalized embedded computer system

In general, real-time systems for management and controlling of processes need an
interface between the real world and the computer. Thus, there is Analog to Digital Converter
(ADC) to convert the analog signal from sensor to digital signal. A real-time clock is
necessary because the input sensor signal must be sampled in a regular interval [14].
Algorithms for digital control will process the information (in the most of cases involving
complex calculus) from sensors and will record in a database system. All information
concerning engineering system is recorded in a database and the operator’s console can see
this information and interrogate. Indeed, there is a support decision making in the day-to-day
running systems. For instance, in process industries, plant monitoring is essential for
maximizing economic advantages rather than simply maximizing production [14]. The figure
7 shows a typical embedded system. The software consists of many modules, which contains
the algorithms for physically controlling the devices, a module responsible for recording the
system’s state changes, a module to retrieve and display those changes and a module to
interact with the operator.

Figure 7 – A typical embedded system

(Source: http://www.cs.york.ac.uk/rts/RTSBookThirdEdition.html)

3 A deadline is either a point in time (time-driven) or a delta-time interval (event-drive) by which a system action
must occur.

 20

http://www.cs.york.ac.uk/rts/RTSBookThirdEdition.html

2.2.3.3 Characteristics of real-time systems

Most real-time computer systems are parts of other systems, including larger computer
systems. The final effect of the computer system would be through mechanical or other
systems interacting with the environment. A real-time system may therefore be viewed as
consisting of the controlling system, usually a computer, and the controlled system, which in
turn consists of sensor and actuators [18]. The system receives information about the
environment from sensors and affects the environment by means of actuators. Some actuators
may not necessarily act on the environment, but, instead, may simply adapt to changes in the
environment in a passive manner, for example by controlling the system exposure to the
environment or by activating additional sensors. Sensors are operated by the effect of light,
heat, pressure, temperature, current, voltage, radar and others forms of energy in the outside
environment, and take the form of pressure gauges, thermometers, microphones,
hydrophones, receivers and video cameras. The sensors may produce analog or discrete data.
Actuators may effect the environment through discharging similar forms of energy to the
environment in a controlled manner and may take the form of mechanical devices, heaters,
displays, switches, transmitter, etc.

The system interaction with the environment may be both periodic and sporadic. This
results from the fact that every real-time system necessarily consists of a monitoring
component and a reactive component. Real time systems not possessing both these
components in some form are rare and are of limited purpose. An example of a real-time
system that is dedicated primarily to monitoring is a seismograph, an instrument intended for
detecting and recording ground motions due to earthquakes in real-time. In general, the
monitoring subsystem is intended for sampling the environment and, therefore, may function
basically in a highly regular predictable manner. The reactive subsystem, on the other hand,
may be called into action sporadically upon detection of irregularities or excessive deviations
in the controlled or observed environment by the monitoring subsystem [18]. In this sense
even a seismograph has a reactive component.

A. Timeliness

The timeliness of an action has to do with the action meeting time constraints, such as
deadline. Deadlines may be hard or soft. Missing a hard deadline constitutes a system failure
of some kind, so great care must be taken to ensure that all such actions execute in a timely
way [15].

The basic concepts of timeliness in real-time systems are straightforward. Actions
must be begun in response to event arrival or due-time arrival, and they must complete within

 21

a certain time after they begin. These actions may be simple digital actuations, such as turning
on a light, or complex loops that control dozens of actuators simultaneously. Typically, many
subroutines or tasks must execute between the causative event and the resulting system action.
External requirements bound the overall performance of the control path. Each processing
activity in the control path is assigned a portion of the overall time budget. The sum of the
time budgets for any path must be less than or equal to the overall performance constraints4.

B. Responsiveness

Virtually all real-time systems connect to either monitoring or controlling hardware, or
both. Sensors provide information to the system about the state of the external environment.
Many real-time systems use actuators to control their external environment or to guide some
external processes. Flight control computers command engine thrust and wing and tail flap
orientation to meet flight parameters. Chemical-process-control systems control when, what
kind, and the amounts of different reagents added to mixing vats [15].

Naturally, most systems containing actuators also contain sensors. Although there are
many open-loop control systems, the majority of control systems use environmental feedback
to ensure that the control loop is acting properly. Standard computing systems respond
primarily to the user5. Real-time system, on the other hand, may interact with users, but they
have more concern for interactions with their sensors and actuators. One problem that arises
with environmental interaction is that the universe has an annoying habit of disregarding our
opinions of how and when it ought be behave [15]. External events are often not predictable.
Nevertheless, the system must react to events when they occur rather than when it might be
convenient.

C. Correctness and Robustness

A system is correct when it does the right thing all the time. Such a system is robust
when it does the right thing under novel (unplanned) circumstances, event in the presence of
unplanned failures of portions of the system [15]. Naturally, correctness and robustness are
considered good things, but achieving them in a complex design is anything but trivial.

4 This includes initiation, preemption (postponement of execution by a high-priority task, including interrupts)
and blocking times (prevention of the execution of a higher-priority action by a lower-priority action), if
applicable
5 It is true that behind the scenes, even desktop computers must interface with printers, mice, keyboards, and
networks. The point is they do this only to facilitate the user’s whim.

 22

D. Concurrency

Concurrency is the simultaneous execution of multiple sequential chains of actions.
These action chains may execute on one processor (pseudo-concurrency) or multiple
processors (true concurrency). Issues surrounding the execution of concurrent systems have to
do with the scheduling characteristics of the concurrent thread, the arrival patterns of
incoming events, the rendezvous patterns used when threads must synchronize, and the
methods of controlling access to shared resources [15]. These can be nontrivial issues to deal
with, particularly when one must consider the performance, as well as the functional
requirements, of the system.

D.1 The Rendezvous Concept

If concurrent threads were truly independent, life would be much less interesting.

Fortunately, threads must communicate to synchronize control or share resources.
Communication in object systems takes place via messages. Messaging is a logical
abstraction that includes a variety of rendezvous patterns, such as synchronous function call,
asynchronous, waiting, timed, and balking [15].

A telephone is a better analogy for synchronous communication. The sender now
waits until contact is made and the identity of the receiver verified before the message is sent.
If the receiver can reply immediately (that is, during the same call), the synchronization is
remote invocation. Because the sender and receiver ‘come together’ for a synchronized
communication it is often called a rendezvous [19].

D.2 Semaphores

Edsger Dijkstra [16] created the semaphore as one solution to the protection of critical
sections6. A semaphore is essentially a “lock” that serializes access to the resource it protects.
Dijkstra used the p() and v() operations to allow tasks to grab the resources if the semaphore
is free and to relinquish ownership of it, respectively. The p() operation returns only when the
resource is available; otherwise, it waits. Once the resources is available, the p() operation
locks the resource and call returns. The v() operation releases the lock and relinquishes
ownership. Semaphores are simple, lightweight abstractions, which may not provide the
behaviour richness required for more-complex resource sharing.

6 The code that must execute without interruption to avoid deadlocks and race condition

 23

E. Sharing Resources

Another common problem in concurrent systems is the robust sharing of resources.
Most correct solutions involve the serialization of access through mutual exclusion
semaphores, or queues [15]. In object systems, such access control may be done through
semaphore pattern. This can be indicated using the pattern notation of the modeling language
(if supported) or by adding {guarded} constraints on the relevant operation. Data corruption
can occur whenever there is nonatomic access to a data structure within a concurrent
architecture.

F. Predictability

A key aspect of many real-time systems is their predictability. This is a crucial for
many safety-critical and high-reliability systems, such as nuclear power plants, avionics
systems, and medical devices [15]. The predictability of a system is the extent to which its
response characteristics can be known in advance. This can be determined, in some cases, by
static mathematical analysis, such as rate monotonic scheduling (RMA). In other cases, it can
be ensured by disallowing pre-emption and using simple control algorithms, such as cyclic
executives. Using active objects to represent tasks and identifying the performance
characteristics of the tasks allows a variety of scheduling algorithms to be used. Another
aspect of predictability is with respect to memory. There are two orthogonal views of
memory: usage and persistence. In terms of usage, memory is typically thought of as divided
into several categories:

• Execution memory, where the executable code resides
• Data memory (Stack, Heap, Static)

In terms of persistence, most real-time developers categorize memory into:

• Non-writable persistent
• Writable persistent
• Volatile

In terms of predictability, the areas of concern are the stack and the heap. The stack is
the simplest. The developer must ensure only that the amount of stack space is sufficient to
hold the “automatic” variables and return address in all cases [15]. The stack is managed at
run-time by (compiler-generated) code as part of the protocol of subprogram calls [22]. This

 24

is relative simple to do. The heap is more challenging for a variety of reasons. Heaps usually
work by requesting a block memory from the operating system (through the malloc, or new
operators of the programming language) [15]. The heap is managed by the run-time system or
else by explicit user-provided code, reacting to allocation and deallocation requests [22]. Most
heapers managers do not require a constant (or even bounded) time to allocate a block of
memory. This is because most heap managers must traverse the free store to find a piece of
memory that can fulfill the pending request. This means that deadline can be missed.

A more insidious problem is memory fragmentation. Most heaps are nothing more

than large blocks of memory out of which blocks of any size can be allocated on a first-come-
first-served basis. Through the process of repeated allocation and deallocation, the free
memory heap can become fragmented into many small-isolated block. In such case, should a
request come in for a block that is bigger than any available free block, the request must be
denied, which can lead to catastrophic consequences [15].

2.2.3.4 Comments concerning the real-time applications

A reactive or event-driven system is one whose behaviour is primarily caused by
specific reactions to external events rather than being self-generated. A time-driven is one
whose actions are driven primarily by either the passage of time or the arrival of time epochs.
Time-driven systems are those primarily driven by periodic tasking rather than by the arrival
of periodic events [15].

A hard real-time system is required to produce the intended result before a specified
point of physical time, the deadline. This point of time is determined by the application the
computer system is intended to service. The controlling real-time software must be designed
to generate the correct behaviour of the computer both in the value domain and in the
temporal domain to meet this application requirement [20]. A soft real-time system is a
system whose operation is degraded if results are not produced according to the specified
timing requirements.

A schedulable system is one that can be guaranteed to meet all its performance
requirements [15]. A task7 is an encapsulated sequence of operations that executes
independently of other tasks. In a multitasking system, tasks are scheduled to run via a
scheduling policy. Most real-time systems use the priority of a task to control when it runs in
relation to other tasks that are ready to run. The priority of a task depends on the urgency of
the task completion and its importance. If multiple tasks are ready to run, then the task with

 25

the highest priority8 will execute preferentially. The scheduling policy of tasks may be either
event-driven (that is, the task depends on a awaited event) or time-driven (that is, the task
waits for its next scheduled start time to arrive). As a practical matter, most event-driven
systems respond to discrete events whose time is relatively unpredictable, while most time-
driven system deal with continuous control systems.

3 Development of the Spring Mass System

3.1 Start Situation

The general purpose of this undergraduate work was the investigation of the available
methodologies, techniques and tools to develop real time applications based on the LEGO
Mindstorms kit. In order to illustrate their characteristics, an application scenario with real
time characteristics was defined and implemented with the different tools.

Based on this purpose, this work can be divided into three parts, first we will
investigate the available methodologies and techniques based on the LEGO Mindstorms,
second we will investigate the available different tools to develop real time applications and
finally we will illustrate the methodologies, techniques and tools investigated with an
application scenario with real time characteristics.

The analysis method Use Cases has been used. In this context, one external actor is
present and the figure 8 shows a simplified diagram.

Microcontroller RCX

SensorsActuators

Programming Languages to
LEGO Mindstorms (LeJOS,

BrickOS, NQC)

Environment

Figure 8 - A simplified diagram

7 Some authors differentiate between a task (very encapsulated) and a thread (less well encapsulated). These may
be different in the coding level because they invoke different RTOS services.
8 Some RTOS treat the higher numerical value as the higher priority while others treat the lower numerical value
as a higher priority.

 26

The three programming languages to LEGO Mindstorms as described in section 2.2.2,
will download the programs to the microcontroller RCX and will be stored in a 6K region of
memory (depending of the sort of platform). The microcontroller will be used to control two
motors, one light sensor, one touch sensor and an infrared port. The unique actor named
“Environment” will interact with our application.

The application with real time characteristics will be develop similar the Hooke’s Law
for a simple spring-mass system. The motion of a body that oscillates back and forth is
defined as simple harmonic motion if there exists a restoring force F that is opposite and
directly proportional to the distance x that the body is displaced from its equilibrium position
[21]. This relationship between the restoring force F and the displacement x may be written as

kxF −= (1)

where k is a constant of proportionality. The minus sign indicates the force is oppositely
directed to the displacement and is always towards the equilibrium position. Whenever the
body is subject to such a restoring force and is caused to oscillate back and forth, the time for
one complete oscillation is defined as the period T and will be given by

k
mT π2= (2)

the frequency f of oscillations is the number of oscillations per unit time and is the reciprocal
of the period, f = 1/T, and is given by

m
kf

π2
1

= (3)

The maximum distance that the mass is displaced from its equilibrium position is
called the amplitude of the oscillation. In simple harmonic motion the period and frequency
are independent of the amplitudes of the oscillations.

There are a number of examples of bodies that undergo simple harmonic motion, and
one of the simplest is a mass suspended and set to vibrating on a spring [21]. When the mass
is hung on the spring and then displaced from its equilibrium position, it will oscillate up and
down. The motion of the mass will be simple harmonic motion because the spring supplies a

 27

force that is directly proportional to the displacement. The restoring force supplied by the
spring is always directed back towards the equilibrium position regardless of whether the
mass is above or below the equilibrium position. The constant of proportionality k is called
spring constant and can be found by subjecting the spring to an applied force and measuring
the amount that the spring stretches. The general property of matter, and springs in particular,
whereby an applied force Fa, causes a displacement x from the equilibrium position that is
directly proportional to the force, is known as Hooke’s Law [21]. The figure 9 exemplifies the
Hooke’s Law. Hooke’s Law may be stated as

kxFa = (4)

and may be used to calculate the spring constant k. For equal displacements, the applied force
and the restoring force are equal and opposite. Therefore, Hooke’s Law provides the
conditions for simple harmonic motion and the spring constant can be used with Equation (2)
to measure the period of a mass vibrating on a spring.

Figure 9 - Hooke’s Law

The robot will be the object connected the spring and the spring base will be a unit
with reflection properties. The spring will be imaginary and the spring constant (k) will
undergo a value defined by us.

 28

Unit with
Reflection
Properties

Figure 10 - Spring-Mass System with LEGO Mindstorms

The infrared port will send signals periodically and the light sensor connected in front
of the robot will detect the fluctuations as well as possible. A unit with reflection properties
will cause the fluctuations detected by light sensor. When an object with reflection properties
is closer than the base distance the robot will drive backwards with the use of two motors
coupled and after will oscillate back and forth as a simple harmonic motion with a period T
for one complete oscillation. Whether an object with reflection properties is more distant than
the base distance, the robot will drive forwards and after will oscillate back and forth as a
simple harmonic motion with a period T for one complete oscillation. Whether there is an
obstacle behind the robot the touch sensor connected behind them will stop the execution of
the process and will generate sounds until the obstacle is removed.

The spring-mass system with Lego Mindstorms will perform a soft real time system in
which there are no explicit deadlines. The data acquisition system will measure the signals
from the sensors at regular intervals but to tolerate intermittent delays.

3.2 Fundamental Design Decisions

As we already know, an application scenario with real time characteristics must be
defined and implemented with the different tools. This application implies in activities (tasks)
that will be executed in parallel. The infrared port will send signals periodically and the light
sensor connected in front of the robot will detect the fluctuations as well as possible. When an
object with reflection properties is closer than the base distance the robot will drive to
backward until no fluctuations have been detected and then will oscillate back and forth as a
simple harmonic motion with a period T for one complete oscillation. Whether an object with
reflection properties is more distant than the base distance the robot will drive to forward until
no fluctuations have been detected and then will oscillate back and forth as a simple harmonic
motion with a period T for one complete oscillation. Whether there is an obstacle behind the
robot the touch sensor connected behind them will stop the execution of the process and will
generate sounds until the obstacle be removed. All these described functions will correspond
to software components.

 29

The software components that realize all functionalities are described below:

• Send signal component;
• Check signal component;
• Oscillate component;
• Detect obstacles component;
• Play sound component.

3.3 System Architecture

3.3.1 System Overview

In the following diagram, an overview of the system architecture is presented.

Firmware

Microcontroller
Hitachi H8

Sensors (light,
touch, rotation and

temperature)

Actuators (Motors
and Infrared)

Sensors and
Actuators

Task Send
Signal

Task Check
Signal

Task Detect
Obstacle

Task Play
Music

Operating System

Algorithms

Task Oscillate

Figure 11 - System Architecture overview

The operating system that will be used (RIS, BrickOS, LeJOS) will provide an API to

all the RCX sensors and actuators. The algorithms were written in NQC, C++ and Java.
Figure 12 depicts all programming languages and operational systems that will be responsible
by the functionality of the system.

 30

Applications

Processes,
threads, tasks, ...

Hardware

Sensors and
Actuators

Not Quite C C++ Java

Robotic
Invention
System

BrickOS LeJOS

Microcontroller
Hitachi H8

Sensors (Light,
Temperature, Rotation

and Touch)

Actuators (InfraRed,
Motors)

Figure 12 - Operating Systems and Programming Languages

3.3.2 State Diagram

Send signal to the
environment

Waiting for new
interrupt Drive robot

Stop robot

Oscillate

periodically
sginals receive an interrupt no fluctuations

robot blocked

waiting interrupt

robot unblocked

play sound

Start

Figure 13 - State Diagram

The correspondence between state diagram and software components are presented in

table 2:

Table 2 - Relationship between the state diagram and the software components

States of the diagram Software components
Send signal to the environment Send signal

Waiting for new interrupt Check signal
Drive robot Check signal
Stop robot Detect Obstacle
Stop robot Play sound
Oscillating Oscillate

 31

3.4 Software Components

3.4.1 Send Signal

The main function of this component is to send signals periodically to the environment.
This Send signal component will be written in three different programming languages as
presented in the System Architecture document. A light sensor connected in front of the robot
will detect the fluctuations as well as possible. The value of the sensor will be displayed on
the LCD (Liquid Crystal Display) with the same frequency that the signals are sending to the
environment. The three programming languages provide different methods to send data over
the infrared and access the LCD, table 3 and 4 depicts the different methods.

Table 3 - Methods to send a signal to the environment

Programming
Languages

Send Data Description

NQC SendMessage(int msg) Send data to the receiver. We
can to send a value between 0

and 255
BrickOS Int send_msg(unsigned char msg) Send a message to the receiver
LeJOS Boolean sendPacket(byte[] buffer, int

offset, int count)
Sends packets to the receiver.

Table 4 - Methods to have access to LCD

Programming
Languages

Method Description

NQC SelectDisplay(mode) Select one of 7 display modes: 0:
system watch, 1-3: sensor value, 4-
6: output setting. Mode may be an

expression.
lcd_int(int I) Display an integer in decimal

Lcd__unsigned(unsigned int u) Display an unsigned value in
decimal

Lcd_clock(int t) Display a clock. Passing an
argument of 1015 will display 10.15

BrickOS

lcd_digit(digit d) Display a single digit right of the
man symbol

LCD.setNumber(int aCode, int
aValue, int appoint)

Sets a number to be displayed in the
LCD

LeJOS

LCD.showNumber (int aValue) Shows an unsigned number on the
LCD. The parameter aValue is an

unsigned number in [0, 9999]

To achieve a given frequency in which the signals are sent to the environment, a delay
statement is necessary and the programming languages provide the following methods
depicted in table 5.

 32

Table 5 - Delay Methods

Programming
Languages

Method Description

NQC Wait(int time) Wait for the specified amount of time
in 100ths of a second. Time may be

an expression
BrickOS sleep(long aSeconds) and

msleep(long aMilliseconds)
Wait for the specified amount of

time. The sleep statement in seconds
and msleep statement 100ths of a

second. Time may be an expression
LeJOS Thread.sleep(long

aMilliseconds)
Wait for the specified amount of time
in 100ths of a second. Time may be

an expression

The RCX is a typical example of real-time system. A real-time clock is necessary
because the input sensor signal must be sampled in a regular interval. Thus, the RCX has to
incorporate time in its actions in two scales:

• Macroscopic real-time aspects:

1. The duration of motors-on signals and the positioning of the robot are directly
interrelated;

2. Most meaningful robotic strategies have to make use of delays and time-outs at some
point;

3. The reaction time has to be bounded – for example, motors must stop quickly after an
obstacle is hit;

4. The sampling time of sensors has to be short enough – for example, if a light sensor is
used to detect whether a black line is crossed, the necessary sampling rate depends on
the environment (line width) and on the robot (speed).

• Microscopic real-time aspects:

1. The motors are controlled using pulse-width-modulation.
2. The speaker must be able to generate various frequencies.

The RCX is controlled by a digital CPU, but still quite different from a non-embedded

computer. The table 6 and 7 depicts the contrasts.

 33

Table 6 - The RCX is a typical embedded system

 RCX Laptop
Applications Robot Control “General purpose” Office

applications, SW development and
etc.

Cost € 220,00
Includes SW and building material

for a robot

€ 1.300,00
Barely any SW, no peripherals.

Size 6.5 x 3.5 x 9.5 = 216 cm3 31.0 x 3.5 x 26.5 = 2875 cm3
Weight 220 g 2850 g
Power 6 AA batteries 16V, 4.5A (72W) transformer

SW Updates To be avoided No problem

Table 7 - RCX VS. LAPTOP – Hardware Comparisons

 RCX Laptop
CPU Hitachi H8 (8-Bit microcontroller) Pentium III (32-Bit

microprocessor)
Speed 16 MHZ 800MHZ
RAM 32 KB 192 MB
ROM 16 KB 192KB

Addl. Storage None 20 GB hard drive
Display 1 x 3 cm2 LCD 28.5 x 21.5 cm2 = 613

cm2 TFT
Keyboard 4 buttons 94 buttons + mouse
Further 3 sensor, 3 actuators USB, serial, parallel, Ethernet,

modem
Interface IR port, speaker PCMCIA, int./ext. speakers,

int./ext. mike, ext. monitor, ext.
keyboard/mouse, CD/DVD,

floppy, IR Port

As depicted in table 6 and 7, different requirement deal differences in design. The
RCX is a typical example of embedded system and must by definition respond to real-world
events. In the real world, and in the systems controlled by embedded system, things happen
concurrently: in a car, the four wheels spins and the motor runs, all at the same time.
Consequently, the fundamental notion in embedded system is concurrent behavior of the
software, and of the system that the software controls.

The figure 14 depicts a schematic of a real-time computing. The software which
controls the operations of the system can be written in modules which contain the algorithms
necessary for physically controlling the devices and a module to retrieve and display the
sensors and actuators changes.

 34

Microcontroller RCX

ActuatorsSensors

Time

Time

Time

Figure 14 - Real-time computing

Our real-time application must take in account the real-time features provided by the
programming languages and operating systems. Different programming languages and
operating systems provide different real-time features and table 8 depicts the following
characteristics:

Table 8 - Real-time features

Priority Real-time features NQC BrickOS LeJOS
1 Timeliness ++ ++ ++
2 Responsiveness ++ ++ ++
3 Correctness + ++ ++
4 Requirements for Concurrency ++ ++ ++
5 Sharing Resources 0 ++ ++
6 Predictability + ++ +

++ → Very good; + → Good and 0 → Absent

NQC stands for Not Quite C and is a programming environment developed by Dave
Baum [5]. NQC compiles the same byte code that the standard RIS language produces. The
timely compilation of input data, data processing and delivery of output data can be achieved
in NQC (timeliness). NQC suffers from some of the limitations of the standard RIS firmware:
there is only integer arithmetic (the firmware lacks floating point). There are many
applications that do not require floating point, but depend only on the logical result of the
computation (correctness) and the time at which the results are produced (timeliness). All
variables in NQC are 16-bit integer, and the amount is severely limited: the RCX firmware
allows up to 32 global variables. NQC provides classes and methods to interact with the
sensors and actuators (responsiveness).

The NQC language includes inline functions9, including arguments, but those
functions cannot have return values. NQC also allows subroutines – which are not inline, thus

 35

9 One means of reducing the overhead is to substitute the code for the subprogram “inline” whenever a call of
that subprogram is made and allows the programmer to use subprograms but not incur the run-time overhead.

saving scarce RAM – but subroutines cannot take parameters and cannot call other
subroutines. The RCX is limited to 8 subroutines. NQC extends C in adding “tasks”, which
run as concurrent threads in the RCX hardware (requirements for concurrency), but it
supports up to 10 concurrent tasks. The table 8 summarizes the real-time features described
above and assigns a priority to each one in compliance with the application developed. NQC
is free software available under the Mozilla public license, and runs under Mac OS and
Windows.

BrickOS created by Markus [6] is a multi-tasking operating system running on the
RCX hardware and providing an API to all the RCX sensors and actuators. BrickOS comes
with firmware that replaces the original RIS firmware and provides a library of system calls
for use in a C++ program for the RCX. The timely compilation of input data, data processing
and delivery of output data can be achieved (timeliness). The interaction with the sensors and
actuators make capable to develop control system use environmental feedback to ensure that
the control loop is acting properly (responsiveness). BrickOS provides only the basic Portable
Operating System Interface (POSIX) functionality: process management, event notification
and counting semaphore. BrickOS provides mechanisms by which tasks are created
(requirements for concurrency) and can be assigned priority numbers to tasks (fixed priority).

Another problem in concurrent systems is the robust sharing of resources. BrickOS
provides the use of semaphore to serialize the direct access to the resources (Sharing
Resources). The more common aspect of predictability is with respect to schedulability and
memory management. Embedded systems usually do not provide sufficient memory to the
user program. The micro-controllers that are used in embedded applications have the amount
of memory in the range of KB and the RCX microcontroller is a good example. The operators
malloc10 and free provide means to execute the dynamic allocation of memory but especially
in embedded real-time applications, the dynamic allocation represents a negative point
because the availability of memory as described above. For example, the operator malloc raise
an exception if there is no available space to create an object. Creating objects on the stack is
the most efficient way to allocate storage for objects and to free that storage. Creating objects
on the heap can be much more expensive. BrickOS provides means to implement scheduling
methods and create objects on the heap. BrickOS is free software available under the Mozilla
public license, and runs under Linux, Unix and Windows.

LeJOS software created by Solorzano [7] is an implementation of part of the Java
Virtual Machine (JVM) running on the RCX hardware. LeJOS comes with firmware that
replaces the original RIS firmware; the new firmware implements many core Java classes,

10 C’s standard library routine for storage allocation. It takes the number of bytes required and returns a pointer
to a block of that size. Storage is allocated from a heap, which lies after the end of the program and data areas.
Memory allocated with malloc must be freed explicitly using the free routine before it can be re-used.

 36

including integer and floating arithmetic, memory allocation, strings, threads, and exceptions.
The timely compilation of input data, data processing and delivery of output data can be
achieved (timeliness). LeJOS provides classes and methods to interact with the sensors and
actuators (responsiveness). LeJOS provides the mechanisms by which threads are created
(requirements for concurrency) and can be assigned priority numbers to tasks (fixed priority).

Hence any class that wishes to express concurrent execution must implement the
predefined class java.lang.Thread and provide the run method. LeJOS is free software that
runs under Linux, Unix and Windows.

Our application requires only the following real-time features: timeliness,
responsiveness, correctness, concurrency and sharing resources. The application must react to
the inputs signals from the system’s environment and deliver output signals to influence in the
environment. Several computation processes must be executed simultaneously.

Figure 15 depicts a schematic of the robot using the infrared port to send signals
periodically to the environment.

Figure 15 - The robot using the infrared and the light sensor

3.4.2 Check Signal

The “Check signal” component is responsible to drive the robot. A unit with reflection
properties will cause the fluctuations detected by the light sensor. The light sensor has a red
LED and a light-sensitive diode that responds to infrared light. The light sensors usually are
used to read the difference between light and dark areas. For our purpose, this can be used to
detect dark object against a light background. An initial value is stored in a variable to work
as a base distance between the robot and the unit with reflection properties.

 37

The robot will move with two motors, each one connected in one wheel, for this
purpose the programming languages provide different methods to control the motors speed,
table 9 and 10 depicts such contrasts.

Table 9 - Motors Control

Programming
Languages

Set power Set direction/turn on the
motors

Turn off the
motors

NQC SetPower(‘motors’,
‘power’);

OnFwd(‘motors’);
OnRev(‘motors’);

Off(‘motors’);

BrickOS Motor_a_speed(unsigned
char speed);

motor_b_speed(unsigned
char speed);

motor_c_speed(unsigned
char speed);

motor_a_dir(MotorDirection
dir);

motor_b_dir(MotorDirection
dir);

motor_c_dir(MotorDirection
dir);

motor_a_dir(off);
motor_b_dir(off);
motor_c_dir(off);

LeJOS Motor.A.setPower(int
aPower)

Motor.B.setPower(int
aPower)

Motor.C.setPower(int
aPower)

Motor.A.forward();
Motor.B.forward();
Motor.C.forward();
Motor.A.reverse();
Motor.B.reverse();
Motor.C.reverse();

Motor.A.stop();
Motor.B.stop();
Motor.C.stop();

Table 10 - Comments regarding the motors control

Programming
Languages

Advantage Disadvantage

NQC Allows high level coding – for
example “motor off” instead of
“increment X” (decrease space

requirements)

Provide methods to deal with 8
different power levels (0 = no

power = off and 7 = full power)

BrickOS Provide a fine grained control of
the motors speed

No disadvantage. Provide
method to deal with 256

different power levels (0 = no
power = off and 255 = full

power)
LeJOS The public class motor work like

the NQC in terms of motors speed
The disadvantage is the same

presented to NQC

In reality using the power level make big differences, especially when the motors are
not heavy loaded. The programming languages provide different ways to work with the light
sensor, table 11 depicts such contrasts. Figure 15 depicts the use of the light sensor and the
motors in our application.

 38

Table 11 - Modes to operate with the light sensor

Programming
Languages

Light sensor mode

NQC There are two modes raw and percent
BrickOS There are two modes active and

passive
LeJOS There are two modes raw and percent

In front of the light sensor brick, there are two components in the brick. The first is the

actual light detector, and the second is a small light source. The idea is that the light is turned
on whether we desired to find something reasonably close, which will have a big difference in
reflectivity from the surrounding. This will amplify the difference between the light and dark
(much like shining a flashlight on something). Our application works with this mode. If we
desired to judge the environment (finding a white spot on the wall a distance away) the built
in light may interfere.

As depicted in table 11, NQC and LeJOS work with the same mode. Percent mode is
the most useful mode for light sensors and we will have values between 0 and 100. Raw mode
works, but jumps around an average value, in this case we will have values between 0 and
1024.

BrickOS work with active and passive mode. In active mode, the light sensor currently
returns values between roughly 50 and 300. However, this may be fixed soon, so that light
scales more linearly between 0 and 100. In passive mode, the sensor itself is powered, and
different values (between 220 and 280) will occur. They are also not as stable as when the
sensor is in active mode. It is quite possible that our range will be different than this for any
number of reasons: one of them is when the battery is low.

3.4.3 Oscillate

The “Oscillate” component is responsible to oscillate the robot to back and forth. When
the light sensor value is larger than the base distance the robot will drive backwards until no
fluctuations have been detected and then will oscillate back and forth as a simple harmonic
motion with a period T for one complete oscillation. When the light sensor value is smaller
than the base distance the robot will drive forwards until no fluctuations have been detected
and then will oscillate back and forth as a simple harmonic motion with a period T for one
complete oscillation.

 39

3.4.4 Detect Obstacle

The “Detect obstacles” component is responsible to block the robot. Whether there is an
obstacle behind the robot, the touch sensor connected behind it will stop the execution of the
processes. When the touch sensor is released the robot keep going its normal execution.

The touch sensors are basically switches, they are open (sensor released) or closed
(sensor pressed). The programming languages provide different modes to operate with the
touch sensor, table 12 depicts the differences.

Table 12 - Modes to operate with the touch sensor

Programming
Languages

Touch sensor mode

NQC There are five modes: Boolean, Raw, Percent, Pulse, Edge mode
BrickOS There is only the Boolean mode
LeJOS There are five modes: Boolean, Raw, Percent, Pulse, Edge mode

As depicted in table 12, NQC and LeJOS provide the same modes to work with the

touch sensor and BrickOS provide only one mode. Table 13 depicts the five different modes.

Table 13 - Touch sensor modes description

Mode Description
Boolean Values 0 and 1 correspond to released and pressed state.

Raw Values are above 1000, when the sensor is released, and below 200, when it is
pressed.

Percent We will see values between 0 (released) and 100 (pressed), in contrast to raw
mode, percent mode gives a stable reading and does not depend on the specific

sensor exemplar.
Pulse It is based on Boolean mode and counts the transitions from 1 to 0. This

corresponds to touch sensor releases.
Edge Almost the same as pulse mode but counts all transitions from 0 to 1 and back.

In our application we will use the Boolean mode, because it is the most useful mode for

touch sensor. Pulse mode makes sense for touch sensor but the pulse mode (as well as edge
mode and angle mode) returns an accumulated value, not the current state of a sensor.

3.4.5 Play Sound

The “Play sound” component is responsible by sounds generation. When the touch
sensor is pushed the robot will generate sounds until the obstacle be removed. When the
obstacle has been removed the processes will be released again.

 40

The programming languages provide basically the same modes to operate with the
sound, they plays a sound with a given frequency and duration, table 14 depicts the methods
used to operate the RCX sound.

Table 14 - Sound Methods

Programming Languages Method
NQC PlaySound()

BrickOS Sound::beep()
LeJOS Sound.beep()

The methods depicted in table 14, play a sound with a given frequency and duration.

Frequency is audible from about 31 Hz to above 10000KHz. The duration argument is in

100
1 of a second. To achieve such frequency a delay statement is necessary and table 5

described in subchapter 3.4.1 depict the property of each method.

3.5 Test Specification

3.5.1 Introduction

Multiple tests had to be realized during the whole implementation phase and also at
the end of the integration phase, to analyse whether the system requirements were kept. In the
next subchapters we give more details regarding the execution of these tests.

3.5.2 Test Requirements

The test of the software components described in System Architecture and Components
Specification require the following elements:

• 1 Unit with reflection properties.
• 2 Light Sensors.
• 1 Touch Sensor.
• The Lego robot with the batteries properly charged.
• The software must be previously installed on the RCX microcontroller.

The real-time application was implemented in three different programming languages
and the performance provided for each one was compared. Te running functionality of the
monitoring application was also checked. It was done displaying the exact monitored value of
the light sensors connected in front of the robot.

 41

Additional test requirements are:

• The test was realized in the IAS, within different environment because we had to realize

the test with different light flows.

All functionality provided by the software was tested.

3.5.3 Test Methods

To test the functionality of the software system, the Black box test method is employed,
i.e., the test object is considered as a black box. The person who tests the application is not
interested in the implementation details. He or she is only interested in the inputs and outputs
of the system.

The robot will be placed in a position and the unit with reflection properties will be
placed in a certain distance of the robot. When the software is initiated, the initial value of the
light sensor is stored in a variable and the robot will have a base distance to control the
fluctuations caused by the displacement of the unit with reflection properties.

During these the following information must be considered:

• Our real-time application is not interested in how much the robot has moved, we are

interested in the difference between the base distance and the displacement detected by the
light sensor, only this variation and not how many centimeters or meters the robot has
moved.

• The velocity of the displacement should be taken into account because the light sensors
have many limitations related the read values.

• The light sensor usually jumps around an average value and then its oscillation becomes
difficult to be fulfilled.

• The robot should detect the presence of collision using the touch sensor connected behind
it.

3.5.4 Test Criteria

The test will be considered successful whether the following conditions are fulfilled:

 42

• The robot detects the displacement caused by the obstacle with reflection properties and
drive according with its displacement.

• The robot oscillates according the fluctuations detected by the light sensors.
• The robot detects the presence of obstacles behind it.
• The robot generates sounds when an obstacle is detected.

3.5.5 Test Cases

We have to test the following cases to see if our software keeps the system
requirements.

• The robot must drive according with the displacement caused by the unit with reflection

properties. When the unit with reflection properties is closer than the base distance, the
robot must drive backwards. Whether the unit with reflection properties is more distant
than the base distance the robot must drive to forwards.

• The robot must oscillate according with the fluctuations detected by the light sensors. After
that no fluctuations have been detected by the light sensor, the robot must oscillate back
and forth as a simple harmonic motion.

• The touch sensor will detect the presence of an obstacle behind the robot and it will be
blocked until no obstacle is detected. When no obstacle has been detected the robot must
back to its last execution point.

• When the touch sensor detects an obstacle, the robot must generate sounds with a certain
frequency to the environment. When the touch sensor is released the generate sound must
be released as well.

3.5.6 Test results

In this subchapter we will shortly describe how were the results of the Test
specification from subchapter 3.5.

During the development phase the test cases from subchapter 3.5.5 were considered.
We could observe, that all the tests that were planned were successfully realized. Therefore,
the software could be completed and integrated in the whole system.

The test showed also that the efficiency of the oscillation is strongly depended of the
environment. Light flows not continuous prejudice the oscillation component performance.
When the unit with reflection properties was closer than the base distance, the robot drove

 43

backwards and when the unit with reflection properties was more distant than the base
distance the robot drove forwards.

The robot has detected the presence of obstacle behind it. When the robot has detected
an obstacle it has blocked all process related with the motors and has generated sounds to
indicate the presence of an obstacle.

I would like to remark, the light sensor that comes with the Lego Mindstorms kit has

many limitations. We have used in our application 2 light sensors to detect the fluctuation as
well as possible because sometimes the light sensor value jumps around an average value.
Even so, using two light sensors we do not have a good fluctuation detected. For example,
when a short displacement is caused the robot oscillate back and forth as simple harmonic
motion and after few seconds the robot stop to oscillate.

4 Using the Software

4.1 Installation

4.1.1 Prerequisites

For the operation of the system we will use the operating system Microsoft Windows
XP, Home Edition, Version 2002 installed on the PC desktop. NQC is free software
developed by Dave Baum [5] and available under the Mozilla public license, and runs under
Mac OS and Windows. BrickOS is free software developed by Markus L. Noga’s [6]
(BrickOS project is in transition from legOS to the new name BrickOS) and available under
the Mozilla public license, and runs under Linux, Unix and Windows. LeJOS is free software
developed by Jose Solorzano [7] and available under the Mozilla public license and runs
under Linux, Unix and Windows.

4.1.2 Accessing the embedded microcontroller of Robot

Before installing any programming environment, you must to have a medium to access
the Lego embedded computer. The IR tower is responsible for sending data from PC to
microcontroller RCX and receives data from RCX microcontroller to PC. The communication
between two RCX is also possible. The Lego Mindstorms basic kit comes with CD-ROM that
install the IR Tower and all software to run the Robotic Invention System (RIS). The NQC
programming language use the same firmware that comes with LEGO Mindstorms kit and it

 44

needs some packages of this software. You have to install the software that comes with LEGO
Mindstorms as well as the IR tower.

When you develop your software in the programming languages you need to send it to
the RCX over the infrared port. The distance between the IR Tower and the RCX must be
taken into account. Our advice is to set the distance between the RCX and the IR Tower as far
as possible. If you have already installed the LEGO USB Tower (the USB tower does not
require the use of batteries) the figure 16 shows how could set it property. The data baud rate
can be set in the Advanced tab control but our advice is to accept the default value.

Figure 16 – LEGO USB Tower

4.1.3 NQC Installation

NQC was developed as a command-line tool, but others programmers have created
Integrated Development Environments (IDEs). They provide a nice user interface on top of
the standard NQC compiler. They also add features such as remote control of the RCX,
syntax highlighting, etc. We have used Bricx Command Center. For Bricx Command Center
installation you have to follow these steps:

1. You must download the Bricx Command Center software [5].
2. You have to execute the file bricxcc_setup_3375, which you have downloaded.
3. The next step requests your name and company.
4. The location to install the software can be set.
5. In the next step the type of the installation is requested. For this purpose, we have used the

typical installation.

 45

6. The last step request a new folder name or selects an existing one from the existing folder
list.

When the Bricx Command Center has been installed you will see the figure 17 with a

project opened by us to show the highlighting.

Figure 17 - Bricx Command Center Environment

4.1.4 BrickOS Installation

The installation of Cygwin 1.3.x or newer version is necessary to run the BrickOS. We
have used the version 1.3.20. Cygwin is a Linux-like environment for Windows. It consists of
two parts:

1. A DLL (cygwin1.dll) that acts as a Linux emulation layer providing substantial Linux API
functionality.

2. A collection of tools, which provide Linux look and feel.

The Cygwin DLL works with all non-betas, none "release candidate", ix86 versions of
Windows since Windows 95, with the exception of Windows CE. There have also been
reports of problems on Windows Server 2003.

 46

To install all software to run the BrickOS you have to follow these steps:

1. Download the latest cygwin version from Cygwin site[4].
2. You must choose which modules you need to download and setup. Table 15 present a

minimal list (but probably some modules could be removed as well) that was tested and
works.

3. Open a cygwin bash shell window (you can open it using Start->Programs->Cygnus
Solution->Cygwin Bash Shell).

4. Make a new directory with the command line mkdir /build.
5. Download gcc 2.95.2 (or a newer version) sources [5] and save in c:\cygwin\build.
6. Download binutils 2.10.1 (or a newer version) sources [6] and save in c:\cygwin\build.
7. Download the building scripts [7] and put it in the same directory as above. Unzip them to

produce a shell script (buildgcc.sh) and two diff files.
8. Build the cross compiler with the two command line, first cd /build (enter) and after

./bluidgcc.sh (enter).
9. Download the brickos-0.2.6.10.tar.gz [2] and save in c:\cygwin.
10. Type the two command lines, first cd/ (enter) and after tar xvfz brickos-0.2.6.10.tar.gz

(enter).
11. Type the two command lines cd /BrickOS (enter) and after ./configure;
12. Type more two command lines cd util (enter) and after make strip. Now you PC is set to

run the BrickOS program.

Table 15 – Modules to download and install the cygwin
Ash Autoconf Automake Bash Binutils Cpio

Cygwin Diff File Fileutils Findutils Flex
Gcc Grep Less Login Make Mingw
Sed Shellutils Tar Textutils Time W32api

4.1.5 LeJOS Installation

In order to install the LeJOS follow these steps:

1. Download LeJOS software [7].
2. Unzip the file you have downloaded. A top directory, lejos, is already provided.
3. Set RCXTTY to the IR USB port, e.g. set RCXTTY=usb.
4. Both the JDK’s and leJOS’ bin directories should be in your PATH.
5. Under Windows 95/98, you might want to create a batch file that sets these variables, and

specify that batch file in the Program properties of a DOS console shortcut; or set them in
C:\AUTOEXEC.BAT.

 47

We have used the software Eclipse [12] as an Integrated Development Environment to
develop our application. The Software Eclipse is free and can be set to leJOS. In order to set
the Eclipse and LeJOS follow these steps:

1. Download the plug in org.leJOS_1.0.2.zip[13] and save in c:\eclipse\plugins.
2. In the Eclipse software go to the leJOS preference page, using Window->Preferences-

>Lejos page. The figure 18 shows the window.

3. Make the installation path point to a valid LeJOS installation. You can use the directory
dialog or type directly the location.

4. Configure the RCX tower communication port (com1, com2 or USB) and data transfer
speed. Fast mode and com1 are the default.

5. You can write your programs in the Eclipse software as well as to download the firmware
and the byte code to the RCX microcontroller over the IR Tower. Figure 19 shows the
LeJOS menu in the software Eclipse.

Figure 18 - LeJOS preferences

 48

Figure 19 - LeJOS menu

4.2 Operation

Whether you have already successfully installed the needed programs, you can use the
robot for our applications in a very easy way.

4.2.1 Preparation of the robot

You have to follow these steps:

1. The Lego robot with the batteries properly charged.
2. The firmware and software must be previously installed on the RCX microcontroller.
3. The robot should be tested within an environment that a light flow is continuous.
4. An obstacle with reflection properties should be used (we have used a mouse black pad).

 49

4.2.2 Running NQC programs

In order to run NQC programs you must first to follow the steps depicted in section
4.1.3. You can write your programs in the Bricx Command Center and download to RCX
microcontroller. To do this follow this steps:

1. Click in Start -> Programs -> Bricx Command Center -> Bricx Command Center. A
window will request the port and firmware that you desired to work. The figure 20 shows
this window.

2. In the Bricx Command Center click in File -> New to edit new software.

3. After that you have already written your program you can save in a directory that you
desired clicking File -> Save.

4. Now you have to download the firmware that comes with the Lego Mindstorms kit. Click
in Tool -> Download Firmware (Whether you are using the RIS 2.0, the name of this file
is firm0328.lgo). This process takes about 5 minutes.

5. Click in Compile -> Compile or press F5 to compile your software.

6. Click in Compile -> Download or press F6 to download your software to RCX
microcontroller. You can also download and run the software clicking in Compile ->
Download and Run or press Ctrl + F5. This process takes about 1 minute depending the
size of your program. Now you can run your application.

Figure 20 - Searching for the brick

 50

4.2.3 Running BrickOS programs

In order to run BrickOS programs you must first follow the steps depicted in section
4.1.4. We have used the Visual C++ IDE to write our application. To run the BrickOS
programs follow these steps:

1. Write your program in Visual C++ or other Integrated Development Environment that
support the C++ programming language. Thus, you can use the highlighting code to
facilitate the software development.

2. Create a directory inside the c:\cygwin\ brickos-0.2.6.10 and save your programs with the
extension *.C.

3. Copy the file Makefile from the directory C:\cygwin\brickos-0.2.6.10\demo to the
directory in which you have saved your program.

4. If there is no firmware stored in the RCX then you must go to the directory
C:\cygwin\brickos-0.2.6.10\util and download the firmware to the RCX microcomputer
with the command line ./firmdl3 ../boot/BrickOS.srec. This process takes about 5 minutes
and it is done only one time, this means that if you turn off the RCX, the firmware will
keep on doing stored in the memory.

5. The programs written with the extension *.C must be compiled to produce the files with
the extension *.lx. The command makefile Name_of_the_file.lx is responsible for this
process.

6. Now you can download your program to the RCX with the command line ./dll ../Your_
Directory/Name_of_the_file.lx. This process takes about 30 seconds depending the size of
your program. Now you can run your application.

4.2.4 Running LeJOS programs

In order to run LeJOS programs you must first to follow the steps depicted subchapter
4.1.5. We have used the Eclipse Software to write our application. To run the LeJOS
programs follow these steps:

1. Open the file eclipse.exe from the directory c:\eclipse.
2. Click in File -> New -> Project.
3. You have to select the leJOS Wizard as shows in figure 21. The wizard looks like the Java

wizard: just type a project name, add some library whether you wish. Do not care about

 51

the LeJOS libs (classes.jar, rcxrcxcomm.jar, pcrcxcomm.jar), they will be added
automatically.

4. Switch to a Java perspective and create new Java files in that perspective. For now, the
leJOS menu only appears when editing a Java file. As stated before, the menu allows you
to download the firmware and the current file (which must provide a main method). It also
provided a quick shortcut to the preference page.

5. Click in File -> Save and choose a directory that you desired to save your project.
6. Click in LeJOS -> Firmware Download to download the LeJOS firmware. The figure 22

shows this window in progress. This process takes about 5 minutes.
7. Now you can download your program to RCX microcontroller clicking in LeJOS -> Byte

code Download and figure 23 shows this window in progress. This process takes about 2
minutes depending the size of your program. Now you can run your application.

Figure 21 - LeJOS project Wizard

Figure 22 - Firmware Download

 52

Figure 23 - Byte code Download

4.3 Control Elements

The RCX contains an LCD with a programmable 4-digit section. It can be set to
monitor a value (e.g. a timer) continuously with only a single command. The display also
shows the current execution state (program running/not running), the fill state of the datalog,
the number of the currently selected slot, the state of the motors, and the state of connected
touch sensor (small triangles that show up when a sensor is pressed).

The four buttons on the RCX are titled On/off, Run, Select, Prgm and View as shown
in figure 24. The on/off button should be self-explanatory. The Prgm button allows to cycle
through five program slots. The program in the currently selected slot (if present) can be
started using the Run button. Finally, the View button allows displaying the values of
connected sensors in the 4-digit section mentioned above.

Figure 24 - The display and buttons of the RCX

4.3.1 Batteries

This is very important aspect our application. Without the batteries properly charged,
the robot will not work correctly or could even no longer work. The Oscillate component is
done with delay statement to synchronization of the simple harmonic motion. The motors
speed is extremely affected by the flow current supplied by the batteries. Therefore you must
to check whether the voltage is about 9V. The batteries also affect the sensors value.

 53

For touch and temperature type input, the RCX has a 10KΩ resistor pulling up the
input to 5V. For light and rotation type input, the RCX has a 120Ω resistor pulling up to 8V
(probably a diode drop from the battery voltage) to power the red LED about 3ms and then
looks at the sensor voltage during a short 0.1ms time. In other words, whether the batteries are
under 8V the light and rotation sensors will not work correctly and under 5V the touch and
temperature sensor as well.

4.4 Functions

The purpose of our software is an application with real-time characteristics
implemented with different programming languages. The three programming languages
provide different ways to interface with the sensor, actuators and LCD. The spring mass
system that was developed in this work is an example of event-driven system whose
behaviour is primarily caused by specific reactions like the presence of any obstacle or the
displacement of the unit with reflection properties.

5 Conclusion and Outlook

5.1 Summary

5.1.1 Introduction

The microelectronic evolution and the CPUs becoming cheaper, smaller, faster and
more reliable, so their range of application widens. The main functions in many modern
devices are smaller computers that are embedded. These computers are different from ours
computers that we have at home, they are designed to perform a main task and it is not
necessary to have a hard and floppy disk and keyboard. For instance, household,
communication and maintenance devices only become functional using integrated
microprocessor-based controls. A microprocessor-controlled wash machine is a good
example, which the prime function is to wash clothes, but it depends which clothes will be
washed, then there are different “wash programs” that must executed. These types of
computer application are examples of real-time and embedded.

In compliance with the embedded system, the fields of Robotics have been fruitfully
interacting at the research and development level for many years. Unfortunately, until recently
two factors combined to seriously limit the use of this programming tool. The first was the
high cost of robotics kits (often $5000 apiece in the early 1990s), and the second was the lack
of a framework for comprehensively integrating robotics [27]. We have demonstrated in my

 54

undergraduate project that LEGO Mindstorms has become a suitable platform to develop real-
time applications according with its limitations.

Apart from the standard software delivered with the Mindstorms kit, several
independent groups have released development environments and operating systems to the
RCX microcomputer. Thus, the goal of my undergraduate project was the investigation of the
available methodologies, techniques and tools to develop real time applications based on the
LEGO Mindstorms kit. In order to illustrate their characteristics, an application scenario with
real time characteristics was defined and implemented with the different tools.

5.1.2 Programming languages comparison to the LEGO Mindstorms

The core of my undergraduate project was to analyze the programming languages
available to the LEGO Mindstorms taken into account the real-time features. There are many
programming languages available to work with LEGO Mindstorms kit and we had to consider
many aspects that influence in development of real-time applications and it was not as easy as
expected.

There has been a long debate among programmers, language designers and operating
system designers as to whether it is appropriate to provide support for concurrency in a
language or whether this should be provided by the operating system only. BrickOS provides
support to concurrency to program Mindstorms models in the operating system. NQC and
LeJOS provide support to concurrency in the language. I have decided to assign the concept
very good to the three languages in terms of concurrency. In my opinion, provide support to
concurrency in the language can lead to more readable and maintainable programs and usually
an embedded computer may not have any resident operating system

5.1.3 An application scenario with real-time characteristics

An application scenario with real-time characteristics was defined and implemented in
compliance with the different tools chosen. The spring mass system was chosen as an
application scenario to depict the real-time features in the three different programming
languages. The physical model of the spring mass system consists of a mass suspended and
set to vibrate on a spring. When the mass is hung on the spring and then displaced from its
equilibrium position, it will oscillate up and down.

 55

5.2 Experiences

The realization of this work was for me definitively a positive experience. I can
fundament this overall appreciation mainly in three aspects:

1. First research experience in Germany: Although I have developed many research and
developments projects at Federal University of Amazonas before this work, the change of
the culture framework was evident. It was not only a question of language but also a
totally new set of non-written rules, references and criterions. This experience will be
invaluable in the future development of my master thesis.

2. IAS Quality System: The application of the IAS Process Model during this work proved

to be very profitable for the quality of the execution and its results. The IAS Process
Model is a suitable method to the structuring of the project with the required flexibly, but
at the same time precise enough to ensure an efficient development.

3. Familiarization with real-time system: I have learned a lot regarding the real-time

programming, operating systems and software engineering. In this sense I have also
learned: formal and structured methods for development, scheduling theories, reuse,
language design, kernel design, communications protocols, distributed and parallel
architectures and program code analysis. More important than that, I will have a new
research line to research and development projects in the area of power system and
industrial automation at Federal University of Amazonas.

5.3 Problems

Thanks to the project tutor, Paulo Urbano, has helped me always a lot (even when he
had no time due to his tight agenda), and was not only friendly and helpful, but he had also
good knowledge to efficiently support my work. I really consider very positive and effective
this work and two difficult aspects were constant in the process. They are:

1. Real-time systems fundamental concepts: The lecture real-time programming with Prof.
Dr. Erhard Ploedereder and his assistant Prof. Dr. Rainer Koschke was also extremely
important to development of this work. I have learned a lot regarding the concepts and
design of real-time systems.

2. LEGO Mindstorms kit: Many troubles have came out during the development of this

undergraduate project. The LEGO light sensor was the key point of my application
because this light sensor that comes with the LEGO Mindstorms kit had not a good

 56

accuracy for my application and I spent a lot of my time trying to solve this problem and
the solution found for me was to use two light sensors to have a better accuracy of the
values read.

 57

Appendix A Index of Figures

FIGURE 1 - SYSTEM INTERFACE .. 9
FIGURE 2 - RCX MICROCOMPUTER.. 10
FIGURE 3 - SPECIAL MINDSTORMS PARTS.. 13
FIGURE 4 - THE ROBOTICS INVENTION SYSTEM PROGRAMMING ENVIRONMENT

.. 15
FIGURE 5 – TEST PANEL SHOWS THE VALUE MEASURED OF LIGHT SENSOR 16
FIGURE 6 - THE LEJOS JVM MEMORY MAP ... 19
FIGURE 7 – A TYPICAL EMBEDDED SYSTEM.. 20
FIGURE 8 - A SIMPLIFIED DIAGRAM ... 26
FIGURE 9 - HOOKE’S LAW ... 28
FIGURE 10 - SPRING-MASS SYSTEM WITH LEGO MINDSTORMS 29
FIGURE 11 - SYSTEM ARCHITECTURE OVERVIEW.. 30
FIGURE 12 - OPERATING SYSTEMS AND PROGRAMMING LANGUAGES............... 31
FIGURE 13 - STATE DIAGRAM... 31
FIGURE 14 - REAL-TIME COMPUTING... 35
FIGURE 15 - THE ROBOT USING THE INFRARED AND THE LIGHT SENSOR.......... 37
FIGURE 16 – LEGO USB TOWER.. 45
FIGURE 17 - BRICX COMMAND CENTER ENVIRONMENT.. 46
FIGURE 18 - LEJOS PREFERENCES ... 48
FIGURE 19 - LEJOS MENU... 49
FIGURE 20 - SEARCHING FOR THE BRICK ... 50
FIGURE 21 - LEJOS PROJECT WIZARD... 52
FIGURE 22 - FIRMWARE DOWNLOAD... 52
FIGURE 23 - BYTE CODE DOWNLOAD .. 53
FIGURE 24 - THE DISPLAY AND BUTTONS OF THE RCX .. 53

 58

Appendix B Index of Tables

TABLE 1 - LEGO MINDSTORMS ROBOTIC INVENTION SYSTEM (RIS) 2.0 COSTS. 14
TABLE 2 - RELATIONSHIP BETWEEN THE STATE DIAGRAM AND THE

SOFTWARE COMPONENTS .. 31
TABLE 3 - METHODS TO SEND A SIGNAL TO THE ENVIRONMENT......................... 32
TABLE 4 - METHODS TO HAVE ACCESS TO LCD ... 32
TABLE 5 - DELAY METHODS... 33
TABLE 6 - THE RCX IS A TYPICAL EMBEDDED SYSTEM ... 34
TABLE 7 - RCX VS. LAPTOP – HARDWARE COMPARISONS....................................... 34
TABLE 8 - REAL-TIME FEATURES.. 35
TABLE 9 - MOTORS CONTROL .. 38
TABLE 10 - COMMENTS REGARDING THE MOTORS CONTROL 38
TABLE 11 - MODES TO OPERATE WITH THE LIGHT SENSOR.................................... 39
TABLE 12 - MODES TO OPERATE WITH THE TOUCH SENSOR.................................. 40
TABLE 13 - TOUCH SENSOR MODES DESCRIPTION... 40
TABLE 14 - SOUND METHODS... 41

 59

Appendix C Abbreviations

IAS Institut für Automatisierungs- und Softwaretechnik (Institute of
Industrial Automation and Software Engineering.

ISTE Institut für Softwaretechnologie

AS StudienArbeit

RCX Robotic Command Explorer

NQC Not Quite C

BrickOS Brick Operating System

IR InfraRed

LASM LEGO Assembly

OS Operating System

POSIX Portable Operating System Interface

ADC Analog to Digital Converter

 60

Appendix D Terminology

NQC NQC stands for Not Quite C, and is a simple language for
programming several LEGO MINDSTORMS products. Some of the
NQC features depend on which MINDSTORMS product you are
using. This product is referred to as the target for NQC. Presently,
NQC supports five different targets: RCX, RCX2 (an RCX running
2.0 firmware), CyberMaster, Scout, and Spybotics.

BrickOS BrickOS is an alternative operating system for the Lego Mindstorms
RCX Controller. It also provides a C/C++ development environment
for RCX programs using gcc and g++ (the GNU C and C++ cross
compilation tool chain) and the necessary tools to download programs
to the RCX, RCX2 (an RCX running 2.0 firmware), CyberMaster,
Scout, and Spybotics.

LeJOS LeJOS is an implementation of part of the Java Virtual Machine
(JVM), running on the RCX microcomputer. It also provides Java
development environment for RCX programs and the necessary tools
to download programs to the RCX, RCX2 (an RCX running 2.0
firmware), CyberMaster, Scout, and Spybotics.

Bricx Command
Center

Bricx Command Center (BricxCC) is a Windows (95, 98, ME, NT,
W2K, XP) program commonly known as an integrated development
environment (IDE) for programming the RCX (all versions), Scout,
Cybermaster, and Spybot programmable bricks using Dave Baum's
Not Quite C (NQC) language. It also supports programming the
Scout, RCX2, and Spybot using the LEGO Company's
MindScript(tm) and LASM(tm) languages via the Mindstorms 2.5
SDK. It additionally supports programming RCX bricks using the
brickOS alternate firmware in C, C++, and Pascal. Version 3.3 of
BricxCC is an enhanced revision to Mark Overmars’ original
program.

Eclipse The Eclipse Platform is designed for building integrated development
environments (IDEs) that can be used to create applications as diverse
as web sites, embedded Java programs, C++ programs, and
Enterprise JavaBeans. Eclipse also has a plug-in that allows the
programmer to develop java code for the LEGO RCX brick using the
leJOS JVM. It offers easy configuration through a project wizard and
a preference page, uses eclipse code building and adds RCX specific
operations both for firmware and byte-code download.

RCX
Microcomputer

The RCX microcomputer has a piezoelectric speaker, which produces
6 distinct tones. Using infrared communication the RCX can
communicate with a computer, sending messages back and forth;

 61

communicate with other RCX bricks: messages can be passed from
RCX to RCX; be controlled via the LEGO Mindstorms Remote
Control.

IR Tower Download the RCX programs from the computer to the RCX via the
Infrared Transmitter. Transmitter work on both Mac and Windows
platforms. The IR Tower is available in two cable versions: USB
cable and Serial cable.

Unit with
reflections
properties

The unit with reflection properties that allows causing a displacement
of robot to back and forth.

Simple Harmonic

Motion

Type of vibratory motion in which acceleration of body is directly
proportional its displacement and the acceleration is always directed
towards the equilibrium (mean) position is called Simple Harmonic
Motion.

Spring Mass

System

Spring mass system consists of a mass suspended and set o vibrating
on a spring. When the mass is hung on the spring and then displaced
from its equilibrium position, it will oscillate up and down.

 62

Appendix E Literature

[1] The LEGO Group. RCX 2.0 BETA SDK, [Online]. Available at
http://mindstorms.lego.com/sdk2/index.html [12th July 2003]

[2] Mark Overmars (1999). Programming Lego Robots using NQC. , [Online].
Utrecht University, Department of Computer Science. Available at
http://www.cs.uu.nl/people/markov/lego/tutorial.pdf [10th June 2003]

[3] Kekoa Proudfoot, RCX Internals, [Online]. Available at
http://graphics.stanford.edu/~kekoa/rcx/ [20th July 2003]

[4] The LEGO Group, LEGO MINDSTORMS, [Online]. Available at
http://mindstorms.lego.com/ [6th June 2003]

[5] D. Baum, Not Quite C (NQC), [Online]. Available at
http://www.baumfamily.org/nqc/ [12th June 2003]

[6]
L. N. Markus, BrickOS, [Online]. Available at http://brickos.sourceforge.net/
[25th July 2003]

[7]
J. Solorzano, LeJOS, [Online]. Available at http://lejos.sourceforge.net/ [28th
July 2003]

[8]
Cygwin, [Online]. Available at http://www.cygwin.com/ [25th July 2003]

[9]
Gcc 2.95.2 Download, [Online]. Available at ftp://ftp.gnu.org/pub/gnu/gcc/gcc-
2.95.2.tar.gz [25th July 2003]

[10] Binutils 2.10.1 Download, [Online]. Available at
ftp://ftp.gnu.org/pub/gnu/binutils/binutils-2.10.1.tar.gz [25th July 2003]

[11] Legos-Buildgcc.zip Download, [Online]. Available at
http://legos.sourceforge.net/cygwin/download/legos-buildgcc.zip [25th July 2003]

[12] Eclipse, [Online]. Available at http://www.eclipse.org/ [23rd August 2003]

[13] org.leJOS_1.0.2.zip Download, [Online]. Available at
http://www.info.ucl.ac.be/people/chp/projects/javarcx/ eclipse/org.lejos_1.0.2.zip
[23rd August 2003]

[14] Burns, A. & Wellings A.(2001). Real-Time Systems and Programming
Languages. Harlow: Addison-Wesley.

 63

http://mindstorms.lego.com/sdk2/index.html
http://www.cs.uu.nl/people/markov/lego/tutorial.pdf
http://graphics.stanford.edu/~kekoa/rcx/
http://mindstorms.lego.com/
http://www.baumfamily.org/nqc/
http://brickos.sourceforge.net/
http://lejos.sourceforge.net/
http://www.cygwin.com/
ftp://ftp.gnu.org/pub/gnu/gcc/gcc-2.95.2.tar.gz
ftp://ftp.gnu.org/pub/gnu/gcc/gcc-2.95.2.tar.gz
ftp://ftp.gnu.org/pub/gnu/binutils/binutils-2.10.1.tar.gz
http://legos.sourceforge.net/cygwin/download/legos-buildgcc.zip
http://www.eclipse.org/
http://www.info.ucl.ac.be/people/chp/projects/javarcx/

Languages. Harlow: Addison-Wesley.

[15] Douglass, B. P. (1999). Doing hard time: developing real-time systems with
UML, objects, frameworks, and patterns. Harlow: Addison-Wesley.

[16] Harbour, M.G., Klein, M.H., and Lehoczky J.P. (1991). Fixed Priority
Scheduling of Periodic Tasks with Varying Execution Priority. Proceeding of the
IEEE Real-Time Systems Symposium, IEEE Computer Society Press.

[17] Göhner, Peter (2003): Lecture notes of Industrial Automation. IAS, Stuttgart.

[18] Nissanke, N. (1997). Real-time Systems, Great Britain, Prentice Hall Europe.

[19] Barnes, J. (2002). Programming in Ada 95. Harlow: Addison-Wesley.

[20] Kopetz, Hermann (2000). Software Engineering for Real-Time: A Roadmap,
International Conference on Software Engineering, Limerick, Ireland.

[21] Parks, J. E. (2000). Hooke’s Law. Department of Physics and Astronomy, The
University of Tennessee, USA.

[22] Plödereder, E (2003). Lecture notes of Real-Time Programming. ISTE, Stuttgart.

[23] Deitel H.M, Deitel P. J (2001). C++ Como Programar. Bookman.

[24] Deitel H.M, Deitel P.J. (2003). Java Como Programar. Bookman.

[25] Sommerville, I. (2001). Software Engineering. Harlow: Addison-Wesley.

[26] Junghans, A. (2001). Collaborative Robotics with LEGO Mindstorms. Master
Thesis, Department of Computer Science, Karlsruhe University of Applied
Sciences, Germany.

[27] Klassner, F., and Anderson, S. (2003). LEGO MindStorms: Not Just for K-12
Anymore. IEEE Robotics and Automation Magazine.

 64

Appendix F Troubleshooting

In this Appendix we present some problems that occurred during the installation or
operation of the software, and possible solutions to them proposed. This Appendix does not
intend to be a complete guide regarding the different error situations that we could have, but
only an extra help for common errors that I had during the development of the software.

F.1 I do not have access the embedded microcontroller over the IR Tower

The brickOS need to set manually the IR Tower to the port that you desired work. The
command to set this variable is export RCXTTY=port in the shell window. Where port can be
set as COMx and USB. The error figure 1 depicts such situation.

Error figure 1 – Error to open the IR port

The NQC and LeJOS programming language do not have this problem because we
have worked with an IDE that has an interface with the user to choose the desired
communication port. The figure 20 in subchapter 4.2.2 depicts the port configuration for
Bricx Command Center. The figure 18 in subchapter 4.1.5 depicts the port communication for
Eclipse.

F.2 The IR Tower still does not work

You need to check the configuration of the communication port as described in

subchapter 4.1.2. Whether the trouble keep going, try to change the IR Tower to another USB

 65

port in your computer. The BrickOS presents the same error as presented in Error figure 1 but

with the message Error 2: Opening legotower1. The Bricx Command Center shows an error

message as depicted in Error figure 2 when do not establish a connection with the RCX

microcomputer over the IR Tower. The Eclipse shows an error message as depicted in Error

figure 3 when do not download the firmware to the RCX over the IR Tower and Error figure 4

depict the same situation to download the byte code to the RCX.

Error Figure 2 – An error message trying to have access over the IR Tower in NQC

Error Figure 3 – An error message trying to download the firmware

Error Figure 4 – An error message trying to download the byte code

F.3 I cannot store other firmware

Whether the BrickOS has already stored in the RCX memory you need to remove the
batteries to delete the firmware from memory. Other firmware cannot be stored in the memory
if the previous one is the BrickOS.

 66

The LeJOS only work if the RIS firmware that comes with the Lego Mindstorms kit is
stored before. All firmware can be deleted from memory only removing the batteries.

F.4 My compiler does not work

In order to compile the BrickOS programs you need to follow the steps described in
section 4.2.3. Whether you type the follow command ./dll ../Your Directory/Name of the
file.c, an error will appear because the file extension to be generated must be with the
extension .lx. Error figure 5 depicts such situation.

Error figure 5 – My compiler does not work

F.5 My robot does not work as desired

To solve this problem you must to follow the instructions of the subchapter 4.3.1.

 67

