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•  A majority of security defects and vulnerabilities in 
software are not directly related to functionality 

Security in the  
Development Lifecycle 

•  Side-channel effect in 
the hardware 

§  information obtained 
from the impl. rather 
than weaknesses in the 
code 

timing information and power 
consumption can be exploited 

STELLAR: A Generic EM Side-
Channel Attack Protection through 
Ground-Up Root-cause Analysis, 
HOST2019. 
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Testing for functionality vs 
testing for security 

•  Traditional testing checks functionalities for 
sensible inputs and corner conditions 

•  Security testing also requires looking for the 
wrong, unwanted behavior for uncommon inputs 

•  Routine use of a software system is more likely to 
reveal functional problems than security 
problems:  

–  users will complain about functional problems, but                                                 
hackers will not complain about security problems 



Security testing is difficult 
space of all possible inputs 

Normal inputs . input that triggers 
security bug, thus  
compromising the system 

. 
. . 

. . . 

. some input to test 
corner conditions 

. sensible input to test 
some funcionality 
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Definition of Test Suite and Oracle 

•  To test a software system, we need: 

①  test suite: a collection of input data 

②  test oracle: decides if a test succeeded or led to an error  

Ø  some way to decide if the software behaves as we want  

•  Define both test suites and test oracles can be a 
significant work 
–  A test oracle consists of a long list, which for every 

individual test case, specifies what should happen 

–  A simple test oracle: just looking if the application does not 
crash 



  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     *res = 0; 
  6     return 1; 
  7   } else if(a == 1) { 
  8     *res = b; 
  9     return 1; 
 10   } else if(b == 1) { 
 11     *res = a; 
 12     return 1; 
 13   } 
 14   *res = a * b; // there exists an overflow 
 15   return 1; 
 16 } 
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  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     *res = 0; 
  6     return 1; 
  7   } else if(a == 1) { 
  8     *res = b; 
  9     return 1; 
 10   } else if(b == 1) { 
 11     *res = a; 
 12     return 1; 
 13   } 
 14   *res = a * b; // there exists an overflow 
 15   return 1; 
 16 } 

Statement Coverage 
•  Statement coverage involves the execution of all the 

executable statements at least once 
–  (executed statements / total statements)*100 



Test 
Case 

Value of 
“a” 

Value of 
“b” 

Value of 
“res” 

Statement 
Coverage 

1 0 0 0 27% 
2 1 3 b 36% 
3 2 1 a 45% 
4 2 2 a * b 45% 

Statement Coverage 
•  Statement coverage involves the execution of all the 

executable statements at least once 
–  (executed statements / total statements)*100 
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 1 void Demo(int a) { 
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 3     a = a*3; 
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 1 void Demo(int a) { 
 2   if (a > 5) 
 3     a = a*3; 
 4   printf("a: %i"\n); 
 5 } 

a=10  
(a>5) is true 
Decision coverage = 50%  

•  Decision coverage reports the true or false outcomes 
of each Boolean expression (tough to achieve 100%)  
–  (decision outcomes exercised / total decision outcomes) * 100 

Decision Coverage 



 1 void Demo(int a) { 
 2   if (a > 5) 
 3     a = a*3; 
 4   printf("a: %i"\n); 
 5 } 

Test Case Value of “a” Output Decision Coverage 
1 4 4 50% 
2 10 30 50% 

•  Decision coverage reports the true or false outcomes 
of each Boolean expression (tough to achieve 100%)  
–  (decision outcomes exercised / total decision outcomes) * 100 

Decision Coverage 



•  Branch coverage tests every outcome from the code to 
ensure that every branch is executed at least once 
–  (executed branches / total branches)*100 
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 5 } 
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•  Branch coverage tests every outcome from the code to 
ensure that every branch is executed at least once 
–  (executed branches / total branches)*100 

 1 void foo(int x) { 
 2   if (x > 7) 
 3     a = a*4; 
 4   printf("a: %i"\n); 
 5 } 

Test 
Case 

Value of 
“a” 

Output Decision 
Coverage 

Branch 
Coverage 

1 4 4 50% 33% 
2 10 40 50% 67% 

foo(int x) 
  if(x>7) 

a = a*4; 

printf(“a: 
%i\n”); 

yes 

no 

unconditional  
branch 

conditional  
branch 

Branch Coverage 



•  Condition coverage reveals how the variables in the 
conditional statement are evaluated (logical operands) 
–  (executed operands / total operands)*100 

Condition Coverage 

 1 int main() { 
 2   unsigned int x, y, a, b; 
 3   if((x < y) && (a>b)) 
 4     return 0; 
 5   else 
 6     return -1; 
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•  Condition coverage reveals how the variables in the 
conditional statement are evaluated (logical operands) 
–  (executed operands / total operands)*100 

Condition Coverage 

 1 int main() { 
 2   unsigned int x, y, a, b; 
 3   if((x < y) && (a>b)) 
 4     return 0; 
 5   else 
 6     return -1; 
 7 } 

x<y a>b (x < y) && (a>b) 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Input Condition Outcome Coverage 
x=3, x=4 x<y TRUE 25% 
a=3, b=4 a>b FALSE 25% 
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Code coverage criteria 
•  Code coverage criteria to measure the test suite quality  

–  Statement, decision, branch and condition 
coverage 

•  Statement coverage does not imply branch coverage; e.g. for 
         void f (int a, int b) {  
               if (a<100) {b--}; 
               a+=2;  
             } 

•  Other coverage criteria exists, e.g., modified condition/
decision coverage (MCDC), which is used to test 
avionics embedded software 

Statement coverage needs 1 test 
case; branch coverage needs 2 



Modified condition/decision 
coverage (MC/DC) 

•  MC/DC coverage is similar to condition coverage, 
but we must test every condition in a decision 
independently to reach full coverage 

•  MC/DC requires all of the below during testing:  
§  We invoke each entry and exit point  

§  We test every possible outcome for each decision 

§  Each condition in a decision takes every possible 
outcome  

§  We show each condition in a decision to affect the 
outcome of the decision independently 



Example of MC/DC 
•  Consider the following fragment of C code: 

https://www.verifysoft.com/en_example_mcdc.html 

 1 void foo(_Bool A, _Bool B, _Bool C) { 
 2   if ( (A || B) && C ) { 
 3     /* instructions */ 
 4   } else { 
 5     /* instructions */ 
 6 } 
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•  Decision coverage: the condition ( (A || B) && C ) 
should also be evaluated at least one time to “true” 
and one time to “false”: 
§  A = true / B = true / C = true 
§  A = false / B = false / C = false 

Example of MC/DC 
•  Consider the following fragment of C code: 

https://www.verifysoft.com/en_example_mcdc.html 

 1 void foo(_Bool A, _Bool B, _Bool C) { 
 2   if ( (A || B) && C ) { 
 3     /* instructions */ 
 4   } else { 
 5     /* instructions */ 
 6 } 



•  MC/DC: each Boolean variable should be evaluated 
one time to “true” and one time to “false”, and this with 
affecting the decision's outcome 

Example of MC/DC 
•  Consider the following fragment of C code: 

https://www.verifysoft.com/en_example_mcdc.html 

 1 void foo(_Bool A, _Bool B, _Bool C) { 
 2   if ( (A || B) && C ) { 
 3     /* instructions */ 
 4   } else { 
 5     /* instructions */ 
 6 } 



Example of MC/DC 
•  Consider the following fragment of C code: 

https://www.verifysoft.com/en_example_mcdc.html 

 1 void foo(_Bool A, _Bool B, _Bool C) { 
 2   if ( (A || B) && C ) { 
 3     /* instructions */ 
 4   } else { 
 5     /* instructions */ 
 6 } 

A = false / B = false / C = true è evaluates to "false" 
A = false / B = true / C = true è evaluates to "true" 
A = false / B = true / C = false è evaluates to "false" 
A = true / B = false / C = true è evaluates to "true" 

•  MC/DC: For a decision with n atomic boolean 
conditions, we have to find at least n+1 tests 
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•  There exist two essential and relatively 
independent aspects of dynamic detection: 
§  How should one monitor an execution such that 

vulnerabilities are detected? 

§  How many and what program executions (i.e., for 
what input values) should one monitor? 

Dynamic Detection 

Dynamic detection techniques execute a 
program and monitor the execution  

to detect vulnerabilities 
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Monitoring 
•  For vulnerabilities concerning violations of a 

specified property of a single execution  
§  detection can be performed by monitoring for violations 

of that specification  

•  For other vulnerabilities, or when monitoring for 
violations of a specification is too expensive, 
approximative monitors can be defined 
§  In cases where a dynamic analysis is approximative, it can 

also generate false positives or false negatives 

o  even though it operates on a concrete execution trace 
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o  there exists no explicit specification that can be monitored 



Monitoring 
•  For structured output generation vulnerabilities, 

the main challenge is:  

§  that the intended structure of the generated output is 
often implicit 

o  there exists no explicit specification that can be monitored 

•  For example, a monitor can use a fine-grained 
dynamic taint analysis to track the flow of 
untrusted input strings 
§  flag a violation when untrusted input has an impact on 

the parse tree of the generated output 
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for API vulnerabilities at testing time  
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Monitoring 
•  Assertions, pre-conditions, and post-conditions 

can be compiled into the code to provide a monitor 
for API vulnerabilities at testing time  

§  even if the cost of these compiled-in run-time checks 
can be too high to use them in production code 

•  Monitoring for race conditions is hard, but some 
approaches for monitoring data races on shared 
memory cells exist 

§  E.g., by monitoring whether all shared memory 
accesses follow a consistent locking discipline 
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LTL – Linear Temporal Logic 
Supported operators: 
•  U: p holds until q holds     p U q 
•  F: p will hold eventually in the future   F p 
•  G: p always holds in the future   G p 

•  X is not well defined for C 
§  no notion of “next” 

•  C expressions used as atoms in LTL: 
 {keyInput == 1} -> F {displayKeyUp} 

({keyInput != 0} | {intr}) -> G{numInputs > 0} 

 “event”: change of global variable used in LTL formula 
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Büchi Automata (BA) 
•  non-deterministic FSM over propositional expressions 
•  inputs infinite length traces 
•  acceptance == trace passes through an accepting state 

         infinitely often 

•  can convert from LTL to an equivalent BA 
§  use ltl2ba, modified to produce C 

p -> Fq !(p -> Fq) 
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Using BAs to check the program 
•  Theory: check product of model and never claim for 

accepting state 
•  SPIN: execute never claim in lockstep with model 
•  ESBMC: 

–  technically difficult to alternate between normal program and 
never claim program 

–  instead: run never claim program as a monitor thread 
concurrently with other program thread(s) 

⇒ no distinction between monitor thread and other threads 

 
Jeremy Morse, Lucas C. Cordeiro, Denis A. Nicole, Bernd 
Fischer: Context-Bounded Model Checking of LTL Properties for 
ANSI-C Software. SEFM 2011: 302-317 



Ensuring soundness of monitor 
thread 

Monitor thread will miss events: 
•  interleavings will exist where events are skipped 

(monitor thread scheduled out of sync) 
⇒ can cause false violations of the property being verified 
⇒ monitor thread must be run immediately after events 



Ensuring soundness of monitor 
thread 

Monitor thread will miss events: 
•  interleavings will exist where events are skipped 

(monitor thread scheduled out of sync) 
⇒ can cause false violations of the property being verified 
⇒ monitor thread must be run immediately after events 

Solution: 
•  ESBMC maintains (global) current count of events 
•  monitor checks it processes events one at a time 

(using assume statements) 
⇒ causes ESBMC to discard interleavings where monitor 

does not act on relevant state changes 



bool cexpr_0;  // “pressed” 

bool cexpr_1;  // “charge > min” 

 

typedef enum {T0_init, accept_S2 } ltl2ba_state; 

ltl2ba_state state = T0_init; 

unsigned int visited_states[2]; 

unsigned int trans_seen; 

extern unsigned int trans_count; 

 

void ltl2ba_fsm(bool state_stats) { 

  unsigned int choice; 

  while(1) { 

    choice = nondet_uint(); 

    /* Force a context switch */ 

    yield(); 

    atomic_begin(); 

    assume(trans_count <=  trans_seen + 1); 

    trans_seen = trans_count; 
 

Example monitor thread 
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bool cexpr_0;  // “pressed” 

bool cexpr_1;  // “charge > min” 

 

typedef enum {T0_init, accept_S2 } ltl2ba_state; 

ltl2ba_state state = T0_init; 

unsigned int visited_states[2]; 

unsigned int trans_seen; 

extern unsigned int trans_count; 

 

void ltl2ba_fsm(bool state_stats) { 

  unsigned int choice; 

  while(1) { 

    choice = nondet_uint(); 

    /* Force a context switch */ 

    yield(); 

    atomic_begin(); 

    assume(trans_count <=  trans_seen + 1); 

    trans_seen = trans_count; 
 

State transition 
and “event” 
counter setup 

nondeterminism 

reject unsafe 
interleavings 

only interleave 
whole block  

Example monitor thread 



Example monitor thread 
    switch(state) { 
    case T0_init: 
      if(choice == 0) { 
        assume((1)); 
        state = T0_init; 
      } else if (choice == 1) { 
        assume((!cexpr_1 && cexpr_0)); 
        state = accept_S2; 
      } else assume(0); 
      break; 
    case accept_S2: 
      if(choice == 0) { 
        assume((!cexpr_1)); 
        state = accept_S2; 
      } else assume(0); 
      break; 
    } 
    atomic_end(); 
  } 
} 

automata transitions 
representing the 
formula !(p → Fq) 
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BMC forces program execution to eventually end 

– but BA are defined over infinite traces... 



Infinite traces and BMC? 
BMC forces program execution to eventually end 

– but BA are defined over infinite traces... 
Solution: 
•  follow SPINs stuttering acceptance approach: 

pretend final state extends infinitely 

•  re-run monitor thread after program termination, 
with enough loop iterations to pass through each state twice 

•  if an accepting state is visited at least twice while stuttering, 
BA accepts extended trace 

§  LTL property violation found 



•  Understand dynamic detection techniques to 
identify security vulnerabilities  

•  Generate executions of the program along 
paths that will lead to the discovery of new 
vulnerabilities 

•  Explain black-box fuzzing: grammar-based 
and mutation-based fuzzing  

•  Explain white-box fuzzing: dynamic symbolic 
execution 

Intended learning outcomes 
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Generating relevant executions 

•  This problem is an instance of the general problem 
in software testing  

§  Systematically select appropriate inputs for a 
program under test 

§  These techniques are often described by the umbrella 
term fuzz testing or fuzzing 

Challenge: generate executions of the 
program along paths that will lead to the 

discovery of new vulnerabilities 
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Fuzzing 

•  Basic idea: generate random inputs and check 
whether an application crashes 
–  We are not testing functional correctness (compliance)  

•  Original fuzzing: generate long inputs and check 
whether the system crashes 
–  What kind of bug would such a segfault signal? 

•  Memory access violation  
–  Why would inputs ideally be very long? 

•  To make it likely that buffer overruns cross segment 
boundaries so that the OS triggers a fault 

Fuzzing is a highly effective, mostly 
automated, security testing technique 
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Simple fuzzing ideas 

•  What inputs would you use for fuzzing? 

§  very long or completely blank strings 

§  min/max values of integers, or only zero and negative 
values 

§  depending on what you are fuzzing, include unique 
values, characters or keywords likely to trigger bugs: 

–  nulls, newlines, or end-of-file characters 
–  format string characters   %s %x %n  
–  semi-colons, slashes and backslashes, quotes 
–  application-specific keywords halt, DROP TABLES, … 



Illustrative Example 
•  Is this circular buffer implementation correct? 

#define BUFFER_MAX 10
static char buffer[BUFFER_MAX];
int first, next, buffer_size;
void initLog(int max) {
  buffer_size = max;
  first = next = 0;
}
int removeLogElem(void) {
  first++;
  return buffer[first-1];
}
void insertLogElem(int b) {
  if (next < buffer_size) {
    buffer[next] = b;
    next = (next+1)%buffer_size;
  }
}



Illustrative Example 

•  Does this test case expose some error? 

void testCircularBuffer(void) {
  int senData[] = {1, -128, 98, 88, 59, 1, 
-128, 90, 0, -37};
  int i;
  initLog(5);
  for(i=0; i<10; i++)
    insertLogElem(senData[i]);
  for(i=5; i<10; i++)
    assert(senData[i], removeLogElem());
}



Illustrative Example 

•  Does this test case expose some error? 

void testCircularBuffer(void) {
  int senData[] = {1, -128, 98, 88, 59, 1, 
-129, 90, 0, -37};
  int i;
  initLog(5);
  for(i=0; i<10; i++)
    insertLogElem(senData[i]);
  for(i=5; i<10; i++)
    assert(senData[i], removeLogElem());
}
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Illustrative Example 
•  Is this circular buffer implementation correct? 

#define BUFFER_MAX 10
static char buffer[BUFFER_MAX];
int first, next, buffer_size;
void initLog(int max) {
  buffer_size = max;
  first = next = 0;
}
int removeLogElem(void) {
  first++;
  return buffer[first-1];
}
void insertLogElem(int b) {
  if (next < buffer_size) {
    buffer[next] = b;
    next = (next+1)%buffer_size;
  }
}

The buffer array is of type 
char and size BUFFER_MAX 

Assign an integer to a char 
variable: typecast overflow 

Increment first without 
checking the array bound: 
buffer overflow 
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•  Minimal effort: 

§  the test cases are automatically generated, and test oracle is                                                              
is merely looking for crashes 

•  Fuzzing of a C/C++ binary can quickly give a good picture 
of the robustness of the code 



Pros & cons of fuzzing 
•  Minimal effort: 

§  the test cases are automatically generated, and test oracle is                                                              
is merely looking for crashes 

•  Fuzzing of a C/C++ binary can quickly give a good picture 
of the robustness of the code 

•  Fuzzers do not find all bugs 
•  Crashes may be hard to analyze, but a crash is a true 

positive that something is wrong! 
•  For programs that take complex inputs, more work will be 

needed to get reasonable code coverage and hit 
unusual test cases                            
§  Leads to various studies on “smarter” fuzzers 



•  Understand dynamic detection techniques to 
identify security vulnerabilities  

•  Generate executions of the program along 
paths that will lead to the discovery of new 
vulnerabilities 

•  Explain black-box fuzzing: grammar-based and 
mutation-based fuzzing  

•  Explain white-box fuzzing: dynamic symbolic 
execution 

Intended learning outcomes 



Black-box fuzzing 
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program input/output behaviour, and not on 
its internal structure 
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Black-box fuzzing 

①   Random testing: input values are randomly 
sampled from the appropriate value domain 

②   Grammar-based fuzzing: a model of the expected 
format of input values is taken into account during the 
generation of input values 

③   Mutation-based fuzzing: the fuzzer is provided with 
typical input values; it generates new input values by 
performing small mutations on the provided input 

The generation of values depends on the 
program input/output behaviour, and not on 

its internal structure 
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  else 
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•  Random testing produces random, independent 
inputs, to test software 
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Random Testing 

int sig_invert(int signal) { 
  if (signal < 0) 
    return signal; // bug 
  else 
    return signal; 
} 

void testSig_Inverter(int n) { 
    for (int i=0; i<n; i++) { 
        int x = rand(); 
        int result = sig_invert(x); 
        assert(result >= 0); 
    } 
} 

•  Random testing produces random, independent 
inputs, to test software 

the random tests 
could be {827989654, 
328082218, 1487316077, 
611655059, 82358424} 



int nondet_int(); 
void testSig_Inverter(int n) { 
  for (int i=0; i<n; i++) { 
    int x = nondet_int (); //rand(); 
    int result = sig_invert(x); 
    assert(result >= 0); 
  } 
} 

Replace random by non-
deterministic variable 

•  Use a model checker to produce an input that 
triggers the property violation 
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void testSig_Inverter(int n) { 
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    assert(result >= 0); 
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Replace random by non-
deterministic variable 

•  Use a model checker to produce an input that 
triggers the property violation 

int nondet_int(); 
void testSig_Inverter(int n) { 
  for (int i=0; i<n; i++) { 
    int x = nondet_int (); //rand(); 
    int result = sig_invert(x); 
    assert(result >= 0); 
  } 
} State 9 file file.c line 16 function testSig_Inverter thread 0 

---------------------------------------------------- 
  x = -2147483648 
… 
Violated property: 
… 
!((_Bool)((signed long int)(!(result >= 0)))) 

$esbmc random-testing.c 



Grammar-based fuzzing 
•  For communication protocols, a grammar-based 

fuzzer generate files or data packets, which are:  
§  Slightly malformed  

§  Hit corner cases in the spec 

§  Grammar defining legal input                                                                   
or a data format specification 

Packet Type  Flags 

Control Field 

4 Bits 4 Bits 

1 Byte = 8 Bits 
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Grammar-based fuzzing 
•  For communication protocols, a grammar-based 

fuzzer generate files or data packets, which are:  
§  Slightly malformed  

§  Hit corner cases in the spec 

§  Grammar defining legal input                                                                   
or a data format specification 

•  Typical things that can be fuzzed:  
§  many/all possible value for specific fields (undefined values) 
§  incorrect lengths, lengths that are zero, or payloads that are 

too short/long 

•  Tools for building such fuzzers: SNOOZE, SPIKE, Peach, 
Sulley, antiparser, Netzob, ...                                                                                            

Packet Type  Flags 

Control Field 

4 Bits 4 Bits 

1 Byte = 8 Bits 



Example: Grammar-based 
Fuzzing of GSM 

GSM is an extremely rich and complicated protocol 

Fabian van den Broek, Brinio Hond, Arturo Cedillo Torres: Security Testing of 
GSM Implementations. ESSoS 2014: 179-195 



SMS Message Fields 
Field size 

Message Type Indicator 2 bit 

Reject Duplicates 1 bit 

Validity Period Format 2 bit 

User Data Header Indicator 1 bit 

Reply Path 1 bit 

Message Reference integer 

Destination Address 2-12 byte 

Protocol Identifier 1 byte 

Data Coding Scheme (CDS) 1 byte 

Validity Period 1 byte/7 bytes 

User Data Length (UDL) integer 

User Data depends on CDS and UDL 



Example: GSM protocol fuzzing 

•  We can use a Universal Software 
Radio Peripheral (USRP) 

–  Most USRPs connect to a host computer 
through a high-speed link 

§  the host-based software uses to control 
the USRP hardware and transmit/
receive data 

–  With open-source cell tower software 
(OpenBTS) to fuzz any phone       
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•  Fuzzing SMS layer of GSM reveals unexpected 

behaviour in GSM standard and phones 



Example: GSM protocol fuzzing 

you have a fax! 

possibility to 
receive faxes?  

Only way to get rid if this icon; reboot the phone 

•  Fuzzing SMS layer of GSM reveals unexpected 
behaviour in GSM standard and phones 



Example: GSM protocol fuzzing 
• Malformed SMS text messages  
–  show raw memory instead of the text message 



•  The Open Charge Point Protocol (OCPP) is an 
application protocol 

§  communication between Electric vehicle (EV) charging 
stations and a central management system 

•  OCPP can use XML or JSN messages 

Example message in JSN format 
  { "location": NijmegenMercator215672,

   "retries": 5, 

   "retryInterval": 30,

   "startTime": "2018-10-27T19:10:11", 

   "stopTime":  "2018-10-27T22:10:11"  }

  

  

 Mutation-based fuzzing: 
Fuzzing OCPP 



•  Simple classification of messages into 
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•  Simple classification of messages into 
①  malformed JSN/XML: missing quote, bracket or comma                                                                                                    
②  well-formed JSN/XML, but not legal OCPP: use field 

names that are not in the OCPP specs                                                                        
③  well-formed OCPP: can be used for a simple test oracle 

§  Malformed messages (type 1 & 2) should generate a generic error 
response 

§  Well-formed messages (type 3) should not 
§  The application should never crash 

•  Note: this does not require any understanding of the 
protocol semantics yet!  
–  Figuring out correct responses to type 3 would need 

  

 Mutation-based fuzzing: 
Fuzzing OCPP 



Evolutionary Fuzzing with AFL 
•  Grammar-based fuzzer:                                                                

–  Significant work to write code to fuzz, even if we use tools to 
generate this code based on some grammar 

•  Mutation-based fuzzer:                                                   
–  The chance that random changes in inputs hit unusual cases is 

small 
 



Evolutionary Fuzzing with AFL 
•  Grammar-based fuzzer:                                                                

–  Significant work to write code to fuzz, even if we use tools to 
generate this code based on some grammar 

•  Mutation-based fuzzer:                                                   
–  The chance that random changes in inputs hit unusual cases is 

small 
 

•  AFL (American Fuzzy Lop) takes an evolutionary approach 
to learn mutations based on measuring code coverage   
–  basic idea: if a mutation of the input triggers a new path through 

the code, then it is an exciting mutation; otherwise, the mutation 
is discarded 

–  Produce random mutations of the input and observe their effect 
on code coverage, AFL can learn what interesting inputs are 

 



The Fuzzing Process of AFL 

1. Start with sample seed inputs  

2. Mutate seed inputs to generate mutants  

3. Collect code coverage (CFG edges) information  

4. Save as new seeds if coverage increases  

5. Repeat from step 2 

/lcamtuf.coredump.cx/afl/https:/ 



American Fuzzy Lop 

•  Support programs written in C/C++/Objective C and 
variants for Python/Go/Rust/OCaml 
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American Fuzzy Lop 

•  Support programs written in C/C++/Objective C and 
variants for Python/Go/Rust/OCaml 

•  Code instrumented to observe execution paths: 
–  if source code is available, then use modified 

compiler; otherwise, run code in an emulator 
•  Code coverage represented as a 64KB bitmap, where 

control flow jumps are mapped to changes in this bitmap 
–  different executions could lead to the same bitmap, but the 

chance is small 

•  Mutation strategies: bit flips, incrementing/decrementing 
integers, using pre-defined integer values (e.g., 0, -1, 
MAX_INT,....), deleting/combining/zeroing input blocks 

https://lcamtuf.coredump.cx/afl/ 



AFL’s instrumentation of 
compiled code  

•  Code is injected at every branch point in the code  
   cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;  

   shared_mem[cur_location ^ prev_location]++; 

   prev_location = cur_location >> 1; 

  where shared_mem is a 64 KB memory region  

Bitwise exclusive OR 

prev_location = 3; 

cur_location = 5;        0101 (decimal 5) 
XOR 0011 (decimal 3) 
  =   0110 (decimal 6) 

cur_location ^ prev_location 



AFL’s instrumentation of 
compiled code  

•  Code is injected at every branch point in the code  
   cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;  

   shared_mem[cur_location ^ prev_location]++; 

   prev_location = cur_location >> 1; 

  where shared_mem is a 64 KB memory region  

Shift right 

prev_location = cur_location >> 1; 

       0101 (decimal 5) 
shift 0010 (decimal 2) 



AFL’s instrumentation of 
compiled code  

•  Code is injected at every branch point in the code  
   cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;  

   shared_mem[cur_location ^ prev_location]++; 

   prev_location = cur_location >> 1; 

  where shared_mem is a 64 KB memory region  

•  Intuition:  for every jump from src to dest in the 
code a different byte in  shared_mem is changed 

–  This byte is determined by the compile-time randoms 
inserted at source and destination 



Example of AFL instrumentation 

#include <stdio.h> 
#include <stdlib.h> 
int main(int arc, char *argv[]) { 
  ((atoi(argv[1]) % 2) == 1) ? printf("Odd") : printf("Even"); 
  return 0; 
} 

0:notifyFuzzer(“m
ain starting”) 

1:notifyFuzzer("if 
condition taken”) 
printf("Odd"); 

2:notifyFuzzer(“m
ain starting”) 
printf("Even"); 
 

3:return 0; 

(atoi(argv[1]) % 2) == 1 

(atoi(argv[1]) % 2) != 1 

•  Consider a code fragment that determines a parameter 
to be even or odd 



Example of AFL instrumentation 
•  AFL assigns a random compile time constant to each 

basic block and uses a 64kB array to trace the 
execution flow using the following logic 

cur_location = <COMPILE_TIME_RANDOM>; 
shared_mem[cur_location ^ prev_location]++; 
prev_location = cur_location >> 1; 

prev_location: 0 
cur_location: 0 
cur_location ^ prev_location: 0 
shared_mem[0]: 1 
prev_location: 0 

0: 

1: 2: 

3: 
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Example of AFL instrumentation 
•  AFL assigns a random compile time constant to each 

basic block and uses a 64kB array to trace the 
execution flow using the following logic 

cur_location = <COMPILE_TIME_RANDOM>; 
shared_mem[cur_location ^ prev_location]++; 
prev_location = cur_location >> 1; 

0: 

1: 2: 

3: 

prev_location: 0 
cur_location: 2 
cur_location ^ prev_location: 2 
shared_mem[2]: 1 
prev_location: 1 



Example of AFL instrumentation 
•  AFL assigns a random compile time constant to each 

basic block and uses a 64kB array to trace the 
execution flow using the following logic 

cur_location = <COMPILE_TIME_RANDOM>; 
shared_mem[cur_location ^ prev_location]++; 
prev_location = cur_location >> 1; 

0: 

1: 2: 

3: 

prev_location: 1 
cur_location: 3 
cur_location ^ prev_location: 2 
shared_mem[2]: 2 
prev_location: 1 



Example of AFL instrumentation 
•  AFL assigns a random compile time constant to each 

basic block and uses a 64kB array to trace the 
execution flow using the following logic 

cur_location = <COMPILE_TIME_RANDOM>; 
shared_mem[cur_location ^ prev_location]++; 
prev_location = cur_location >> 1; 

0: 

1: 2: 

3: 

prev_location: 2 
cur_location: 3 
cur_location ^ prev_location: 1 
shared_mem[1]: 2 
prev_location: 1 



•  Understand dynamic detection techniques to 
identify security vulnerabilities  

•  Generate executions of the program along 
paths that will lead to the discovery of new 
vulnerabilities 

•  Explain black-box fuzzing: grammar-based and 
mutation-based fuzzing  

•  Explain white-box fuzzing: dynamic symbolic 
execution 

Intended learning outcomes 
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at the same time a path condition  
o  An expression that specifies the constraints on those input values 

that have to be fulfilled to take this specific execution path 



White-box fuzzing 
The internal structure of the program is 
analysed to assist in the generation of 

appropriate input values 

•  The primary systematic white-box fuzzing technique 
is a dynamic symbolic execution 
§  Executes a program with concrete input values and builds 

at the same time a path condition  
o  An expression that specifies the constraints on those input values 

that have to be fulfilled to take this specific execution path 

§  Solve input values that do not satisfy the path condition of 
the current execution 

o  the fuzzer can make sure that these input values will drive the 
program to a different execution path, thus improving coverage 



Coverage Test Generation for Security 

x = input(); 
if (x >= 10) 
{ 
  if (x < 100) 
    vulnerable_code(); 
  else 
    func_a(); 
} 
else 
  func_b(); 
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White-box Fuzzing 
•  Combine fuzz testing with dynamic test generation 

–  Run the code with some initial input 
–  Collect constraints on input with symbolic execution 

–  Generate new constraints 
–  Solve constraints with constraint solver 
–  Synthesize new inputs 

–  Leverages Directed Automated Random Testing 
(DART)   ([…,Godefroid-Klarlund-Sen-05] ) 

–  See also previous talk on EXE [Cadar-Engler-05, 
Cadar-Ganesh-Pawlowski-Engler-Dill-06, Dunbar-
Cadar-Pawlowski-Engler-08,…] 



Dynamic Test Generation 
 
void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 

   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 
} 

input = 
“good” 



 
void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 

   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 
} 

input = 
“good” 

I0 != ‘b’ 

I1 != ‘a’ 
I2 != ‘d’ 

I3 != ‘!’ 

Collect constraints from trace 
Create new constraints 
Solve new constraints à new input. 

Dynamic Test Generation 



Depth-First Search 

 

void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 
   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 

} 

I0 !=‘b’ 
I1 !=‘a’ 
I2 !=‘d’ 
I3 !=‘!’ good 
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void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 
   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 

} 

I0 !=‘b’ 
I1 !=‘a’ 

I3 ==‘!’ 
I2 !=‘d’ 



Depth-First Search 

godd 

 

void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 
   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 

} 

I0 !=‘b’ 
I1 !=‘a’ 
I2 ==‘d’ 
I3 !=‘!’ good 
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godd 
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Depth-First Search 

 

void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 
   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 

} 

I0 !=‘b’ 
I1 ==‘a’ 
I2 !=‘d’ 
I3 !=‘!’ 

gaod 



goo! 

godd 

good 

Depth-First Search 

 

void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 
   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 

} 

I0 ==‘b’ 
I1 !=‘a’ 
I2 !=‘d’ 
I3 !=‘!’ 

gaod 

bood 



Key Idea: One Trace, Many Tests 

Office 2007 application: 
Time to gather constraints:     25m30s 
Tainted branches/trace:          ~1000 
 
Time per branch to 
solve,  
generate new test,  
check for crashes:                   ~1s 

Therefore, solve+check all branches 
for each trace! 



Generational Search 

goo! 

godd 

gaod 

bood 

good 

 

void top(char input[4])  
{ 
   int cnt = 0; 
   if (input[0] == ‘b’) cnt++; 
   if (input[1] == ‘a’) cnt++; 
   if (input[2] == ‘d’) cnt++; 
   if (input[3] == ‘!’) cnt++; 
   if (cnt >= 3) crash(); 

} 

I0 ==‘b’ 
I1 ==‘a’ 
I2 ==‘d’ 
I3 ==‘!’ 



 i0 ≠ 'b' 

i3 ≠  '!' 

 i0 = 'b' 

i2 ≠  'd'   

  i1 = 'a'  

i2 =  'd'   

i3 = '!' 

  i1 = 'a'  
  i1 ≠ 'a'    i1 ≠ 'a'  

Search space for interesting inputs 
Based on this one execution, combining all these constraints 
now yields 16 test cases 

 

 

 

 

 

 

Note: the initial execution with the input ‘good’ was not very 
interesting, but these others are 
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BMC for Coverage Test Generation 
•  Translate the program to an intermediate representation (IR) 

•  Add goals indicating the coverage 
–  location, branch, decision, condition and path 

•  Symbolically execute IR to produce an SSA program  

•  Translate the resulting SSA program into a logical formula  

•  Solve the formula iteratively to cover different goals  

•  Interpret the solution to figure out the input conditions  

•  Spit those input conditions out as a test case 

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Cover	goals	

Goals	 SSA	



Coverage Test Generation 
Example 

file.c lib.h 

lib.c 

Application Library 



Coverage Test Generation 
Example 

  1 #include "lib.h" 
  2 
  3 int64_t nondet_int64_t(); 
  4 int main() { 
  5   int64_t a = nondet_int64_t(); 
  6   int64_t b = nondet_int64_t(); 
  7   int64_t r = nondet_int64_t(); 
  8   if (mul(a, b, &r)) { 
  9     __ESBMC_assert(r == a * b, "Expected result 
from multiplication"); 
 10   } 
 11   return 0; 
 12 } 

file.c	



Coverage Test Generation 
Example 

  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     *res = 0; 
  6     return 1; 
  7   } else if(a == 1) { 
  8     *res = b; 
  9     return 1; 
 10   } else if(b == 1) { 
 11     *res = a; 
 12     return 1; 
 13   } 
 14   *res = a * b; // there exists an overflow 
 15   return 1; 
 16 } 

lib.c	



Coverage Test Generation 
Example 

lib.h	

 1 #include<stdint.h>!
 2 _Bool mul(const int64_t a, const int64_t b, 
int64_t *res); 

esbmc main.c lib/lib.c --error-label GOALX -I lib/ 



Program Instrumentation 
  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     GOAL1:; 
  6     *res = 0; 
  7     return 1; 
  8   } else if(a == 1) { 
  9     GOAL2:; 
 10     *res = b; 
 11     return 1; 
 12   } else if(b == 1) { 
 13     GOAL3:; 
 14     *res = a; 
 15     return 1; 
 16   } 
 17 GOAL4:; 
 18   *res = a * b; // there exists an overflow 
 19   return 1; 
 20 } 



  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     GOAL1:; 
  6     *res = 0; 
  7     return 1; 
  8   } else if(a == 1) { 
  9     GOAL2:; 
 10     *res = b; 
 11     return 1; 
 12   } else if(b == 1) { 
 13     GOAL3:; 
 14     *res = a; 
 15     return 1; 
 16   } 
 17 GOAL4:; 
 18   *res = a * b; // there exists an overflow 
 19   return 1; 
 20 } 

Program Instrumentation (Goal1) 



Generate Test Case for Goal1 

Counterexample: 
 
State 1 file main.c line 5 function main thread 0 
---------------------------------------------------- 
  a = 1 (00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000001) 
 
State 2 file main.c line 6 function main thread 0 
---------------------------------------------------- 
  b = 0 (00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000) 
 
State 3 file lib.c line 5 function mul thread 0 
---------------------------------------------------- 
Violated property: 
  file lib.c line 5 function mul 
  error label 
  0 

esbmc main.c lib/lib.c --error-label GOAL1 -I lib/ 



  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     GOAL1:; 
  6     *res = 0; 
  7     return 1; 
  8   } else if(a == 1) { 
  9     GOAL2:; 
 10     *res = b; 
 11     return 1; 
 12   } else if(b == 1) { 
 13     GOAL3:; 
 14     *res = a; 
 15     return 1; 
 16   } 
 17 GOAL4:; 
 18   *res = a * b; // there exists an overflow 
 19   return 1; 
 20 } 

Program Instrumentation (Goal2) 



Generate Test Case for Goal2 
esbmc main.c lib/lib.c --error-label GOAL2 -I lib/ 

Counterexample: 
 
State 1 file main.c line 5 function main thread 0 
---------------------------------------------------- 
  a = 1 (00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000001) 
 
State 2 file main.c line 6 function main thread 0 
---------------------------------------------------- 
  b = 1 (00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000001) 
 
State 3 file lib.c line 9 function mul thread 0 
---------------------------------------------------- 
Violated property: 
  file lib.c line 9 function mul 
  error label 
  0 



  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     GOAL1:; 
  6     *res = 0; 
  7     return 1; 
  8   } else if(a == 1) { 
  9     GOAL2:; 
 10     *res = b; 
 11     return 1; 
 12   } else if(b == 1) { 
 13     GOAL3:; 
 14     *res = a; 
 15     return 1; 
 16   } 
 17 GOAL4:; 
 18   *res = a * b; // there exists an overflow 
 19   return 1; 
 20 } 

Program Instrumentation (Goal3) 



Generate Test Case for Goal3 
esbmc main.c lib/lib.c --error-label GOAL3 -I lib/ 

Counterexample: 
 
State 1 file main.c line 5 function main thread 0 
---------------------------------------------------- 
  a = -4537113969113143794 (11000001 00001000 11101110 
11100010 00111101 10001100 01100110 00001110) 
 
State 2 file main.c line 6 function main thread 0 
---------------------------------------------------- 
  b = 1 (00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000001) 
 
State 3 file lib.c line 13 function mul thread 0 
---------------------------------------------------- 
Violated property: 
  file lib.c line 13 function mul 
  error label 
  0 



  1 #include "lib.h" 
  2 _Bool mul(int64_t a, int64_t b, int64_t *res) { 
  3   // Trivial cases 
  4   if((a == 0) || (b == 0)) { 
  5     GOAL1:; 
  6     *res = 0; 
  7     return 1; 
  8   } else if(a == 1) { 
  9     GOAL2:; 
 10     *res = b; 
 11     return 1; 
 12   } else if(b == 1) { 
 13     GOAL3:; 
 14     *res = a; 
 15     return 1; 
 16   } 
 17 GOAL4:; 
 18   *res = a * b; // there exists an overflow 
 19   return 1; 
 20 } 

Program Instrumentation (Goal4) 



Generate Test Case for Goal4 
esbmc main.c lib/lib.c --error-label GOAL4 -I lib/ 

Counterexample: 
 
State 1 file main.c line 5 function main thread 0 
---------------------------------------------------- 
  a = 6917247552664371199 (01011111 11111110 11111111 11111111 
11111111 11111111 11111111 11111111) 
 
State 2 file main.c line 6 function main thread 0 
---------------------------------------------------- 
  b = -1 (11111111 11111111 11111111 11111111 11111111 
11111111 11111111 11111111) 
 
State 3 file lib.c line 17 function mul thread 0 
---------------------------------------------------- 
Violated property: 
  file lib.c line 17 function mul 
  error label 
  0 



Generate Test Case for Overflow 
esbmc main.c lib/lib.c --overflow-check  -I lib/ 

Counterexample: 
 
State 1 file main.c line 5 function main thread 0 
---------------------------------------------------- 
  a = 4623516855184146434 (01000000 00101010 00001000 
00010101 01010110 01001000 01000000 00000010) 
 
State 2 file main.c line 6 function main thread 0 
---------------------------------------------------- 
  b = 3 (00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000011) 
 
State 3 file lib.c line 18 function mul thread 0 
---------------------------------------------------- 
Violated property: 
  file lib.c line 18 function mul 
  arithmetic overflow on mul 
  !overflow("*", a, b) 



 Summary  
•  Cost/precision tradeoffs 

–  Blackbox is lightweight, easy and fast, but weak coverage 

–  Whitebox is smarter but complex and slower 

–  Recent “semi-whitebox” approaches 
•  Less smart but more lightweight: Flayer (taint-flow analysis, 

may generate false alarms), Bunny-the-fuzzer (taint-flow, 
source-based, heuristics to fuzz based on input usage), 
autodafe, etc. 
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–  Once low-hanging bugs are gone, fuzzing must become smarter: 
use whitebox and/or user-provided guidance (grammars, etc.) 

 

 



 Summary  
•  Cost/precision tradeoffs 

–  Blackbox is lightweight, easy and fast, but weak coverage 

–  Whitebox is smarter but complex and slower 

–  Recent “semi-whitebox” approaches 
•  Less smart but more lightweight: Flayer (taint-flow analysis, 

may generate false alarms), Bunny-the-fuzzer (taint-flow, 
source-based, heuristics to fuzz based on input usage), 
autodafe, etc. 

•  Which is more effective at finding bugs? It depends… 
–  Many apps are buggy; any form of fuzzing finds bugs! 

–  Once low-hanging bugs are gone, fuzzing must become smarter: 
use whitebox and/or user-provided guidance (grammars, etc.) 

•  Bottom line: in practice, use both! 

 

 


