

Deep Neural Networks: Verification

Youcheng Sun Department of Computer Science youcheng.sun@manchester.ac.uk

What is AI?

"Theorem-proving and equation-solving are by now so well established that they are hardly regarded as AI anymore."

— Superintelligence: Paths, Dangers, Strategies

What is AI?

futte

Pause Giant AI Experiments: An Open Letter

We call on all AI labs to immediately pause for at least 6 months the training of AI systems more powerful than GPT-4.

"Theorem-proving and equation-solving are by now so well established that they are hardly regarded as AI anymore."

— Superintelligence: Paths, Dangers, Strategies

Deep Neural Networks (DNNs)

 $label = \operatorname{argmax}_{1 \le l \le s_{\mathcal{K}}} u_{\mathcal{K},l}$

Deep Neural Networks (DNNs)

 $label = \operatorname{argmax}_{1 \le l \le s_{\mathcal{K}}} u_{\mathcal{K},l}$

1) neuron activation value

$$u_{k,i} = b_{k,i} + \sum_{1 \le h \le s_{k-1}} w_{k-1,h,i} \cdot v_{k-1,h}$$

weighted sum plus a bias;

w,b are parameters learned

2) rectified linear unit (ReLU):

$$\mathbf{v}_{\mathbf{k},i} = \max\{\mathbf{u}_{\mathbf{k},i}, 0\}$$

The Good, Bad and the Ugly

The Good

Adversarial Examples

An adversarial example refers to specially crafted input which is designed to look "normal" to humans but causes misclassification to a machine learning model.

Backdoor

Performant models, with backdoors that produce inference errors when presented with input containing a trigger defined by the adversary

Explainability

Security in DNNs

- How to verify that a DNN is robust enough to adversarial examples?
- How to verify that a DNN is free of backdoor?
- ➢ How to explain a DNN?

Adversarial Robustness

- > Let **N** be a neural network and N(x) be the prediction on an input **x**.
- Solution r Given a neural The neural network is said to be adversarial robust, subject to a perturbation upper bound *r*, if for any $0 < \delta < = r$:

 $N(x+\delta) = N(x)$

DNN as a program

1) neuron activation value

2) rectified linear unit (ReLU):

 $\mathbf{v}_{k,i} = \max\{\mathbf{u}_{k,i}, 0\}$

$$u_{k,i} = b_{k,i} + \sum_{1 \le h \le s_{k-1}} w_{k-1,h,i} \cdot v_{k-1,h}$$

weighted sum plus a bias;

w,b are parameters learned

// 1) neuron activation value double
$$u_{k,i} = b_{k,i}$$
;
for (unsigned $h = 1$; $h \le s_{k-1}$; $h += 1$) {
 $u_{k,i} += w_{k-1,h,i} * v_{k-1,h}$;
}

double $v_{k,i} = 0;$ // 2) ReLU if $(u_{k,i} > 0)$ { $v_{k,i} = u_{k,i};$ }

. . .

. . .

https://github.com/theyoucheng/DLTT

VNN-COMP: Verification of Neural Networks Competition

https://sites.google.com/view/vnn2022

The University of Manchester

MNIST

'8' -> '5'

References

- Sun, Youcheng, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. <u>"Concolic testing for deep neural</u> <u>networks."</u> Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018.
- Sun, Youcheng, Muhammad Usman, Divya Gopinath, and Corina S. Păsăreanu. <u>"VPN: Verification of Poisoning in Neural Networks."</u> In Software Verification and Formal Methods for ML-Enabled Autonomous Systems: 5th International Workshop (FoMLAS), 2022.
- Sun, Youcheng, Hana Chockler, Xiaowei Huang, and Daniel Kroening. <u>"Explaining image classifiers using statistical fault localization."</u> In European Conference on Computer Vision (ECCV) 2020

Deep Neural Networks: Explanation

The University of Manchester

Why


```
int main() {
  int input1, input2, input3; // C1
  int least = input1;
  int most = input1;
  if (most < input2)</pre>
    most = input2; // C2
  if (most < input3)</pre>
    most = input3; // C3
  if (least > input2)
    most = input2; // C4 (bug)
  if (least > input3)
    least = input3; // C5
  assert(least <= most);</pre>
```


input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False

The University of Manchester

if (least > input3) least = input3; // C5

assert(least <= most);</pre>

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

• $<\!a_{ep}^{s}, a_{ef}^{s}, a_{np}^{s}, a_{nf}^{s}>$

To count the number of times the statement *s* is executed (e) or not executed (n) on passing (p) and on failing (f) tests.

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

 $a^{s}{}_{ep}$ is the number of tests that passed and executed s

$$\begin{array}{l} a^{\rm C2}{}_{\rm ep} = 1 \\ a^{\rm C3}{}_{\rm ep} = 0 \\ a^{\rm C4}{}_{\rm ep} = 0 \\ a^{\rm C5}{}_{\rm ep} = 1 \end{array}$$

• $<\!a_{ep}^{s}, a_{ef}^{s}, a_{np}^{s}, a_{nf}^{s}>$

To count the number of times the statement *s* is executed (e) or not executed (n) on passing (p) and on failing (f) tests.

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

 $a^{s}{}_{\rm ef}$ is the number of tests that failed and executed s

$$a^{C2}_{ef} = ?$$

 $a^{C3}_{ef} = ?$
 $a^{C4}_{ef} = ?$
 $a^{C5}_{ef} = ?$

• $<\!a_{ep}^{s}, a_{ef}^{s}, a_{np}^{s}, a_{nf}^{s}>$

To count the number of times the statement *s* is executed (e) or not executed (n) on passing (p) and on failing (f) tests.

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

 $a^{s}{}_{\rm ef}$ is the number of tests that failed and executed s

$$\begin{array}{l} a^{\rm C2}{}_{\rm ef} = 0 \\ a^{\rm C3}{}_{\rm ef} = 1 \\ a^{\rm C4}{}_{\rm ef} = 2 \\ a^{\rm C5}{}_{\rm ef} = 1 \end{array}$$

• $<\!a_{ep}^{s}, a_{ef}^{s}, a_{np}^{s}, a_{nf}^{s}>$

To count the number of times the statement *s* is executed (e) or not executed (n) on passing (p) and on failing (f) tests.

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

 $a^{s}{}_{np}$ is the number of tests that passed and not executed s

$$\begin{array}{l} a^{C2}{}_{np} = 1 \\ a^{C3}{}_{np} = 2 \\ a^{C4}{}_{np} = 2 \\ a^{C5}{}_{np} = 1 \end{array}$$

• $<\!a_{ep}^{s}, a_{ef}^{s}, a_{np}^{s}, a_{nf}^{s}>$

To count the number of times the statement *s* is executed (e) or not executed (n) on passing (p) and on failing (f) tests.

input1	input2	input3	C2	C3	C4	C5	Assert
200	100	300	0	1	1	0	False
300	100	200	0	0	1	1	False
300	300	200	0	0	0	1	True
100	300	200	1	0	0	0	True

 a_{nf}^{s} is the number of tests that failed and not executed s

$$\begin{array}{l} a^{\rm C2}{}_{\rm nf} = 2 \\ a^{\rm C3}{}_{\rm nf} = 1 \\ a^{\rm C4}{}_{\rm nf} = 0 \\ a^{\rm C5}{}_{\rm nf} = 1 \end{array}$$

Measures

The University of Manchester

• Spectra

$$$$

$$$$

$$$$

$$$$

• Spectra based measures

Ochiai:
$$\frac{a_{ef}^{s}}{a_{ef}^{s} + a_{nf}^{s} + a_{ep}^{s} + \frac{10000a_{ef}^{s}a_{ep}^{s}}{a_{ef}^{s}}}$$
Tarantula:
$$\frac{\frac{a_{ef}^{s}}{a_{ef}^{s} + a_{nf}^{s}}}{\frac{a_{ef}^{s}}{a_{ef}^{s} + a_{nf}^{s}} + \frac{a_{ep}^{s}}{a_{ep}^{s} + a_{np}^{s}}}$$

Zoltar:
$$\frac{a_{ef}^{s}}{\sqrt{(a_{ef}^{s}+a_{nf}^{s})(a_{ef}^{s}+a_{ep}^{s})}}$$

Wong-II: $a_{ef}^s - a_{ep}^s$

Ranking

Program statements	Suspicious scores (Wong-II)
C4	2
C3	1
C5	0
C2	-1

- To debug from higher ranked, more suspicious program statements
- Different measures may return different ranking
 - Ochiai: C4 (1.0), C3 (0.5), C5 (0.001), C2 (0.0)
 - No single best measure
- We only use 4 test cases ...

Statistical measures for explanations

• $< a_{ep}^{s}, a_{ef}^{s}, a_{np}^{s}, a_{nf}^{s} >$

To count the number of times the pixel s is not masked (e) or masked (n) when the classifier's decision does not change (p) and does change (f).

E.g., a^s_{ep} is the number of mutants (i.e., masked inputs) in labeled as 'red panda' in which s is not masked

• Software fault localisation measures can now be applied

Explaining image classifiers

- Rank list of pixels of the input image
- Synthesize the explanation following the pixel ranking (from high to low)
 - (Definition) An explanation in image classification is a minimal subset of pixels of a given input image that is sufficient for the DNN to classify the image

original image

VS

explanation

Explaining Google's Xception

The University of Manchester

'traffic light'

'bolo tie'

'projector'

Explanation for identifying backdoor

References

Sun, Youcheng, Hana Chockler, Xiaowei Huang, and Daniel Kroening. <u>"Explaining image classifiers using statistical fault localization."</u> In European Conference on Computer Vision (ECCV) 2020

Deep Neural Networks: Testing

Testing DNNs

- ➤ How much testing?
 - What's the stop condition?

Coverage criteria

- Neuron coverage
- Neuron boundary coverage
- MC/DC for DNNs

▶ ...

Neuron coverage (NC)

For any hidden neuron $n_{k,i}$, there exists a test case $t \in \mathcal{T}$ such that the neuron $n_{k,i}$ is activated: $u_{k,i} > 0$.

Test coverage conditions:

1) neuron activation value

2) rectified linear unit (ReLU):

 $\mathbf{v}_{k,i} = \max\{\mathbf{u}_{k,i}, 0\}$

 $\{\exists x. u[x]_{k,i} > 0 \mid \\ 2 \le k \le K - 1, 1 \le i \le s_k\}$

$$u_{k,i} = b_{k,i} + \sum_{1 \le h \le s_{k-1}} w_{k-1,h,i} \cdot v_{k-1,h}$$

weighted sum plus a bias;

w,b are parameters learned

Neuron coverage

For any hidden neuron $n_{k,i}$, there exists a test case $t \in \mathcal{T}$ such that the neuron $n_{k,i}$ is activated: $u_{k,i} > 0$.

Test coverage conditions:

$$\{\exists \mathbf{x}. \mathbf{u}[\mathbf{x}]_{\mathbf{k}, \mathbf{i}} > 0 \mid \\ 2 \le \mathbf{k} \le \mathbf{K} - 1, 1 \le \mathbf{i} \le \mathbf{s}_{\mathbf{k}}\}$$

• \approx statement (line) coverage

```
\label{eq:constraint} \begin{array}{ll} \end{tabular} \end{tabular}
```

. . .

Neuron boundary coverage

```
// 1) neuron activation value double u_{k,i} = b_{k,i};
for (unsigned h = 1; h \le s_{k-1}; h += 1) {
u_{k,i} += w_{k-1,h,i} * v_{k-1,h};
}
```

double $v_{k,i} = 0$;

. . .

. . .

$$\label{eq:relation} \begin{array}{ll} \textit{// 2) ReLU} \\ \text{if } (u_{k,i} > 0) \\ \text{\{} & \\ & v_{k,i} = u_{k,i}; \end{array} \text{ boundary values of } u_{k,i} \text{?} \\ & \\ & \text{this line is covered} \\ \text{\}} \end{array}$$

> All program execution paths?

MC/DC for DNNs

Decision neuron: n_{3,3}

Condition neuron(s): $n_{2,1}$ $n_{2,2}$ $n_{2,3}$

A family of criteria

- Sign-Sign Cover (SSC)
- Value-Sign Cover (VSC)
- Sign-Value Cover (SVC)
- Value-Value Cover (VVC)

Neurons \rightarrow features

Measuring coverage

Total number of tests in test set: 10000
COVERAGE REPORT:
10% 993/10000 [00:10<01:36, 93.31it/s]
Current coverages (~1000 test images): [KMNC %, TKNC %, NBC %, SNAC %, NC %] = [24.71, 78.55, 0.07, 0.13, 56.52]
20% 1992/10000 [00:20<01:26, 92.24it/s]
Current coverages (~2000 test images): [KMNC %, TKNC %, NBC %, SNAC %, NC %] = [34.34, 80.0, 0.2, 0.26, 57.97]
[30%] [2996/10000 [00:29<01:03, 109.47it/s]
Current coverages (~3000 test images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [39,91, 80.43, 0.2, 0.26, 58.7]
40% 3990/10000 [00:39<00:53, 112.20it/s]
Current coverages (~4000 test images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [43.5, 80.87, 0.26, 0.4, 58.7]
Current coverages (~5000 test images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [40.33, 80.94, 0.36, 0.59, 58.7]
Current coverages (~6000 test images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [48.57, 81.16, 0.46, 0.79, 59.42]
-current coverages (~7000 test images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [50.46, 81.3, 0.49, 0.86, 59.42]
80% [[/995/10006 [01:22(00:22, 90:2617/5]]
current coverages (~8000 test images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [51.9, 81.45, 0.50, 0.92, 59.42]
90% [2 898/10000 [01:34(00:13, /4.1011/S]
Current coverages (~9000 test Images): [KMNC %, IKNC %, NBC %, SNAC %, NC %] = [53.21, 81.52, 0.59, 0.99, 59.42]
FINAL COVERAGES. $k_{\rm Multicasticas Noumen Covenzes (k, 1000) = 54.22\%$
$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2}$
Nouron Roundary Coverage $(k, 10) = 0.157\%$
Strong Nouron Activition Covenage - 1.05%
Scholig Neuron Accession cover age - 1.05%

Neuron Coverage (threshold: 0.75) = 59.42%

https://github.com/DNNCov/DNNCov

Tests generation

. . .

}

. . .

// 1) neuron activation value
$$u_{k,i} = b_{k,i}$$

for (unsigned $h = 0; h \le s_{k-1}; h += 1$)
{
 $u_{k,i} += w_{k-1,h,i} \cdot v_{k-1,h}$ }
 $v_{k,i} = 0$
// 2) ReLU
if ($u_{k,i} > 0$) What if not satisfied?
{
 $v_{k,i} = u_{k,i}$

Sun, Youcheng, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. <u>"Concolic testing for deep neural</u> <u>networks."</u> Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018.