
An Industrial-Strength C Model Checker

Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse,

Lucas Cordeiro, Bernd Fischer, Denis A. Nicole
University of Southampton, Federal University of Amazonas, University of Bristol,

University of Manchester, University of Stellenbosch

It takes the program AST and

transforms it into an equivalent

GOTO program: a simplified

representation that consists only of

assignments, conditional and

unconditional branches, assumes,

and assertions.

Control-Flow Graph Generator

Symbolic Execution Engine

ESBMC symbolically executes the GOTO program.

Front-end

#include<math.h>

#include<assert.h>

int main() {

unsigned int N = nondet_uint();

double x = nondet_double();

if(x <= 0 || isnan(x))

return 0;

unsigned int i = 0;

/*i = nondet_uint();*/

/*x = nondet_double();*/

/*__ESBMC_assume(i < N);*/

while(i < N) {

x = (2*x);

assert(x>0);

++i;

}

/*__ESBMC_assume(!(i < N));*/

assert(x>0);

return 0;

}

We are extending the k-induction algorithm to reuse

information from the inductive step, to make bug

finding more efficient.

II. Components & Features

IV. Future Work

The ESBMC’s k-induction version achieved

a score of 5476 and third place overall.

The k-induction algorithm reported 4301

correct results, with 92% of witnesses

being correctly validated.

None of the wrong results were related to

the k-induction algorithm.

III. SV-COMP 2018

I. Motivation
“... proving a software system correct requires much

more effort, knowledge, training, and ingenuity than

writing the software in trial-and-error style.”
- E. M. Clarke et al., Handbook of Model Checking 2018.

ESBMC is an open source, permissively licensed

(apache 2), bounded model checker (BMC) for

C programs. It is written primarily in portable C++ and,

using Autotools, builds on multiple platforms.

The tool was developed for bounded model

checking of both sequential and concurrent programs

using a variety of SMT solvers, and has a proven track

record of bug finding in real world applications.

Translates the model into a VC ψ such that: ψ is
satisfiable iff φ has counterexample of max. depth k

Bounded model checking

ESBMC’s SMT back-end supports five solvers:

Boolector (default), Z3, MathSAT, CVC4 and Yices.

SMT Back-end

CC.C

For further information, publications, and downloads, see:

http://www.esbmc.org/ https://github.com/esbmc/esbmc

IR Type

Checked

GOTO

Program

(CFG) SSA FormANSI-C IRScan
SMT

Solver

Symbolic

Execution

GOTO

Converter

Property

holds up to

bound k

Property

violation

ANSI-C

Source

AST

Converter
clang

Verification

Successful

Counterexample

𝐶 ∧ ¬𝑃

k-induction

algorithm

. . .
M0 M1 M2 Mk-1

¬0 ¬1 ¬2 ¬k-1 ¬k   

Counterexample trace

Transition

System

Property

BoundMk

ESBMC 5.0

ESBMC also implements a k-induction algorithm to

provide proofs of correctness for some unbounded

programs.

Python API

ESBMC now includes a Python API that

reduces the difficulty of prototyping new

features and makes the tool internals

accessible to a wider audience.

k-Induction

Floating-point Encoding

ESBMC encodes floating-point arithmetic using:

• bitvectors, which extends the floating-point

arithmetic support to all solvers that are

currently integrated.

• the SMT theory of floating-points, available only

in Z3 and MathSAT.

ESBMC now uses clang, a state-of-

the-art compiler suite for

C/C++/ObjectiveC/ObjectiveC++

widely used in industry, as its

front-end.

𝑘𝑖𝑛𝑑 𝑃, 𝑘 = ൞

𝑃 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑏𝑢𝑔, 𝑖𝑓 𝐵 𝑘 𝑖𝑠 𝑆𝐴𝑇

𝑃 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑖𝑓 𝐵 𝑘 ∧ 𝐹 𝑘 ∨ 𝐼 𝑘 𝑖𝑠 𝑈𝑁𝑆𝐴𝑇

𝑘𝑖𝑛𝑑 𝑃, 𝑘 + 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

It unrolls loops k times, generates the SSA form of

the unrolled program, and derives all the safety

properties to be checked by the SMT solver.

