
Deep Neural Networks: Verification

Youcheng Sun
Department of Computer Science
youcheng.sun@manchester.ac.uk

mailto:lucas.cordeiro@cs.ox.ac.uk

What is AI?

“Theorem-proving and equation-solving are by now so well
established that they are hardly regarded as AI anymore.”

— Superintelligence: Paths, Dangers, Strategies

What is AI?

“Theorem-proving and equation-solving are by now so well
established that they are hardly regarded as AI anymore.”

— Superintelligence: Paths, Dangers, Strategies

Deep Neural Networks (DNNs)Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

4

'cat'

'dog'

Deep Neural Networks (DNNs)Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

The Good, Bad and the Ugly

The Good

'red panda'

‘XBOT 4000’‘K-VRC’‘11-45-G’

Adversarial ExamplesSafety definition: illustration

6

Ø An adversarial example refers to specially crafted input which is
designed to look "normal" to humans but causes misclassification
to a machine learning model.

Backdoor

Ø Performant models, with backdoors that produce inference errors
when presented with input containing a trigger defined by the
adversary

‘XBOT 4000’‘K-VRC’‘11-45-G’

‘A. J. Buckley’

Explainability

'red panda'

Security in DNNs

Ø How to verify that a DNN is robust enough to adversarial
examples?

Ø How to verify that a DNN is free of backdoor?

Ø How to explain a DNN?

Adversarial Robustness

Ø Let N be a neural network and N(x) be the prediction on an input x.

Ø Given a neural The neural network is said to be adversarial robust,
subject to a perturbation upper bound r, if for any 0<δ<=r:

N(x+δ) = N(x)

DNN as a programDNN as a program
...

// 1) neuron activation value
double uk,i = bk,i;
for (unsigned h = 1; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i ∗ vk−1,h;
}

double vk,i = 0;

// 2) ReLU
if (uk,i > 0)
{

vk,i = uk,i;
}

...
6

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

https://github.com/theyoucheng/DLTT

https://github.com/theyoucheng/DLTT

VNN-COMP: Verification of Neural
Networks Competition

Note that #Instances per Benchmark varieshttps://sites.google.com/view/vnn2022

https://sites.google.com/view/vnn2022

MNIST
'0'

'1'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

'8' -> '5'

References
Ø Sun, Youcheng, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta

Kwiatkowska, and Daniel Kroening. "Concolic testing for deep neural
networks." Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 2018.

Ø Sun, Youcheng, Muhammad Usman, Divya Gopinath, and Corina S.
Păsăreanu. "VPN: Verification of Poisoning in Neural Networks." In
Software Verification and Formal Methods for ML-Enabled Autonomous
Systems: 5th International Workshop (FoMLAS), 2022.

Ø Sun, Youcheng, Hana Chockler, Xiaowei Huang, and Daniel Kroening.
"Explaining image classifiers using statistical fault localization." In
European Conference on Computer Vision (ECCV) 2020

https://research.manchester.ac.uk/en/publications/concolic-testing-for-deep-neural-networks
https://research.manchester.ac.uk/en/publications/vpn-verification-of-poisoning-in-neural-networks
https://research.manchester.ac.uk/en/publications/explaining-image-classifiers-using-statistical-fault-localization

Deep Neural Networks: Explanation

Why

'red panda'

Software fault localisation

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

Software fault localisation

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

Software fault localisation

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

Software fault localisation

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

Software fault localisation

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

…

Software fault localisation

• <asep, asef, asnp, asnf>

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

…

asep is the number of tests that passed
and executed s

aC2ep = 1
aC3ep = 0
aC4ep = 0
aC5ep = 1

Spectrum

• <asep, asef, asnp, asnf>

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

…

asef is the number of tests that failed
and executed s

aC2ef = ?
aC3ef = ?
aC4ef = ?
aC5ef = ?

Spectrum

• <asep, asef, asnp, asnf>

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

…

asef is the number of tests that failed
and executed s

aC2ef = 0
aC3ef = 1
aC4ef = 2
aC5ef = 1

Spectrum

• <asep, asef, asnp, asnf>

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

…

asnp is the number of tests that passed
and not executed s

aC2np = 1
aC3np = 2
aC4np = 2
aC5np = 1

Spectrum

• <asep, asef, asnp, asnf>

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

input1 input2 input3 C2 C3 C4 C5 Assert

200 100 300 0 1 1 0 False

300 100 200 0 0 1 1 False

300 300 200 0 0 0 1 True

100 300 200 1 0 0 0 True

…

asnf is the number of tests that failed
and not executed s

aC2nf = 2
aC3nf = 1
aC4nf = 0
aC5nf = 1

Spectrum

• Spectra

<aC2ep = 1, aC2ef = 0, aC2np = 1, aC2nf = 2>

<aC3ep = 0, aC3ef = 1, aC3np = 2, aC3nf = 1>

<aC4ep = 0, aC4ef = 2, aC4np = 2, aC4nf = 0>

<aC5ep = 1, aC5ef = 1, aC5np = 1, aC5nf = 1>

• Spectra based measures

Ochiai:

As “visually better” is not an objective metric, we measure the
efficiency of the generation of adversarial example as a proxy
for the quality of our explanations. While clearly not identical
to “visually better”, this metric has the advantage that it is
objective and algorithmically computable. Our experimental
results show that the explanations produced by PROTOZOA
yield more adversarial examples than those produced by SHAP.
An additional advantage of PROTOZOA is that it treats the
DNN as a black-box, and that it is highly scalable.

The tool and the data for the experiments described in this
paper, together with the scripts and the experimental setup, can
be downloaded from the anonymized link1.

II. PRELIMINARIES

A. Deep neural networks (DNNs)
We briefly review the relevant definitions of deep neural

networks. Let f : I ! O be a deep neural network N with N -
layers. For a given input x 2 I , f(x) 2 O calculates the output
of the DNN, which could be, for instance, a classification label.
Images are still the most popular inputs for DNNs, and in this
paper we focus on DNNs that classify images. Specifically, we
have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN) (1)

where Wi and bi for i = 1, 2, . . . , N are learn-able parameters,
and fi(zi�1;Wi�1, bi�1) is the layer function that maps the
output of layer (i � 1), i.e., zi�1, to the input of layer i.
The combination of the layer functions yields highly complex
behavior, and the analysis of the information flow within a
DNN is challenging. There are a variety of layer functions for
DNNs, including, e.g., fully connected layers, convolutional
layers and max-pooling layers.

Our algorithm is independent of the specific internals of the
DNN. Given a particular input image x and N ’s output y, we
present to the user a subset of the pixels of x that explain why
N outputs y when given x. In the following, we use N [x] to
denote the output of N for an input image x.

B. Spectrum-based fault localization (SBFL)
Our work is inspired by spectrum based fault localiza-

tion [12]–[27], which has been widely used as an efficient
approach to automatically locate root causes of failures of
programs. SBFL techniques rank program elements (e.g.,
statements or assignments) based on their suspiciousness scores.
Intuitively, a program element is more suspicious if it appears
in failed executions more frequently than in correct executions
(the exact formulas for ranking differ between the measures).
Diagnosis of the faulty program can then be conducted by
examining the ranked list of elements in descending order of
their suspiciousness until the culprit for the fault is found.

The SBFL procedure first executes the program under test
using a set of inputs. It records the program executions as
program spectra, meaning that the execution is instrumented to
modify a set of Boolean flags that indicate whether a particular

1https://bit.ly/2E64VdE

program element was executed. The task of a fault localization
tool is to compute a ranking of the program elements based
on the program spectra. Following the notation in [12], the
suspiciousness score of each program statement s is calculated
from a set of parameters hasep , a

s
ef , a

s
np , a

s
nf i that give the

number of times the statement s is executed (e) or not executed
(n) on passing (p) and on failing (f) tests. For instance, asep is
the number of tests that have passed and that have executed s.

A large number of measures has been proposed to calculate
the suspicious score of each program element. We list below
some of the most widely used measures; those are also the
measures that we use in our ranking procedure.

Ochiai [24]:
asefq

(asef + asnf)(a
s
ef + asep)

(2a)

Zoltar [23]:
asef

asef + asnf + asep +
10000as

ef a
s
ep

as
ef

(2b)

Tarantula [25]:

as
ef

as
ef +as

nf

as
ef

as
ef +as

nf
+

as
ep

as
ep+as

np

(2c)

Wong-II [26]: asef � asep (2d)

The tool then presents to the user the list of program elements
in the order of descending suspiciousness score. As reported
in surveys [14], [15], [22], there is no single best measure
for fault localization. Different measures perform better on
different types of applications.

III. WHAT IS AN EXPLANATION?
An adequate explanation to an output of an automated

procedure is essential in many areas, including verification,
planning, diagnosis, etc. It is clear that an explanation is
essential in order to increase a user’s confidence in the result or
to determine whether there is a fault in the automated procedure
(if the explanation does not make sense). It is less clear how
to define what a “useful” explanation is. There have been a
number of definitions of explanations over the years in various
domains of computer science [28]–[30], philosophy [31] and
statistics [32]. The recent increase in the number of machine
learning applications and the advances in deep learning led to
the need for explainable AI, which is advocated, among others,
by DARPA [33] to promote understanding, trust, and adoption
of future autonomous systems based on learning algorithms
(and, in particular, image classification DNNs).

DARPA provides a list of questions that a good explanation
should answer and an epistemic state of the user after receiving
a good explanation. The description of this epistemic state
boils down to adding useful information about the output of
the algorithm and increasing trust of the user in the algorithm.

In this paper, we are going to loosely adopt the definition of
explanations by Halpern and Pearl [34], which is based on their
definition of actual causality [35]. Roughly speaking, Halpern
and Pearl state that a good explanation gives an answer to the
question “why did this outcome occur”, and is similar in spirit
to DARPA’s informal description. As we are not defining our

2

Zoltar:

As “visually better” is not an objective metric, we measure the
efficiency of the generation of adversarial example as a proxy
for the quality of our explanations. While clearly not identical
to “visually better”, this metric has the advantage that it is
objective and algorithmically computable. Our experimental
results show that the explanations produced by PROTOZOA
yield more adversarial examples than those produced by SHAP.
An additional advantage of PROTOZOA is that it treats the
DNN as a black-box, and that it is highly scalable.

The tool and the data for the experiments described in this
paper, together with the scripts and the experimental setup, can
be downloaded from the anonymized link1.

II. PRELIMINARIES

A. Deep neural networks (DNNs)
We briefly review the relevant definitions of deep neural

networks. Let f : I ! O be a deep neural network N with N -
layers. For a given input x 2 I , f(x) 2 O calculates the output
of the DNN, which could be, for instance, a classification label.
Images are still the most popular inputs for DNNs, and in this
paper we focus on DNNs that classify images. Specifically, we
have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN) (1)

where Wi and bi for i = 1, 2, . . . , N are learn-able parameters,
and fi(zi�1;Wi�1, bi�1) is the layer function that maps the
output of layer (i � 1), i.e., zi�1, to the input of layer i.
The combination of the layer functions yields highly complex
behavior, and the analysis of the information flow within a
DNN is challenging. There are a variety of layer functions for
DNNs, including, e.g., fully connected layers, convolutional
layers and max-pooling layers.

Our algorithm is independent of the specific internals of the
DNN. Given a particular input image x and N ’s output y, we
present to the user a subset of the pixels of x that explain why
N outputs y when given x. In the following, we use N [x] to
denote the output of N for an input image x.

B. Spectrum-based fault localization (SBFL)
Our work is inspired by spectrum based fault localiza-

tion [12]–[27], which has been widely used as an efficient
approach to automatically locate root causes of failures of
programs. SBFL techniques rank program elements (e.g.,
statements or assignments) based on their suspiciousness scores.
Intuitively, a program element is more suspicious if it appears
in failed executions more frequently than in correct executions
(the exact formulas for ranking differ between the measures).
Diagnosis of the faulty program can then be conducted by
examining the ranked list of elements in descending order of
their suspiciousness until the culprit for the fault is found.

The SBFL procedure first executes the program under test
using a set of inputs. It records the program executions as
program spectra, meaning that the execution is instrumented to
modify a set of Boolean flags that indicate whether a particular

1https://bit.ly/2E64VdE

program element was executed. The task of a fault localization
tool is to compute a ranking of the program elements based
on the program spectra. Following the notation in [12], the
suspiciousness score of each program statement s is calculated
from a set of parameters hasep , a

s
ef , a

s
np , a

s
nf i that give the

number of times the statement s is executed (e) or not executed
(n) on passing (p) and on failing (f) tests. For instance, asep is
the number of tests that have passed and that have executed s.

A large number of measures has been proposed to calculate
the suspicious score of each program element. We list below
some of the most widely used measures; those are also the
measures that we use in our ranking procedure.

Ochiai [24]:
asefq

(asef + asnf)(a
s
ef + asep)

(2a)

Zoltar [23]:
asef

asef + asnf + asep +
10000as

ef a
s
ep

as
ef

(2b)

Tarantula [25]:

as
ef

as
ef +as

nf

as
ef

as
ef +as

nf
+

as
ep

as
ep+as

np

(2c)

Wong-II [26]: asef � asep (2d)

The tool then presents to the user the list of program elements
in the order of descending suspiciousness score. As reported
in surveys [14], [15], [22], there is no single best measure
for fault localization. Different measures perform better on
different types of applications.

III. WHAT IS AN EXPLANATION?
An adequate explanation to an output of an automated

procedure is essential in many areas, including verification,
planning, diagnosis, etc. It is clear that an explanation is
essential in order to increase a user’s confidence in the result or
to determine whether there is a fault in the automated procedure
(if the explanation does not make sense). It is less clear how
to define what a “useful” explanation is. There have been a
number of definitions of explanations over the years in various
domains of computer science [28]–[30], philosophy [31] and
statistics [32]. The recent increase in the number of machine
learning applications and the advances in deep learning led to
the need for explainable AI, which is advocated, among others,
by DARPA [33] to promote understanding, trust, and adoption
of future autonomous systems based on learning algorithms
(and, in particular, image classification DNNs).

DARPA provides a list of questions that a good explanation
should answer and an epistemic state of the user after receiving
a good explanation. The description of this epistemic state
boils down to adding useful information about the output of
the algorithm and increasing trust of the user in the algorithm.

In this paper, we are going to loosely adopt the definition of
explanations by Halpern and Pearl [34], which is based on their
definition of actual causality [35]. Roughly speaking, Halpern
and Pearl state that a good explanation gives an answer to the
question “why did this outcome occur”, and is similar in spirit
to DARPA’s informal description. As we are not defining our

2

Tarantula:

As “visually better” is not an objective metric, we measure the
efficiency of the generation of adversarial example as a proxy
for the quality of our explanations. While clearly not identical
to “visually better”, this metric has the advantage that it is
objective and algorithmically computable. Our experimental
results show that the explanations produced by PROTOZOA
yield more adversarial examples than those produced by SHAP.
An additional advantage of PROTOZOA is that it treats the
DNN as a black-box, and that it is highly scalable.

The tool and the data for the experiments described in this
paper, together with the scripts and the experimental setup, can
be downloaded from the anonymized link1.

II. PRELIMINARIES

A. Deep neural networks (DNNs)
We briefly review the relevant definitions of deep neural

networks. Let f : I ! O be a deep neural network N with N -
layers. For a given input x 2 I , f(x) 2 O calculates the output
of the DNN, which could be, for instance, a classification label.
Images are still the most popular inputs for DNNs, and in this
paper we focus on DNNs that classify images. Specifically, we
have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN) (1)

where Wi and bi for i = 1, 2, . . . , N are learn-able parameters,
and fi(zi�1;Wi�1, bi�1) is the layer function that maps the
output of layer (i � 1), i.e., zi�1, to the input of layer i.
The combination of the layer functions yields highly complex
behavior, and the analysis of the information flow within a
DNN is challenging. There are a variety of layer functions for
DNNs, including, e.g., fully connected layers, convolutional
layers and max-pooling layers.

Our algorithm is independent of the specific internals of the
DNN. Given a particular input image x and N ’s output y, we
present to the user a subset of the pixels of x that explain why
N outputs y when given x. In the following, we use N [x] to
denote the output of N for an input image x.

B. Spectrum-based fault localization (SBFL)
Our work is inspired by spectrum based fault localiza-

tion [12]–[27], which has been widely used as an efficient
approach to automatically locate root causes of failures of
programs. SBFL techniques rank program elements (e.g.,
statements or assignments) based on their suspiciousness scores.
Intuitively, a program element is more suspicious if it appears
in failed executions more frequently than in correct executions
(the exact formulas for ranking differ between the measures).
Diagnosis of the faulty program can then be conducted by
examining the ranked list of elements in descending order of
their suspiciousness until the culprit for the fault is found.

The SBFL procedure first executes the program under test
using a set of inputs. It records the program executions as
program spectra, meaning that the execution is instrumented to
modify a set of Boolean flags that indicate whether a particular

1https://bit.ly/2E64VdE

program element was executed. The task of a fault localization
tool is to compute a ranking of the program elements based
on the program spectra. Following the notation in [12], the
suspiciousness score of each program statement s is calculated
from a set of parameters hasep , a

s
ef , a

s
np , a

s
nf i that give the

number of times the statement s is executed (e) or not executed
(n) on passing (p) and on failing (f) tests. For instance, asep is
the number of tests that have passed and that have executed s.

A large number of measures has been proposed to calculate
the suspicious score of each program element. We list below
some of the most widely used measures; those are also the
measures that we use in our ranking procedure.

Ochiai [24]:
asefq

(asef + asnf)(a
s
ef + asep)

(2a)

Zoltar [23]:
asef

asef + asnf + asep +
10000as

ef a
s
ep

as
ef

(2b)

Tarantula [25]:

as
ef

as
ef +as

nf

as
ef

as
ef +as

nf
+

as
ep

as
ep+as

np

(2c)

Wong-II [26]: asef � asep (2d)

The tool then presents to the user the list of program elements
in the order of descending suspiciousness score. As reported
in surveys [14], [15], [22], there is no single best measure
for fault localization. Different measures perform better on
different types of applications.

III. WHAT IS AN EXPLANATION?
An adequate explanation to an output of an automated

procedure is essential in many areas, including verification,
planning, diagnosis, etc. It is clear that an explanation is
essential in order to increase a user’s confidence in the result or
to determine whether there is a fault in the automated procedure
(if the explanation does not make sense). It is less clear how
to define what a “useful” explanation is. There have been a
number of definitions of explanations over the years in various
domains of computer science [28]–[30], philosophy [31] and
statistics [32]. The recent increase in the number of machine
learning applications and the advances in deep learning led to
the need for explainable AI, which is advocated, among others,
by DARPA [33] to promote understanding, trust, and adoption
of future autonomous systems based on learning algorithms
(and, in particular, image classification DNNs).

DARPA provides a list of questions that a good explanation
should answer and an epistemic state of the user after receiving
a good explanation. The description of this epistemic state
boils down to adding useful information about the output of
the algorithm and increasing trust of the user in the algorithm.

In this paper, we are going to loosely adopt the definition of
explanations by Halpern and Pearl [34], which is based on their
definition of actual causality [35]. Roughly speaking, Halpern
and Pearl state that a good explanation gives an answer to the
question “why did this outcome occur”, and is similar in spirit
to DARPA’s informal description. As we are not defining our

2

Wong-II:

As “visually better” is not an objective metric, we measure the
efficiency of the generation of adversarial example as a proxy
for the quality of our explanations. While clearly not identical
to “visually better”, this metric has the advantage that it is
objective and algorithmically computable. Our experimental
results show that the explanations produced by PROTOZOA
yield more adversarial examples than those produced by SHAP.
An additional advantage of PROTOZOA is that it treats the
DNN as a black-box, and that it is highly scalable.

The tool and the data for the experiments described in this
paper, together with the scripts and the experimental setup, can
be downloaded from the anonymized link1.

II. PRELIMINARIES

A. Deep neural networks (DNNs)
We briefly review the relevant definitions of deep neural

networks. Let f : I ! O be a deep neural network N with N -
layers. For a given input x 2 I , f(x) 2 O calculates the output
of the DNN, which could be, for instance, a classification label.
Images are still the most popular inputs for DNNs, and in this
paper we focus on DNNs that classify images. Specifically, we
have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN) (1)

where Wi and bi for i = 1, 2, . . . , N are learn-able parameters,
and fi(zi�1;Wi�1, bi�1) is the layer function that maps the
output of layer (i � 1), i.e., zi�1, to the input of layer i.
The combination of the layer functions yields highly complex
behavior, and the analysis of the information flow within a
DNN is challenging. There are a variety of layer functions for
DNNs, including, e.g., fully connected layers, convolutional
layers and max-pooling layers.

Our algorithm is independent of the specific internals of the
DNN. Given a particular input image x and N ’s output y, we
present to the user a subset of the pixels of x that explain why
N outputs y when given x. In the following, we use N [x] to
denote the output of N for an input image x.

B. Spectrum-based fault localization (SBFL)
Our work is inspired by spectrum based fault localiza-

tion [12]–[27], which has been widely used as an efficient
approach to automatically locate root causes of failures of
programs. SBFL techniques rank program elements (e.g.,
statements or assignments) based on their suspiciousness scores.
Intuitively, a program element is more suspicious if it appears
in failed executions more frequently than in correct executions
(the exact formulas for ranking differ between the measures).
Diagnosis of the faulty program can then be conducted by
examining the ranked list of elements in descending order of
their suspiciousness until the culprit for the fault is found.

The SBFL procedure first executes the program under test
using a set of inputs. It records the program executions as
program spectra, meaning that the execution is instrumented to
modify a set of Boolean flags that indicate whether a particular

1https://bit.ly/2E64VdE

program element was executed. The task of a fault localization
tool is to compute a ranking of the program elements based
on the program spectra. Following the notation in [12], the
suspiciousness score of each program statement s is calculated
from a set of parameters hasep , a

s
ef , a

s
np , a

s
nf i that give the

number of times the statement s is executed (e) or not executed
(n) on passing (p) and on failing (f) tests. For instance, asep is
the number of tests that have passed and that have executed s.

A large number of measures has been proposed to calculate
the suspicious score of each program element. We list below
some of the most widely used measures; those are also the
measures that we use in our ranking procedure.

Ochiai [24]:
asefq

(asef + asnf)(a
s
ef + asep)

(2a)

Zoltar [23]:
asef

asef + asnf + asep +
10000as

ef a
s
ep

as
ef

(2b)

Tarantula [25]:

as
ef

as
ef +as

nf

as
ef

as
ef +as

nf
+

as
ep

as
ep+as

np

(2c)

Wong-II [26]: asef � asep (2d)

The tool then presents to the user the list of program elements
in the order of descending suspiciousness score. As reported
in surveys [14], [15], [22], there is no single best measure
for fault localization. Different measures perform better on
different types of applications.

III. WHAT IS AN EXPLANATION?
An adequate explanation to an output of an automated

procedure is essential in many areas, including verification,
planning, diagnosis, etc. It is clear that an explanation is
essential in order to increase a user’s confidence in the result or
to determine whether there is a fault in the automated procedure
(if the explanation does not make sense). It is less clear how
to define what a “useful” explanation is. There have been a
number of definitions of explanations over the years in various
domains of computer science [28]–[30], philosophy [31] and
statistics [32]. The recent increase in the number of machine
learning applications and the advances in deep learning led to
the need for explainable AI, which is advocated, among others,
by DARPA [33] to promote understanding, trust, and adoption
of future autonomous systems based on learning algorithms
(and, in particular, image classification DNNs).

DARPA provides a list of questions that a good explanation
should answer and an epistemic state of the user after receiving
a good explanation. The description of this epistemic state
boils down to adding useful information about the output of
the algorithm and increasing trust of the user in the algorithm.

In this paper, we are going to loosely adopt the definition of
explanations by Halpern and Pearl [34], which is based on their
definition of actual causality [35]. Roughly speaking, Halpern
and Pearl state that a good explanation gives an answer to the
question “why did this outcome occur”, and is similar in spirit
to DARPA’s informal description. As we are not defining our

2

Measures

• To debug from higher ranked, more suspicious program statements

Program
statements

Suspicious scores
(Wong-II)

C4 2

C3 1

C5 0

C2 -1

• Different measures may return different ranking
• Ochiai: C4 (1.0), C3 (0.5), C5 (0.001), C2 (0.0)
• No single best measure

• We only use 4 test cases …

Ranking

Classifier
‘red panda’

How to explain an image
classifier?

Classifier
?

How to explain an image
classifier?

Classifier
?

How to explain an image
classifier?

Classifier
?

How to explain an image
classifier?

• <asep, asef, asnp, asnf>

To count the number of times the pixel s is not masked (e) or masked (n)
when the classifier’s decision does not change (p) and does change (f).

E.g., asep is the number of mutants (i.e., masked inputs) in labeled as ‘red
panda’ in which s is not masked

• Software fault localisation measures can now be applied

Statistical measures for
explanations

• Rank list of pixels of the input image

• Synthesize the explanation following the pixel ranking (from high to low)

• (Definition) An explanation in image classification is a minimal
subset of pixels of a given input image that is sufficient for the DNN
to classify the image

vs

original image explanation

Explaining image classifiers

10 Youcheng Sun, Hana Chockler, Xiaowei Huang, and Daniel Kroening

‘cowboy hat’ ‘dog’ ‘numbfish’ ‘sheep’

‘hare’ ‘mushroom’ ‘wool’ ‘turnstile’

‘langur’ ‘whistle’ ‘unicycle’ ‘fire engine’

‘tra�c light’ ‘ballpoint’ ‘bolo tie’ ‘projector’

Fig. 1: Input images and explanations from
DeepCover for Xception (red labels high-
light misclassification or counter-intuitive ex-
planations)

Original It. 1 It. 5 It. 10 It. 20

Fig. 2: Explanations of the DNN
at di↵erent training stages: the
1st column are the original im-
ages and the subsequent columns
give the explanations for a partic-
ular training iteration (CIFAR-
10 validation data set)

the progress of the training reflected in the explanations of DNN’s classification
of the first image as a ‘cat’). This result reflects that the DNN is being trained
to learn features of di↵erent classes of inputs. Interestingly, we also observed
that the DNN’s feature learning is not always monotonic, as demonstrated in
the bottom row of Fig. 2: after the 10th iteration, explanations for the DNN’s
classification of an input image as an ‘airplane’ drift away from the intuitive
parts of the input towards pixels that may not fit human interpretation (we
repeated the experiments multiple times to minimize the uncertainty because
of the randomization in our SFL algorithm). The explanations generated by
DeepCover may thus be useful for assessing the adequacy of the DNN training:
they allow us to check, whether the DNN is aligned with the developer’s intent
during training. Additionally, the results in Fig. 2 satisfy the “sanity” requirement
postulated in [1]: the explanations from DeepCover evolve when the model
parameters change during the training.

6.3 Comparison with the state-of-the-art

We compare DeepCover with state-of-the-art DNN explanation tools. The DNN
is VGG16 and we randomly sample 1,000 images from ILSVRC2012 as inputs.
We evaluate the e↵ect of highly ranked features by di↵erent methods following
an addition/deletion style experiment [25,6].

An explanation computed by Algorithm 1 is a subset P
exp of top-ranked

pixels out of the set P of all 224⇥224 pixels that is su�cient for the DNN to

Explaining Google’s Xception

‘A. J. Buckley’

Explanation for identifying
backdoor

References

Ø Sun, Youcheng, Hana Chockler, Xiaowei Huang, and Daniel Kroening.
"Explaining image classifiers using statistical fault localization." In
European Conference on Computer Vision (ECCV) 2020

https://research.manchester.ac.uk/en/publications/explaining-image-classifiers-using-statistical-fault-localization

Deep Neural Networks: Testing

Testing DNNsDeep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

4

'cat'

'dog'

Ø How much testing?

§ What’s the stop condition?

Coverage criteria

Ø Neuron coverage

Ø Neuron boundary coverage

Ø MC/DC for DNNs

Ø …

Neuron coverage (NC)Neuron coverage

For any hidden neuron nk,i,
there exists a test case t ∈ T
such that the neuron nk,i is
activated: uk,i > 0.

Test coverage conditions:

{∃x.u[x]k,i > 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk}

! ≈ statement (line) coverage
...

// 1) neuron activation value
double uk,i = bk,i;
for (unsigned h = 1; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i ∗ vk−1,h;
}

double vk,i = 0;

// 2) ReLU
if (uk,i > 0)
{

vk,i = uk,i; ⇐ this line is covered
}

...

12

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

Neuron coverageNeuron coverage

For any hidden neuron nk,i,
there exists a test case t ∈ T
such that the neuron nk,i is
activated: uk,i > 0.

Test coverage conditions:

{∃x.u[x]k,i > 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk}

! ≈ statement (line) coverage
...

// 1) neuron activation value
double uk,i = bk,i;
for (unsigned h = 1; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i ∗ vk−1,h;
}

double vk,i = 0;

// 2) ReLU
if (uk,i > 0)
{

vk,i = uk,i; ⇐ this line is covered
}

...

12

Neuron coverage

For any hidden neuron nk,i,
there exists a test case t ∈ T
such that the neuron nk,i is
activated: uk,i > 0.

Test coverage conditions:

{∃x.u[x]k,i > 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk}

! ≈ statement (line) coverage
...

// 1) neuron activation value
double uk,i = bk,i;
for (unsigned h = 1; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i ∗ vk−1,h;
}

double vk,i = 0;

// 2) ReLU
if (uk,i > 0)
{

vk,i = uk,i; ⇐ this line is covered
}

...

12

Neuron coverage

For any hidden neuron nk,i,
there exists a test case t ∈ T
such that the neuron nk,i is
activated: uk,i > 0.

Test coverage conditions:

{∃x.u[x]k,i > 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk}

! ≈ statement (line) coverage
...

// 1) neuron activation value
double uk,i = bk,i;
for (unsigned h = 1; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i ∗ vk−1,h;
}

double vk,i = 0;

// 2) ReLU
if (uk,i > 0)
{

vk,i = uk,i; ⇐ this line is covered
}

...

12

boundary values of uk,i?

Ø All program execution paths?Ø Neuron boundary coverage

MC/DC for DNNs
Decision neuron: n3,3

Condition neuron(s): n2,1 n2,2 n2,3

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

> 0

> 0

> 0 = 0

Deep Neural Networks (DNNs)

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sKuK,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

5

= 0

> 0

> 0 > 0

A family of criteria

Ø Sign-Sign Cover (SSC)
Ø Value-Sign Cover (VSC)
Ø Sign-Value Cover (SVC)
Ø Value-Value Cover (VVC)

Neurons → features

Measuring coverage
Springer Nature 2021 LATEX template

An Overview ... 7

Fig. 2: Tool Progress on MNIST (LeNet-1)

Fig. 3: Visualization of Neuron Coverage

those parts. This is specifically important for neural networks since unlike tra-
ditional programs, every test exercises almost every neuron of the network and
the changes in behavior is due to the di↵erent output values of the neurons.
Therefore executing a neuron only once or just few times may not su�ce to
exercise di↵erent behaviors or expose vulnerabilities. Di↵erent test suites may
have similar total coverage values but di↵erent coverage distributions. This
cannot be highlighted by existing coverage metrics. We calculate minimum,
maximum, average, standard deviation and variance of the number of inputs
that cover each of the coverage obligations for each coverage criterion.

https://github.com/DNNCov/DNNCov

https://github.com/DNNCov/DNNCov

Tests generationConcrete execution (neuron coverage)

I The t, r pair is chosen by
concrete executions such
that though the specified
neuron is not activated by
t, it should be really close
to be activated.

Intuitively, to find the neuron
that is closest to be activated

I E.g., uk,i = �1.0 is ranked
higher than uk,j = �100.0

. . .

// 1) neuron a c t i v a t i o n v a l u e

uk,i = bk,i
for (unsigned h = 0; h  sk�1; h += 1)

{
uk,i += wk�1,h,i · vk�1,h

}

vk,i = 0

// 2) ReLU

i f (uk,i > 0) (not satisfied

{
vk,i = uk,i

}

. . .

I to select the branching
point that is most likely to
be satisfied

What if not satisfied?

References

Ø Sun, Youcheng, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta
Kwiatkowska, and Daniel Kroening. "Concolic testing for deep neural
networks." Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 2018.

https://research.manchester.ac.uk/en/publications/concolic-testing-for-deep-neural-networks

