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Abstract. Formal verification of Python programs remains challenging
due to the language’s dynamic nature and rich semantic constructs. We
present an approach that combines Large Language Models (LLMs) with
Bounded Model Checking (BMC) to verify Python code. Our system uses
an LLM to translate Python programs into C code suitable for formal
verification using ESBMC, enabling the detection of critical bugs, in-
cluding arithmetic overflows, array bounds violations, and concurrency
errors. We evaluate our approach on a benchmark of 23 carefully designed
Python programs with planted bugs representing common verification
challenges. The LLM orchestrator successfully detected all planted bugs
by iteratively coordinating static, dynamic, and formal verification tools.
Our results demonstrate that LLM-assisted translation can make mature
C verification tools accessible for Python code analysis, though the ap-
proach is limited to programs amenable to BMC (15-50 lines, bounded
loops, statically-sized data structures).

Keywords: Formal Verification · Bounded Model Checking · Python ·
Large Language Models · Code Translation

1 Introduction

Formal verification of software systems remains a critical challenge in ensuring
software reliability and security. Techniques such as model checking and theorem
proving have been developed for verifying programs written in statically typed
languages such as C and Java, with applications in safety-critical domains includ-
ing embedded systems and financial software [1,2]. However, formal verification
remains challenging even for these languages, and dynamic programming lan-
guages, notably Python, introduce additional complexities due to their flexible
typing and rich semantic constructs [3].

Python’s popularity spans research and commercial applications, particu-
larly in data science and machine learning. The dynamic nature of its semantics
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presents significant obstacles to existing automated verification tools, which of-
ten support only fragmented subsets of the language or simplified code patterns.
Features such as metaprogramming, dynamic type mutation, and the wide va-
riety of data structures in Python significantly complicate the construction of
unified and scalable formal verification frameworks capable of capturing the full
semantics of the language [37].

Recent progress in Large Language Models (LLMs), developed from exten-
sive multilingual code corpora, has opened new directions for addressing long-
standing verification challenges. These models demonstrate advanced compe-
tence in code synthesis and syntactic transformation across programming lan-
guages, making it feasible to translate automatically Python programs into rig-
orously verifiable representations such as C [4].

This study introduces a framework that uses LLMs to orchestrate bug de-
tection in Python code through translation to C and bounded model checking.
Our approach targets two primary use cases: (1) detecting bugs in Python ap-
plication code such as arithmetic overflows, array bounds violations, and con-
currency errors, and (2) enabling engineers to write design models in Python
rather than dedicated formal specification languages like TLA+, applying for-
mal verification tools to the translated C code. Like all functional correctness
verification approaches, assertions must be provided to specify desired prop-
erties—our contribution is automating the translation and verification process
around these specifications. Since the Python-to-C translation is performed by
an LLM without formal proof of semantic equivalence, we focus on bug hunt-
ing rather than formal verification guarantees for the original Python code. By
using AST analysis to guide selective verification and intelligently configuring
ESBMC parameters, we demonstrate effective bug detection on small to medium
Python functions (15-50 lines of code). An experimental evaluation of 23 Python
programs achieves 100% bug detection for planted errors, including overflows,
bounds violations, and deadlocks.

2 Background

2.1 Formal Verification and Model Checking

Formal verification mathematically proves that a program meets its specified
properties by modeling the program and its desired behaviors and rigorously
checking all possible executions. Two foundational paradigms have emerged:
model checking, which relies on state space exploration against temporal logic
specifications [6,7], and theorem proving, which requires constructing formal
proofs for these specifications. Model checkers include tools such as SPIN, NuSMV,
and CBMC for software verification, while theorem provers include PVS, Is-
abelle/HOL, Coq, and Lean for interactive proof development.

Model checking systematically tests whether a program, represented as a
transition system, satisfies properties such as safety (e.g., absence of buffer over-
flows) and liveness (e.g., termination or progress). Formally, for a Kripke struc-
ture M and temporal logic property φ, verification asks whether M |= φ [7,8].
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A fundamental challenge is the exponential growth of possible system states
(the “state explosion” problem) as program complexity increases [8,9]. Bounded
Model Checking (BMC) mitigates this by restricting analysis to execution traces
of a given length k. BMC translates the verification problem into a SAT or SMT
query:

Initial(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ ¬φ(sk)

Here, T is the transition relation and φ – expresses the desired property. If there
exists a model for the formula up to bound k, this produces a counterexample
trace. This technique allows the efficient detection of shallow or corner-case bugs
that are hard to find by testing.

Modern verification tools leverage BMC for practical software analysis. CBMC
applies BMC to C/C++ programs, targeting assertion violations, pointer errors,
and numerical overflows [10,11]. ESBMC extends the method to multi-threaded
and embedded systems, improving scalability and expressivity in industrial use
cases [12,13]. JBMC adapts similar techniques to Java bytecode, maintaining
support for object-oriented program structures [14-16].

However, although BMC is widely adopted and effective for systematic bug-
finding and shallow counterexample generation, it remains inherently incomplete:
bug-freedom is only proven up to the bound k, and deeper properties may go
unverified. Resource constraints and formula complexity further limit scalability
as system size and concurrency grow. These unresolved challenges motivate ad-
vances in hybrid verification approaches and LLM-assisted verification, forming
the basis for subsequent research in this work.

2.2 LLMs in Program Verification and Synthesis

Recent advances in large language models have significantly impacted formal
verification by automating traditionally labor-intensive tasks such as specifica-
tion generation, invariant detection, and formal proof construction [17]. LLMs
trained on extensive code and mathematical corpora are capable of understand-
ing and generating formal languages, bridging the gap between informal code
and rigorous formal methods. Figure 1 illustrates this hybrid architecture where
LLMs automate the generation of formal artifacts while symbolic engines provide
rigorous verification guarantees through an iterative refinement loop.

Autoformalization is the process by which LLMs translate natural language
descriptions, informal comments, or code into formal specifications in theorem
provers or model checkers [18-20]. This allows formal capturing of intended pro-
gram properties, critical for automation. Invariant generation – vital in program
verification – benefits from LLMs’ ability to propose inductive invariants from
code context and known properties, e.g. enabling bounded model checkers to
reduce verification complexity by soundly abstracting program states [21,22].

Proof-step prediction and automated proof search also leverage LLMs to
suggest next proof steps, reducing expert burden and improving completeness
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Fig. 1. Hybrid architecture, where LLMs automate the generation of formal artifacts
(specifications, invariants, proof tactics) while symbolic engines provide rigorous veri-
fication guarantees through an iterative refinement loop

of theorem-proving pipelines [23-26]. These techniques integrate LLM outputs
with symbolic reasoning engines for robust hybrid verification systems.

Further, formal specification extraction from code enhances traceability and
correctness guarantees by enabling automatic annotation and assertion genera-
tion directly from source, a feature critical for continuous verification environ-
ments [27-28]. Recent work has also explored using LLMs trained on formal veri-
fication tool outputs (such as ESBMC) for rapid vulnerability detection through
learned pattern recognition [22], demonstrating the potential of combining ma-
chine learning with formal methods for practical bug detection at scale.

Our work follows this evolving landscape by exploiting LLMs for automated
Python-to-C translation to enable bug detection with bounded model checking
tools [3,29]. This approach integrates formal verification tools with AI-driven
translation for increased bug detection coverage, though without formal guaran-
tees of semantic equivalence between Python and C code.

2.3 Code Translation and Verification Pipelines

Several transpilation systems have emerged to convert code between languages
with varying degrees of formal support:

– TransCoder [30,31] is a neural code translation model capable of zero-shot5
translation across multiple programming languages, substantially improving

5 Zero-shot translation is the ability of a LLM to translate between two languages it
has never seen paired together during training.
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transfer between Python, Java, and C++ by learning from large multilingual
corpora. However, it does not inherently guarantee semantic preservation or
produce verifiable output.

– CoQ-of-Python [35] aims to transpile Python code into Coq formal specifica-
tions, focusing on correctness proofs via dependent types. Its approach offers
strong theoretical guarantees but faces fundamental scalability challenges:
interactive theorem proving remains difficult even for simple programs in
statically-typed languages, requiring substantial expert effort to construct
proofs. Python’s dynamic features and rich semantics compound these in-
herent difficulties of theorem proving.

– LLMLift [29] combines LLM-based transpilation with formal verification
checkpoints, translating between general-purpose languages (C, C++, Java)
and domain-specific verification languages. While it enables migration of
legacy systems with correctness assurances, the integration remains complex
and requires significant engineering effort.

– ESBMC-Python is a bounded model checker for Python programs that trans-
forms Python code into an intermediate representation, which in turn is con-
verted into formulae evaluated with SMT solvers [34]. It represents the first
BMC-based Python-code verifier, demonstrating effectiveness on Ethereum
Consensus Specification.

– PyVeritas [3] integrates LLM-based Python-to-C transpilation with bounded
model checking via CBMC and MaxSAT-based fault localization, automati-
cally producing C code suitable for verification with back-mapping to Python
source. Like all functional correctness verification approaches, PyVeritas re-
quires assertions to specify desired properties. It targets Python programs
with numeric computations and array manipulations, demonstrating effec-
tiveness in detecting arithmetic overflows, array bounds violations, and as-
sertion failures.

Direct verification tools such as VeriFast [32,33] have demonstrated suc-
cess for statically-typed languages like C, C++, and Java through annotation-
based verification using separation logic. While VeriFast internally translates
programs to verification conditions checked by SMT solvers (as do most verifi-
cation tools), this internal translation differs from the cross-language transpila-
tion approaches discussed above. Extending direct verification approaches like
VeriFast to Python’s dynamic features remains an open challenge, motivating
translation-based verification strategies that leverage existing mature C verifi-
cation tools.

Our approach differs from ESBMC-Python and PyVeritas in key ways: ESBMC-
Python performs direct bounded model checking on Python’s intermediate rep-
resentation without cross-language translation (it’s a direct verifier, not a tran-
spiler), requiring custom implementation of BMC for Python semantics. PyVer-
itas, like our work, uses LLM-based Python-to-C translation with CBMC for
verification. Our contribution is the orchestrated multi-tool approach: we com-
bine LLM orchestration for tool selection (using AST analysis to identify which
verification tools to apply), adaptive parameter configuration (intelligent ES-
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BMC bounds and check selection), and integration of complementary analysis
tools (static analyzers, dynamic testing, runtime deadlock detection) coordinated
by an LLM. This allows our system to handle diverse bug categories (arithmetic,
bounds, concurrency) by selecting appropriate tools rather than applying a single
verification technique to all code.

Translation-based verification approaches face fundamental challenges: it is
difficult to guarantee semantic equivalence between source and translated code,
and manual specifications are required for functional correctness verification.
Our approach addresses these challenges through intelligent tool orchestration:
the LLM analyzes code characteristics via AST analysis to identify which ver-
ification tools are most appropriate, configures ESBMC parameters (bounds,
checks) based on code patterns, and translates the complete Python program
to C for bounded model checking. The current study builds on this landscape
by proposing an integrated pipeline where LLMs facilitate adaptive bug de-
tection: analyzing code structure to select verification strategies, generating C
translations of complete programs, and applying bounded model checking with
intelligent parameter selection.

3 Methodology

3.1 Overall Architecture

The core of our system is a multi-agent architecture where an LLM orchestrates
verification processes. Our tool, the Enhanced Verification Agent (EVA), coor-
dinates analysis tools and adapts strategies based on analysis and verification
results. The LLM orchestrator is pluggable; our implementation uses Claude
Sonnet 4.5, though other capable models could be substituted. The architecture,
illustrated in Figure 2, unifies four distinct classes of analysis tools to address
separate verification goals. When a user submits Python code to EVA, the LLM
orchestrator initializes and iteratively selects and coordinates appropriate tools,
guided by code features and prior analysis outcomes.

Static Analysis tools examine code structure without execution. This category
includes mypy for type checking and type inference validation, pylint for code
quality assessment and anti-pattern detection, flake8 for style consistency veri-
fication, and bandit for security vulnerability identification. These tools provide
rapid initial feedback on common issues and help narrow the scope for slower
analyses.

Dynamic Analysis tools evaluate runtime behavior through partial or com-
plete code execution. The Python Interpreter performs execution-based testing
to detect runtime errors, boundary condition violations, and edge case failures
that static analysis cannot identify. Dynamic testing executes the Python code
once with its original inputs to detect runtime errors. The Deadlock Detector
is a runtime analysis tool that instruments Python threading.Lock operations,
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Fig. 2. Complete System Architecture. The LLM orchestrator coordinates verification
by routing analysis through four tool categories based on code characteristics: Static
Analysis, Dynamic Analysis, Formal Verification, and AI Analysis. The system iterates
up to 10 times, synthesizing results until verification objectives are met, then generates
a final report.

executes the threaded code, tracks lock acquisition order, detects circular wait
conditions (deadlock), and uses timeouts to catch actual deadlocks.

Formal Verification tools provide mathematical guarantees of program cor-
rectness. The AST Analyzer examines the abstract syntax tree structure to
identify verification-relevant patterns and code characteristics. The Python-to-
C Converter translates Python code into semantically equivalent C code suit-
able for formal verification. ESBMC conducts bounded model checking on the
translated C code to verify critical properties such as memory safety, arithmetic
overflow absence, array bounds compliance, assertion violations (Python assert
statements become C assert() or __ESBMC_assert()), and freedom from un-
defined behavior.

AI-powered analysis tools leverage learning to support specialized verifica-
tion tasks. The Fine-tuned LLM performs deep pattern recognition for complex
bug categories, including arithmetic overflows, buffer violations, and concurrency
errors. This approach draws inspiration from recent work on using LLMs trained
on formal verification tool outputs for vulnerability detection [22]. When formal
verification proves too resource-intensive or inconclusive, the Fine-tuned model
conducts specialized analysis, providing probabilistic assessments of code cor-
rectness based on learned patterns from verified codebases.
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Algorithm 1 LLM-Guided Multi-Tool Verification
Input: Python program P
Output: Verification report R

1: Initialize message history H with:
verification strategy instructions
program P

2: for i = 1 to MAX_ITERATIONS do
3: (T,C)← LLM_Plan(H) ▷ T : requested tool invocations, C: commentary
4: if T = ∅ then
5: return FinalReport(C,H)
6: end if
7: for each tool invocation t ∈ T do
8: r ← ExecuteTool(t, P )
9: Append r to H

10: end for
11: end for
12: return FinalReport(“Max iterations reached”, H)

The AI Orchestrator intelligently coordinates verification by maintaining a
conversation history that tracks: (1) which tools have been invoked and their re-
sults, (2) what issues have been identified, and (3) what verification remains. At
each iteration (Algorithm 1), the LLM analyzes this history and selects the next
tool based on code characteristics: mypy for type-annotated code, the Deadlock
Detector for threading, ESBMC with overflow checks for arithmetic operations,
and ESBMC with bounds checking for array accesses. This prevents redundant
tool invocations (the conversation history shows what’s been done) and enables
progressive refinement: early iterations use fast tools (AST analysis, static anal-
ysis) to understand code structure, guiding later expensive formal verification
(ESBMC). The orchestrator decides when verification is complete by synthe-
sizing findings: if ESBMC proves a property, verification succeeds; if ESBMC
finds a counterexample, the bug is reported; if fast tools find no issues after
appropriate coverage, verification concludes.

3.2 Translation of Python to C for Formal Verification

LLM-Based Translation for ESBMC Compatibility A core challenge for
the formal verification of Python is the mismatch between Python’s dynamic
behavior and the requirements of model checkers such as ESBMC, which expect
statically typed C code. Our approach uses the LLM orchestrator to translate
Python into C while preserving semantics relevant for verification. The LLM han-
dles this translation by understanding Python semantics and generating equiv-
alent C code that addresses key incompatibilities:

– Python’s dynamic typing is mapped to explicit static C types, guided by
type hints where available. The LLM infers appropriate C types based on
variable usage patterns and context.
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– Python’s reference semantics and automatic memory management are trans-
lated to explicit pointer operations and manual memory allocation in C
where necessary.

– High-level Python structures (lists, dictionaries, sets) are mapped to appro-
priate C representations (arrays, structs) with bounded sizes suitable for
BMC. The LLM determines reasonable bounds based on code analysis.

The LLM-generated C code is designed for bounded model checking of spe-
cific properties (overflow, bounds violations, deadlocks). We do not claim full
semantic equivalence—the LLM may introduce translation errors, so our ap-
proach is best characterized as bug hunting rather than formal verification of
the Python code. Exception-handling mechanisms are converted to explicit er-
ror codes and conditional checks. The LLM translation targets Python programs
amenable to BMC: those with bounded loops, properties expressible as asser-
tions, and behavior suitable for bounded analysis. Complex metaprogramming
and dynamic code generation remain challenging.

The translation is performed by the LLM orchestrator through its tool-use
capability. When the orchestrator determines that formal verification is needed,
it invokes a Python-to-C conversion tool that leverages the LLM’s code under-
standing and generation abilities. The LLM performs the translation as follows.
First, analyzing the Python code structure to identify type hints, infer variable
types from usage patterns, detect memory access patterns, and understand the
semantics of Python constructs. Second, generating equivalent C code where
function definitions preserve signatures (using type hints for parameter/return
types), nondeterministic value generation (esbmc.nondet_*()) is mapped to ap-
propriate C declarations, Python data structures are represented as bounded C
equivalents (lists as arrays with size tracking), and assertions are converted to
__ESBMC_assert() or assert() statements. Third, the LLM instruments the
code for verification by adding explicit bounds checks for array accesses, over-
flow detection for arithmetic operations when needed, and converting exception
handling to return codes with conditional checks.

The LLM prioritizes verification requirements over optimization, generating
C code in which the properties under verification are explicit and verifiable. This
approach can handle more complex Python constructs than rule-based transla-
tion, as the LLM can reason about semantics and adapt the translation strategy
based on the specific verification goals identified by AST analysis.

Iterative Refinement for Verification Tractability The initial LLM-generated
C code may be too complex for ESBMC to analyze within practical time limits.
When ESBMC times out or exceeds resource constraints, the system provides
feedback to the LLM orchestrator, which can regenerate simpler C code in sub-
sequent iterations. The LLM applies simplification strategies such as adding
__ESBMC_assume() constraints to bound nondeterministic values, simplifying
loop structures, reducing input domains, or abstracting auxiliary functions while
preserving properties under verification. The automated retry logic first attempts
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reduced unwind bounds and disabled expensive checks before asking the LLM
to regenerate code.

We do not formally verify semantic equivalence between Python and C code—this
would require proof techniques beyond BMC. Our goal is bug-finding through
deeper analysis than testing alone, not proof of correctness. The system includes
dynamic execution of Python code as one verification tool, which can detect run-
time errors and provide confidence in basic functionality before expensive formal
verification is attempted on the translated C code.

Fig. 3. Decision Logic Flowchart showing tool routing based on code characteristics.

Figure 3 shows the orchestrator’s decision logic. Figure 4 illustrates the com-
plete sequence from user submission through iterative tool selection to final
report. When ESBMC times out, the system’s retry logic automatically at-
tempts simplification: reducing the unwind bound (from 10 to 5), disabling
expensive checks (overflow, memory-leak), and suggesting to the LLM to add
__ESBMC_assume() constraints or simplify loops in subsequent iterations.

4 Implementation

The Enhanced Verification Agent is implemented in approximately 2000 lines of
Python 3.11+ code using the Anthropic Claude API (claude-sonnet-4.5) as the
central orchestrator. Tool versions: mypy 1.8+, pylint 3.0+, flake8 7.0+, bandit
1.7+, ESBMC 7.4, Python 3.11+.

Tool outputs follow a unified JSON schema. The orchestrator deduplicates is-
sues and applies a priority hierarchy: formal proofs override all findings, runtime
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Fig. 4. Sequence Diagram of the Verification Workflow. The user submits Python code
to EVA, which initializes the LLM orchestrator (Claude). At each iteration, Claude se-
lects appropriate tools based on code analysis. For formal verification, Claude performs
Python-to-C translation (shown as the “Python to C Converter” tool in the diagram)
by generating a detailed prompt that describes the translation requirements, invok-
ing itself to generate the C code, and then passing the result to ESBMC for analysis.
Claude synthesizes results and decides whether to continue iteration or conclude.
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failures override static warnings, and static analysis provides baseline assess-
ments. A SQLite database tracks verified properties and tool history, enabling
incremental verification that skips re-checking proven properties.

The implementation is containerized with Docker for reproducible environ-
ments. All code, configuration files, and instructions for running the system are
available at: https://github.com/esbmc/esbmc-python-cpp/tree/main/agent (see
README.md for setup and usage details)

5 Experimental Evaluation

We evaluated the Enhanced Verification Agent on a diverse benchmark of Python
programs to assess its effectiveness in automated formal verification. Our experi-
ments address three research questions: (1) Can the orchestrated multi-tool agent
successfully detect bugs in Python programs using formal verification? (2) How
does iterative tool selection improve verification coverage compared to single-
tool approaches? (3) Can we accelerate formal verification while maintaining
reliability using fine-tuned models?

5.1 Experimental Setup

The benchmark consists of 23 Python programs exhibiting various verification
challenges with planted bugs: overflow vulnerabilities (10 programs), bounds
violations (8 programs), and race conditions/deadlocks (5 programs). Programs
range from 15 to 50 lines of code and represent common bug patterns. Programs
use nondeterministic inputs via the ESBMC Python module to enable symbolic
execution and bounded model checking.

The system runs with a 10-iteration limit on Macbook Pro M4 Max with
128GB RAM. We also evaluate an optional fine-tuned DeepSeek Coder 6.7B
model (with LoRA adapters trained on ESBMC examples) that provides rapid
pre-screening.

5.2 Verification Results

The orchestrated multi-tool agent successfully detected all planted bugs in the
23 benchmark programs. Table 1 summarizes the results by bug category, with
an average of 7.6 iterations required.

Table 1. Verification results by bug category

Bug Category Programs Bugs Detected Avg. Iterations Detection Rate
Overflow 10 10 7.6 100%
Bounds Violation 8 8 7.4 100%
Race/Deadlock 5 5 7.8 100%
Total 23 23 7.6 100%

https://github.com/esbmc/esbmc-python-cpp/tree/main/agent
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The orchestrator’s iterative tool selection ensured comprehensive analysis,
using an average of 6.8 tools per program. The detailed breakdown of detection
results by tool type is discussed in Section 6.3, which shows that bugs in this
benchmark required formal verification for definitive detection—dynamic exe-
cution detected only 3 of 8 bounds violations and 0 of 10 overflow bugs, while
static analysis flagged suspicious patterns without confirming actual bugs. All
bugs manifested as assertion violations in the formal verification results, with
ESBMC providing concrete counterexamples.

Fig. 5. Python program for Pythagorean triple verification. The code generates random
integers x, y, z in range [1, 16383] and asserts that x2 + y2 ̸= z2. This represents a
verification challenge requiring formal methods to find counterexamples.

Example: Pythagorean Triple Checker. Figure 5 shows a program that
checks whether x2 + y2 ̸= z2 for nondeterministic integers. The agent’s itera-
tive process (Figure 6) applied six tools across seven iterations. Initial static
analysis (mypy, pylint, flake8, bandit) found no issues. Dynamic analysis with
Python interpreter passed. The critical step was formal verification: the agent
identified the assertion as a verification target, used the LLM to translate Python
to C, and invoked ESBMC with overflow and bounds checks. ESBMC success-
fully found the counterexample (e.g., x=6, y=8, z=10 satisfies the Pythagorean
relation).
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Fig. 6. Verification summary showing successful bug detection. The agent used 7 iterations with tools including analyze_ast, run_mypy,
run_pylint, run_flake8, run_bandit, and run_python_interpreter. ESBMC checks successfully identified the assertion violation with
a concrete counterexample (x=6, y=8, z=10). The LLM orchestrator also provides natural language explanation of the violation and
suggests fixes, making the formal verification results more accessible to developers. Generated files converted_code.c and esbmc_verify.c
demonstrate the LLM-based Python-to-C translation process.
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5.3 Accelerated Verification with Fine-tuned Models

To address research question (3) on accelerating formal verification, we evalu-
ated a fine-tuned DeepSeek Coder 6.7B model (enhanced with LoRA adapters
trained on 1000+ ESBMC-verified examples) as a rapid pre-screening alterna-
tive. This approach builds on prior work using LLMs trained on formal verifi-
cation tool outputs for vulnerability detection [22], extending the concept from
binary classification to bug pattern recognition. The key motivation is speed:
ESBMC requires 35-50 seconds per program, while the fine-tuned model com-
pletes analysis in 2-10 seconds (depending on code complexity)—up to a 20x
speedup. This acceleration comes from learned pattern recognition rather than
symbolic execution, trading formal guarantees for probabilistic assessments.

Figure 7 demonstrates the fine-tuned model’s operation on a more complex
concurrent program, with analysis completing in under 10 seconds using modest
resources (2632 prompt tokens, 200 generation tokens at 26k tokens/sec).

5.4 Iteration Analysis

Convergence occurred within 6-10 iterations (median: 8, mean: 7.6) across all 23
programs. For this benchmark of programs with planted bugs, formal verifica-
tion via ESBMC was necessary for definitive bug detection with concrete coun-
terexamples. Static analysis tools identified suspicious patterns but could not
confirm bugs, while dynamic analysis detected some runtime failures but lacked
systematic coverage. The LLM orchestrator selectively invoked tools based on
code characteristics rather than running all tools in parallel on every program.
While parallel execution is technically possible, it would increase unnecessary
computation (running ESBMC on code without arithmetic operations, deadlock
detection on sequential code) and LLM API costs (more tool results to pro-
cess). The orchestrator’s adaptive strategy—using AST analysis to guide tool
selection—balances thoroughness with efficiency, applying expensive formal ver-
ification only when code patterns warrant it.

Mean verification time per program was approximately 45-60 seconds for the
full orchestrated agent. The breakdown: static analysis (2-3s), dynamic analysis
(3-5s where applicable), formal verification (35-50s), and orchestration overhead
(5-7s). The iterative approach uses an average of 6.8 tools per program.

5.5 Bug Detection Effectiveness

The orchestrated agent successfully detected all planted bugs in the 23 bench-
mark programs. Key findings by bug category:

Overflow vulnerabilities (10 programs): Static analysis (pylint) flagged
potential arithmetic issues in 7 programs but could not confirm overflows. Dy-
namic testing with random inputs detected 0 overflows (as overflow conditions
require specific nondeterministic value combinations). ESBMC with overflow
checking detected all 10 bugs with concrete counterexamples.
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Fig. 7. Fine-tuned Model analysis output for a concurrent program with race con-
dition (example_race_condition.py from the benchmark). The fine-tuned DeepSeek
Coder 6.7B model, trained on 1000+ ESBMC-verified examples, performs rapid bug
pattern recognition by analyzing the Python code and predicting potential bugs based
on learned patterns from the training data. Unlike ESBMC which requires Python-to-
C translation and symbolic execution, the fine-tuned model directly analyzes Python
code and provides probabilistic assessments. Performance metrics show 2632 prompt
tokens, 200 generation tokens at 26k tokens/sec, with 15.6GB peak memory usage. The
model completes analysis in under 10 seconds, demonstrating the speed advantage of
learned pattern recognition over symbolic model checking.
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Bounds violations (8 programs): Static analysis flagged suspicious array
accesses in 4 programs. Dynamic testing caught 3 bounds violations through run-
time exceptions. ESBMC detected all 8 bugs, including 5 that dynamic testing
missed.

Race conditions and deadlocks (5 programs): Static analysis detected
threading usage but not deadlocks. The runtime deadlock detector identified all 5
bugs through lock instrumentation and circular wait detection, without requiring
C translation. ESBMC’s deadlock checking was not used for these programs as
the Python-based deadlock detector proved more effective for threading code.

These results show that formal verification via ESBMC is essential for arith-
metic and bounds checking bugs, while runtime instrumentation handles concur-
rency bugs effectively. Static and dynamic analysis provide useful preliminary
screening but cannot provide definitive bug detection for this benchmark. Note
that our approach of selective verification (using AST analysis to decide which
blocks need ESBMC) works well for our small benchmark programs (15-50 lines),
but scaling to large programs remains challenging—AST patterns alone cannot
reliably predict which functions in a large codebase require formal verification
without analyzing the entire program.

6 Future Work

While our current system demonstrates effective bug detection for standalone
Python programs, several promising directions remain for future research.

Future work should train more powerful fine tuned models on larger datasets
(10,000+ examples) to approach ESBMC-comparable accuracy while maintain-
ing speed advantages. The ideal workflow combines fine-tuned model pre-screening
(rapid triage) with selective ESBMC verification (formal proofs for critical sec-
tions).

Our benchmark consists of standalone programs with localized bugs. Real-
world production systems present greater challenges: server-based architectures
with distributed components, asynchronous communication patterns, complex
state management across multiple services, and emergent behaviors from com-
ponent interactions. Extending our verification framework to handle multi-file
projects, inter-service dependencies, and distributed concurrency requires ad-
vances in modular verification, compositional reasoning, and scalable state space
exploration. Future work should investigate verification techniques for microser-
vices, REST APIs, message queues, and distributed databases, where bugs mani-
fest through intricate timing dependencies and cross-service invariant violations.

Practical adoption requires seamless integration into continuous integration
/ deployment pipelines, incremental verification for code changes, and developer-
friendly error reporting that maps formal verification counterexamples back to
Python source with actionable remediation suggestions.
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