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What is Al?

“Theorem-proving and equation-solving are by now so well
established that they are hardly regarded as Al anymore.”

— Superintelligence: Paths, Dangers, Strategies
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What

is Al?

“Theorem-proving and equation-solving are by now so well
established that they are hardly regarded as Al anymore.”

— Superintelligence: Paths, Dangers, Strategies

< 50-100 years >< 50-100 weeks? / days? / hours? >

Al

“The final invention”

b4

Mouse Village idiot

-S>

4

Chimp Einstein



MANCHESTER
1824

The University of Manchester

Deep Neural Networks (DNNs)

Input Hidden Hidden  Output

layer layer layer layer
N cat'
| T — Ug
‘s
—

label = argmax; o ¢ Uk,



MANCHESTER
1824

The University of Manchester

Deep Neural Networks (DNNs)

Input Hidden Hidden  Output
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label = argmax, .\, Uk

1) neuron activation value 2) rectified linear unit (ReLU):
U= b+ Z Wk—1,h,i * Vk—1,h Vik,i = maX{Uk,i; 0}
1<h<s,

weighted sum plus a bias;

w,b are parameters learned
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The Good, Bad and the Ugly
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The Good
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= 'red panda’

‘11-45-G’
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Adversarial Examples
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» An adversarial example refers to specially crafted input which is
designed to look "normal” to humans but causes misclassification
to a machine learning model.
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Backdoor

‘A. J. Buckley’

» Performant models, with backdoors that produce inference errors
when presented with input containing a trigger defined by the
adversary
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Explainability
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Security in DNNs

» How to verify that a DNN is robust enough to adversarial
examples?

» How to verify that a DNN is free of backdoor?

» How to explain a DNN?
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Adversarial Robustness

» Let N be a neural network and N(x) be the prediction on an input x.

» Given a neural The neural network is said to be adversarial robust,
subject to a perturbation upper bound r, if for any 0<é<=r:

N(x+8) = N(x)
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DNN as a program
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1) neuron activation value 2) rectified linear unit (ReLU):
U= b+ Z Wik—1,h,i * Vk=1,h Vi = maX{Uk,i, 0}
1<h<sk_1

weighted sum plus a bias;

w,b are parameters learned

https://qithub.com/theyoucheng/DLTT

 Esgy

// 1) meuron activation value
double uy;= by;;
for (unsigned h=1; h<s_1; h+=1)
{

Uk,i += Wk—1.h,i * Vk—1,h;

}

double vi; = 0;

// 2) ReLU
if (Uk,i > O)
{

Vk,i = Uk.i;
+


https://github.com/theyoucheng/DLTT
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VNN-COMP: Verification of Neural

Networks Competition
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MNIST
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Deep Neural Networks: Explanation
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int main() {
int inputl, input2, input3; // C1
int least = inputl;
int most = inputl;

if (most < input2)
most = input2; // C2

if (most < input3)
most = input3; // C3

if (least > inpu
most = input2;}// C4 (bug)

if (least > input3)
least = input3; // C5

assert(least <= most);
}
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int main() {
int inputl, input2, input3; // C1
int least = inputl;

Int most = input1; ] S

False

if (most < input3)
most = input3; // C3

if (least > inpu
most = input2;

// C4 (bug)

C5

assert(least <= most);
}
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int main() {
int inputl, input2, input3; // C1
int least = inputl;

Int most = input1; ] S

False

300 100 200 0O 0 1 1 False
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if (least > inpu
most = input2;// C4 (bug)

if (least > input3)
least = input3; // C5

assert(least <= most);
}
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int main() {
int inputl, input2, input3; // C1
int least = inputl;

Int most = input1; ] S

False

300 100 200 0O 0 1 1 False

300 300 200 0O 0 0 1 True

L4 (bug)

if (least > input3)
least = input3; // C5

assert(least <= most);
}
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int main() {
int inputl, input2, input3; // C1
int least = inputl;

Int most = input1; ] S

. . Fal
if (most < input2) ase
most = input2; // C2 300 100 200 0 O 1 1 False
300 300 200 0 0 O 1 True
100 300 200 1 0 O O True

assert(least <= most);
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int main() {
int inputl, input2, input3; // C1
int least = inputl;

Int most = input1; ] S

. . Fal
if (most < input2) ase
most = input2; // C2 300 100 200 0 O 1 1 False
300 300 200 0 0 O 1 True
100 300 200 1 0 O O True

assert(least <= most);
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To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

asp 1s the number of tests that passed

200 100 300 0 1 1 0 TFalse and executed s

300 100 200 O O 1 1 False a2 — 1
ep
300 300 200 0 0 0 1 True a%e =0
a4, =0
ep

100 300 200 1 0 0 O0 True 2t =1
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* <asepa a%f; aS'npa aSn>

Spectrum

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.
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as.¢ 1s the number of tests that failed

and executed s

aC2ef =?
aCBGf =?
aC4ef =7
aC5ef =7
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To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

as.¢ 1s the number of tests that failed

200 100 300 0 1 1 0 TFalse and executed s

300 100 200 0 O 1 1 False
a02€f= 0
300 300 200 0 0 O 1 True a%e=1
aC4ef— 2

100 300 200 1 0 0 O0 True aCs ;=1
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To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

asyp 1s the number of tests that passed

500 100 300 ©0 1 1 o0 False andnotexecuteds

300 100 200 0O 0 1 1 False qC2 =
np
300 300 200 0O 0 O 1 True aCSHP =2
aCh =2
100 300 200 1 0 O 0 True qC5 =



Spectrum

The University of Manchester
S S S S
° <a eps Qefs Anp, A nf>

To count the number of times the statement s is executed (e) or not
executed (n) on passing (p) and on failing (f) tests.

as,¢ 1S the number of tests that failed

500 100 300 ©0 1 1 o0 False andnotexecuteds

300 100 200 O O 1 1 False
aC2me= 2
300 300 200 O O O 1 True a3 =1
aC4nf= 0
100 300 200 1 O O O True 5.1
A~ nf =
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* Spectra

<a®p=1,a%¢=0,a%,, =1, a%%;=2>
<at3,, =0,a%¢=1,a%,,=2,a%;=1>
<a%p =0, a%¢=2,a%,, = 2,a%;= 0>

<a%p =1,a%¢=1,a%,,=1,a%;=1>

« Spectra based measures

h. 1 Zf 1
° 10000a%. a8 °
OC lal. ,Zf iLf gp — ef ~ep ZO tar.
ef

Qof
Tarantula: as;+ad, Wong-I1:
a® as
f
e _|_ ep -




MANCHESTER
1824

The University of Manchester

Ranking

Program Suspicious scores
statements (Wong-II)

C4 2
C3 1
C5 0
C2 -1

* To debug from higher ranked, more suspicious program statements

 Different measures may return different ranking
 QOchiai: C4 (1.0), C3 (0.5), C5 (0.001), C2 (0.0)
* No single best measure

* We only use 4 test cases ...
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¢ <asep, a%ef, asnpa aSpf>

To count the number of times the pixel s is not masked (e) or masked (n)
when the classifier’s decision does not change (p) and does change (f).

E.g., a5, 1s the number of mutants (i.e., masked inputs) in labeled as ‘red
panda’ in which s is not masked

 Software fault localisation measures can now be applied
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« Rank list of pixels of the input image

 Synthesize the explanation following the pixel ranking (from high to low)

 (Definition) An explanation in image classification is a minimal
subset of pixels of a given input image that is sufficient for the DNN
to classify the image

2

VS

original image explanation
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‘numbfish’ ‘sheep’

‘hare’ ‘mushroom’ ‘wool’ ‘turnstile’

‘langur’ ‘whistle’ ‘unicycle’

»

‘traffic light' ‘ballpoint’ ‘bolo tie’ ‘projector’
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Deep Neural Networks: Testing
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Testing DNNs
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» How much testing?

» What's the stop condition?
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Coverage criteria

» Neuron coverage
» Neuron boundary coverage
» MC/DC for DNNs

> ...
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Neuron coverage (NC)

For any hidden neuron ny},
there exists a test case t € T
such that the neuron ny; is
activated: uy; > 0.

Test coverage conditions:

{Ixu[xx; > 0|
2<k<K-1,1<i< 5}

Input Hidden Hidden  Output

layer layer layer layer
— — ‘\ — U
— | \ - —— U2

T

./

label = argmax g, Uk,

1) neuron activation value
Ugj= b+ Z Wk—1,h,i * Vk—1,h
1<h<s,_1
weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

Vi = max{ug;, 0}
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Neuron coverage

For any hidden neuron ny},
there exists a test case t € T
such that the neuron ny; is
activated: uy; > 0.

Test coverage conditions:

{Ixu[xx; > 0|
2<k<K-1,1<i< 5}

» = statement (line) coverage

// 1) meuron activation wvalue
double uy; = bk,i;
for (unsigned h=1; h<sc1; h+=1)
{

Uk,i += Wk—1,h,i * Vk—1,h}
}

double vy ; = 0;

// 2) ReLU
if (uk,; > 0)
{

Vk,i = Uk,i; <= this line is covered
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» Neuron boundary coverage » All program execution paths?

// 1) meuron activation wvalue
double uy; = by;;
for (unsigned h=1; h<sc1; h+=1)
{

Uk,i += Wk—1 h,i ¥ Vk—1,h;

3

double vy ; = 0;

/) 2L Be
if boundary values of uy;? |
{

Vk,i = Uk <= this line is covered



MANCHESTER
1824

The University of Manchester

MC/DC for DNNs

Decision neuron: nz 3

Condition neuron(s): Ng¢ Na2 Na3

—

—
A family of criteria
»> Sign-Sign Cover (SSC)
» Value-Sign Cover (VSC)
» Sign-Value Cover (SVC)
» Value-Value Cover (VVC)

—

—

Neurons — features
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'Total number of tests in test set:

COVERAGE REPORT:

10% | INNEGNGNG=

Current coverages (~1000 test images):
20%| -

Current coverages (~2000 test images):
0% | I ~

Current coverages (~3000 test images):
eq &

Current coverages (~4000 test images):
50% |

Current coverages (~5000 test images):
60%|

Current coverages (~6000 test images):

70%)|
Current coverages (~7000 test images):
80%|
Current coverages (~8000 test images):
90% |
Current coverages (~9000 test images):
100% |

FINAL COVERAGES:

10000

[KMNC TKNC NBC SNAC NC

[KMNC %, TKNC %, NBC SNAC %, NC

[KMNC TKNC NBC SNAC NC

[KMNC TKNC NBC SNAC NC

[KMNC %, TKNC NBC SNAC \[@
NBC
B}

[KMNC %, TKNC %, NBC %,

[KMNC %, TKNC %, SNAC NC %]

S\e NC %]
[KMNC %, TKNC %, NBC %, SNAC NC %]

(e}
[KMNC %, TKNC %, NBC %, SNAC %, NC %]

k-Multisection Neuron Coverage (k: 1000) = 54.33%

Top-k Neuron Coverage (k: 10) = 81.59%
Neuron Boundary Coverage = 0.66%
Strong Neuron Activation Coverage
Neuron Coverage (threshold: 0.75)

1.05%
59.42%

https://github.com/DNNCov/DNNCov

| 993/10000 [00:10<01:36, 93.31it/s]
[24.71, 78.55, ©.07, 0.13, 56.52]
| 1992/10000 [00:20<01:26, 92.24it/s]
[34.34, 80.0, 0.2, 0.26, 57.97]
| 2996/10000 [00:29<01:03, 109.47it/s]
[39.91, 80.43, 0.2, 0.26, 58.7]
| 3990/10000 [00:39<00:53, 112.20it/s]
[43.5, 80.87, 0.26, 0.4, 58.7]
| 4992/10000 [00:50<00:49, 100.93it/s]
[46.33, 80.94, 0.36, 0.59, 58.7]
| 5993/10000 [01:00<00:36, 111.15it/s]
[48.57, 81.16, 0.46, ©.79, 59.42]
| 6991/10000 [01:11<00:33, 91.02it/s]
[50.46, 81.3, 0.49, 0.86, 59.42]
| 7995/10000 [01:22<00:22, 90.26it/s]
[51.9, 81.45, ©.56, 0.92, 59.42]
| 8998/10000 [01:34<00:13, 74.10it/s]
[53.21, 81.52, ©.59, ©.99, 59.42]
| 10000/10000 [01:46<00:00, 93.88it/s]



https://github.com/DNNCov/DNNCov

MANCHESTER
1824

The University of Manchester

Tests generation

// 1) neuron activation value
Up j = by j

for (unsigned h =0; h < s_1; h+=1)
{

}

Uk j += Wk_1 hi " Vk—1,h

Vk,i =0

// 2) ReLU

if (ki >0)  \Wwhat if not satisfied?

{
}

Vi,i = Uk,
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