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ABSTRACT
ESBMC is a mature, permissively licensed open-source context-
bounded model checker for the verification of single- and multi-
threaded C programs. It can verify both predefined safety properties
(e.g., bounds check, pointer safety, overflow) and user-defined pro-
gram assertions automatically. ESBMC provides C++ and Python
APIs to access internal data structures, allowing inspection and ex-
tension at any stage of the verification process. We discuss improve-
ments over previous versions of ESBMC, including the description
of new front- and back-ends, IEEE floating-point support, and an
improved k-induction algorithm. A demonstration is available at
https://www.youtube.com/watch?v=YcJjXHlN1v8.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; • Theory of computation→ Verification by model checking;
• Hardware→ Bug detection, localization and diagnosis;
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1 INTRODUCTION
ESBMC is a mature bounded model checking (BMC) tool for multi-
threaded C programs. Its development started in 2008 on top of
the CProver framework [1], but almost all components have been
re-designed and re-implemented in subsequent years, including
the basic data structures, front-end, symbolic execution, memory
model, and back-end. The purpose of this paper is to describe the
recent tool modifications and extensions, including (i) amore robust,
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clang-based [2] frontend; (ii) an improved handling of floating-
point arithmetics; (iii) an improved k-induction scheme that allows
ESBMC to better handle programs with unbounded loops; and (iv)
a Python API that gives users access to ESBMC’s data structures.

ESBMC primarily aims to help software developers by finding
subtle bugs in their code (e.g., array bounds violations, NULL-
pointer dereferences, arithmetic overflows, or deadlocks). It does
not require any special annotations in the source code to find such
bugs, but it does allow users to add their own assertions and also
checks for violations of these. In addition, ESBMC implements k-
induction [3] and can be used to prove the absence of property
violations (resp. the validity of user-defined assertions). It relies
on off-the-shelf satisfiability modulo theory (SMT) solvers such as
Boolector, Z3, Yices, MathSAT, and CVC4 to check automatically
the verification conditions corresponding to the safety properties.

ESBMC has been applied to a large number of applications includ-
ing telecommunications, control systems, and medical devices [4].
It is open source (under the terms of the Apache License 2.0) and
its source code and self-contained binaries for 64-bit Linux envi-
ronments are available at https://github.com/esbmc/esbmc/ and
www.esbmc.org, respectively.

2 COMPONENTS AND FEATURES
By default, ESBMC takes a C program and checks for array bounds
violations, divisions by zero, pointer safety (incl. alignment), and all
user-defined properties. It has options to check for overflows, mem-
ory leaks, deadlocks and data-races, and to choose between a fixed-
or (IEEE) floating-point arithmetic. Figure 1 shows its architecture.

Front-end. ESBMC now uses clang [2], a state-of-the-art com-
piler suite for C/C++/ObjectiveC/ObjectiveC++ widely used in in-
dustry [5], as its front-end. As developers, we thus avoid the need to
maintain a separate front-end, but this approach also brings a num-
ber of advantages for users: (i) ESBMC provides compilation error
messages as expected from an industrial-strength tool; (ii) ESBMC
leverages clang’s powerful static analyzer to provide meaningful
warnings when parsing the program; (iii) clang can simplify the
input program (e.g., calculate sizeof expressions, evaluate static
asserts), which simplifies the analysis of the code. Note that we use
clang’s API to access and traverse the program AST, without having
details of the input program compiled away, which differs from
other verifiers (e.g., LLBMC [6]) that rely on the LLVM bytecode.

Control-flow Graph (CFG) Generator. The CFG generator
takes the program AST and transforms it into an equivalent GOTO
program: a simplified representation that consists only of assign-
ments, conditional and unconditional branches, assumes, and asser-
tions. In particular, this step eliminates all for, while, do-while
and switch statements. It also adds checks for division by zero
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Figure 1: ESBMC architectural overview. The tool takes a C program as input. It then converts the AST generated by clang into
a CFG and the symbolic execution engine unrolls the program and generates the SSA form of the program. The SSA is then
converted to an SMT formula which is satisfiable only if the program contains errors.

and out-of-bounds access (and for integer and floating-point over-
flow, if enabled). In k-induction mode (cf. Section 3) it also analyses
loop bodies and “havocs” any variable written-to inside a loop with
non-deterministic values; the havocked variables are used by the
inductive step to over-approximate the loop.

Symbolic Execution Engine. ESBMC then symbolically exe-
cutes the GOTO program: it unrolls loops k times, generates the
static single assignments (SSA) form of the unrolled program, and
derives all the safety properties to be checked by the SMT solver.
This step also inserts pointer safety checks for dynamically allo-
cated memory, if they are enabled. Note that this can only be done
after unrolling because the pointer analysis needs to know the
maximum set of dynamically allocated structures. ESBMC aggres-
sively simplifies the program to generate small SSA sets, using
constant folding and various arithmetic (including floating-point)
simplifications.

SMT back-end. ESBMC’s SMT back-end supports five solvers:
Boolector (default), Z3, MathSAT, CVC4 and Yices. The back-end
is highly configurable and allows the encoding of quantifier-free
formulas with support for bitvectors, arrays, tuple, fixed-point and
floating-point arithmetic (all solvers), and linear integer and real
arithmetic (all solvers but Boolector).We use the back-end to encode
the SSA form of the program into a quantifier-free formula and
check satisfiability of C ∧ ¬P , where C is the set of constraints
and P is the set of properties. If the formula is SAT, the program
contains a bug: ESBMC will generate a counterexample with the
set of assignments that lead to the property violation.

Python API. ESBMC now includes a Python API that reduces
the difficulty of prototyping new features and makes the tool in-
ternals accessible to a wider audience, i.e., the verification process
shown in Figure 1 can be intercepted and changed at any point. For
example, a developer can easily add their own intrinsic function to
model a new library function or to exploit a different SMT theory:

1 def symex_step(self , art):
2 # Boilerplate accessing instruction 'insn ' omitted
3 if insn.type == gptypes.FUNCTION_CALL:
4 call = esbmc.downcast_expr(insn.code)
5 sym = esbmc.downcast_expr(call.function)
6 if sym.name.as_string () == 'c::isnan ':
7 # Interpretation of call here
8 return
9 # Otherwise call through to rest of ESBMC
10 super(ThisClass , self).symex_step(art)

The code overrides the default instruction interpretation function
(l1), and for function-call instructions (l3) aquires the call definition
(l4), the name of the called function (l5), and should it be named

’isnan’ (l6) applies special handling (l7, details omitted). For all other
instructions the default instruction interpretation function is called
(l10).

Python is well-known for its expressiveness (e.g., set compre-
hensions) and the language bindings eliminate the need to consider
object lifetime and other low-level details. Rapid prototyping is en-
couraged by avoiding recompilation of the main tool; it enables new
verification ideas to be quickly tested. However, the Python API also
has drawbacks—it is slower than C++, and developers can operate
it illegally, causing the tool to crash. In the long term, it would thus
be desirable to provide ESBMC as a library of verification facilities
for the development of new tools.

3 THE K-INDUCTION PROOF RULE
k-induction allows BMC to find a property violation or even to
prove (partial) correctness without fully unwinding loops. ESBMC
uses the algorithm in an iterative deepening style:

kind (P ,k ) =




P contains a bug, if B (k ) is SAT
P is correct, if B (k ) ∧ [F (k ) ∨ I (k )] is UNSAT
kind (P ,k + 1), otherwise.

Here, the base case formula B (k ) is the standard BMC formula,
which is satisfiable iff the program has a counterexample of length
k or less. If all states are reachable for the current k , we know
that the program must be correct without checking the inductive
step. The forward condition F (k ) formalizes this; it can be derived
from the program by inserting unwinding assertions after each loop.
This step is particularly useful for proving safety in the presence
of bounded loops. The inductive step I (k ) checks that, if a safety
property holds in the first k steps, then it also holds for k + 1 steps.
Iterative deepening implies that ESBMC always finds the smallest
k to either prove correctness or find a property violation.

ESBMC now uses scheme improved over the earlier version de-
scribed byGadelha et al. [3]. In particular, this new version no longer
collects havocked variables into states, rewriting every access to
these variables into state accesses. Instead, the havocked variables
are directly assigned nondeterministic values in the inductive step.
This is a simpler and more accurate transformation and follows the
work by Donaldson et al. [7]. Note, however, that their implemen-
tation works by unwinding the program during CFG generation,
thus replicating the loop k times and removing the backward jump.
In ESBMC, the algorithm only adds the nondeterministic assign-
ments before the loop and the required assumptions [3] during CFG
generation, and relies on the symbolic execution to unroll the loop.
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4 FLOATING-POINT ENCODING IN ESBMC
In previous versions, ESBMC verified programs using a fixed-point
arithmetic [4]; this is appropriate for, e.g., programs running in a
number of embedded devices, but not for programs that rely on
floating-point arithmetic. The current version of ESBMC encodes
floating-point arithmetic either using the SMT theory of floating-
points, fully available in Z3 and, partially, in Mathsat and CVC4,
or using bitvectors, which extends the floating-point arithmetic
support (except for floating-point exceptions) to all solvers that are
currently integrated. This is a major improvement over our prior
work [8], where we model most of the C11 standard functions [9].

Currently, MathSAT does not support fp.rem (remainder opera-
tor) and fp.fma (fused multiply-add) and CVC4 does not support
sort conversion functions. Our SMT backend falls back to the bitvec-
tor mode when an unsupported operation needs to be encoded;
it converts the arguments from floating-points to bitvectors, en-
codes the operation and returns the resulting bitvector encoded as
a floating-point. This is only possible by using the (non-standard)
SMT-LIB functions fp_as_ieeebv and fp_from_ieeebv to convert
to and from bitvectors. This process is transparent to the user and
effectively means that missing operations will be correctly encoded,
despite the lack of support by the underlying solver; it allows us
to use SMT solvers as Boolector and Yices that do not have any
built-in floating-point theory. Most of the floating-point operations
in ANSI-C programs can be directly converted to SMT; only two
operations needed special handling:

Cast to Boolean.The SMT standard does not define conversions
between Boolean and floating-point types. In ESBMC, when casting
from Booleans to floating-points, an ite operator is used, such that
the result of the cast is 1.0 if the Boolean is true; otherwise it is 0.0.
We encode casts from floating-points to Booleans as conditional
assignments: the cast result is true when the floating is not 0.0;
otherwise it is false.

Equality. Bitvector assignment and equality operations are en-
coded using the equality operator (==). However, the SMT standard
defines a separate operator for floating-point equalities, the fp.eq
operator, where “(fp.eq x y) evaluates to true if x evaluates to -zero
and y to +zero, or vice versa. fp.eq and all the other comparison
operators evaluate to false if one of their arguments is NaN”. The
operator is defined to handle the special symbols from the IEEE
floating-point standard, in particular, signaled zeros and NaNs; for
this reason, ESBMC encodes all equality of floating-points using
the fp.eq operator, while assignments remain encoded using the
equality operator.

5 ILLUSTRATIVE EXAMPLE
We describe how to verify a C program with ESBMC using the code
fragment shown in Fig. 2. Here, ESBMC is invoked as follows:

esbmc <file>.c --floatbv --k-induction

where <file>.c is the C program to be checked, --floatbv indi-
cates that ESBMC will use floating-point arithmetic to represent
the program’s float and double variables, and --k-induction
selects the k-induction proof rule. The user can select the SMT
solver, property, and verification strategy; esbmc --help provides
the full list of options.

ESBMC unrolls the program in Fig. 2 and converts it into SSA
form, to produce verification conditions (VCs), one for each asser-
tion that can not be statically determined. Equations (1) and (2) give
C and P during the inductive step (k = 2).

1 #include <math.h>
2 int main() {
3 unsigned int N = nondet_uint ();
4 double x = nondet_double ();
5 if(x <= 0 || isnan(x))
6 return 0;
7 unsigned int i = 0;
8 /*i = nondet_uint ();*/
9 /*x = nondet_double ();*/



inductive step only

10 /* __ESBMC_assume(i < N);*/
11 while(i < N) {
12 x = (2*x);
13 assert(x>0);
14 ++i;
15 }
16 /* __ESBMC_assume (!(i < N));*/}inductive step only
17 assert(x>0);
18 return 0;
19 }

Figure 2: C code fragment. Here nondet_uint() and
nondet_double() stand for non-deterministic integer and
double values, respectively. isnan checks whether a given
floating-point is a not-a-number (NaN) value. The com-
mented lines 8-10 and 16 are the transformations introduced
during the inductive step of the k-induction algorithm.

Note that isnan(x1) in Eq. (1) checks if the symbol is a NaN ,
which is translated to the fp.isNaN SMT operator. ESBMC also
adds additional literals for each clause of P to identify the respec-
tive VCs. The resulting formula C ∧ ¬P is then passed to an SMT
solver, where it is checked in less than one second. We can also
introduce a bug by removing the isnan(x ) check from line 5 in Fig. 2,

S1 7→ N = 0
S2 7→ x = −NaN
S3 7→ x > 0.0f

(effectively removing д2 from Eq. (1))
which would lead to the counterex-
ample in the right-hand side. Here,
state S3 leads to an assertion failure
in line 13 (i.e., if x = −NaN , then x > 0.0f evaluates to false);
ESBMC is also able to detect this violation in less than one second.

C :=



N1 = nondet_uint1
∧ x1 = nondet_double1
∧ д1 = (x1 ≤ 0.0f )
∧ д2 = ite (д1, TRUE, isnan (x1 ))
∧ i1 = nondet_uint2
∧ x2 = nondet_double2
∧ ¬д2 =⇒ i1 < N1
∧ д3 = (i1 < N1 )
∧ x3 = 2.0f ∗ x2
∧ ¬д2 ∧ д3 =⇒ x3 > 0.0f
∧ i2 = i1 + 1
∧ д4 = (i2 < N1 )
∧ x4 = 2.0f ∗ x3
∧ x5 = ite (¬д4, x3, x4 )



(1) P :=



¬д2 ∧ д3 ∧ д4
=⇒ x4 > 0.0f

∧ ¬д2
∧ (д3 ∧ ¬д4 ∨ ¬д3 )
=⇒ x5 > 0.0f



(2)

Fig. 2 also shows the transformations introduced by the induc-
tive step, during k-induction; the transformations are commented
out during the base case and the forward condition. The trans-
formations aim to prove that no property violation is reachable,
regardless of loop unwinding; this is translated to assuming nonde-
terministic values to the loop variables (lines 8-9), assuming that
the loop body is evaluated (line 10, the assumption removes every
state that does not satisfy the loop entry condition) and terminates
(line 16, the assumption removes every state that does not satisfy
the loop termination condition). Note that, since the inductive step
is an overapproximation, only correctness can be proved, i.e., it
might find spurious counterexamples.
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Table 1: Results from SV-COMP 2018.

2LS CBMC CPA-Seq DepthK ESBMC v1.25.2 ESBMC v5.0 Symbiotic UAutomizer UKojak UTaipan

Correct true 1898 1438 3790 1184 1957 2822 1418 3902 1725 2292
Correct false 1426 1856 2598 1516 1476 1494 1209 1278 514 563
Incorrect true 2 2 0 19 336 14 1 2 0 3
Incorrect false 5 3 4 37 92 10 0 0 0 3

Total correct results 3324 3294 6388 2694 3433 4316 2627 5180 2239 2855
Total incorrect results 7 5 4 58 428 24 1 2 0 6

6 EXPERIMENTAL EVALUATION
We evaluated ESBMC over the SV-COMP [10] benchmarks, which
comprises 9523 verification tasks that check for property reachabil-
ity (2941 tasks), memory safety (326 tasks), reachability in concur-
rent programs (1047 tasks), overflow (358 tasks), termination (2009
tasks) and reachability in Linux device drivers (2842 tasks). Table 1
shows our experimental results; a detailed description of the dif-
ferent tools and the experimental setup can be found in [10]. Here,
a task counts as correct true if it does not contain any reachable
error location or assertion violation, and the tool reports “safe”;
however, if the tool reports “unsafe”, it counts as incorrect true. Sim-
ilarly, a task counts as correct false if it does contain a reachable
violation, and the tool reports “unsafe”, together with a confirmed
witness (path to failure); otherwise, it counts as incorrect false ac-
cordingly. The difference between the grand total (9523) and the
sum of the two sub-totals gives the number of tasks for which the
tool exhausted time or memory, or failed otherwise.

k-induction. Overall, ESBMC ranked third, behind CPA-Seq
and UAutomizer, with 14 incorrect false results (10 due to inaccu-
racies in our concurrency and memory models, plus 4 due to bugs
in the simplifier), and 10 incorrect true results. However, none of
the incorrect results are related to the k-induction algorithm, and
the results show that ESBMC is currently the best k-induction tool.
ESBMC outperformed CPA-Seq and UAutomizer in the verification
of reachability properties for arrays and memory safety issues.

CBMC also implements k-induction, requiring three different
calls: to generate the CFG, to annotate the program and to verify it,
whereas ESBMC handles the whole process in a single call. Addi-
tionally, CBMC does not have a forward condition to check if all
states were reached and relies on a limited loop unwinding [7].

CPA-Seq applies a number of different techniques when verify-
ing a program, so a direct comparison to their k-induction is not
possible; however, a “pure k-induction” version (CPA-kind [11])
showed poor results in a previous competition.

DepthK uses an invariant generator to instrument the code with
invariants and uses k-induction to verify the program [12]. Al-
though one would expect better results, DepthK uses an old version
of ESBMC to verify the programs; this explains the poor results.

2LS integrates an abstract interpretation invariant generation
between the base case and the inductive step; in contrast to our
k-induction, their version has no forward condition. Overall 2LS
verifies 22% fewer benchmarks than ESBMC (2LS returns 33% fewer
correct results), although it also returns fewer incorrect results.

Comparison with old k-induction schema. In order to com-
pare with the oldk-induction schema used in ESBMC v1.25.2 [3], we
re-ran it over the current SV-COMP benchmark set. Table 1 shows
a 25% increase in correct results and a 95% decrease in incorrect
results, but this is slightly misleading: 168 of the incorrect results

produced by the old scheme are from the concurrency category and
are caused by the concurrent model used back then. However, the
old scheme also produces incorrect results in the ReachSafety-ECA
(95) and ReachSafety-Recursive (28) categories, which are related
to its incorrect approximation of loop termination conditions.

Floating-point verification. ESBMC uses MathSAT for tasks
that involve floating-point arithmetics. This combination not only
outperforms a Z3-based ESBMC, but also all other tools in SV-
COMP. ESBMC achieved the highest score in the ReachSafety-Floats
subcategory where it can verify 84% of the tasks (145 out of 172)
within the time and memory restrictions.

7 CONCLUSION AND FUTUREWORK
We presented ESBMC, the first open-source SMT-based context-
bounded model checker to support full C programs [4, 13]. ESBMC
is a mature tool; here, we focussed on three novel features of ES-
BMC v5.0: the new clang front-end, the new floating-point back-end
and, in particular, our new implementation of the k-induction proof
rule. Results over the SV-COMP 2018 benchmark suite show that
ESBMC is the strongest k-induction tool currently available. We
are extending the k-induction proof rule to use information from
the inductive step, to make bug finding more efficiently [14].
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