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Abstract—This paper presents a novel approach integrating
Large Language Models (LLMs) with Formal Verification for
automatic software vulnerability repair. Initially, we employ
Bounded Model Checking (BMC) to identify vulnerabilities and
extract counterexamples. Mathematical proofs and the stack
trace of the vulnerabilities support these counterexamples. Using
a specially designed prompt, we combine the source code with
the identified vulnerability, including its stack trace and coun-
terexample that specifies the line number and error type. This
combined information is then fed into an LLM, which is in-
structed to attempt to fix the code. The new code is subsequently
verified again using BMC to ensure the fix succeeded. We present
the ESBMC-AI framework as a proof of concept, leveraging
the well-recognized and industry-adopted Efficient SMT-based
Context-Bounded Model Checker (ESBMC) and a pre-trained
transformer model to detect and fix errors in C programs,
particularly in critical software components. We evaluated our
approach on 50, 000 C programs randomly selected from the
FormAI dataset with their respective vulnerability classifications.
Our results demonstrate ESBMC-AI’s capability to automate
the detection and repair of issues such as buffer overflow,
arithmetic overflow, and pointer dereference failures with high
accuracy. ESBMC-AI is a pioneering initiative, integrating LLMs
with BMC techniques, offering potential integration into the
continuous integration and deployment (CI/CD) process within
the software development lifecycle.

Index Terms—Large Language Models, Formal Verification,
Automatic Program Repair.

I. INTRODUCTION

Implementation bugs can impact the software quality by
causing crashes, data loss, poor performance, or incorrect
results [1], and often introduce vulnerabilities, underscoring
the need for early detection and resolution [2]. Automated
software testing [3], [4], fault localization [5], and repair [6]
have been active research areas over the past few decades.
While classic static analysis aids early bug detection, it in-
troduces false positives impacting developer productivity [7],
[8]. Recent deep learning (DL) advancements have drawn

the attention of the Software Engineering (SE) community,
offering potential solutions to longstanding issues [9]–[11].
For example, DLFix [12] and DeepRepair [13] treat source
code as text; however, as opposed to natural language, source
code has a stronger syntax and semantics [14]; further, as these
approaches rely on previously seen data, which may contain
small snippets of buggy code [12], [15], [16], the model may
not have the details of the bug, its origin, and how it interacts
with the rest of the program. Contrarily, CURE [14] employs
a programming language model to parse, analyze, and model
the source code. DEAR [17] combines spectrum-based fault
localization with DL to learn the appropriate code-context.

Recent advances in Large Language Models (LLMs) such
as OpenAI’s Codex [18], a GPT-like LLM tailored for code
program repair [19], [20], has shown promise in addressing
SE challenges. For instance, InferFix [21] applies LLMs to fix
issues such as Null Pointer Dereference (NPD), Resource Leak
(RL), and Thread Safety Violation (TSV). Xia et al. [22] show
that applying state-of-the-art LLMs directly can outperform
existing automated program repair techniques. Indeed, lever-
aging LLMs holds potential in vulnerability detection and soft-
ware healing, which we interchangeably refer to as Automatic
Code Repair (ACR) [23]–[25]. However, deploying LLMs in
software verification has limitations. Notably, state-of-the-art
LLMs struggle to respond accurately when verifying software
containing arithmetic expressions involving non-deterministic
variables. In ACR, addressing a specific bug requires accu-
rate calculations and precise data flow analysis [26]. LLMs’
inherent non-determinism can hinder accurate vulnerability
identification, often requiring supplementary tools or external
guides to enhance their effectiveness in verification tasks.

To mitigate the unreliability of LLMs as stand-alone vulner-
ability detection tools, we propose integrating them with the
Efficient Satisfiability Modulo Theory (SMT)-based Context-
Bounded Model Checker (ESBMC) [27], [28], a widely rec-
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Fig. 1: An overview of the ESBMC-AI framework. Initially, a C source code is verified with ESBMC. If the verification fails,

the property violation output from ESBMC and the original C code are fed to the LLM to obtain the potentially fixed code.

This process is repeated for the generated C code until ESBMC can successfully verify it.

ognized and industry-adopted formal verification (FV) tool.

ESBMC is known for its low rates of false negatives and

false positives, which can significantly enhance the overall

efficiency and accuracy of the vulnerability detection process.

Figure 1 illustrates our counterexample-guided ACR method-

ology, combining BMC and LLM. The process involves the

following steps: � Initial Verification: The BMC module takes

the source code provided by the user and verifies or falsifies a

property specification. � Failure Handling: If the verification

fails, the BMC engine refutes the safety/security property.

The original code and the counterexample for the property

violation generated by BMC are then passed to the LLM

module. � Iterative Correction: The LLM engine receives

customized queries to produce potentially corrected code,

which is then fed back to the BMC module to verify whether

the corrected version meets the initial safety specification.

This paper aims to address the following research questions:

• RQ1: Can we enhance the ACR capabilities of

current LLMs by combining them with an external

FV tool?

• RQ2: Which vulnerabilities are the most challenging

to repair successfully for LLMs?

• RQ3: How reliable is the generated patch, and how

likely is it that the new code remains compilable and

does not disrupt the original program workflow?

This research aims to study and identify the impact of

formal verification tool-based feedback on LLMs’ ability to

repair faulty C code. The main original contributions of this

work are as follows:

1) A novel software verification and repair approach,

ESBMC-AI, which leverages ESBMC to provide stack

traces and counterexamples of given vulnerabilities to

an LLM for code repair;

2) A comprehensive experimental assessment on over

50, 000 C programs, randomly selected from the FormAI

dataset [29], to examine the effectiveness of ESBMC-

AI in repairing program codes;

3) Formal program verification is undecidable [30], [31],

making it impossible to guarantee that any program is

completely error-free. Similarly, proving that a patch

does not disrupt the original program’s functionality is

challenging. Therefore, to ensure accuracy, each patch

in this study has been verified by at least three human

experts with solid SE background.

4) With ESBMC-AI, we achieved a code repair accuracy

of 90.40% for buffer overflow on scanf, 86.47% for

division by zero, 70.27% for arithmetic overflow on add,

and 69.66% for array bounds violation errors.

5) We release ESBMC-AI 0.5.11 as a PyPI module for

industrial partners and the research community to use

for ACR. Further details and results are available on the

project website: https://github.com/esbmc/esbmc-ai

This paper is organized as follows: Section II provides mo-

tivating examples for this counterexample-guided code repair

framework. We discuss prior related work in Section III, while

the background is discussed in Section IV. Section V discusses

the approach and methodology. We present our experimental

results in Section VI, which includes the experimental setup

details and findings. Lastly, we conclude our work with future

research directions in Section VII.

II. MOTIVATING EXAMPLE

Detecting software vulnerabilities with LLMs is challeng-

ing, given their tendency to generate multiple alternative solu-

1https://pypi.org/project/esbmc-ai/



tions for the same problem without explicitly identifying the
root cause. While this adaptability is advantageous in language
processing and text generation, it introduces complexities
when proposing solutions for even trivial software security
vulnerabilities [24], [32], [33]. Although BMC excels in iden-
tifying vulnerabilities through mathematical proofs, rectifying
code based on BMC output demands a deep understanding of
the tools and a background in formal verification. Automating
code repair using BMC holds great potential for streamlining
secure software development but has complexities. Despite
their current limitations in software vulnerability identification,
LLMs can significantly enhance their effectiveness by integrat-
ing the output from a BMC tool. This integration could lead to
a surprisingly effective vulnerability detection and code repair
approach. For example, consider the simple C code fragment
in Listing 1, where the initialization of variable z triggers an
arithmetic overflow.

Vulnerable C++ code example
1 int main() {
2 int x=77;
3 int y=x*x*x;
4 int z=y*y;
5 unsigned int r= z/1000;
6 return 0;}

Listing 1: C++ code vulnerable to arithmetic overflow.

Upon querying GPT-3.5 about potential issues with the code
fragment in Listing 1, it responded: ”There is no problem with
this code. The code correctly calculates the value of z as the
square of y and then calculates the value of r as z divided
by 1000. Even after rephrasing the question as “Is there any
overflow in the program?”, the model continued to respond
inaccurately, specifically: ”The value of y is calculated as the
cube of x, which is 77×77×77 = 456533, and the value of z
is calculated as the square of y, which is 456533× 456533 =
208598234889. This value can be represented within the 32-
bit int variable range, so there is no integer overflow.”

According to Imani et al. [34], GPT models still struggle
with evaluating arithmetic operations in programming lan-
guages. This is evident in the example where the model
correctly calculates 456, 533 × 456, 533 = 208, 598, 234, 889
but incorrectly claims that this value can be represented by a
32-bit int variable, overlooking the maximum value a 32-bit
integer can fit, i.e., 232 = 4, 294, 967, 296.

While the solution might be correct for this specific case
when using more advanced LLMs such as the latest GPT-
4o [35] or Falcon-180B [36], the same issue could arise when
handling more complex arithmetic operations during program
repair, especially when the BMC module generates a very
complex SMT formula to be solved. Four claims must be
resolved during verification, even for a small program, listed in
Listing 1. The SMT formula generated involves 64-bit BitVec
operations. Bitvec operations are low-level operations on bit
vectors, which are sequences of bits, allowing manipulation
such as bitwise AND, OR, XOR, shifts, and rotations on fixed
or variable-length binary data. Thus, a robust SMT solver

such as Z3 [37], Boolector [38], or CVC5 [39] to solve the
underlying equation is required.

Initial experiments indicate that confidently solving such
straightforward examples using LLMs remains challenging.
However, augmenting the capabilities of an LLM with an
external tool can greatly improve its code repair abilities.
Using BMC, we can easily detect the arithmetic overflow
in our simple program: PROPERTY VIOLATION: line
4 function main arithmetic overflow on mul
!overflow("*", y, y). When we ask the LLM to cor-
rect the code based on the specified property violation, sup-
ported by the stack trace and exact counterexample, we receive
an accurate answer: “The issue is an arithmetic overflow on
the line int z = y∗y;. The int data type in C has a limited range
of values that it can represent, typically −2, 147, 483, 648 to
2, 147, 483, 647. In the line int z = y ∗ y; there is a risk of
integer overflow if the value of y is large. This large value
exceeds an int data type’s range, resulting in an arithmetic
overflow.” We advocate that assistance from an external BMC
tool can guide the LLM towards the correct solution. The
LLM utilizes this to generate code that is safeguarded against
arithmetic issues by substituting the int data type with long
long int, as illustrated in Listing 2.

Corrected C program suggested by the LLM
1 int main() {
2 int x = 77;
3 long long int y = (long long int) x * x * x;
4 long long int z = y * y;
5 unsigned int r = z / 1000;
6 return 0;}

Listing 2: Corrected code for the code shown in Listing 1

Upon running the BMC tool against the updated code,
we received a VERIFICATION SUCCESSFUL output, in-
dicating no integer boundary violations or overflows in the
modified code. This small example provides convincing ev-
idence that this approach is feasible and highly useful for
ACR in industries requiring formal verification for critical
software components. This motivates us to further investigate
and explore this promising research direction in greater detail.

III. RELATED WORK

A. Traditional Vulnerability Detection

Traditional vulnerability detection methods often rely on
static [40]–[42] and dynamic [43]–[45] analysis techniques
to identify security weaknesses in software. Although static
approaches, including static code analysis [46], [47], abstract
syntax tree (AST) parsing [48], [49], and data flow analy-
sis [26], [50] enable early detection, they have high false
positive rates [51]. In contrast, dynamic analysis techniques,
such as penetration testing [52], [53], fuzz testing [44], [45],
and runtime monitoring [54], [55], provide a more realistic
assessment by evaluating software behavior during execution.
However, these approaches are often input-dependent, provide
only partial code coverage, and are expensive. Hybrid ap-
proaches [56]–[58] combine static and dynamic analysis to



balance their strengths and weaknesses. Bhayat et al. [57]
propose a comprehensive strategy integrating pre- and post-
deployment techniques. Pre-deployment involves identifying
vulnerabilities through static analysis using BMC and sym-
bolic execution. Post-deployment focuses on mitigating these
vulnerabilities through hardware measures and software run-
time protection. The hybrid approach underscores the effec-
tiveness of integrated protection over individual components.
Aljaafari et al. [58] proposed Ensembles of BMC with Fuzzing
(EBF) that combine BMC with Gray-Box Fuzzing (GBF)
in OpenGBF to detect software vulnerabilities in concurrent
programs.

Alternately, BMC provides reliable results with reduced
costs as they limit the exploration depth for the test program.
Song et al. [59] introduce ESBMC-Solidity, a Solidity frontend
for ESBMC designed to verify the security of smart contracts
on Ethereum’s blockchain network. Alshmrany et al. [60]
present an upgraded version of FuSeBMC, a tool that uses
BMC and Evolutionary Fuzzing engines for improved code
coverage and bug detection. However, these approaches do
not scale well even with the restricted depth exploration.

B. Deep Learning-based Vulnerability Detection

DeepFix [11], a multi-layer sequence-to-sequence neural
network, can fix compile-time errors. SEQUENCER [15] em-
ploys a similar technique to fix logical bugs by suggest-
ing single-line patches, requiring a larger vocabulary. VRe-
pair generates multiline patches using transfer learning [61].
GetaFix [62] learns to generate patches by analyzing past
human commits. Similarly, DEAR [17] uses AST-differencing
to learn fine-grained changes and implements fault localiza-
tion to identify problematic statements and produce relevant
patches. DEAR and several other studies [16], [63] model
ACR as a Neural Machine Translation (NMT) [64] problem.
DeepRepair [13] uses DL code similarity to generate and
validate patches. Huang et al. [65] leverage Large Language
Models of Code (LLMCs) for ACR by fine-tuning these
models under the NMT paradigm.

Latest advancements in DL, transformers, and LLMs have
revolutionized natural language processing, enabling machines
to understand and generate human-like language [66], [67].
These models can process vast amounts of textual data and
extract meaningful information, making them useful tools for
applications such as language translation, text summarization,
sentiment analysis, and question-answering systems. LLMs’
ability to generate code [68]–[70] has made them a popular
candidate for software healing [21], [70]–[72].

Many studies on LLM for ACR evaluate their ap-
proaches [24], [73] on QuixBugs [74], containing only Java
and Python test programs. Researchers have also investigated
the potency of GPT in identifying and repairing software
bugs [23]–[25], [73], [75], [76]. Self-Edit [77] employs a
generate-and-edit approach using test execution results from
LLM-generated code to fix and improve code quality. Re-
pairAgent [78] is an LLM-based agent for program repair,
enabling dynamic bug-fixing through interaction with bug

information, repair tools, and validation mechanisms. SecRe-
pair [79], leveraging CodeGen2 and reinforcement learning,
identifies and fixes vulnerabilities with descriptive code com-
ments. MOREPAIR [80] introduces a fine-tuning approach for
LLMs in ACR, emphasizing syntactic adaptation and logical
reasoning behind code changes.

With billions of parameters, GPT models produce accurate
and contextually aware language models that are customizable
through fine-tuning for specific tasks. Nonetheless, studies
show that the codes and patches synthesized by GPT models
may be incorrect and untrustworthy [23], [32], [81], [81], [82].
New research proposes a prompt-based approach to verify the
generated programs [83], [84]. The quality of fixes generated
depends on the feedback. For instance, COMPCODER [84]
uses the compiler feedback to repair code but misses run-
time errors. D4C [85] aligns LLM output with their training
objective for effective whole-program refinement without prior
fault localization. LLM-CompDroid [86] enhances Android
app reliability by integrating LLMs with traditional tools
to detect and repair XML configuration compatibility bugs.
RING [87] is a multilingual repair engine for correcting last-
mile coding errors across multiple languages. ChatRepair [88]
uses a conversation-driven approach with prior test failure
information to generate patches. Similarly, Conversational
ACR [83] validates generated patches against a test suite,
though test suite-based testing lacks completeness and may
be inconsistently available.

Our work uses automated theorem provers to explore the
uninvestigated combination of LLMs with FV techniques, par-
ticularly symbolic model checking. Table I gives a quick view
of how we position our ESBMC-AI framework concerning
existing work. A desirable balance between two disparate
concepts, symbolic verification and DL, can enhance the
quality and speed of program repair. Relevant feedback that
can be obtained from state-of-the-art software model checkers,
such as ESBMC [27], can show massive improvements in the
patches suggested by GPTs.

IV. BACKGROUND: FORMAL VERIFICATION MEETS
LARGE LANGUAGE MODELS

BMC and LLMs are complementary techniques used in
software engineering and artificial intelligence, respectively,
and they are not directly connected. Given the current knowl-
edge of automated reasoning and software verification, both
methods have yet to be used to solve similar problems, such
as software bug detection and debugging. Here, we use BMC
to verify programs and provide diagnostic counterexamples
via text to LLM. In contrast, LLM is used to understand the
textual trace that leads to the program bug and thus tentatively
produce code to fix the identified vulnerability.

A. Bounded Model Checking (BMC)

BMC, a key part of our counterexample-guided repair
framework, is supported by advanced BMC engines that han-
dle various industrial languages [104]–[107]. BMC models the



TABLE I: Comparison of related software bug detection and repair approaches.
Framework details Repair

Name Year Open
Source Dataset Language Granularity Compiles Method

Bhayat et al. [57] 2021 ✗ SV-COMP [89] C/C++ N/A N/A N/A

OpenGBF [58] 2022 ✓ SV-COMP [89] C/C++ N/A N/A N/A

ESBMC-Solidity [59] 2022 ✓ Own2 Solidity N/A N/A N/A

FuseBMC [60] 2022 ✓ Test-Comp [90] C/C++ N/A N/A N/A

COMPCODER [84] 2022 ✗ AdVTest [91], CodeSearchNet [92] Python Program ✓ Compiler Feedback based code
completion

Jigsaw [72] 2022 ✗ PandasEval1, PandasEval2 [72]2 Python Snippets ✗ Program Synthesis

Conversational ACR [83] 2023 ✗ QuixBugs [74] Java, Python Function ✗ Prompt-based repair

ChatRepair [88] 2023 ✗ Defects4J [93], QuixBugs [74] Java, Python Patch ✗ Learns from previously failed tests

Pearce et al. [23] 2023 ✓ ExtractFix [94] C, Python Program ✓ Security tests-based

RING [87] 2023 ✗ BIFI [95], Bavishi et al. [96], TFix [97] Excel, C, PowerFx, PS,
Python, JS

Program ✓ Compiler message

Huang et al. [65] 2023 ✓ Defects4J [93], CPatMiner [17] Java, C/C++, Python Patch ✗ Model trained on buggy code - fix pair

FuzzGPT [98] 2024 ✗ Own [98] (unavailable) Python - ✗ LLM-based Fuzzing

RepairAgent [78] 2024 ✗ Defects4J [93] Java Program ✓ Invoking suitable tools

SecRepair [79] 2024 ✗ InstructVul [79] (unavailable) C/C++ Program ✓ Fine-tuned instruction training

Self-Edit [77] 2024 ✓ APPS [99], HumanEval [18] Python Program ✓ Compile/Runtime with tests

LLM-CompDroid [77] 2024 ✗ ConfFix [100] XML Configuration ✗ Prompt-based

ContrastRepair [101] 2024 ✗ Defects4J [93], HumanEval [18], QuixBugs [74] Java, Python Program ✓ Contrastive test-pair

CigaR [102] 2024 ✓ Defects4J [93], HumanEval [18] Java Patches ✗ Prompt optimization

ESBMC-AI 2025 ✓ FormAI [29], [103] C/C++ Program ✓ Formal verification based feedback

program as a state transition system derived from the control-
flow graph (CFG) [108], built during the translation from
program text to Static Single Assignment (SSA) form. SSA
statements can then be converted to an SMT formula [104] to
be solved by SAT/SMT solvers. In the CFG, nodes represent
(non-) deterministic operations, and edges represent potential
changes in the program’s control flow.

We define a state transition system, denoted by M , as a
triple (S,R, s1) where S represents the set of states, R ⊆ S×S
represents the set of transitions and s1 ⊆ S represents the set
of initial states. A state s ∈ S consists of the value of the
program counter pc and the values of all program variables. An
initial state s1 assigns the initial program location of the CFG
to pc. We identify each transition T = (si, si+1) ∈ R between
two states si and si+1 with a logical formula T (si, si+1). This
captures the constraints on the corresponding values of the
program counter and the program variables.

We also define properties under verification in BMC: ϕ(s) is
the logical formula encoding states satisfying a safety/security
property, and ψ(s) is the logical formula encoding states sat-
isfying the completeness threshold, i.e., states corresponding
to the program terminating. ψ(s) will contain unwindings
no deeper than the maximum number of loop iterations in
the program. Note that, in our notation, termination, and
error are mutually exclusive: ϕ(s) ∧ ψ(s) is by construction
unsatisfiable; s is a deadlock state if T (si, si+1) ∨ ϕ(s) is
unsatisfiable. The associated BMC problem is formulated by
constructing the following logical formula:

BMC(k) = I(s1) ∧
k−1∧
i=1

T (si, si+1) ∧
k∨

i=1

¬ϕ(si). (1)

Here, I the set of initial states of M and T (si, si+1) is the
transition relation of M between time steps i and i+1. Hence,
I(s1) ∧

∧k−1
i=1 T (si, si+1) represents the executions of M of

length k and BMC(k) can be satisfied if and only if for some
i ≤ k there exists a reachable state at time step i in which ϕ

is violated. Suppose BMC(k) is satisfiable. In that case, ϕ is
violated, and the SMT solver provides a satisfying assignment
from which we can extract the values of the program variables
to construct a counterexample.

We define a counterexample (or trace) for a violated
property ϕ as a finite sequence of states s1, . . . , sk with
s1, . . . , sk ∈ S, and T (si, si+1) for 0 ≤ i < k. This
sequence informs our LLM engine on reproducing the soft-
ware vulnerability since it tells how to go from the program
entry point to the property violation. Suppose that equation
(1) is unsatisfiable. We could conclude that no error state
is reachable in k steps or less. In this case, we use this
information to conclude that no software vulnerability exists
in the program up to the bound k.

In our method, counterexamples enable the LLM to propose
code corrections by providing appropriate inspiration. Each
counterexample specifies the exact trace, line number, and
variable name, effectively highlighting the issue within the
code. Without these counterexamples, even a simple code, as
observed in the motivation section, could pose challenges for
the LLM in suggesting a suitable fix. Further, it is essential to
note that these counterexamples are based on rigorous mathe-
matical proofs of whether a property holds. Consequently, the
likelihood of introducing false positive findings is significantly
reduced (though implementation errors may still exist), unlike
results from simple static analysis tools.

B. Large Language Models (LLMs)

LLMs are DL systems based on the transformer architecture.
They can understand, process, and generate human-like natural
language. The input to an LLM consists of a sequence of to-
kens representing words, subwords, or characters transformed
into a high-dimensional vector space using an embedding tech-
nique. These embedded tokens pass through multiple network
layers, each applying non-linear transformations governed
by learnable parameters. The output is often a probability



distribution over possible next tokens, with the model selecting
the highest probability token. While LLMs are less efficient
than state-of-the-art BMC tools for exact arithmetic opera-
tions and BMC tasks, they excel in various natural language
processing tasks, such as translation, question answering, and
text generation. Transforming violated properties into human-
like sentences enhances the LLM’s understanding3 of code
issues, allowing BMC counterexamples to correct erroneous
code effectively.

Tom et al. [109] introduced GPT-3, the third iteration of
the Generative Pretrained Transformer model developed by
OpenAI. This paper’s primary focus is on the few-shot learning
capability of language models. The authors demonstrate that
language models start exhibiting remarkable few-shot perfor-
mance when scaled up, essentially learning from a limited
number of examples. Lampinen et al. [110] investigated how
AI systems interpret, understand, and apply knowledge from
explanations provided in various contexts. Specifically, this
is an important contribution to AI, particularly in language
understanding and knowledge acquisition by machine learning
models. Training or fine-tuning a transformer-based LLM,
such as GPT-4 [111], BERT [112], T5 [113], typically involves
providing the model with a substantial volume of data in the
form of input-output pairs.

In this task, our inputs are the preprocessed counterexamples
from BMC, and the outputs are human-readable interpreta-
tions of those counterexamples. When training an LLM, the
model uses the “Scaled Dot-Product Attention” and “Multi-
Head Attention” [114]. The attention mechanism allows the
model to focus on different parts of the input sequence when
producing the output sequence, which is especially useful
for translating between complex BMC outputs and human
language. Mathematically, the scaled dot-product attention is
calculated as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2)

where Q, K, and V are queries, keys, and values, respectively,
and dk is the dimension of the queries and keys. This attention
function is used in parallel or in “heads”, enabling the model
to focus on different features in the input. While scaled dot-
product attention is frequently employed during training, it
also proves to be highly valuable in the inference phase, show-
casing a proficient understanding of BMC counterexamples.

Counterexamples provided by the BMC module often
contain important but disconnected information, making
it difficult to interpret previous solutions, especially pre-
transformer models. The transformer’s attention mechanism,
specifically the scaled dot-product attention, enhances
understanding of complex inputs. For instance, consider
the counterexample "overflow line 7 function
main, ERROR: argv[0]=32768, *mul(y,y)".
Interpreting this requires the language model to understand

3In this paper, within the context of LLMs, understanding refers to the
LLM’s ability to interpret, generate, and reason about code in a way that
aligns with human comprehension and logical reasoning.

multiple aspects. This counterexample shows an overflow in
the variable y during multiplication at line 7.

The Scaled Dot-Product Attention can focus on different
input parts based on their relevance to the current context.
In this case, it could identify the link between the overflow
error, the mul(y,y) function, and the specific line number
mentioned. In other words, it can “attend” to the related
information about the overflow error and the associated line
of code when recommending an appropriate code fix.

This ability to dynamically allocate attention based on the
input’s content is one of the main reasons why transformer-
based models such as GPT have succeeded across various
tasks, including code debugging and automatic repair. They
can understand the context of a given input, including intricate
relations between separated segments, enabling them to sug-
gest more accurate and relevant solutions or recommendations.

V. METHODOOLOGY

ESBMC-AI is an AI-powered platform designed to expe-
dite the detection and repair of critical software components.
It employs a BMC tool in the background to identify vul-
nerabilities using formal verification methods such as abstract
interpretation, constraint programming, and symbolic model
checking, after which the generated counterexample is pro-
vided to the LLM with a specially crafted prompt. The primary
objective of this work is to thoroughly address the research
questions outlined in Section I, through a series of carefully
designed experiments.

A. Why ESBMC?

We can implement our ACR methodology with various
BMC tools. We chose the ESBMC [27] to implement self-
healing software via LLMs and formal verification methods,
illustrated in Figure 1. In particular, we decided on ESBMC
since it is an efficient software verifier that could solve the
highest reachability-safety verification tasks within 10 seconds
time-limit in the SV-COMP 2024 [115]. We note that the
selection of a 10-second time limit is not arbitrary. While
increasing the time limit could yield improved results, longer
processing times are unsuitable for code fixing in a live
Integrated Development Environment (IDE) and continuous
integration (CI) pipeline. By adhering to this limit, the pro-
posed approach can be integrated into existing frameworks,
offering nearly real-time feedback to programmers.

B. User Chat Mode (UCM) and Fix Code Mode (FCM)

ACR is highly useful for integration into the software
development lifecycle, and ESBMC-AI can autonomously
identify and fix code issues. However, developers sometimes
need to understand the root cause of a problem to properly
validate and fix the underlying issue. ESBMC-AI currently
operates in two distinct modes: the User Chat Mode (UCM)
and the Fix Code Mode (FCM).

The UCM mode is a feature of ESBMC-AI that enables
users to ask code-related questions conversationally. This
allows the LLM to generate high-quality explanations for



various issues. In UCM, users can ask ESBMC-AI questions
such as ”How can I correct this code?” or ”Which line of code
is causing the issue?”. In UCM mode, there is no automatic
code patching. The LLM provides answers, and developers
can manually decide how to correct the code based on their
conversation with the LLM and the responses it provides.

On the contrary, in the FCM module, our primary focus
is to create an advanced environment for identifying bugs
and performing ACR while ensuring that the code remains
compilable and retains its original behavior. In this mode,
we utilize the well-recognized and industry-adopted ESBMC
tool to detect vulnerabilities and leverage LLMs to fix the
code. This presents challenges: we require a large and reliable
dataset to evaluate our methodology, and human experts must
carefully evaluate the applied patches to assess the success
of the LLM in code rectification. Specialized prompts for
each vulnerability are required to “interpret” the ESBMC
counterexamples for an LLM. Human experts with a for-
mal verification and software security background craft these
prompts. For example, distinct prompts are required to address
dereference failure versus buffer overflow in scanf(). Uti-
lizing a general prompt such as “fix the code based on this
counterexample” will significantly reduce accuracy in ACR.

C. The ESBMC-AI Evaluation Dataset: FormAI

We need a sufficient number of vulnerable code samples to
evaluate the effectiveness of the ESBMC-AI methodology. To
showcase the strength of our methodology fully, we must note
that not all datasets are suitable for our needs. The samples
must be compilable, and the dataset should be labeled with the
appropriate vulnerability class. Most available datasets [116]–
[119] do not cater to at least one of these requirements [120].

The FormAI [29] dataset comprises 112, 000 AI-generated
C programs, with 51.24% containing at least one vulnerability.
The dataset covers diverse tasks, including complex ones like
network management, encryption, table games, and simpler
tasks like string manipulation. All C codes are compilable,
and every C program in the dataset is labeled using a
BMC methodology with a k = 1 bound parameter. Overall,
we selected 50, 000 samples for our evaluation. We then
reclassified each program sample using ESBMC 7.6.1 and
saved the results. To enhance vulnerability detection in each
sample, we transitioned from bounded to unbounded model
checking with unlimited k-steps and a 500-second timeout.
This method strengthens the original approach applied in
the FormAI dataset, where classification is based on BMC
with a 30-second timeframe [29]. This process is very time-
consuming and resource-intensive, even for small C programs.
We used an Amazon AWS r7i.48xlarge instance with an AMD
EPYC 9R14 CPU family featuring 192 vCPUs and 1.5TB of
DDR5 RAM to handle this. Once the dataset was prepared and
we identified which C samples were vulnerable and which
were not, we applied our ESBMC-AI ACR methodology
to attempt to fix the vulnerabilities. We randomly selected
samples from eight popular vulnerability categories from the

FormAI dataset (see Table III) for manual inspection and to
verify the correctness of our approach.

VI. EXPERIMENTAL RESULTS

This section presents the outcomes of integrating LLMs and
BMC in ESBMC-AI, addressing the three research questions
through our experiments and providing an in-depth statistical
analysis of the results, offering comprehensive insights into
the effectiveness of the ESBMC-AI approach and potential
future improvements.

Let us denote all the 50000 C samples by Σ, such that
Σ = {c1, c2, . . . , c50000}, where each ci represents an indi-
vidual sample. The samples can be divided into three primary
categories: Verification Successful (VS), Verification Failed
(VF), and Verification Unknown (VU). These categories are
mutually exclusive, meaning a single sample cannot belong to
more than one category. Our main focus is the VF category,
which includes 31801 samples, indicating that 63.60% of
the code is vulnerable. The vulnerable samples can also be
divided into three main subcategories: dereference failures
(DF), arithmetic overflow issues (AO), and buffer overflow
issues. The precise distribution of vulnerabilities in our dataset
is shown in Table II.

TABLE II: Top 32 Vulnerabilities in the 50000 dataset

Cat Violation Type Count (%)

Vulnerability distribution

DF Dereference failure: NULL pointer 14,700 (23.49%)
BO Buffer overflow on scanf 13,518 (21.60%)
DF Dereference failure: forgotten memory 7,681 (12.27%)
DF Dereference failure: invalid pointer 5,487 (8.77%)
DF Dereference failure: array bounds violated 4,020 (6.42%)
AO Arithmetic overflow on add 2,761 (4.41%)
AO Arithmetic overflow on sub 2,349 (3.75%)
DF Array bounds violated: upper bound 1,893 (3.02%)
DF Array bounds violated: lower bound 1,521 (2.43%)
AO Arithmetic overflow on mul 1,145 (1.83%)
DF DF: invalidated dynamic object 977 (1.56%)
BO Buffer overflow on fscanf 961 (1.54%)
AO Arithmetic overflow on FP ieee mul 943 (1.51%)
DF Division by zero 631 (1.01%)
AO Arithmetic overflow on FP ieee div 591 (0.94%)
DF VLA size overflows address space 507 (0.81%)
BO Buffer overflow on sscanf 498 (0.80%)
AO Arithmetic overflow on FP ieee add 497 (0.79%)
DF DF: Access to object OOB 453 (0.72%)
AO Arithmetic overflow on FP ieee sub 297 (0.47%)
DF File pointer must be valid 234 (0.37%)
DF DF: accessed expired variable pointer 199 (0.32%)
AO Arithmetic overflow on shl 170 (0.27%)
DF DF: write access to string constant 147 (0.23%)
AO Arithmetic overflow on div 137 (0.22%)
DF DF: incompatible base type 64 (0.10%)
DF DF of non-dynamic memory 60 (0.10%)
DF Free operand must have zero offset 44 (0.07%)
AO Arithmetic overflow on modulus 41 (0.07%)
DF Same object violation 34 (0.05%)
AO Arithmetic overflow on neg 18 (0.03%)
DF DF: Oversized field offset 7 (0.01%)

Our primary objective is to fix as many programs as
possible in each category. Our experiment used GPT-4o
as the base LLM model within our ESBMC-AI framework.



The formal verification tool ESBMC was invoked with
the following flags in the background: --overflow
--memory-leak-check --show-stacktrace
--timeout 10 --unwind 1 --multi-property
--no-unwinding-assertions --verbosity 6.
This 10-second timeframe can be seen as a real-time formal
verification process running in the background to detect
potential vulnerabilities. If a vulnerability is found, the
ESBMC-AI framework transforms the counterexample
into the appropriate format and generates a corresponding
prompt based on a previously created template by human
experts. Given LLMs’ prompt sensitivity [24], [121], we
experimented with various prompts to effectively integrate
the counterexample (stack traces) with the original code.

A. Experimental result on automated code repair

Automatically comparing original and suggested code is
infeasible due to the undecidability of program equiva-
lence [122], and existing Automated Code Repair (ACR)
tools often overlook verifying semantic equivalence. Given
the challenge of manually reviewing all 50, 000 samples, we
selected a smaller subset of 1, 337 samples from the most
common categories for manual verification to ensure consis-
tency with the original programs. While most verifications are
straightforward, some complex fixes need detailed review. To
enhance automation, we introduced metrics such as changes
in lines of code (LOC) and cyclomatic complexity (CC)
to evaluate a patch’s impact, as significant deviations may
indicate a failed patch.

We have categorized the most common vulnerabilities along
with their associated CWE numbers. CWE numbers can in-
dicate which vulnerabilities are most prevalent. Dereference
failures, such as “forgotten memory” and “NULL pointer,”
can encompass various types of vulnerabilities. Assigning
appropriate CWEs to these categories helps us determine the
most frequent vulnerabilities in real-life projects. We aim to
focus on fixing these CWEs with the highest possible accuracy.
Buffer overflow on scanf and fscanf: Buffer over-
flows on scanf() and fscanf() are among the most
common buffer overflow vulnerabilities in applications4. For
this type of vulnerability, a buffer overflow occurs when the
scanf/fscanf function reads more data than the allocated
buffer space, leading to an overwritten adjacent memory. This
can cause unpredictable behavior, crashes, or other security
vulnerabilities. The primary CWE number for scanf() and
fscanf() is CWE-120. The related CWE numbers for
scanf() include CWE-20, CWE-121, and CWE-122, which
pertain to input validation issues, stack-based buffer overflow,
and heap buffer overflow. The associated CWE numbers for
fscanf() are CWE-129, CWE-131, and CWE-628, which
involve incorrect calculation of buffer size and function calls
with incorrectly specified arguments.

For fscanf(), we reviewed 175 C sample code fixes, of
which 160 were successful, 8 failed verification, and 7 had

4https://cwe.mitre.org/top25/archive/2023/2023 stubborn weaknesses.html

ORIGINAL / FIXED code
ORIGINAL code:

printf("Enter command: ");
fgets(command, BUF_SIZE, stdin);
len = strlen(command);
command[len - 1] = '\0';;

FIXED:
printf("Enter command: ");
if (fgets(command, BUF_SIZE, stdin) != NULL) {
len = strlen(command);
if (len > 0 && command[len - 1] == '\n') {

command[len - 1] = '\0';
len--;}

Listing 3: Array bound violation fix (lower bound)

unknown verification results, resulting in a 90.40% accuracy
rate. We found that in 160 samples where ESBMC indicated
a successful patch, the patches were correct, compilable, and
did not alter the original program behavior. Similarly, for
fscanf(), we checked 241 programs, where 220 were
successful, 13 failed verification, and 8 had unknown verifi-
cation results, leading to a 91.29% accuracy rate. Cyclomatic
complexity (CC) can be a good indicator of how complex a
patch is. The average CC for the vulnerable programs using
fscanf() is 4.61, whereas, for the patched versions, it
is 5.62. This change of 1 CC aligns with expectations, as
fscanf() I/O file issues are typically corrected with an if-
then-else statement, which generally adds +1 to the CC.
Dereference Failure: forgotten memory: This issue contains
many vulnerabilities associated with various CWEs, such
as CWE-825, CWE-401, CWE-404, and CWE-459. Upon
reviewing the formal verification output and the patches for
this issue, we found that the same issue often emerges on a
new line when a dereference failure is patched on a particular
line. Therefore, dereference failure issues are widespread and
can be problematic to pinpoint as a “one-line” problem. The
output of the formal verification typically reveals a chain of
errors that lead to a particular line, such as strcpy, memcpy,
or other functions not part of the original code. These include
files that are not part of the patching prompt. Thus, a future
improvement could be to add these, including the prompts with
the original source code and stack traces, to achieve better
accuracy. From 187 samples, ESBMC-AI achieved a 48.66%
success rate. No external header or C files were needed to
understand the issue within these patches.
Array bounds violations: Surprisingly, there was a significant
difference in the accuracy of fixing array-bound violations.
Lower-bound violations achieved an impressive 95.60% suc-
cess rate, while upper-bound violations had a relatively low
success rate of 41.03%. Upon careful review, we identified that
lower-bound errors are easier to fix and do not require complex
calculations by an LLM. These errors are usually associated
with user input reading (gets, fgets) when these functions
can return accidentally NULL. See Listing 3).

Contrary to expectations, when fixing upper bound viola-
tions, LLMs (including GPT-4, Gemini-Pro, and others) often



TABLE III: Accuracy of patching after one iteration for different types of vulnerabilities
Original Programs Patched Programs

Vulnerability
Type

Sample
size

Avg
LOC

Avg
CC VS VF VU Avg

CC Accuracy Patches
Human Verified

Array bounds violation (lower bound) 182 79.56 6.72 174 4 4 8.35 95.60% ✔

Buffer overflow on fscanf (I/O error) 241 74.95 4.61 220 13 8 5.62 91.29% ✔

Buffer overflow on scanf 175 78.92 6.91 160 8 7 8.30 90.40% ✔

Division by zero 133 73.52 3.77 115 8 10 4.42 86.47% ✔

Dereference Failure: NULL pointer 229 78.05 5.44 184 40 5 7.70 80.35% ✔

Arithmetic overflow on add 73 74.9 4.45 52 16 5 5.17 70.27% ✔

Dereference Failure: forgotten memory 187 79.70 5.53 91 83 13 6.49 48.66% ✔

Array bounds violation (upper bound) 117 81.69 5.74 48 65 4 6.59 41.03% ✔

ESBMC 7.6.1 model verification output
Violated property (ORIGINAL code):
file falcon180b-10616_fixed.c line 56 column 13
array bounds violated: array `buffer' upper bound
(signed long int)bytes_received < 80

---------------------------------------------
Violated property (FIXED code):
file falcon180b-10616.c line 57 column 13
array bounds violated: array `buffer' upper bound
(signed long int)bytes_received < 81

Listing 4: Wrong fix: Array bounds violation (upper bound)

try to correct the code by adding +1 to the variable. How-
ever, this approach usually fails to eliminate the bug. Simply
increasing the upper bound by one still leaves the same issue
with the buffer size, as shown by the formal verification output
of the original and patched code in Listing 4. In the original
code, we have (signed long int)bytes_received
< 80 upper bound violations, and in the patching, we still
have the same issue but with an increased value (signed
long int)bytes_received < 81.
Division by zero: The division by zero vulnerability, identified
by CWE-369 and associated with CWE-691 (Insufficient Con-
trol Flow Management), is quite common in applications. We
manually verified a total of 133 samples. Of these, 115 patches
were successful, 8 failed verification and 10 had unknown
verification results. This results in an accuracy rate of 86.47%
for fixing division by zero vulnerabilities.
Arithmetic overflow on add: Here, we achieved a modest
accuracy of 70.27% from 73 samples since fixing an addi-
tion overflow often introduces a new overflow. Consider the
following interesting example:

X = (A+B)× 1000 (3)

If the overflow on addition is patched correctly by handling
variables A and B, a new issue, such as a floating-point
IEEE multiplication overflow, could emerge. Our methodology
fixes one code issue at a time, as addressing multiple issues
in a single iteration can reduce the model’s accuracy due
to biased attention, particularly with arithmetic overflows.
Therefore, achieving higher accuracy often requires more than
one iteration for most overflow issues. However, by fixing
the arithmetic overflow in the first iteration and the floating-

point IEEE multiplication overflow in the second iteration, an
accuracy of 88% can be achieved on the same samples.

Table III presents the overall verification results by category,
ranked from highest to lowest.

B. LLM generated fixes without assistance

In the ESBMC-AI framework, a key component is support-
ing the LLMs with formal verification proof from external
sources. This approach significantly enhances the accuracy
of the fixes and guides the LLMs in the right direction.
Without the exact counterexamples and stack traces, LLMs
can fix the issues with approximately 31 − 37% accuracy,
compared to 80% to 90% accuracy with ESBMC output. This
demonstrates the effectiveness of our methodology and the
external boost provided by formal verification. In certain cases,
LLMs suggest that specific errors are present in C code, even
though this may not be true. Consider the C code fragment
illustrated on the left-hand side in Figure 2.

The model generates various recommendations to resolve
the problem, including removing the embedded secret pass-
word, questioning the validity of the MD5 function, and high-
lighting the insecurity of MD5. However, it failed to recognize
the actual issue: an arithmetic overflow. Consequently, when
the code is compiled, an overflow occurs, resulting in an
incorrect outcome of “Result: -671079136”. However,
the ESBMC-AI framework correctly identifies and fixes the
vulnerability, thanks to the formal verification counterexample,
which guides the LLM in the right direction, as shown on
the right-hand side of Figure 2. Without this guidance, even
after 10 attempts, the most advanced model still incorrectly
identifies issues such as MD5 cryptographic problems or
other errors in the code, which is not true in our case.
The code does not use MD5 or include an embedded secret
password. These examples demonstrate how LLMs can face
challenges when accurately calculating arithmetic operations
or identifying vulnerable code without external assistance.

C. Threats to the Validity

ESBMC-AI heavily relies on the language model’s un-
derstanding of code semantics, which may not always align
perfectly with the program’s intended behavior. This can
lead to the generation of repairs that, although syntactically
valid, do not effectively address the underlying bugs or even



Vulnerable C code (misleading)

#include <stdio.h>
unsigned int MD5(int a,int b) {

return ((a << 5)ˆ(b << b))*(a-b);
}
int main() {

int a = 33;
int b = a-9;
const char* password = "Secret!";
int result=MD5(a,b);
printf("Result: %d\n", result);
return 0;}

ESBMC Verification output

Counterexample:

State 5 file gpt661.c line 4 func MD5
--------------------------------------
Violated property:
file gpt661.c line 5 function MD5
arithmetic overflow on mul
!overflow("*", a << 5 ˆ b
corresponding to << b, a - b)

VERIFICATION FAILED

Fig. 2: The actual vulnerability may be overlooked by an LLM when misleading function names are used.

introduce new issues. Such incorrect repairs can impact the
overall accuracy and reliability of the framework’s perfor-
mance evaluation, potentially undermining its effectiveness in
real-world scenarios. Moreover, since LLMs are off-the-shelf
products prone to hallucinations and lack explainability, there
is an added layer of uncertainty in the generated solutions. This
highlights the critical need for incorporating mechanisms that
enhance the interpretability and reliability of LLMs within the
ESBMC-AI framework to ensure robust and trustworthy code
repair in practice. Furthermore, this approach utilizes BMC,
which effectively identifies memory-related issues. However,
other critical vulnerabilities, including SQL injection, XSS,
and OS injection (among others), which are classified among
the TOP 25 CWEs, cannot currently be detected using this
method.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel framework for ACR that
leverages the power of Large Language Models and Bounded
model-checking techniques. Our evaluation of ESBMC-AI
on randomly selected samples from the five most frequent
vulnerabilities in the FormAI dataset reveals varying accuracy
for fixing different vulnerabilities. The results indicate that
in a single iteration, over 90% accuracy can be achieved for
buffer overflow on scanf/fscanf and array bounds viola-
tions (lower bound). More than 80% accuracy is attainable
for division by zero and dereference failure: NULL pointer.
These vulnerabilities cover the top 75% of the most frequent
CWEs. Array bounds violations (upper bound) and dereference
failure: forgotten memory, are the most challenging issues to
fix using this method as they often involve other vulnerabilities
or external headers or C files.

Integrating LLMs and formal verification into ACR is a
promising research direction. When paired with appropriate
prompts and feedback mechanisms, these models can facilitate
more effective code repair. However, addressing challenges
such as high computational resource demands and the risk of
introducing unintended vulnerabilities or overfitting specific
code patterns is essential. We believe advancements in this area
will revolutionize software development by enabling faster,
more accurate bug fixes and enhancing software reliability,
productivity, and security.

We have released our tool and methodology on our project
webpage, and ESBMC-AI 0.5.1 is now available as a PyPI
module. This makes ESBMC-AI one of the few tools that
can effectively support real-world projects, harnessing the full
power of formal verification methods.
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[102] D. Hidvégi, K. Etemadi, S. Bobadilla, and M. Monperrus, “Cigar: Cost-
efficient program repair with llms,” arXiv preprint arXiv:2402.06598,
2024.

[103] N. Tihanyi, T. Bisztray, M. A. Ferrag et al., “How secure is ai-
generated code: a large-scale comparison of large language models,”
Empirical Software Engineering, vol. 30, p. 47, 2025. [Online].
Available: https://doi.org/10.1007/s10664-024-10590-1

[104] L. C. Cordeiro, B. Fischer, and J. Marques-Silva, “Smt-based bounded
model checking for embedded ANSI-C software,” IEEE TSE, vol. 38,
no. 4, pp. 957–974, 2012.

[105] L. C. Cordeiro, D. Kroening, and P. Schrammel, “JBMC: bounded
model checking for java bytecode - (competition contribution),” in
TACAS, ser. LNCS, vol. 11429. Springer, 2019, pp. 219–223.

[106] K. Song, N. Matulevicius, E. B. de Lima Filho, and L. C. Cordeiro,
“Esbmc-solidity: An smt-based model checker for solidity smart con-
tracts,” in IEEE/ACM ICSE, 2022, pp. 65–69.

[107] F. R. Monteiro, M. R. Gadelha, and L. C. Cordeiro, “Model checking
C++ programs,” Softw. Test. Verification Reliab., vol. 32, no. 1, 2022.

[108] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, And Tools, 2nd ed. Addison-Wesley Longman
Publishing Co., Inc., 2006.

[109] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” NeurIPS, vol. 33, pp. 1877–1901, 2020.

[110] A. K. Lampinen et al., “Can language models learn from explanations
in context?” arXiv preprint arXiv:2204.02329, 2022.

[111] OpenAI, “Gpt-4,” 2023, accessed May 17, 2023. https://openai.com/
research/gpt-4.

[112] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[113] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” JMLR, vol. 21, no. 1, pp. 5485–
5551, 2020.

[114] A. Vaswani et al., “Attention is all you need,” NeurIPS, vol. 30, 2017.
[115] D. Beyer, “State of the art in software verification and witness

validation: Sv-comp 2024,” in TACAS. Springer, 2024, pp. 299–329.
[116] P. E. Black, “A software assurance reference dataset: Thousands of

programs with known bugs,” Journal of Research NIST, vol. 123, p. 1,
2018.

[117] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability
dataset with code changes and cve summaries,” in MSR 2020. ACM,
2020, p. 508–512.

[118] Y. Zhou et al., “Devign: Effective vulnerability identification by
learning comprehensive program semantics via graph neural networks,”
NeurIPS, vol. 32, 2019.

[119] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet,” IEEE TSE, 2021.

[120] R. Jain, N. Gervasoni, M. Ndhlovu, and S. Rawat, “A code centric
evaluation of c/c++ vulnerability datasets for deep learning based vul-
nerability detection techniques,” in Proceedings of the 16th Innovations
in Software Engineering Conference, 2023, pp. 1–10.

[121] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-
nashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern
catalog to enhance prompt engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

[122] R. Goldblatt and M. Jackson, “Well-structured program equivalence is
highly undecidable,” ACM TOCL, vol. 13, no. 3, pp. 1–8, 2012.


