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ABSTRACT

We investigate a modification of the classical Bounded Model Check-
ing (BMC) procedure that does not handle loops through unrolling
but via modifications to the control flow graph (CFG). A portion of
the CFG representing a loop is replaced by a node asserting invari-
ants of the loop. We generate these invariants using Large Language
Models (LLMs) and use a first-order theorem prover to ensure the
correctness of the generated statements. We thus transform pro-
grams to loop-free variants in a sound manner. Our experimental
results show that the resulting tool, ESBMC ibmc, is competitive
with state-of-the-art formal verifiers for programs with unbounded
loops, significantly improving the number of programs verified
by the industrial-strength software verifier ESBMC and verifying
programs that state-of-the-art software verifiers such as SeaHorn
and VeriAbs could not.
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1 INTRODUCTION

Bounded Model Checking (BMC) is a well-established technique for
hardware and software verification [7, 6]. Broadly, bounded model
checkers work by exhaustively checking that no path through a
program leads to an error state [18]. Loops are typically handled
by unrolling. Thus, loops that cannot be statically bounded or have
large static bounds pose problems for software model checkers [40,
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23, 27]. In practice, for code involving loops with non-trivial bounds,
BMC can find bugs, but cannot prove correctness. The main alter-
native to loop unrolling in software verification is to use a loop
invariant to represent the program states that hold for all loop itera-
tions. Loop invariants may be supplied manually [25] or discovered
automatically [2]. Once these invariants are computed, they can be
used for various applications, including proving correctness, code
optimization and refactoring, debugging, and testing.

In the context of BMC, a loop can be replaced by a suitable invari-
ant, resulting in a loop-free program, which classic BMC techniques
can then handle using Boolean Satisfiability (SAT) or Satisfiability
Modulo Theories (SMT) solvers. The challenge here is to synthesize
suitable invariants [51]. This has long been an active area of re-
search, and various approaches exist to discover invariants. These
include abstract interpretation [19], predicate abstraction [24], con-
straint solving [14, 3], and dynamic analysis [46]. However, none
of these methods have become established, and most are limited to
some particular class or domain of loops and fail to generalize to
arbitrary programs.

With Large Language Models displaying emergent code genera-
tion and auto-formalization abilities [15, 57], there has been a surge
in interest in their ability to generate invariants [55]. However,
invariants generated by LLMs are unlike those generated by ab-
stract interpretation, as there are no guarantees that the candidate
formulas generated by an LLM are indeed invariants. Thus, relying
on candidates returned by an LLM can easily lead to unsoundness.
Hence, we combine an LLM with a first-order theorem prover. In
particular, we use the superposition-based prover Vampire [38] to
try and prove that candidate invariants are truly invariant. Candi-
dates for which no proof is found are discarded.

To summarise, we attempt to complement BMC’s existing strengths
in bug finding by strengthening its verification abilities.. We achieve
this as follows. We take a C program and use an LLM to annotate
all loops with candidate loop invariants. The annotated program is
then passed to the ESBMC verifier [42]. During symbolic execution,
when ESBMC reaches a loop, instead of attempting to unroll it,
ESBMC calls Vampire to prove the candidate invariants. If Vampire
successfully proves one or more invariants, the loop is replaced
by a formula asserting the proven invariants, and symbolic exe-
cution continues as normal. If the execution reaches an assertion,
ESBMC attempts to prove it as normal i.e. by translation to SMT as
described in Section 2.4.
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Contributions. The main contributions of this paper are:

(1) A novel extension of BMC that incorporates automated loop
invariant generation.

(2) The use of LLMs to produce invariant candidates for BMC
of software without loop unrolling.

(3) An extension of our techniques to quantified invariants en-
abled by interfacing with the full first-order prover Vampire.

2 BACKGROUND AND RELATED WORK
2.1 Large Language Models

Large Language Models are a form of deep learning model based
on the transformer architecture that has shown proficiency at text
generation and language processing tasks [9]. They are commonly
trained on large datasets and consist of billions of parameters. LLMs
can be fine-tuned for performance on particular tasks, though as the
model size grows, fine-tuning becomes less important [12]. Many
LLMs have been developed, from the well-known ChatGPT [56] to
Claude and Gemini.

It is known that the prompt provided to an LLM is crucial to
the quality of the response received. It is also known that LLMs
respond differently to prompts [10]. This has given rise to the field
of prompt engineering [29]. The two best-known approaches are
the chain of thought [53] and the tree of thought [58].

Chain of Thought. This approach guides the LLM in formulating
an increasingly accurate answer with a more refined and detailed in-
put prompt [59, 58]. White et al. [54] outline four main components
that can be used to construct this type of prompt:

o Input Semantics — what the input will look like, e.g., a custom
grammar and any associated rules.

Context Control - to provide extra context to the LLM, such
as a specific solved example of what you would like the
LLM to do, thereby increasing the likelihood of the LLM
generating more accurate responses to increase

o Output Customisation — how the output should be presented,
i.e., is there any template that the LLM can populate with its
response?

Error Identification — for resolving the errors in the LLM gen-
erated responses, the improvement of the respective prompt
— which is refining the question for a more appropriate an-
swer (potentially with various approaches).

Tree of Thought. In contrast, in the Tree of Thought approach,
queries are represented as a decision tree, and the responses are
traversed in a breadth or depth-first manner [58]. The traversal
undergoes a purification stage where only the relevant responses
are taken to formulate an overall response. This is ideally used
for more complicated problems that may require a larger, more
complex, and, in some cases, verbose output [58, 41]. This is used
for larger models like GPT-4 and GPT- Turbo - as they have a
significantly higher context window of 8K to 128K tokens.

2.2 Program Verification

Broadly, the field of software verification can be split into two main
categories. Techniques that require user input, such as those based
on interactive theorem proving [49, 47] or those that require user
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annotations of loop invariants [34, 1], and techniques that are fully
automated such as Bounded Model Checking (BMC) [6], abstract
interpretation [19] and symbolic execution [37]

BMC, in particular, has become an effective and popular verifi-
cation technique. For loop-free programs, model checkers harness
the surprising effectiveness of SAT and SMT solvers [28] to explore
all program paths and either uncover bugs or verify safety and cor-
rectness. We discuss BMC in more depth in Section 2.4. However,
as mentioned in Section 1, and in common with other techniques,
BMC struggles with loops that cannot be statically bound or with
large bounds [27]. Classic BMC works by unrolling loops, which
does not scale well. A common method of handling loops is to use
inductive loop invariants. An inductive loop invariant (or just loop
invariant for short) is a logical assertion that holds at a loop head
whenever program execution crosses this location. Synthesizing
loop invariants is perhaps the main challenge in program verifica-
tion [50] and has uses in other areas such as static analysis [43].

Due to the issue’s centrality, various approaches have been ex-
plored. One approach is to solve a set of recurrence relations using
a constraint solver. This is the approach taken by Ji et al. [36] and
Amrollahi et al. [3], for example. The downside of the approach is
that it is restricted to particular classes of loops. In the case of Ji et
al., their approach is restricted to affine loops, while Amrollahi et
al. target a generalization of the solvable loops.

Another popular approach is dynamic invariant generation [22,
45]. Dynamic generation proceeds by generating a large number
of invariant templates. Actual program runs are then used to filter
the templates. The remaining templates can then be passed to a
verification engine to ensure they are true invariants. The downside
of this approach is that, again, it is limited by the form of the pre-
selected templates.

Abstract interpretation [19, 20] is also widely applied. How-
ever, abstract interpretation methods are limited by the domain
of abstraction. There are many other techniques, such as Craig
interpolation [31] and the IC3 approach [11]. However, they all
tend to be limited in the form of the loop they can handle or the
form of the invariant they can produce.

This has led to interest in using neural techniques for invariant
generation. Code2Inv [52] uses deep reinforcement learning to
synthesize invariants as part of a counterexample-guided inductive
synthesis loop. He et al. [32] use a neural net to remove redundant
constraints introduced during abstract interpretation.

There has also been a surge of interest in using Large Lan-
guage Models (LLMs) for verification. Janfien et al. [35] conduct
exploratory work on getting LLMs to produce invariants. Pei et
al. [48] use an LLM to predict whether a formula is likely to be a
Daikon [22] generated invariant. Likewise, Chakraborty et al. [13]
do not use an LLM to generate invariants directly but instead to
rank candidate invariants. Finally, Wu et al. [55] is the work closest
to ours. The authors use an LLM to generate candidate invariants,
but unlike our approach, this is not integrated into an existing veri-
fication technique. We provide a more detailed comparison of our
approach with the associated LEMUR tool in Section 6.1.
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2.3 Representing Programs

In this work, we model the program to be analyzed as a state tran-
sition system corresponding to the program’s control-flow graph
(CFG). A node in the CFG represents either a (non-) deterministic
assignment, a conditional statement, an assumption, or an assertion.
An edge in the CFG represents a possible change in the program’s
control location. A CFG directly induces a transition system. We
consider a labeled transition system (LSTS) M = (S, I, T, L, F) with
states S, initial states I C S, transition relation T C SXS, set of labels
L, and a labeling function F : § — 2L. The CFG structure gives us
S, I, and T. In addition, we consider programs with candidate loop
invariants and form F such that it maps states that represent the
head of a loop in the original program to the candidate invariants
on that loop (and all other states to the empty set).

Example 2.1 (Running Example). Consider the C program in List-
ing 1. Figure 1 illustrates the LSTS for this C program where we omit
the initial non-deterministic assignments. Only one state (i <= n)
is labeled with a non-empty set (of candidate loop invariants).

Cycles in an LSTS can only be introduced by loops or recursive
function calls in the original program. We assume programs are
goto-free, so there is always a unique final state for each loop
(directly reachable from the loop head).

2.4 Bounded Model Checking (BMC)

Given a transition system M = (S,I,T, L, F), a property ¢, and a
bound k, BMC unrolls the system k times and translates it into a
verification condition i, such that i is satisfiable if and only if ¢
has a counterexample of length k or less [8]. The associated model
checking problem is formulated by constructing ;. as follows:

k j-1
o= n \[=0G) xp=s0 € IA [\ Tlsisin)

i=0 i=0
As yj represents the executions of M of length j, the formula . can
be satisfied if and only if, for some j < k, there exists a reachable
state at step j in which ¢ is violated.

If Y is satisfiable, then the satisfying assignment gives the val-
ues of the program variables to form a counterexample. If ¥ is
unsatisfiable, we can conclude that no error state is reachable in k
steps or less. In this case, BMC techniques are incomplete because
there might still be a counterexample longer than k. Completeness
can only be ensured if we know an upper bound on the depth of the
state space. This means that if we can ensure that we have already
explored all the relevant states of the system, and searching any
deeper only exhibits states that have already been verified [39].
This is trivial in the case of loop-free programs, as the upper bound
is the maximum path through the program’s transition system. In
this work, we seek to transform a transition system into a loop-free
one, moving any potential incompleteness into this transformation.

3 SIMPLIFYING LOOPS WITH INVARIANTS

This section introduces a method to transform an LSTS into a loop-
free LSTS. This works by attempting to replace a loop with the
set of loop invariants labeling the loop. The approach differs from
other techniques that either verify each loop invariant or attempt
to derive a set of valid invariants. Instead, we take a set of potential
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Listing 1: Example C program (94.c from Code2Inv)

int main() {

int i = __VERIFIER_nondet_int();
int j = __VERIFIER_nondet_int();
int k = __VERIFIER_nondet_int();
int n = __VERIFIER_nondet_int();

__ESBMC_assume(k >= 0);
__ESBMC_assume(n >= 0);
i=0;
j=0;
__invariant(i >= 0);
__invariant(j >= i);
while (i <= n) {

i = (i + 1);

i o=@+ 1)
3
__VERIFIER_assert( ((i + (3 + k)) > (2 * n)) );

— i=0 > j=0

l

assume k >= @

1

assume n >= @

j >= 0
;'>:i _____ 1<=n<=1+1
j=3+i

assert (i + (j + k)) > (2 *xn)

Figure 1: LSTS for program in Listing 1.

loop invariants and replace the loop with the subset that holds. This
approach fits well with a setup that uses an LLM to generate likely
invariants. While the transformed LSTS is not equivalent to the
original LSTS, it soundly approximates it in the following sense.
If for some property ¢, there is no state reachable in the modified
LSTS that satisfies ¢, then there is no state reachable in the original
LSTS that satisfies ¢.

3.1 Transformation.

Let us consider a labeled state transition system M|[7] containing a
sub-graph 7 that represents a loop, i.e., it has an initial state h € x
such that F(h) # 0 (h is a loop head) and an exit state e € 7 such
that for any state s € r/{h} we have F(s) = 0 (there are no nested
loops as these are handled by transforming inner loops first) and
both T*(h,s) and T (s, e) where T* is the transitive closure of T.
Due to how M is constructed, the only cycles in 7 contain h. We
rewrite M[x] to M[{h, n, e}], where n is some new state such that
T(h,n), T(n,e) and n assumes a non-empty subset of invariants in
F(h) that hold (see below) as well as the negated loop condition.
Repeating this process for all loop-representing sub-graphs yields
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an acyclic transition system. In the remainder of this section, we
write M’ for the LSTS formed via the transformation just described
from an LSTS M.

Spurious Counter-Examples. This transformation can trivially
lead to spurious counter-examples. Even though tools such as
ESMBC provide a verifiable counter-example when employing this
transformation, the counter-example for an assertion after a loop
is likely due to the over-approximation of the state space by the
provided loop invariants rather than an actual bug. To understand
why, consider the program P

int main() {
int a,b = 0;
__invariant(true);
while (a < 10) { a++; b++ }
__VERIFIER_assert(b != 0);
}

which will be (effectively) transformed into

int main() {
int a,b = 0;
__VERIFIER_assume(true);
__VERIFIER_assume(a >= 10);
__VERIFIER_assert(b != 0);

leading to a spurious counter-example e.g. a = 10, b = 0.
Consider also our running example (Listing 1). If we only use the
loop invariant i >= @, then we can obtain the trivial counter-
examplei = 2, n =1, j = k = 0 as we do not have the invariant
j >= i ensuring j is large enough to make the assertion true.

This demonstrates that valid invariants may not fully capture
the semantics of the loop. Hence, states not reachable in the orig-
inal program M may be reachable in M’. For this reason, when
considering soundness and completeness, we restrict our attention
to proving program correctness.

Soundness. Informally, by sound we mean that no invalid asser-
tions can be proven. That is, there are no false positives. The above
transformation is sound. Given a desired property —¢, if no state s
satisfying ¢ is reachable in M’ then no such state is reachable in M,
i.e., we cannot say that M has the property —¢ if M does not. The
transformation cannot remove reachable states as any invariant
used to replace the loop must be true at the final state of the loop.

Completeness. By completeness, we mean that every valid asser-
tion can be proven. The above transformation is incomplete. As
explained previously, a set of invariants may fail to capture the
complete semantics of a loop. In such cases, the transformation
over-approximates the set of reachable states. Given a desired prop-
erty —¢, it is possible that no state satisfying ¢ is reachable in M
while a satisfying state is reachable in M’ leaving the property —¢
false in M’. The transformation of P above is an example of this.

3.2 Implementation in ESBMC

We implemented! the loop replacement technique described above
in the ESBMC verifier [42] using Vampire [38] to reason about loop

10ur code can be found at https:/github.com/esbmc/esbmc/tree/ahmed-vampire-for-
loops
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invariants due to its ability to reason efficiently with quantifiers
and theories. We chose to extend ESBMC - instead of other tools -
as model checkers are very strong at finding bugs (showing unsafe
behavior), and we wanted to improve their performance at proving
safety, making them better general-purpose tools. Our approach is
applicable to other tools and techniques since invariants are crucial
to almost all imperative software verification methods. ESBMC
uses an LLVM frontend to parse a C program and store it in an
internal representation, which can be modeled using a CFG. It then
uses symbolic execution to convert this CFG into a Single Static
Assignment (SSA) form in which every variable is assigned at most
once, and there are no loops. As mentioned, ESBMC handles loops
during symbolic execution by unrolling them to some depth k. The
SSA form induces a transition system that can be converted into
a decidable fragment of first-order logical formulas, as Section 2.4
shows.

We modify ESBMC’s symbolic execution procedure to handle
loops differently. We use our running example to expound the
changes. Let t represent the program before the loop. In SSA form
(and ignoring variables that are not modified in the loop), ¢ is:

i_0 = 0;
j_0 = 0;

When symbolic execution of the program reaches the loop head
s, instead of unrolling, we replace the loop with the invariants
i € F(s) that hold at the start of the loop (the base case) and on
every step of the loop (the step case). For the base case, we form
t|, the logical representation of t, and attempt to prove that the
program state at the loop head implies the invariant i i.e. we give
the first-order problem |¢| — i to Vampire.

For the step case, we must capture the fact that, when starting
execution from some arbitrary iteration, we cannot assume any-
thing about the value of the variables modified within the loop (the
loop variables). To do this, we insert into the CFG nodes that havoc
(set to non-deterministic values) the loops variables. In our running
example, we insert the following assignments into the CFG before
the loop head:

i_1 = __VERIFIER_nondet_int();
j_1 = __VERIFIER_nondet_int();

Let s be the loop head i_1 <= n. We then symbolically execute
the loop body a single time to obtain b the loopbody i_2 = i_1 + 1;
j_2 = j_1 + i_2; from which we form |b| its logical representation.
We use Vampire to attempt to prove that i A |s| A |b] — i’ where i/
is i expressed in terms of program variables at the loop end. In our
running example i could be i_1 >= @ in which case i’ would be
i_2 >= 0.

We apply the transformation to all invariants i € F(s) such that
the base case and step case hold. As we do this iteratively, we can
strengthen the step case by adding all invariants already proven
to the antecedent. Since they have already been proven invariant,
assuming they hold at the start of an arbitrary loop iteration is safe.
In our running example, if we prove that i > 0 is invariant, we can
assume this when attempting to show that j > i is invariant holds.

This raises the interesting question of which order to attempt
step case proofs, as this has a material impact on what can be
proven. We iterate to avoid making an arbitrary decision until no
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— i=e

!
)

assume k >= 0@

1

assume n >= 0

l

assume i >=0 && j >= i

1

assert (i + (j + k)) > (2 *n)

Figure 2: Simplified transition system from LSTS in Figure 1.

new invariants are proven. So, for example, we may attempt to
prove j > i first, fail, prove i > 0, and then go back to proving
Jj = i, this time armed with the invariant i > 0. Checking through
all permutations of invariant candidates can, in theory, lead to
exponential proof attempts. In practice, invariants can often be
proven independently of each other, reducing the search space, and
a small number of passes often suffices.

Once we have a set of invariants, we unwind symbolic execution
before the nodes used to havoc loop variables, insert the invariants
as assumptions, and continue with symbolic execution. If no loop
invariants are found, we abort rather than unrolling the loop, as
unrolling would be unsound in this context.

3.3 Illustrative Examples

Firstly, let us consider our running example in Figure 1. Vampire can
prove both invariants to hold (base and step case). The simplified
loop-free transition system is given in Figure 2. ESBMC verifies this
program as it can quickly conclude that no bad states are reachable
in the loop-free transition system.

Secondly, consider the C program given in Figure 3 along with
its LSTS and the simplified transition system given by the above
process. As outlined by Sharma et al. [50], this program is difficult
to generate invariants due to the split case. Once we have invariants,
we can use Vampire to prove the base and step cases and replace
the loop, leading to a loop-free state transition system, which is
quickly verified.

The work was relatively straightforward in both cases once the
appropriate invariant had been identified. The question remains:
can we generate such invariants automatically using LLMs? We can
ask an LLM for a certain number of invariants that can be used to
prove an assertion following a loop. Figure 4 provides some of the
conversations (we omit some explanation) we had with an LLM
(ChatGPT 3.5) to identify the loop invariants we have used in this
second example (the invariants for the running example were also
obtained via LLM). This validated that the LLM can generate exactly
the loop invariants we need, so how do we mechanize this process
to apply automatically at scale?
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int main()

{
int x = 0;
int y = 50;
__invariant (@ <= x && x <= 100);
__invariant(x <= 50 && y == 50
|| x > 50 && y == x);
while (x < 100) {
X = x + 1;
if(x > 50)¢{
y =y + 1
}
}
__VERIFIER_assert(y == 100 );
3
—x =0
y = 50
(0 <= x && x <= 100) J/
(x <= 50 && y == 50 || F B
X > 50 && y == x) X<m®<_l+1
x > 50
assert y == 100 y=y+1

assume ((0 <= x && x <= 100) &&
(x <= 50 & y == 50 || x > 50 && y == x)
&& x >= 100)

1

assert y == 100

Figure 3: C program (top), its LSTS (middle), and the trans-
formed LSTS (bottom).

4 GENERATING USEFUL INVARIANTS WITH
LLMS

The previous section described a method to remove invariant-
annotated loops but relied heavily on the quality of loop invariants.
Here, we propose a method for using LLMs to suggest useful loop
invariants.

4.1 Approach

The strongest invariants we could generate would lead to the same
set of k-reachable states. This is too strong. Given the task of prov-
ing that the program satisfies a given property —¢ it would be
sufficient if a state satisfying ¢ were reachable in the original pro-
gram if and only if it were reachable in the transformed program



ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Provide two loop invariants for the loop in the
program that are strong enough to prove the
assertion at the end of the program.

Answer:
Invariant 1: 0 <= x && x <= 100

This ensures that x is always within the expected
range throughout the loop's execution.

Invariant 2: x <= 50 && y == 50 || x > 50 & y == x

This captures the relationship between x and y:

If x is less than or equal to 50, y remains 50.

If x is greater than 50, y increments in tandem with
x, effectively making y equal to x.

Figure 4: ChatGPT 3.5 conversation to generate lopo invari-
ants in Figure 3.

(the if direction giving completeness and the only-if direction giv-
ing soundness). Identifying such a set of invariants is, in general,
undecidable.

However, we do know that loop invariants used in program ver-
ification tend to follow common patterns, as discussed by Furia
et al. [26] in their systematic study. They classify loop invariants
as either being a bounding invariant, placing some bound on key
terms, or an essential invariant, as some mutation of the postcondi-
tion. Both observations suggest that it is likely that LLMs may be
able to infer likely invariants from other examples (as bounding in-
variants follow common patterns) or in a predictable way from the
given assertion. It also suggests that we may need to infer multiple
invariants for a single loop.

4.2 Initial Invariant Generation Pipeline

We constructed an invariant generation pipeline to generate and
use invariants to verify C programs. This is illustrated in Figure 5
(the filtering box in dashed lines is introduced later).

Labelling Loops. The first step in the pipeline identifies all loops
within the program and inserts a comment, e.g., \\Line A, before
each loop. This allows the prompt to use this comment to refer
to particular loops as previous work [55] noted that LLMs are not
good at reasoning about line numbers.

Prompt. Following the chain-of-thought approach outlined in
Section 2.1, the LLM prompt consists of three parts. Firstly, some
worked examples are given where a C program is provided with
(a) correct invariant(s) and an explanation for why these invariants
hold. In this case, we use the LLM itself to generate the explanation.
Secondly, the C program to be verified is provided (with loops
labeled as above). Finally, the query asks for an invariant in a
particular format. The template for this prompt is given in Figure 6
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It is important to note that there is a certain degree of non-
determinism in LLM-generated responses - regardless of how metic-
ulously crafted the prompt is - the LLM is more than likely to gen-
erate some random responses. There is, therefore, a trade-off. If the
prompt is too weak, then the LLM may not have enough informa-
tion. However, if the prompt is too long, that might lead the LLM
to some level of confusion on easier tasks; finding the balance in
the prompt is the goal of ensuring the best responses are obtained.

Verification. Once the LLM returns the invariant(s), the C pro-
gram is modified to replace the label(s) with the associated invari-
ants. The resultant C file is passed to the modified ESBMC described
in Section 3 for verification via invariant-based loop simplification.

Iteration. The LLM may not produce usable (syntactically cor-
rect) or useful (resulting in successful verification) invariants from
a single prompt. We can increase the likelihood through careful
crafting of the prompt and choice of LLM. Still, ultimately, we must
ensure that the LLM has some latitude to generate incorrect re-
sponses - while ensuring that time and resources do not get wasted.
Additionally, some programs may require multiple invariants, and
it is unclear how many to ask for. We address both issues by itera-
tively retrying the prompt, increasing the number of invariants to
ask for after every n attempts.

We always run with a maximum iteration limit. If an open-source
LLM is used, then the number of iterations is not a bounded resource
- as they are free to use. However, if closed-source LLMs such as
GPT are used, then every LLM-based prompt and the respective
generated response has some financial cost depending on the token
usage and limit per request, so assigning a limit is necessary.

4.3 Pipeline Modifications

After establishing the initial pipeline, experimentation led to further
modifications.

Filtering Suggested Invariants. We observed that generated in-
variants often led to parsing errors during verification. There were
two main classes of parsing errors:

(1) The LLM generated incorrect C code, and
(2) Hallucinating variables, i.e., generating an invariant over a
program variable that did not exist in the program.

Class 2, hallucination, occurred rarely during our experiments
and did not appear to impact the result significantly. We inspected
the invariants generated on all failed runs, and no failures were
due to hallucination issues. Most issues fell into the first class, and
we focused on this. Instead of providing further constraints in the
prompt (i.e. attempting to teach the LLM what a correctly formed
invariant should look like), we performed a lightweight syntac-
tic check on the generated invariants. This utilized a relatively
constrained regular expression
__invariant\(Q\w|\s|\IN]T&&] ! [=I<]>I\? ] INCI\))*\);
to limit the invariants used for verification. Each invariant is checked
against the pattern and discarded if it does not match. This allows
an iteration to proceed even if some generated invariants are syn-
tactically invalid.

Reducing Distractions in the Prompt. A separate hypothesis to
explain the number of parsing errors was that the explanations
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Figure 5: Illustration of how ESBMC ibmc works.

<Examples with explanation>

Based on these examples provided above can you
generate a C invariant for the following code,

<Labelled Input C Program>

Print an invariant for this loop that holds in the

form '__invariant(...);'. They should help prove the
assertions. You can utilise '&&' or '||' if required.
No explanation. Your answer should be in the form
__invariant(. . .);"

Figure 6: Prompt template for ESBMC ibmc.

provided in the prompts could cause potential interference with
the performance of the invariant generation. It provides inputs that
may look like invariants but are formatted as explanations. We
created an alternative prompt to eliminate this noise source that
removed the explanations from examples. This led to a simplified
chain of thought prompt engineering approach.

Combined Prompt. Early experimentation demonstrated that, in
some cases, the full prompt with all examples was necessary to
produce the correct invariant. Still, in other cases, its distraction
prevented any useful invariants from being produced. To get both
benefits, we included a pipeline that attempted both prompts one
after the other (in terms of iteration limits, both calls count as one
iteration).

4.4 Implementation

We have implemented the above pipeline and its extensions as a
wrapper around the extended ESBMC described in Section 3 and
call the result ESBMC ibmc. The above options give us six variants of
the tool where we (i) either choose to filter the generated invariants
or not and (ii) choose a full, constrained, or combined prompt. We

limit the number of generated invariants to 3 and increase this
number every 5 iterations (returning to 1 every 15 iterations).

For the LLM, we select OpenAI’s ChatGPT 3.5 Turbo-Instruct.
Significant research has been conducted comparing various LLMs
for code generation tasks [21, 44, 60]. Consistently, OpenAI's GPT
and Llama top the performance charts, hence our decision to go with
ChatGPT. Zheng et al. [60] show that GPT-3.5 is good at performing
certain code generation tasks in Java and is also very capable at
doing so in Python. Alongside this, the series of tasks conducted by
Nejjar et al.[44] show that GPT-3.5 and GPT-4 achieve 4 stars and, in
some cases, 5 stars for certain code generation tasks. Additionally,
Du et al.[21] show that GPT-3.5 and GPT-4 significantly outperform
all the other models in their study for “class-level coding tasks with
both greedy sampling and nucleus sampling”. All of this lead us to
select GPT as the LLM for integrating this tool.

However, the reason for choosing GPT-3.5-Turbo-Instruct was
not just a model choice. It was a cost-effective choice, and the model
is fast. Specifically, the instruct model can generate concise answers

based on instructions and detailed context.% 3

5 EXPERIMENTAL ANALYSIS

Our experimental analysis of ESBMC ibmc aims to address the
following research questions.

RQ1. Can our chosen LLM (GPT-3.5-Turbo-Instruct) generate in-
variants useful for program verification?

RQ2. Is it better to use more or less explanation in the chain-of-
thought prompt?

RQ3. Should we always syntactically filter invariants?

RQ4. Should we ask the LLM for fewer or more invariants?

RQ5. Does ESBMC ibmc verify programs that cannot be verified
by the state-of-the-art?

5.1 Experimental Setup

Our experiments use the following setup.

2See https://platform.openai.com/docs/models
3See https://platform.openai.com/docs/api-reference/completions


https://platform.openai.com/docs/models
https://platform.openai.com/docs/api-reference/completions

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Results from option comparison. Unique solved
benchmarks concerning companion experiments in paren-
thesis. Time (in seconds) and Iterations are for successful
runs. err gives mean iterations with parsing errors.

Solved Time Iterations
mean max mean max err
Full Prompt
no-filter | 74 (18) 59.7 316.0 10.8 31 7.8
filter 62 (9) 71.0 273.1 11.8 30 0.2

Constrained Prompt

no-filter | 64 (8) 59.7  231.2 9.3 30 6.3
filter 65(11) 49.1 3524 7.8 29 0.1
Combined Prompt

no-filter | 79 (15) 109.1 643.5 17.6 59 13.2
filter 77 (13) 980 567.2 14.83 58 0.2

Benchmarks. The benchmarks are from the code2inv benchmark
set* developed for learning-based approaches to invariant genera-
tion [51]. We added macros for assertions and assumptions specific
to each verification tool to prepare the programs for our experi-
ments.The benchmarks contain one loop and the biggest program
contains 53 lines of code. The updated files are available at our
repository.

Resources. The machine used to run all experiments is a Macbook
Pro with a 2.8 GHz Quad-Core Intel Core i7 Processor and 16 GB
memory. Experiments were run with a time limit of 600 seconds
and ESBMC ibmc was run with an iteration limit (for invariant
generation) of 30 iterations per benchmark. However, we used 60
iterations/20 minutes for combined prompts primarily to see how
many benchmarks exceeded 600s and do any hit the timeout of
1200s or not. However, this didn’t help much; Table 1 shows the
maximum solution time was 645s.

5.2 Comparing ESBMC ibmc Options

To address RQ1-3, we compared the six variations of ESBMC ibmc.
The results are given in Table 1. We discuss each Research Question.

RQ1: Can our chosen LLM (GPT-3.5-Turbo-Instruct) generate in-
variants useful for program verification? For this work, which fo-
cuses on a single loop and a goal, invariant usefulness is directly
related to whether it can be used to verify the given program, i.e.,
whether it’s related to the goal. Overall, ESBMC ibmc verifies 101
out of 133 programs (across all options), and the initial pipeline (Full
Prompt/no-filter in Table 1) verifies 74 programs. This confirms that
the LLM can generate useful invariants for program verification. As
a baseline, only 10 of these programs could be verified by ESBMC’s
standard bounded-model checking algorithm.

4See https://github.com/PL-ML/code2inv
Shttps://github.com/ibnyusuf/LLM-Generated- Invariants-For-Bounded-Model-
Checking/tree/main/Benchmarks

6 All our benchmarks, scripts, and tools, along with instructions on how to set them up
and run them, can be found at the following link https://github.com/ibnyusuf/LLM-
Generated-Invariants-For-Bounded-Model-Checking/. Please note that due to the
nondeterministic nature of LLMs, it is unlikely that exact replication of our results
will be possible. However, similar results should be obtainable.
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Figure 7: Comparing programs verified for the three prompt
styles for no filtering (left) and filtering (right).
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Figure 8: Comparing verification time (seconds) for Full vs
Constrained prompts (no filter).

Performance would likely improve with a more recent model.
Recall that one reason for the current choice was cost and validating
the technique with a cost-effective LLM is useful as cost is likely
to be important to verification efforts. Future work will extend
experiments to recent LLMs (including open source).

The answer to RQ1 is that our LLM generated many in-
variants that were used to verify programs that could not
be verified (by ESBMC) without them.

RQ2: Is it better to use more or less explanation in the chain-of-
thought prompt? We answer this question by comparing the Full
vs Constrained vs Combined approaches in Table 1. Figure 7 (left)
shows the distribution of problems solved by each approach without
filtering.

The first observation is that there is no clear-cut advantage
to more explanation (Full) or less explanation (Constrained) in
the chain-of-thought prompt. Although without filtering, more
explanation is beneficial in general. Figure 8 plots verification time
in the Full and Constrained prompts. It shows that many programs
not verified using one prompt were hard to use the other.
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We might expect the Combined prompt to solve the union of
the Full and Constrained prompts. However, from Figure 7 (left),
we can see this is not the case. The simple explanation here is that
running both prompts takes longer, and programs verified towards
the end of the time limit for a single prompt may not be verified
when using the Combined prompt.

The answer to RQ2 is that more explanation is better over-
all but can also be distracting, so a combination is best.
This also suggests that further experimentation with the
amount of explanation could yield improved results.

RQ3: Should we always syntactically filter invariants? Table 1
records the mean number of iterations skipped due to parsing errors
(err column). For non-filtered experiments, this ranges between 67%
- 75% of iterations wasted due to the LLM producing syntactically
incorrect invariants. This should suggest that removing these would
improve performance, but while it mostly eliminates parsing errors,
the performance improvements are less clear. For the Full prompt,
we see a drop in verified programs and, more interestingly, a large
gap in the symmetric difference (of 27 programs). This suggests
that (i) the syntactic filtering may be over-constrained (i.e. it rejects
useful invariants) and that (ii) allowing many more iterations to
proceed increases the chances of finding a useful invariant (from
within the constraints). We see a similar symmetric difference for
the Constrained prompt, although, in this case, filtering leads to
more programs being verified. This suggests that the more complex
invariants that the filtering discarded for the Full prompt came from
the additional explanation in that prompt.

The answer to RQ3 is that filtering significantly reduces
parsing errors. Still, the current implementation does not
cover all cases, and the addition of filtering restricts the
freedom of LLM-generated responses. This suggests that
exploring techniques that relied more on guiding the LLM
to generate syntactically correct invariants rather than
post-filtering would be better.

Summary. We have demonstrated that ESBMC ibmc can con-
sistently solve around 58% of the programs in our benchmark set
(using the combined approach). However, there is still work to be
done to understand how best to combine different techniques -
only 39 programs (29%) are verified by all 6 option combinations,
but 101 programs (76%) are verified by at least one.

While we didn’t report results from multiple runs, we observed
that the LLM was stable in the invariants it returned for a program
across 30 iterations (e.g., the order might change, but the actual
invariants less so), leading to stable results.

5.3 How many Invariants to Ask For

To address RQ4, we first examine how many invariants were gen-
erated on successful runs in our previous experiments. This infor-
mation is given in Table 2. This shows that many programs were
verified when 3 invariants were generated, although ESBMC may
not have needed all 3 to verify the program. Non-determinism of
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Table 2: Generated invariants used for successful verification.

no-filter filter
Full Constr. Comb. | Full Constr. Comb.
1 37 35 47 25 36 56
2 23 19 17 23 18 14
3 14 10 15 15 12 8

Table 3: Comparing ESBMC ibmc with other state-of-the-art
verification tools.

Tool Solved Unique
ESBMC bmc 16 0
ESBMC k-induction 46 0
SeaHorn 115 10
VeriAbs 73 2
ESBMC ibmc 101 2

the LLM means that a single useful invariant could be generated
at any point. Approaches that remove noise tend to use (slightly)
fewer invariants, suggesting that noise reduction is in tension with
generating more complex invariants.

Note that it is impossible to judge how close we are to the ‘min-
imum’ number of invariants required since we have no ground
truths for the benchmarks. We found that at least half of the solved
benchmarks needed more than 1, but only 1 required more than 3.

Next, we run an additional experiment asking the LLM to pro-
vide “up to 20” invariants on every iteration using the constrained
prompt and syntactic filtering. The first observation is that the
LLM was not very good at generating many different invariants.
The most unique invariants returned was 10, but the mean was
2.6. This approach verified 61 programs, including 1 not verified
by previous approaches. The time and iterations required (105.2 s
and 9.8 s on average) are significantly worse than when asking for
fewer invariants.

The answer to RQ4 is that the approach taken in ESBMC
ibmc (asking for a few invariants and increasing this limit
if no useful invariants are produced) seems preferable to
asking for a large set every time.

5.4 Comparing ESBMC ibmc with the
State-of-the-Art

To address RQ5, we compare ESBMC ibmc to three state-of-the-art
program verification tools. The results are given in Table 3 and
Figure 9. As before, all experiments here ran for 600 s. We compare
other tools against the hypothetical “best” version of ESBMC ibmc
that uses the right option for each benchmark.

Comparing with ESBMC modes. We compare ESBMC ibmc with
running ESBMC (v7.1) in the standard bounded model checking
(bmc) mode, which simply unrolls loops (as described above), and
the k-induction mode (kind), which implements three different
cases called base case, forward condition, and inductive step [27]. For
k-induction, we set options for interval analysis and the addition of
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Figure 9: Comparing programs verified by ESBMC ibmc com-
pared to other ESBMC modes (left) and other tools (right).

symbolic execution value sets, running with options —k-induction
—interval-analysis —add-symex-value-sets. Together, these
modes verify 5 programs not handled by ESBMC ibmc with bmc ver-
ifying one program (2.c) not handled by k-induction by unwinding
the loop 1000 times. This suggests that ESBMC ibmc could benefit
from running these modes before invoking the LLM.

Comparing with Other Tools. We compare ESBMC ibmc against
VeriAbs (v1.5.1) [16] and SeaHorn (v10.0.0) [30]. VeriAbs is a port-
folio of 12 verification techniques that uses slicing and strategy
selection to identify which techniques to apply to (sub)-programs.
SeaHorn uses abstract interpretation to compute inductive invari-
ants and performs verification via a Horn-clause encoding and sub-
sequent constraint solving. For SeaHorn, we ran using options pdf
-m64, and for VeriAbs, we ran using options -sv22 —property-file
unreach-call.prp -32.SeaHorn verifies most programs with Ve-
riAbs verifying fewer than many of the individual runs of ESBMC
ibmc. Each tool verified some programs uniquely whilst only 58
programs were solved by all tools.

The answer to RQ5 is that ESBMC ibmc significantly im-
proves the number of programs verified by ESBMC and
verifies programs that state-of-the-art software verifiers
such as SeaHorn and VeriAbs could not.

6 DISCUSSION

6.1 Comparison with LEMUR Framework

The LEMUR Framework by Haoze et al. [55] is similar to our work
in that they use an LLM to generate program invariants and use
ESBMC [42] and UAutomizer [33] to verify programs. We compare
our two approaches and compare results.

Comparing Approaches. LEMUR introduces a framework for auto-
mated program verification which decomposes the verification task
into sub-goals and utilizes an LLM to complete some creative sub-
goals (generating and repairing loop invariants) and verification
tools ESBMC [42] and UAutomizer [33] to complete verification
sub-goals. This approach differs from ours as it is reactive. If a
particular invariant is not useful, the framework can attempt to
repair it. Another difference is that as it does not need to reason
about invariants directly, it can easily handle complex programs.
However, as the framework treats verification tools such as ESBMC
as black-boxes and communicates via assertions and assumptions

Muhammad A. A. Pirzada, Ahmed Bhayat, Lucas C. Cordeiro, and Giles Reger

All ESBMC ibmc

Figure 10: Comparing programs verified by Lemur, our replay
of Lemur using Lemur’s invariants, and ESBMC ibmc on
programs that Lemur generated invariants for.

(instead of rewriting the program as we do), it is limited in how
much advantage it can take of the generated invariants.

The work uses ChatGPT-4, in contrast to our choice of ChatGPT
3.5 Turbo-Instruct, which (most likely) impacts the framework’s
performance (although at a greater cost). They did not have the
same issues with generating syntactically incorrect invariants, pos-
sibly due to the LLM choice. They noted that the LLM generated
invariants that used operators not present in the program being ver-
ified, demonstrating its ability to generalize well. We had a similar
experience with ChatGPT 3.5 Turbo-Instruct.

The LEMUR framework took a different approach to prompt engi-
neering. Instead of following a Chain of Thought approach (recall
that this involves providing examples and explanation of the task
to solve), they followed a more chat-like interaction approach while
also using in-context learning, i.e., encouraging the LLM to format
the output in a specific way.

Comparing Results. The LEMUR framework was evaluated on the
Code2inv benchmarks used in this work. As their pipeline handled
multiple loops (a non-fundamental engineering-related limitation
of how we currently prompt the LLM), they could run SV-COMP
[4] benchmarks with short reachability. We were unable to directly
compare LEMUR with ESBMC ibmc on identical hardware, since we
failed in multiple attempt to set up LEMUR on different platforms.
Additionally, LEMUR requires costly LLM queries to run. In place
of a direct comparison, we extracted all invariants generated by
LEMUR in its initial call to its LLM and replayed these using our
extended version of ESBMC, positively answering the question
Would LEMUR benefit from this extension?

Lemur generated invariants for 65 out of 133 programs (after
verifying 42 benchmarks by direct call to ESBMC k-induction or
UAutomizer) and verified 38 of these, leaving 27 unverified. All 65
programs were annotated with invariants and passed to ESBMC
ibmec. Figure 10 illustrates this result and includes the results of
using ESBMC ibmc to generate the invariants. Using our extended
ESBMC, we re-verified all but 2 of the programs LEMUR verified and
verified an additional 6 using LEMUR’s invariants. Further, there
were 10 programs that ESBMC ibmc verified using only the invari-
ants it produced. These results suggest that (i) ESBMC ibmc could
benefit from some of the invariant generation used in LEMUR and
(if) LEMUR could benefit from our ESBMC extension.
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6.2 Extending to Quantified Invariants

While proving difficult for existing verification techniques, our run-
ning example can, in principle, be handled by current approaches.
Current techniques are good at synthesizing quantifier-free, con-
junctive invariants [50]. Where a quantified invariant is required,
they are liable to struggle. An LLM is not limited in this way and
can easily generate quantified invariants. By pairing an LLM with a
full first-order prover that can reason about quantifiers, we ought to
be able to verify more complex benchmarks that require invariants
not fitting into the quantifier-free, conjunctive fragment. While
this is ongoing work, the early results are promising. Consider the
program in Listing 2. 7 While traditional approaches struggle with
it (VeriAbs can verify the benchmark, but SeaHorn, ESBMC, and
UAutomize are all unable to do so), ChatGPT returns the required
invariant Vx.0 < x < i — res[x] = a[x] + b[x] at first asking.
Vampire can easily verify the invariant’s correctness and hence the
assertion’s correctness.

We are not limited to universally quantified assertions. Consider,
for example, the program in Listing 3. Once again, the leading veri-
fiers (including VeriAbs in this case) cannot prove the existence of
anindex i such that a[i] == 500. On the other hand, ChatGPT imme-
diately provides the necessary invariant Vx.0 < x < i — a[x] = x.
Vampire then easily proves the inductiveness of the invariant and
then the assertion. There is nothing to prevent the usage of even
more complex invariants, such as those containing quantifier alter-
nations, since Vampire can handle full first-order logic. We can even
extend to verifying functional programs since Vampire supports
reasoning about higher-order functions [5]. That said, significant
work remains to strengthen the combination of an LLM and a first-
order prover. Vampire does not support reasoning about bit-vectors
which restricts our ability to verify safety properties involving
machine integers. Likewise, reasoning about pointer-based data
structures is not currently supported since ESBMC has no sup-
port for expressing shape predicates [17], and it is unclear whether
Vampire can reason about them effectively.

7 CONCLUSION

In this paper, we have explored using LLM-generated invariants
to replace loops in the context of BMC with promising results. On
programs that contain unbounded loops, our tool ESBMC ibmc out-
performs the current best ESBMC strategy for such benchmarks, k-
induction. Furthermore, our approach handled certain benchmarks
that none of the current state-of-the-art verifiers can. Moreover, we
have demonstrated that by pairing an LLM with a full first-order
prover, we can go beyond quantifier-free invariants and handle
invariants and assertions involving arbitrary quantification. That
being said, our work also raises many interesting questions that we
hope to address eventually.

Does the use of LLMs scale to larger, industrial-sized benchmarks?
With LLMs featuring ever-increasing context window sizes, we

7Since ESBMC does not currently support an assertion language that contains quanti-
fiers, we internally add special semantics to the standard C function __forall as a
temporary solution. The programs in Listings 2 and 3 are slightly simplified versions
of the actual programs verified, which can be found in our repository (see Footnote 5)
Since the other verification engines we tested do not support quantified invariants, we
had to simulate these using assertions within a loop. The version of the benchmarks
without quantifiers can also be found in the repository.
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Listing 2: Example C program requiring universally quanti-
fied invariant

int main() {
int a[100000];
int b[100000];
int res[100000];
int i = 0;
int x;
while (i < 100000)
{
res[i] = alil + b[il;
i++;
3
__VERIFIER_assert(__forall(x, (!((x < i)
&& (x>= 0)) || (res[x] == alx] + bIx1)) ));
3

Listing 3: Example C program requiring eistentially quanti-
fied invariant
int main() {
int n = 1000000;
int aln];
int i = 0;
while(i < n){
alil = i;
i++;
3
__VERIFIER_assert(__exists(x, (alx] == 500)));

hope this is feasible. However, we think that LLM performance on
invariant generation can be improved in the absence of conjecture.
We do not currently use the (symbolic) trace formed by unrolling a
loop body. In theory, this data could be very helpful to an LLM or
other learner to generate interesting invariants.

Does the use of LLMs remove the need for other invariant generation
techniques? We think not, or at least not currently. An interesting
line of work to explore is combining invariants generated by LLMs
with invariants generated by other whitebox and blackbox tech-
niques.
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