
A Formal Method for Modeling, Verification and
Synthesis of Embedded Reactive Systems

Ruiter Braga Caldas
Universidade Federal do Amazonas

Av. Rodrigo Otávio, nº 6.200, Coroado, Manaus-Brazil.

ruiter@dcc.ufam.edu.br

Raimundo da Silva Barreto
Universidade Federal do Amazonas

Av. Rodrigo Otávio, nº 6.200, Coroado, Manaus-Brazil.

rbarreto@dcc.ufam.edu.br

Lucas Cordeiro
Universidade Federal do Amazonas

Av. Rodrigo Otávio, nº 6.200, Coroado, Manaus-Brazil.

lucascordeiro@ufam.edu.br

Sérgio Campos
Universidade Federal de Minas Gerais

Av. Antônio Carlos, 662, Pampulha, BeloHorizonte-Brazil.

scampo@dcc.ufmg.br

ABSTRACT

Embedded reactive systems are now invisible and everywhere, and are adopted, for

instance, to monitor and control critical tasks in cars, airplanes, traffic, and

industrial plants. However, the increasing amount of new functionalities being

moved to software leads to difficulties in verifying the design correctness. In this

context, we propose a novel design method called BARE Model, which is a formal

abstraction to design, verify and synthesize software in embedded reactive

applications. The method consists in designing the application using an extension of

the well-known finite state machine, called X-machine. We thus propose to

translate this model to a tabular data structure, which is a kind of state transition

table augmented with memory input, memory output, and condition (or guard). This

tabular structure may be automatically translated to the input of the NuSMV model

checker in order to verify the system’s properties. We also propose a runtime

environment to execute the system (expressed as a tabular data structure) in a

specific platform. In this way, we can convert the high-level specification into

executable code that runs on a target platform. To show the practical usability of our

proposed method, we experimented it with the Envirotrack case study. The

experiment shows that the proposed method is able to not only model the system,

but also to verify safety and liveness properties, and synthesize executable code of

real-world applications.

KEYWORDS

Formal Methods, Model Checking, Embbeded Systems.

 1. INTRODUCTION

 Reactive systems are those that maintain an ongoing interaction with its environment rather than to

compute some final value and terminate [17]. In this way, reactive systems have to react to stimuli produced

by the environment. When these systems perform a specific function and is part of a larger system they are

called embedded reactive systems. We advocate that embedded reactive systems are now invisible and

everywhere. They are used to monitor and control important functions in cars, airplanes, industrial plants,

bank accounts, and even patients in the hospital. If we consider critical applications, where an error can lead

to a catastrophe (for instance, loss of human life), the control quality assurance plays an important role to

ensure that risks are minimized and kept under control. However, in order to achieve this goal, rigorous

methods and techniques must be used to develop and verify those system.

 Embedded reactive systems are usually defined by a data acquisition stage, application of an

algorithm, followed by output of a result. The development process of these systems needs to ensure that the

behaviour of the software is well controlled, even in the presence of unusual combinations of external stimuli

and failures. In this context, Finite States Machine (FSM) can be used to capture the system’s behaviour in a

high-level of abstraction and to make it possible to reason about the system’s properties via model checking

[2]. In reactive systems, for example, the application is usually built by combining different FSMs, but this

combination lacks the ability to model non-trivial data structures that arise from real-world applications [7].

In order to alleviate this problem, X-machine extends the FSM by introducing memory concepts, and

functions that operate on input symbols and memory values. This work makes two major novel contributions.

First, we propose the use of the formal model BARE
1 as the model to design embedded reactive applications.

This model is used to describe the behaviour at a high-level of abstraction using the X-machines formalism

so that we can transform it into a tabular model and later upload it into the target platform to be executed by a

specific runtime environment. From the tabular model, a specific “system model” maybe generated and some

properties (e.g., safety and liveness) can be verified using a model checker to ensure the correctness of the

application; in particular, this work adopted the NuSMV model checker. Second, X-machines are static

mathematical models, which do not support the notion of events and conditions. Consequently, we modified

and added these two new elements into the original model of the X-machine. In this case, events are fired

whenever a change occurs in the values of the variables under observation. Conditions are logical

expressions dependent on events, which are composed by memory variables and are linked by logical

connectors. As a result of this modification, our proposed method may be effective in the modeling,

verification and synthesis of real-world embedded reactive applications.

 2. X-MACHINE

 X-machine is a mathematical device that is capable of modeling both data-flow and control-flow of

a system. It employs a diagrammatic approach to model the control-flow by extending the expressive power

of FSM. X-machine has been proposed independently by the mathematician Eilenberg [6] and used by other

researchers as a specification language for dynamic systems [7]. In an X-machine model, transitions between

states are no longer performed through simple input symbols, but by the application of functions. Functions

(φ) receive input symbols (σ) and memory values (m) and produce output symbols (γ) and may modify

memory values. In contrast to FSM, X-machines are capable of modeling non-trivial data structures by

employing a memory, which is attached to the X-machine. Consequently, in the X-machine model,

transitions are associated to functions, or relations, that act on a data structure. One of these subclasses

proposed by Laycock [14] is the Stream X-machine in which the inputs and outputs are performed through a

data stream. In the formal description, a deterministic Stream X-machine, denoted by XM= (Σ, Γ, Q, M, Φ,

F, q0, m0), is a eight tuple such that: (i) Σ is the input alphabet; (ii) Γ is the output alphabet; (iii) Q is the

finite set of states; (iv) M is the (possibly) infinite set of values of variables in memory; (v) Φ is a machine

type of M comprising a finite set of partial functions φ that map a memory and an input to a new memory and

an output; (vi) F is a partial function of the next state, given a state and a function of the type Φ, it denotes

1 Available at http://www.dcc.ufam.edu.br/ruiter/index.php/br/projetos

the next state. F normally is described as a diagram of state, F : Q × Φ → Q ; (vii) q0 is the initial state; and

(viii) m0 is the initial values of variables in memory. Section 4 shows an example of modeling with X-

Machine.

 3. THE PROPOSED METHOD

 Figure 1. Overview of Bare Model

 Figure 1 shows the proposed development cycle of embedded reactive applications. We start by

modeling the system using an extension of the X-Machine model that deals with embedded reactive systems;

this extension is called BARE model. Considering that the BARE model is not executable, after the modeling

phase we call the GeneratorXM which aims to transform the BARE model to a tabular model. The tabular

model may be executed by a runtime environment, in this method called ExecutorXM. The proposed method

also provides means to verify formally the properties of the system. Therefore, it is possible to translate from

the tabular model to a specific input of a model-checker, in this case, we adopt the NuSMV model-checker.

The main parts of the proposed method are described in the following subsections.

 3.1. The BARE model

 The BARE model extends the X-Machine model specifically to deal with embedded reactive

systems. In this context, we consider that all applications are composed by three main components: (1)

Sensor, which is responsible for providing data to the application. This data generation can be time-triggered

or event-triggered; (2) Transformer, which is responsible for implementing each application requirement; and

(3) Communicator, which is responsible for all aspects related to send data to other devices. We propose to

adopt X-machines for both Sensors and Communicators and consequently connecting them as an unique

component. In this paper, however, we focus mainly on the transformer component, which is targeted to

embedded reactive applications and is developed in a domain-specific basis. All three parts are further placed

together into a single application for execution on a embedded platform. The BARE model extends the X-

Machine model in the following way: BM = (T , Σ, Γ, Λ, Q', M, E, C, Φ, F, q0, m0) where:

• T is a set of basic data types.

• Σ is the input alphabet, which is called monitored variables.

• Γ is a set of output alphabet. This definition is the same as the X-Machine. Γ is called controlled

variables.

• Λ is a set of internal alphabet or internal variables.

• Q' = Q ∪ {Init,Start,Halt}, is the set of states. The purpose of the states Init, Start, Halt is to perform

initial configuration (state Init) or initialization (state Start), and indicate when the application

terminates (state Halt). We propose that the first state to be executed in any application is always the

state Init, and after the state Start.

• M is the set of values of variables in memory. This definition is the same as the X-Machine.

• E is the set of Events. Events may be fired whenever a change occurs in the value of the variables

(monitored, controlled, internal).

• C is the set of Conditions. Conditions are logical expressions that rely on events. They are composed

by variables from memory and linked by logical connectors.

• Φ is a finite set of partial functions φ, that transforms an input alphabet and a value of memory into an

output alphabet and a new value of memory, enabled by a condition when an event occurs. φ : Σ × M

× C → Γ × M.

• F is a partial function of the next state, given a state and a function of the type Φ, it denotes the next

state. F normally is described as a diagram of state, F : Q × Φ → Q.

• q0 ∪ Q' is the Init state. This definition is the same as the X-Machine.

• m0 ∪ M is the initial values of variables in memory. This definition is the same as the X-Machine.

 3.2. Mapping the BARE Model to the Tabular Model

 The BARE model is a specification model and, therefore, it is not executable. The next step on the

proposed method is to transform the BARE model into a tabular model. This tabular structure is constructed

with the aim to transform a specification model to a executable model, in such a way to make it easy to

execute the application on the target platform. This kind of tabular model has been used for several years as a

tool for software specification [3, 9, 11], with the aim of making systems more readable and understandable.

The transformation from the BARE model to the tabular model is performed automatically by a specific tool

called GeneratorXM. The columns of the application table are filled in with the information obtained directly

from the BARE model. The resulting table is composed by the following columns: (i) Source represents the

initial states of the transitions. The Source column should contain all states including the states Init, Start,

Halt. The transitions between states are controlled by events. As sj = F(si, φi). In this case, this column should

contain all si ∪ Q'; (ii) Input contains the input event to be considered in the transition between states. As 〈γk,

mk+1〉 = φk(σk, mk, ck), the Input column should contain all σk ∪ Σ. (iii) Mem_input are internal variables

values that will be considered in the condition to enable state transitions. As 〈γk, mk+1〉 = φk (σk, mk, ck), the

column should contain all ; (iv) Target is the target state of transitions. As sj = F(si, φi) . In this case, the

Target column should contain all sj ∪ Q'; (v) Condition is the condition to be evaluated in order to enable the

transition from the current state to the target state. The conditions are synchronized by the input events. As

〈γk, mk+1〉 = φk (σk, mk, ck), the Condition column should contain all ck ∪ C; (vi) Mem_output are internal

variable values of the machine that will be updated if the transition is taken when the condition ck is satisfied.

As 〈γk, mk+1〉 = φk (σk, mk, ck) , the column Mem_output should contain all mk+1 ∪ M; (vii) Output is the

value produced as a result of the transition between states. The output may trigger some other event or

produce some output data. As ,〈γk, mk+1〉 = φk(σk, mk, ck), the Output column should contain all γk ∪ Γ.

 3.3. Formal Verification of Tabular Model

 The technique chosen to verify the system is model checking [12], and the model checker adopted is

the NuSMV [4]. The input language of the NuSMV model checker is a finite state machine (FSM), which

makes it easier the translation from the BARE model. The model must describe the transition relation of the

states through valid transition relations of the machine. The construction of the system’s model from the Bare

model will be carried out through a tabular model, which contains all the needed elements to extract the

transition system. The mapping of the tabular model to the system’s model is thus done automatically by the

GeneratorXM, which is based on the following algorithm:

1. Construction of the elements of the VAR section.

(a) The variables in memory are selected from the set M of the BARE model. If needed, types are

required explicitly from the user.

(b) All events, either input or output, are declared as boolean type. The events come from the sets

Σ and Γ of the BARE model.

(c) All states, except for the states Init and Start, are declared in a variable called states. This

variable has enumerated type with all states of the system. These states come from the set Q'

of the BARE model.

2. Construction of the elements of the ASSIGN section.

(a) All variables are assigned to its initial value. When needed, these values are required

explicitly from the user.

(b) The variable states is assigned to the target value of the transition “start” of the tabular

model.

3. Construction of the transition between states through the CASE expression.

(a) For each line of the tabular model, we construct an expression to the next state of the system

as follows: states = Vi[1] & Vi[5] : Vi[4], where Vi[j] means jth column of the line i.

 3.4. ExecutorXM: The Runtime Environment for the BARE model

 The application consists in an array of monitored variables m = [m1 , . . . mt], an array of internal

variables i = [i1 , . . . im], an array of controlled variables c = [c1, . . . cn], and a finite directed graph G = (V,A),

where the following conditions are satisfied: (1) There is only one vertex called “Init” (I ∪ V); there is only

one vertex called “Start” (S ∪ V); there is only one vertex called “Halt” (H ∪ V); and any vertex v is in the

path from S to H; (2) Each arc a not incident in H is associated with a quantifier-free formula of type Pa(m,i)

and an assignment i ← fa(m,i); Each arc a incident in H is associated with a quantifier-free formula of type

Pa(m,i) and an assignment c ← fa(m,i) ; where Pa means test predicate associated with arc a, and Pa(m,i) is

called test formula associated with arc a; (3) For each vertex v ≠ H, let a1, a2, . . . ar be all arc leaving v and let

Pa1, Pa2, . . . Par the test predicates associated with with arcs a1, a2, . . . ar, respectively. Thus, for all m and i,

one and only one of the Pa1(m,i), Pa2(m,i), . . . Par(m,i) is true. After the construction of the graph, the

application execution occur in accordance with the following algorithm:

1. Execution starts on vertex Init (I) and next the control is given to the vertex Start (S).

2. Let j = 0, v
j
= S and i

j
the internal variables.

3. If v
j
= H, then execution ends, otherwise go to step 4.

4. Let ak the arc in which v
j
 is the source vertex, and the test formula associated with the arc is true, that

is, Pak(m,ij) = true . Let vj+1 be the target vertex of ak. Thus, the control moves, through ak, to the

vertex v
j+1

 and one of the following assignments is executed:

• ij+1 ← fak (m,i
j
), if vj+1 ≠ Η ;

• c
 ← fak (m,i

j
), if vj+1

= Η ;

5. Let j=j+1, go to step 3.

One platform adopted for execution of the runtime environment was the LEGO Mindstorm Robot [15]. The

ExecutorXM was implemented in the LUA language [10]. This implementation is composed by two main

functions: Executor and ReadCurrent. The Executor is the main function. It receives a file with the

application in the tabular format, always starts by state “init”, and executes up to state “halt” is reached.

ReadCurrent receives as input the current state and returns all lines of the application that has this as source

state. All such lines are evaluated in order to capture all input events of column “Input” and put in a list of

monitored events. When an event occur, the next step is to find out what condition is true. We consider that

just one condition will be true in each event. After that, the event in the column “Output” is executed. Later,

“Mem_Output” is updated, in such a way that internal variables are updated, and the next current state is

defined by column “Target”.

 4. THE ENVIROTRACK CASE STUDY

 This section describes the main characteristics of the EnviroTrack case study [1], and shows results

of the application of the proposed method in the modeling, verification and synthesis.

 4.1. Problem Specification

 EnviroTrack aims to detect and track moving targets in a network of sensors. One sensor node can

be in one of the following states: free, follower, member or leader. Initially a node is in the free state. A node

free becomes member when it detects a target. A node free becomes a node follower if it has not detected any

target, but it is in the neighbourhood of a member and received a heartbeat that a target was detected. The

sensor node in free state does not respond to time event and leader election event. A node leader is a node

that was member and was elected for this purpose. All members send their location to the leader, which

performs a fusion of the positions for estimation on the position of the target object. If the node leader loses

the detection of the intruder, it passes to the state of follower and other node member must be elected as

leader. The members send specific signals (heartbeat) so that the free nodes that are in their neighbourhood

may become a follower. The follower has a timer, and if it has not detected a target in a timeout, it returns to

be free state. Figure 2 shows a high-level model of the EnviroTrack application.

Figure 2. Envirotrack application

 4.2. EnviroTrack’s BARE Model

 The BARE model of the EnviroTrack case study is defined by the following tuple: BM = (T , Σ, Γ,

Λ, Q', M, E, C, Φ, F, q0, m0), where:

1) T = (Int, Bool, Temp = [0, 10000]);

2) Σ=(mSound={Bool}, mIntruder={Bool}, mElect={Bool}, mTemp={Temp}, mX={Int}, mY= {Int});

3) Γ=(cSound={Bool}, cPosX={Int}, cPosY={Int});

4) Λ=(iX={Int}, iY={Int}, iCurr={Temp}, iTotal={Temp});

5) Q' = {Free, Follower, Member, Leader, Init, Start, Halt };

6) M=(mSound, mIntruder, mElect, mX, mY, mTemp, iCurr, iTotal, iX, iY, cSound, cPosX, cPosY);

7) E={e1=mSound ∪ e2= mIntruder ∪ e3=mElect ∪ e4=mTemp};

8) C ={ {c0= True}, {c1= e1}, {c2=e2 }, {c3=e3 }, {c4= iCurr > iTotal ∪ e4 }, {c5= iCurr <= iTotal ∪ e4}, {c6=

iCurr <= iTotal ∪ e2 } };

9) Φ : ϕϕϕϕ0000 = (_,_, c0 ,_,_); ϕϕϕϕ1= (mSound, iCurr, c1 , iCurr=0,“Heartbeat”); ϕϕϕϕ2 2 2 2 = (mIntruder, iCurr, c2 , iCurr=0,

“Intruder"); ϕϕϕϕ3 3 3 3 = (mElect, iCurr, c3 , iCurr=0, “Elect”); ϕϕϕϕ4444 = (mTemp, _, c4 , _, “Timeout”); ϕϕϕϕ5555 = (mTemp,

(iCurr,iTotal), c5 , iCurr=iCurr+1, “Timing”); ϕϕϕϕ6666 = ((mX,mY), (iX,iY,iCurr,iTotal), c6, (iX=iX+mX, iY = iY +

mY), “Collecting”); ϕϕϕϕ7 7 7 7 = (_, (iX,iY), c3, (cPosX=iX, cPosY=iY), (cPosX,cPosY));

10) F: (Init, ϕϕϕϕ0000 , Start); (Start, ϕϕϕϕ0 0 0 0 , Free); (Free, ϕϕϕϕ1 1 1 1 , Follower); (Free, ϕϕϕϕ2222 , Member); (Follower, ϕϕϕϕ1 1 1 1 , Follower);

(Follower, ϕϕϕϕ2 2 2 2 , Member); (Follower, ϕϕϕϕ4 4 4 4 , Free); (Follower, ϕϕϕϕ5 5 5 5 , Follower); (Member, ϕϕϕϕ2 2 2 2 , Member); (Member,

ϕϕϕϕ3 3 3 3 , Leader); (Member, ϕϕϕϕ5 5 5 5 , Member); (Member, ϕϕϕϕ4 4 4 4 , Follower); (Leader, ϕϕϕϕ4 4 4 4 , Follower); (Leader, ϕϕϕϕ5 5 5 5 , Leader);

(Leader, ϕϕϕϕ6 6 6 6 , Leader); (Leader, ϕϕϕϕ7 7 7 7 , Halt).

11) qo={Init}.

12) mo=(mSound=False, mIntruder=False, mElect=False, mX=0, mY=0, mTemp=False, iCurr=0, iTotal=10, iX=0,

iY=0, cPosX=0, cPosY=0, cSound=False).

Table 1: Envirotrack Table Application

Source Input Mem_in Target Cond. Mem_out Output

init nil nil start T nil “Init"

start nil nil free T iCurr=0;iTotal=10 “Start"

free mSound iCurr follower c1 iCurr =0 “Heartbeat"

free mIntruder iCurr member c2 iCurr=0 “Intruder"

 follower mSound iCurr follower c1 iCurr=0 “Heartbeat"

follower mIntruder iCurr member c2 iCurr=0 “Intruder"

follower mTime iCurr,iTotal free c4 iCurr=0 “Timeout"

follower mTime iCurr follower c5 Icurr = iCurr+1 “Timing"

member mIntruder iCurr member c2 Icurr =0 “Intruder"

member mElect iCurr leader c3 Corr =0 “Elect"

member mTime iCurr member c5 Icurr = iCurr+1 “Timing"

member mTime iCurr,iTotal follower c4 Icurr =0 “Timeout"

 leader (mX,mY) ∪ mTime iCurr,iTotal follower c4 Icurr =0 “Timeout"

leader (mX,mY) ∪ mTime (iX,iY) leader c5 IXY = mY “Collecting"

leader (mX,mY) ∪ mTime (iX,iY) Halt c6 PosXY = iX,iY (cPosX,cPosY)

halt nil nil halt nil nil nil

The tabular model of the Envirotrack application is shown in Table 1.

 4.3. EnviroTrack’s Formal Verification

 The proposed method is able to verify reachability/safety/liveness properties by adopting the

NuSMV model checker. Figure 3 show the input to the NuSMV automatically generated by the

GeneratorXM. As presented before, the specifications to be checked as provided by the user. In the case of

this figure, it was checked the following properties: (1) all execution eventually reach the “halt” state ((AG

EF states = halt)); (2) Whenever there is a intrusion detection, the node switches to a member state

(AG mPresence = 1 -> states = member); (3)To become a leader node it has to be a member

and be elected (event touch) (AG (states = member & mTouch = 1) -> AX states =

leader). All these properties was verified by NuSMV and the result was true.

MODULE main

VAR

iCurr : 0..11;

iTotal : 1..10;

mSound: boolean;

mPresence: boolean;

mTouch: boolean;

mTime: boolean;

states: {halt,free,follower,member,leader} ;

ASSIGN

init (iCurr):= 0;

init (iTotal):= 5;

init(states) := free ;

next(states) := case

 states = free & mSound : follower;

 states = free & mPresence : member;

 states = follower & mSound : follower;

 states = follower & mPresence : member;

 states = follower & iCurr>iTotal & mTime : free;

 states = follower & iCurr<=iTotal & mTime : follower;

 states = member & mPresence : member;

 states = member & mTouch : leader;

 states = member & iCurr<=iTotal & mTime:member;

 states = member & iCurr>iTotal & mTime:follower;

 states = leader & iCurr>iTotal & mTime:follower;

 states = leader & iCurr<=iTotal & mTime:leader;

 states = leader & mTouch:halt;

 1 : states ;

 esac;

next(iCurr) := case

 states = free & mSound : 0;

 states = free & mPresence : 0;

 states = follower & mSound : 0;

 states = follower & mPresence : 0;

 states = follower & iCurr<=iTotal & mTime : iCurr+1;

 states = member & mPresence : 0;

 states = member & mTouch : 0;

 states = member & iCurr<=iTotal & mTime : iCurr+1;

 states = leader & iCurr<=iTotal & mTime : iCurr+1;

 1 :iCurr ;

 esac;

next(iTotal) := case

 1 :iTotal ;

 esac;

SPEC AG EF states = halt

SPEC AG mPresence = 1 -> states = member

SPEC AG (states=member & mTouch=1) -> AX states=leader

Figure 3. Model of the System for the EnviroTrack Case Study

 5. RELATED WORK

 Kasten and Romer [13] proposed a new abstraction to manage the event-triggered programming.

They use a state machine program model, called Object State Model (OSM), which is based on Harel’s

StateCharts [8] and uses an external compiler to produce C code. They use an empirical state machine with a

textual language to specify the machine architecture. In our work, however, we employ a formal state

machine bypassing the combinatorial state explosion with an easier diagrammatic approach for modeling

systems control. Levis and Culler [16] propose Maté, a byte-code interpreter to run on motes as a virtual

machine. Maté executes only the virtual machine instructions and a regular sensor application should be

converted to the virtual machine instructions before execution. The advantage is that a sender node does not

need to send the network programming module, because the virtual machine is already running on the

receiver node, under the TinyOS. Our solution, however, does not make use of an operating system. Dunkels

et al [5] propose a programming abstraction called Protothreads for event-driven sensor network.

Protothreads uses a type of continuation, called local continuation, to reduce the complexity of applications

and they require only one stack to execute, doing rewind to switch context. The main limitation of

protothreads is that the automatic variable has a local scope and it is not saved across context switches,

because the stack is rewound at the end of each procedure. In our work, however, we employ a very simple

continuation mechanism within a tabular fashion, and the memory is the only shared common space.

 6. CONCLUSIONS

 In this paper, we propose a new way for designing, verifying, and implementing reactive embedded

systems. These systems are characterized by a tight integration of computation and control with the sensing

and actuation physical components. In this context, we propose an interactive method that adopts a formal

modeling method, followed by a verification process, and a runtime environment that can execute the formal

specification into a real embedded platform. Most part of this method is automated and thus the proposed

method can avoid an ad-hoc design process. We named this process as BARE Development Model. The

BARE model starts by modeling the specification using an abstract model called X-machine, where data and

control are described in a graphical structure of the abstract finite state machine. The construction of a X-

machine is performed by a tool called GeneratorXM, which translates the X-machine to a tabular model,

which is then loaded into the specific execution platform. The platform that we used to carry out the

experiments is based on the LEGO Mindstorm NXT, which has some sensors and actuators in the kit so that

it simplifies the execution of the model into a real hardware. The tabular model is directly executed in the

ExecutorXM, which is the runtime environment that can execute the formal specification into a real platform.

The ExecutorXM was implemented in the Lua language.

One contribution of this work is the definition of a dynamic execution model for X-Machines, in this case

the tabular model. As presented, X-Machines are abstract mathematical entities used to model specifications

and system characteristics. However, at the best of our present knowledge, there is no mapping of the

abstract model to an executable model. Another important contribution of this work is the automatic

generation of the “system model” from the tabular model. Such model is specified in the input language of

the NuSMV model checker tool. Consequently, we are able to verify some properties of the model using

properties specified in CTL temporal logic.

From our experiments, we also noted that the tabular model is a suitable way to carry out the dynamic

reconfiguration since each line of the table is considered as independent of each other. Thus, lines can be sent

or deleted in order to aggregate new functionalities or even change the original applicability of the

application. As a future work, we intend to investigate the dynamic reconfiguration in the context of

embedded reactive applications.

REFERENCES

[1] T. Abdelzaher and et.al. Envirotrack: Towards an environmental computing paradigm for distributed

sensor networks. Int. Conf. Distr.Computing Systems, pages 582–589, 2004.

[2] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. In Foundations of Software

Engineering, pages 175–188, 1998.

[3] M. Breen. Experience of using a lightweight formal specification method for a commercial embedded

system product line. Requirements Engineering Journal, 10:161–172, 2005.

[4] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic model verifier. In

Int. Conf. Computer Aided Verification, pages 495–499. Springer-Verlag, 1999.

[5] A. Dunkels, O. Schmidt, and T. Voigt. Using protothreads for sensor node programming. In Workshop

on Real-World Wireless Sensor Networks, Stockholm, Sweden, 2005.

[6] S. Eilenberg. Automata, Languages, and Machines. Academic Press, Inc., 1974.

[7] G. Eleftherakis, A. Sotiriadou, and P. Kefalas. Formal modelling and verification of reactive agents for

intelligent control. In Intelligent Systems Application to Power Systems, 2003.

[8] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program., 8(3):231–274,

1987.

[9] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking of requirements

specifications. ACM Trans. Soft. Eng. and Methodology, 5(3):231–261, 1996.

[10] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho. Lua an extensible extension language. Software

Practice and Experience, 26(6):635–652, 1996.

[11] R. Janicki and R. Khedri. On a formal semantics of tabular expressions. Science of Computer

Programming, 39(2–3):189–213, 2001.

[12] E. C. Jr, O. Grumberg, and D. Peled. Model Checking. The MIT Press, January 2000.

[13] O. Kasten and K. Romer. Beyond event handlers: programming wireless sensors with attributed state

machines. In Int. Symp. Infor. Proc. Sensor Networks, pages 45–52, 2005.

[14] G. T. Laycock. The Theory and Practice of Specification Based Software Testing. PhD thesis,

University of Sheffield, 1993.

[15] Lego NXT. Available at: www.mindstorms.lego.com, 2011.

[16] P. Levis and D. Culler. Mate: a tiny virtual machine for sensor networks. ACM SIGPLAN Notices,

37(10):85–95, Oct. 2002.

[17] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. Springer-Verlag, New

York, NY, USA, 1992.

