
Detection of Software
Vulnerabilities:

Dynamic Analysis

Lucas Cordeiro
Department of Computer Science

lucas.cordeiro@manchester.ac.uk

Systems and Software
Verification Laboratory

Dynamic Analysis
•  Lucas Cordeiro (Formal Methods Group)

§  lucas.cordeiro@manchester.ac.uk
§  Office: 2.28
§  Office hours: 15-16 Tuesday, 14-15 Wednesday

•  References:
§  Software Security: Building Security In (Chapter 6)
§  Automated Whitebox Fuzz Testing by Godefroid et al.
§  The Cyber Security Body of Knowledge by Rashid et al.
§  Security Testing by Erik Poll

•  Understand dynamic detection techniques to
identify security vulnerabilities

Intended learning outcomes

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

Intended learning outcomes

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

•  Explain black-box fuzzing: grammar-based
and mutation-based fuzzing

Intended learning outcomes

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

•  Explain black-box fuzzing: grammar-based
and mutation-based fuzzing

•  Explain white-box fuzzing: dynamic symbolic
execution

Intended learning outcomes

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

•  Explain black-box fuzzing: grammar-based
and mutation-based fuzzing

•  Explain white-box fuzzing: dynamic symbolic
execution

Intended learning outcomes

•  A majority of security defects and vulnerabilities in
software are not directly related to functionality

Security in the
Development Lifecycle

•  A majority of security defects and vulnerabilities in
software are not directly related to functionality

Security in the
Development Lifecycle

•  Side-channel effect in
the hardware

§  information obtained
from the impl. rather
than weaknesses in the
code

STELLAR: A Generic EM Side-
Channel Attack Protection through
Ground-Up Root-cause Analysis,
HOST2019.

•  A majority of security defects and vulnerabilities in
software are not directly related to functionality

Security in the
Development Lifecycle

•  Side-channel effect in
the hardware

§  information obtained
from the impl. rather
than weaknesses in the
code

timing information and power
consumption can be exploited

STELLAR: A Generic EM Side-
Channel Attack Protection through
Ground-Up Root-cause Analysis,
HOST2019.

•  Security testing: white hat, red hat, and penetration

Security in the
Development Lifecycle

•  Security testing: white hat, red hat, and penetration

Security Development Lifecycle

Security in the
Development Lifecycle

•  Security testing: white hat, red hat, and penetration

•  Testing for a negative poses a much greater
challenge than verifying for a positive

Security Development Lifecycle

Security in the
Development Lifecycle

Testing for functionality vs
testing for security

•  Traditional testing checks functionalities for
sensible inputs and corner conditions

Testing for functionality vs
testing for security

•  Traditional testing checks functionalities for
sensible inputs and corner conditions

•  Security testing also requires looking for the
wrong, unwanted behavior for uncommon inputs

Testing for functionality vs
testing for security

•  Traditional testing checks functionalities for
sensible inputs and corner conditions

•  Security testing also requires looking for the
wrong, unwanted behavior for uncommon inputs

•  Routine use of a software system is more likely to
reveal functional problems than security
problems:

–  users will complain about functional problems, but
hackers will not complain about security problems

Security testing is difficult
space of all possible inputs

Normal inputs . input that triggers
security bug, thus
compromising the system

.
. .

. . .

. some input to test
corner conditions

. sensible input to test
some funcionality

Definition of Test Suite and Oracle

•  To test a software system, we need:

①  test suite: a collection of input data

②  test oracle: decides if a test succeeded or led to an error

Ø  some way to decide if the software behaves as we want

Definition of Test Suite and Oracle

•  To test a software system, we need:

①  test suite: a collection of input data

②  test oracle: decides if a test succeeded or led to an error

Ø  some way to decide if the software behaves as we want

•  Define both test suites and test oracles can be a
significant work
–  A test oracle consists of a long list, which for every

individual test case, specifies what should happen

–  A simple test oracle: just looking if the application does not
crash

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 *res = 0;
 6 return 1;
 7 } else if(a == 1) {
 8 *res = b;
 9 return 1;
 10 } else if(b == 1) {
 11 *res = a;
 12 return 1;
 13 }
 14 *res = a * b; // there exists an overflow
 15 return 1;
 16 }

Statement Coverage
•  Statement coverage involves the execution of all the

executable statements at least once
–  (executed statements / total statements)*100

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 *res = 0;
 6 return 1;
 7 } else if(a == 1) {
 8 *res = b;
 9 return 1;
 10 } else if(b == 1) {
 11 *res = a;
 12 return 1;
 13 }
 14 *res = a * b; // there exists an overflow
 15 return 1;
 16 }

a=0,b=0
Coverage=3/11=27%

Statement Coverage
•  Statement coverage involves the execution of all the

executable statements at least once
–  (executed statements / total statements)*100

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 *res = 0;
 6 return 1;
 7 } else if(a == 1) {
 8 *res = b;
 9 return 1;
 10 } else if(b == 1) {
 11 *res = a;
 12 return 1;
 13 }
 14 *res = a * b; // there exists an overflow
 15 return 1;
 16 }

a=1,b=3
Coverage=4/11=36%

Statement Coverage
•  Statement coverage involves the execution of all the

executable statements at least once
–  (executed statements / total statements)*100

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 *res = 0;
 6 return 1;
 7 } else if(a == 1) {
 8 *res = b;
 9 return 1;
 10 } else if(b == 1) {
 11 *res = a;
 12 return 1;
 13 }
 14 *res = a * b; // there exists an overflow
 15 return 1;
 16 }

a=2,b=1
Coverage=5/11=45%

Statement Coverage
•  Statement coverage involves the execution of all the

executable statements at least once
–  (executed statements / total statements)*100

a=2,b=2
Coverage=5/11=45%

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 *res = 0;
 6 return 1;
 7 } else if(a == 1) {
 8 *res = b;
 9 return 1;
 10 } else if(b == 1) {
 11 *res = a;
 12 return 1;
 13 }
 14 *res = a * b; // there exists an overflow
 15 return 1;
 16 }

Statement Coverage
•  Statement coverage involves the execution of all the

executable statements at least once
–  (executed statements / total statements)*100

Test
Case

Value of
“a”

Value of
“b”

Value of
“res”

Statement
Coverage

1 0 0 0 27%
2 1 3 b 36%
3 2 1 a 45%
4 2 2 a * b 45%

Statement Coverage
•  Statement coverage involves the execution of all the

executable statements at least once
–  (executed statements / total statements)*100

•  Decision coverage reports the true or false outcomes
of each Boolean expression (tough to achieve 100%)
–  (decision outcomes exercised / total decision outcomes) * 100

Decision Coverage

 1 void Demo(int a) {
 2 if (a > 5)
 3 a = a*3;
 4 printf("a: %i"\n);
 5 }

a=4
(a>5) is false
Decision coverage = 50%

•  Decision coverage reports the true or false outcomes
of each Boolean expression (tough to achieve 100%)
–  (decision outcomes exercised / total decision outcomes) * 100

Decision Coverage

 1 void Demo(int a) {
 2 if (a > 5)
 3 a = a*3;
 4 printf("a: %i"\n);
 5 }

a=10
(a>5) is true
Decision coverage = 50%

•  Decision coverage reports the true or false outcomes
of each Boolean expression (tough to achieve 100%)
–  (decision outcomes exercised / total decision outcomes) * 100

Decision Coverage

 1 void Demo(int a) {
 2 if (a > 5)
 3 a = a*3;
 4 printf("a: %i"\n);
 5 }

Test Case Value of “a” Output Decision Coverage
1 4 4 50%
2 10 30 50%

•  Decision coverage reports the true or false outcomes
of each Boolean expression (tough to achieve 100%)
–  (decision outcomes exercised / total decision outcomes) * 100

Decision Coverage

•  Branch coverage tests every outcome from the code to
ensure that every branch is executed at least once
–  (executed branches / total branches)*100

 1 void foo(int x) {
 2 if (x > 7)
 3 a = a*4;
 4 printf("a: %i"\n);
 5 }

Branch Coverage

•  Branch coverage tests every outcome from the code to
ensure that every branch is executed at least once
–  (executed branches / total branches)*100

 1 void foo(int x) {
 2 if (x > 7)
 3 a = a*4;
 4 printf("a: %i"\n);
 5 }

foo(int x)
 if(x>7)

a = a*4;

printf(“a:
%i\n”);

yes

no

unconditional
branch

conditional
branch

Branch Coverage

•  Branch coverage tests every outcome from the code to
ensure that every branch is executed at least once
–  (executed branches / total branches)*100

 1 void foo(int x) {
 2 if (x > 7)
 3 a = a*4;
 4 printf("a: %i"\n);
 5 }

Test
Case

Value of
“a”

Output Decision
Coverage

Branch
Coverage

1 4 4 50% 33%
2 10 40 50% 67%

foo(int x)
 if(x>7)

a = a*4;

printf(“a:
%i\n”);

yes

no

unconditional
branch

conditional
branch

Branch Coverage

•  Condition coverage reveals how the variables in the
conditional statement are evaluated (logical operands)
–  (executed operands / total operands)*100

Condition Coverage

 1 int main() {
 2 unsigned int x, y, a, b;
 3 if((x < y) && (a>b))
 4 return 0;
 5 else
 6 return -1;
 7 }

•  Condition coverage reveals how the variables in the
conditional statement are evaluated (logical operands)
–  (executed operands / total operands)*100

Condition Coverage

 1 int main() {
 2 unsigned int x, y, a, b;
 3 if((x < y) && (a>b))
 4 return 0;
 5 else
 6 return -1;
 7 }

x<y a>b (x < y) && (a>b)
0 0 0
0 1 0
1 0 0
1 1 1

•  Condition coverage reveals how the variables in the
conditional statement are evaluated (logical operands)
–  (executed operands / total operands)*100

Condition Coverage

 1 int main() {
 2 unsigned int x, y, a, b;
 3 if((x < y) && (a>b))
 4 return 0;
 5 else
 6 return -1;
 7 }

x<y a>b (x < y) && (a>b)
0 0 0
0 1 0
1 0 0
1 1 1

Input Condition Outcome Coverage
x=3, x=4 x<y TRUE 25%
a=3, b=4 a>b FALSE 25%

Code coverage criteria
•  Code coverage criteria to measure the test suite quality

– Statement, decision, branch and condition
coverage

Code coverage criteria
•  Code coverage criteria to measure the test suite quality

–  Statement, decision, branch and condition
coverage

•  Statement coverage does not imply branch coverage; e.g. for
 void f (int a, int b) {
 if (a<100) {b--};
 a+=2;
 }

Statement coverage needs 1 test
case; branch coverage needs 2

Code coverage criteria
•  Code coverage criteria to measure the test suite quality

–  Statement, decision, branch and condition
coverage

•  Statement coverage does not imply branch coverage; e.g. for
 void f (int a, int b) {
 if (a<100) {b--};
 a+=2;
 }

•  Other coverage criteria exists, e.g., modified condition/
decision coverage (MCDC), which is used to test
avionics embedded software

Statement coverage needs 1 test
case; branch coverage needs 2

Modified condition/decision
coverage (MC/DC)

•  MC/DC coverage is similar to condition coverage,
but we must test every condition in a decision
independently to reach full coverage

•  MC/DC requires all of the below during testing:
§  We invoke each entry and exit point

§  We test every possible outcome for each decision

§  Each condition in a decision takes every possible
outcome

§  We show each condition in a decision to affect the
outcome of the decision independently

Example of MC/DC
•  Consider the following fragment of C code:

https://www.verifysoft.com/en_example_mcdc.html

 1 void foo(_Bool A, _Bool B, _Bool C) {
 2 if ((A || B) && C) {
 3 /* instructions */
 4 } else {
 5 /* instructions */
 6 }

•  Condition coverage: A, B, and C should be evaluated
at least one time “true” and one time “false”:
§  A = true / B = true / C = true
§  A = false / B = false / C = false

Example of MC/DC
•  Consider the following fragment of C code:

https://www.verifysoft.com/en_example_mcdc.html

 1 void foo(_Bool A, _Bool B, _Bool C) {
 2 if ((A || B) && C) {
 3 /* instructions */
 4 } else {
 5 /* instructions */
 6 }

•  Decision coverage: the condition ((A || B) && C)
should also be evaluated at least one time to “true”
and one time to “false”:
§  A = true / B = true / C = true
§  A = false / B = false / C = false

Example of MC/DC
•  Consider the following fragment of C code:

https://www.verifysoft.com/en_example_mcdc.html

 1 void foo(_Bool A, _Bool B, _Bool C) {
 2 if ((A || B) && C) {
 3 /* instructions */
 4 } else {
 5 /* instructions */
 6 }

•  MC/DC: each Boolean variable should be evaluated
one time to “true” and one time to “false”, and this with
affecting the decision's outcome

Example of MC/DC
•  Consider the following fragment of C code:

https://www.verifysoft.com/en_example_mcdc.html

 1 void foo(_Bool A, _Bool B, _Bool C) {
 2 if ((A || B) && C) {
 3 /* instructions */
 4 } else {
 5 /* instructions */
 6 }

Example of MC/DC
•  Consider the following fragment of C code:

https://www.verifysoft.com/en_example_mcdc.html

 1 void foo(_Bool A, _Bool B, _Bool C) {
 2 if ((A || B) && C) {
 3 /* instructions */
 4 } else {
 5 /* instructions */
 6 }

A = false / B = false / C = true è evaluates to "false"
A = false / B = true / C = true è evaluates to "true"
A = false / B = true / C = false è evaluates to "false"
A = true / B = false / C = true è evaluates to "true"

•  MC/DC: For a decision with n atomic boolean
conditions, we have to find at least n+1 tests

Dynamic Detection

Dynamic detection techniques execute a
program and monitor the execution

to detect vulnerabilities

•  There exist two essential and relatively
independent aspects of dynamic detection:
§  How should one monitor an execution such that

vulnerabilities are detected?

Dynamic Detection

Dynamic detection techniques execute a
program and monitor the execution

to detect vulnerabilities

•  There exist two essential and relatively
independent aspects of dynamic detection:
§  How should one monitor an execution such that

vulnerabilities are detected?

§  How many and what program executions (i.e., for
what input values) should one monitor?

Dynamic Detection

Dynamic detection techniques execute a
program and monitor the execution

to detect vulnerabilities

Monitoring
•  For vulnerabilities concerning violations of a

specified property of a single execution
§  detection can be performed by monitoring for violations

of that specification

Monitoring
•  For vulnerabilities concerning violations of a

specified property of a single execution
§  detection can be performed by monitoring for violations

of that specification

•  For other vulnerabilities, or when monitoring for
violations of a specification is too expensive,
approximative monitors can be defined
§  In cases where a dynamic analysis is approximative, it can

also generate false positives or false negatives

o  even though it operates on a concrete execution trace

Monitoring
•  For structured output generation vulnerabilities,

the main challenge is:

§  that the intended structure of the generated output is
often implicit

o  there exists no explicit specification that can be monitored

Monitoring
•  For structured output generation vulnerabilities,

the main challenge is:

§  that the intended structure of the generated output is
often implicit

o  there exists no explicit specification that can be monitored

•  For example, a monitor can use a fine-grained
dynamic taint analysis to track the flow of
untrusted input strings
§  flag a violation when untrusted input has an impact on

the parse tree of the generated output

Monitoring
•  Assertions, pre-conditions, and post-conditions

can be compiled into the code to provide a monitor
for API vulnerabilities at testing time

§  even if the cost of these compiled-in run-time checks
can be too high to use them in production code

Monitoring
•  Assertions, pre-conditions, and post-conditions

can be compiled into the code to provide a monitor
for API vulnerabilities at testing time

§  even if the cost of these compiled-in run-time checks
can be too high to use them in production code

•  Monitoring for race conditions is hard, but some
approaches for monitoring data races on shared
memory cells exist

§  E.g., by monitoring whether all shared memory
accesses follow a consistent locking discipline

LTL – Linear Temporal Logic
Supported operators:
•  U: p holds until q holds p U q

LTL – Linear Temporal Logic
Supported operators:
•  U: p holds until q holds p U q
•  F: p will hold eventually in the future F p

LTL – Linear Temporal Logic
Supported operators:
•  U: p holds until q holds p U q
•  F: p will hold eventually in the future F p
•  G: p always holds in the future G p

LTL – Linear Temporal Logic
Supported operators:
•  U: p holds until q holds p U q
•  F: p will hold eventually in the future F p
•  G: p always holds in the future G p

•  X is not well defined for C
§  no notion of “next”

LTL – Linear Temporal Logic
Supported operators:
•  U: p holds until q holds p U q
•  F: p will hold eventually in the future F p
•  G: p always holds in the future G p

•  X is not well defined for C
§  no notion of “next”

•  C expressions used as atoms in LTL:
 {keyInput == 1} -> F {displayKeyUp}

({keyInput != 0} | {intr}) -> G{numInputs > 0}

 “event”: change of global variable used in LTL formula

Büchi Automata (BA)
•  non-deterministic FSM over propositional expressions

Büchi Automata (BA)
•  non-deterministic FSM over propositional expressions
•  inputs infinite length traces

Büchi Automata (BA)
•  non-deterministic FSM over propositional expressions
•  inputs infinite length traces
•  acceptance == trace passes through an accepting state

 infinitely often

Büchi Automata (BA)
•  non-deterministic FSM over propositional expressions
•  inputs infinite length traces
•  acceptance == trace passes through an accepting state

 infinitely often

•  can convert from LTL to an equivalent BA
§  use ltl2ba, modified to produce C

Büchi Automata (BA)
•  non-deterministic FSM over propositional expressions
•  inputs infinite length traces
•  acceptance == trace passes through an accepting state

 infinitely often

•  can convert from LTL to an equivalent BA
§  use ltl2ba, modified to produce C

p -> Fq !(p -> Fq)

Using BAs to check the program
•  Theory: check product of model and never claim for

accepting state

Using BAs to check the program
•  Theory: check product of model and never claim for

accepting state
•  SPIN: execute never claim in lockstep with model

Using BAs to check the program
•  Theory: check product of model and never claim for

accepting state
•  SPIN: execute never claim in lockstep with model
•  ESBMC:

–  technically difficult to alternate between normal program and
never claim program

–  instead: run never claim program as a monitor thread
concurrently with other program thread(s)

⇒ no distinction between monitor thread and other threads

Jeremy Morse, Lucas C. Cordeiro, Denis A. Nicole, Bernd
Fischer: Context-Bounded Model Checking of LTL Properties for
ANSI-C Software. SEFM 2011: 302-317

Ensuring soundness of monitor
thread

Monitor thread will miss events:
•  interleavings will exist where events are skipped

(monitor thread scheduled out of sync)
⇒ can cause false violations of the property being verified
⇒ monitor thread must be run immediately after events

Ensuring soundness of monitor
thread

Monitor thread will miss events:
•  interleavings will exist where events are skipped

(monitor thread scheduled out of sync)
⇒ can cause false violations of the property being verified
⇒ monitor thread must be run immediately after events

Solution:
•  ESBMC maintains (global) current count of events
•  monitor checks it processes events one at a time

(using assume statements)
⇒ causes ESBMC to discard interleavings where monitor

does not act on relevant state changes

bool cexpr_0; // “pressed”

bool cexpr_1; // “charge > min”

typedef enum {T0_init, accept_S2 } ltl2ba_state;

ltl2ba_state state = T0_init;

unsigned int visited_states[2];

unsigned int trans_seen;

extern unsigned int trans_count;

void ltl2ba_fsm(bool state_stats) {

 unsigned int choice;

 while(1) {

 choice = nondet_uint();

 /* Force a context switch */

 yield();

 atomic_begin();

 assume(trans_count <= trans_seen + 1);

 trans_seen = trans_count;

Example monitor thread

bool cexpr_0; // “pressed”

bool cexpr_1; // “charge > min”

typedef enum {T0_init, accept_S2 } ltl2ba_state;

ltl2ba_state state = T0_init;

unsigned int visited_states[2];

unsigned int trans_seen;

extern unsigned int trans_count;

void ltl2ba_fsm(bool state_stats) {

 unsigned int choice;

 while(1) {

 choice = nondet_uint();

 /* Force a context switch */

 yield();

 atomic_begin();

 assume(trans_count <= trans_seen + 1);

 trans_seen = trans_count;

State transition
and “event”
counter setup

Example monitor thread

bool cexpr_0; // “pressed”

bool cexpr_1; // “charge > min”

typedef enum {T0_init, accept_S2 } ltl2ba_state;

ltl2ba_state state = T0_init;

unsigned int visited_states[2];

unsigned int trans_seen;

extern unsigned int trans_count;

void ltl2ba_fsm(bool state_stats) {

 unsigned int choice;

 while(1) {

 choice = nondet_uint();

 /* Force a context switch */

 yield();

 atomic_begin();

 assume(trans_count <= trans_seen + 1);

 trans_seen = trans_count;

State transition
and “event”
counter setup

nondeterminism

Example monitor thread

bool cexpr_0; // “pressed”

bool cexpr_1; // “charge > min”

typedef enum {T0_init, accept_S2 } ltl2ba_state;

ltl2ba_state state = T0_init;

unsigned int visited_states[2];

unsigned int trans_seen;

extern unsigned int trans_count;

void ltl2ba_fsm(bool state_stats) {

 unsigned int choice;

 while(1) {

 choice = nondet_uint();

 /* Force a context switch */

 yield();

 atomic_begin();

 assume(trans_count <= trans_seen + 1);

 trans_seen = trans_count;

State transition
and “event”
counter setup

nondeterminism

reject unsafe
interleavings

only interleave
whole block

Example monitor thread

Example monitor thread
 switch(state) {
 case T0_init:
 if(choice == 0) {
 assume((1));
 state = T0_init;
 } else if (choice == 1) {
 assume((!cexpr_1 && cexpr_0));
 state = accept_S2;
 } else assume(0);
 break;
 case accept_S2:
 if(choice == 0) {
 assume((!cexpr_1));
 state = accept_S2;
 } else assume(0);
 break;
 }
 atomic_end();
 }
}

automata transitions
representing the
formula !(p → Fq)

Infinite traces and BMC?
BMC forces program execution to eventually end

– but BA are defined over infinite traces...

Infinite traces and BMC?
BMC forces program execution to eventually end

– but BA are defined over infinite traces...
Solution:
•  follow SPINs stuttering acceptance approach:

pretend final state extends infinitely

•  re-run monitor thread after program termination,
with enough loop iterations to pass through each state twice

•  if an accepting state is visited at least twice while stuttering,
BA accepts extended trace

§  LTL property violation found

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

•  Explain black-box fuzzing: grammar-based
and mutation-based fuzzing

•  Explain white-box fuzzing: dynamic symbolic
execution

Intended learning outcomes

Generating relevant executions
Challenge: generate executions of the

program along paths that will lead to the
discovery of new vulnerabilities

Generating relevant executions

•  This problem is an instance of the general problem
in software testing

§  Systematically select appropriate inputs for a
program under test

Challenge: generate executions of the
program along paths that will lead to the

discovery of new vulnerabilities

Generating relevant executions

•  This problem is an instance of the general problem
in software testing

§  Systematically select appropriate inputs for a
program under test

§  These techniques are often described by the umbrella
term fuzz testing or fuzzing

Challenge: generate executions of the
program along paths that will lead to the

discovery of new vulnerabilities

Fuzzing
Fuzzing is a highly effective, mostly

automated, security testing technique

Fuzzing

•  Basic idea: generate random inputs and check
whether an application crashes
–  We are not testing functional correctness (compliance)

Fuzzing is a highly effective, mostly
automated, security testing technique

Fuzzing

•  Basic idea: generate random inputs and check
whether an application crashes
–  We are not testing functional correctness (compliance)

•  Original fuzzing: generate long inputs and check
whether the system crashes
–  What kind of bug would such a segfault signal?

•  Memory access violation

Fuzzing is a highly effective, mostly
automated, security testing technique

Fuzzing

•  Basic idea: generate random inputs and check
whether an application crashes
–  We are not testing functional correctness (compliance)

•  Original fuzzing: generate long inputs and check
whether the system crashes
–  What kind of bug would such a segfault signal?

•  Memory access violation
–  Why would inputs ideally be very long?

•  To make it likely that buffer overruns cross segment
boundaries so that the OS triggers a fault

Fuzzing is a highly effective, mostly
automated, security testing technique

Simple fuzzing ideas

•  What inputs would you use for fuzzing?

Simple fuzzing ideas

•  What inputs would you use for fuzzing?

§  very long or completely blank strings

Simple fuzzing ideas

•  What inputs would you use for fuzzing?

§  very long or completely blank strings

§  min/max values of integers, or only zero and negative
values

Simple fuzzing ideas

•  What inputs would you use for fuzzing?

§  very long or completely blank strings

§  min/max values of integers, or only zero and negative
values

§  depending on what you are fuzzing, include unique
values, characters or keywords likely to trigger bugs:

–  nulls, newlines, or end-of-file characters
–  format string characters %s %x %n
–  semi-colons, slashes and backslashes, quotes
–  application-specific keywords halt, DROP TABLES, …

Illustrative Example
•  Is this circular buffer implementation correct?

#define BUFFER_MAX 10
static char buffer[BUFFER_MAX];
int first, next, buffer_size;
void initLog(int max) {
 buffer_size = max;
 first = next = 0;
}
int removeLogElem(void) {
 first++;
 return buffer[first-1];
}
void insertLogElem(int b) {
 if (next < buffer_size) {
 buffer[next] = b;
 next = (next+1)%buffer_size;
 }
}

Illustrative Example

•  Does this test case expose some error?

void testCircularBuffer(void) {
 int senData[] = {1, -128, 98, 88, 59, 1,
-128, 90, 0, -37};
 int i;
 initLog(5);
 for(i=0; i<10; i++)
 insertLogElem(senData[i]);
 for(i=5; i<10; i++)
 assert(senData[i], removeLogElem());
}

Illustrative Example

•  Does this test case expose some error?

void testCircularBuffer(void) {
 int senData[] = {1, -128, 98, 88, 59, 1,
-129, 90, 0, -37};
 int i;
 initLog(5);
 for(i=0; i<10; i++)
 insertLogElem(senData[i]);
 for(i=5; i<10; i++)
 assert(senData[i], removeLogElem());
}

Illustrative Example
•  Is this circular buffer implementation correct?

#define BUFFER_MAX 10
static char buffer[BUFFER_MAX];
int first, next, buffer_size;
void initLog(int max) {
 buffer_size = max;
 first = next = 0;
}
int removeLogElem(void) {
 first++;
 return buffer[first-1];
}
void insertLogElem(int b) {
 if (next < buffer_size) {
 buffer[next] = b;
 next = (next+1)%buffer_size;
 }
}

The buffer array is of type
char and size BUFFER_MAX

Illustrative Example
•  Is this circular buffer implementation correct?

#define BUFFER_MAX 10
static char buffer[BUFFER_MAX];
int first, next, buffer_size;
void initLog(int max) {
 buffer_size = max;
 first = next = 0;
}
int removeLogElem(void) {
 first++;
 return buffer[first-1];
}
void insertLogElem(int b) {
 if (next < buffer_size) {
 buffer[next] = b;
 next = (next+1)%buffer_size;
 }
}

The buffer array is of type
char and size BUFFER_MAX

Increment first without
checking the array bound:
buffer overflow

Illustrative Example
•  Is this circular buffer implementation correct?

#define BUFFER_MAX 10
static char buffer[BUFFER_MAX];
int first, next, buffer_size;
void initLog(int max) {
 buffer_size = max;
 first = next = 0;
}
int removeLogElem(void) {
 first++;
 return buffer[first-1];
}
void insertLogElem(int b) {
 if (next < buffer_size) {
 buffer[next] = b;
 next = (next+1)%buffer_size;
 }
}

The buffer array is of type
char and size BUFFER_MAX

Assign an integer to a char
variable: typecast overflow

Increment first without
checking the array bound:
buffer overflow

Pros & cons of fuzzing
•  Minimal effort:

§  the test cases are automatically generated, and test oracle is
is merely looking for crashes

•  Fuzzing of a C/C++ binary can quickly give a good picture
of the robustness of the code

Pros & cons of fuzzing
•  Minimal effort:

§  the test cases are automatically generated, and test oracle is
is merely looking for crashes

•  Fuzzing of a C/C++ binary can quickly give a good picture
of the robustness of the code

•  Fuzzers do not find all bugs
•  Crashes may be hard to analyze, but a crash is a true

positive that something is wrong!
•  For programs that take complex inputs, more work will be

needed to get reasonable code coverage and hit
unusual test cases
§  Leads to various studies on “smarter” fuzzers

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

•  Explain black-box fuzzing: grammar-based and
mutation-based fuzzing

•  Explain white-box fuzzing: dynamic symbolic
execution

Intended learning outcomes

Black-box fuzzing
The generation of values depends on the

program input/output behaviour, and not on
its internal structure

Black-box fuzzing

①  Random testing: input values are randomly
sampled from the appropriate value domain

The generation of values depends on the
program input/output behaviour, and not on

its internal structure

Black-box fuzzing

①  Random testing: input values are randomly
sampled from the appropriate value domain

②  Grammar-based fuzzing: a model of the expected
format of input values is taken into account during the
generation of input values

The generation of values depends on the
program input/output behaviour, and not on

its internal structure

Black-box fuzzing

①  Random testing: input values are randomly
sampled from the appropriate value domain

②  Grammar-based fuzzing: a model of the expected
format of input values is taken into account during the
generation of input values

③  Mutation-based fuzzing: the fuzzer is provided with
typical input values; it generates new input values by
performing small mutations on the provided input

The generation of values depends on the
program input/output behaviour, and not on

its internal structure

Random Testing

int sig_invert(int signal) {
 if (signal < 0)
 return signal; // bug
 else
 return signal;
}

•  Random testing produces random, independent
inputs, to test software

Random Testing

int sig_invert(int signal) {
 if (signal < 0)
 return signal; // bug
 else
 return signal;
}

void testSig_Inverter(int n) {
 for (int i=0; i<n; i++) {
 int x = rand();
 int result = sig_invert(x);
 assert(result >= 0);
 }
}

•  Random testing produces random, independent
inputs, to test software

Random Testing

int sig_invert(int signal) {
 if (signal < 0)
 return signal; // bug
 else
 return signal;
}

void testSig_Inverter(int n) {
 for (int i=0; i<n; i++) {
 int x = rand();
 int result = sig_invert(x);
 assert(result >= 0);
 }
}

•  Random testing produces random, independent
inputs, to test software

the random tests
could be {827989654,
328082218, 1487316077,
611655059, 82358424}

int nondet_int();
void testSig_Inverter(int n) {
 for (int i=0; i<n; i++) {
 int x = nondet_int (); //rand();
 int result = sig_invert(x);
 assert(result >= 0);
 }
}

Replace random by non-
deterministic variable

•  Use a model checker to produce an input that
triggers the property violation

Replace random by non-
deterministic variable

•  Use a model checker to produce an input that
triggers the property violation

int nondet_int();
void testSig_Inverter(int n) {
 for (int i=0; i<n; i++) {
 int x = nondet_int (); //rand();
 int result = sig_invert(x);
 assert(result >= 0);
 }
}

Replace random by non-
deterministic variable

•  Use a model checker to produce an input that
triggers the property violation

int nondet_int();
void testSig_Inverter(int n) {
 for (int i=0; i<n; i++) {
 int x = nondet_int (); //rand();
 int result = sig_invert(x);
 assert(result >= 0);
 }
} State 9 file file.c line 16 function testSig_Inverter thread 0

--
 x = -2147483648
…
Violated property:
…
!((_Bool)((signed long int)(!(result >= 0))))

$esbmc random-testing.c

Grammar-based fuzzing
•  For communication protocols, a grammar-based

fuzzer generate files or data packets, which are:
§  Slightly malformed

§  Hit corner cases in the spec

§  Grammar defining legal input
or a data format specification

Packet Type Flags

Control Field

4 Bits 4 Bits

1 Byte = 8 Bits

Grammar-based fuzzing
•  For communication protocols, a grammar-based

fuzzer generate files or data packets, which are:
§  Slightly malformed

§  Hit corner cases in the spec

§  Grammar defining legal input
or a data format specification

•  Typical things that can be fuzzed:
§  many/all possible value for specific fields (undefined values)
§  incorrect lengths, lengths that are zero, or payloads that are

too short/long

Packet Type Flags

Control Field

4 Bits 4 Bits

1 Byte = 8 Bits

Grammar-based fuzzing
•  For communication protocols, a grammar-based

fuzzer generate files or data packets, which are:
§  Slightly malformed

§  Hit corner cases in the spec

§  Grammar defining legal input
or a data format specification

•  Typical things that can be fuzzed:
§  many/all possible value for specific fields (undefined values)
§  incorrect lengths, lengths that are zero, or payloads that are

too short/long

•  Tools for building such fuzzers: SNOOZE, SPIKE, Peach,
Sulley, antiparser, Netzob, ...

Packet Type Flags

Control Field

4 Bits 4 Bits

1 Byte = 8 Bits

Example: Grammar-based
Fuzzing of GSM

GSM is an extremely rich and complicated protocol

Fabian van den Broek, Brinio Hond, Arturo Cedillo Torres: Security Testing of
GSM Implementations. ESSoS 2014: 179-195

SMS Message Fields
Field size

Message Type Indicator 2 bit

Reject Duplicates 1 bit

Validity Period Format 2 bit

User Data Header Indicator 1 bit

Reply Path 1 bit

Message Reference integer

Destination Address 2-12 byte

Protocol Identifier 1 byte

Data Coding Scheme (CDS) 1 byte

Validity Period 1 byte/7 bytes

User Data Length (UDL) integer

User Data depends on CDS and UDL

Example: GSM protocol fuzzing

•  We can use a Universal Software
Radio Peripheral (USRP)

–  Most USRPs connect to a host computer
through a high-speed link

§  the host-based software uses to control
the USRP hardware and transmit/
receive data

–  With open-source cell tower software
(OpenBTS) to fuzz any phone

Example: GSM protocol fuzzing
•  Fuzzing SMS layer of GSM reveals unexpected

behaviour in GSM standard and phones

Example: GSM protocol fuzzing

you have a fax!

possibility to
receive faxes?

Only way to get rid if this icon; reboot the phone

•  Fuzzing SMS layer of GSM reveals unexpected
behaviour in GSM standard and phones

Example: GSM protocol fuzzing
• Malformed SMS text messages
–  show raw memory instead of the text message

•  The Open Charge Point Protocol (OCPP) is an
application protocol

§  communication between Electric vehicle (EV) charging
stations and a central management system

•  OCPP can use XML or JSN messages

Example message in JSN format
 { "location": NijmegenMercator215672,

 "retries": 5,

 "retryInterval": 30,

 "startTime": "2018-10-27T19:10:11",

 "stopTime": "2018-10-27T22:10:11" }

 Mutation-based fuzzing:
Fuzzing OCPP

•  Simple classification of messages into
①  malformed JSN/XML: missing quote, bracket or comma

 Mutation-based fuzzing:
Fuzzing OCPP

•  Simple classification of messages into
①  malformed JSN/XML: missing quote, bracket or comma
②  well-formed JSN/XML, but not legal OCPP: use field

names that are not in the OCPP specs

 Mutation-based fuzzing:
Fuzzing OCPP

•  Simple classification of messages into
①  malformed JSN/XML: missing quote, bracket or comma
②  well-formed JSN/XML, but not legal OCPP: use field

names that are not in the OCPP specs
③  well-formed OCPP: can be used for a simple test oracle

§  Malformed messages (type 1 & 2) should generate a generic error
response

§  Well-formed messages (type 3) should not
§  The application should never crash

 Mutation-based fuzzing:
Fuzzing OCPP

•  Simple classification of messages into
①  malformed JSN/XML: missing quote, bracket or comma
②  well-formed JSN/XML, but not legal OCPP: use field

names that are not in the OCPP specs
③  well-formed OCPP: can be used for a simple test oracle

§  Malformed messages (type 1 & 2) should generate a generic error
response

§  Well-formed messages (type 3) should not
§  The application should never crash

•  Note: this does not require any understanding of the
protocol semantics yet!
–  Figuring out correct responses to type 3 would need

 Mutation-based fuzzing:
Fuzzing OCPP

Evolutionary Fuzzing with AFL
•  Grammar-based fuzzer:

–  Significant work to write code to fuzz, even if we use tools to
generate this code based on some grammar

•  Mutation-based fuzzer:
–  The chance that random changes in inputs hit unusual cases is

small

Evolutionary Fuzzing with AFL
•  Grammar-based fuzzer:

–  Significant work to write code to fuzz, even if we use tools to
generate this code based on some grammar

•  Mutation-based fuzzer:
–  The chance that random changes in inputs hit unusual cases is

small

•  AFL (American Fuzzy Lop) takes an evolutionary approach
to learn mutations based on measuring code coverage
–  basic idea: if a mutation of the input triggers a new path through

the code, then it is an exciting mutation; otherwise, the mutation
is discarded

–  Produce random mutations of the input and observe their effect
on code coverage, AFL can learn what interesting inputs are

The Fuzzing Process of AFL

1. Start with sample seed inputs

2. Mutate seed inputs to generate mutants

3. Collect code coverage (CFG edges) information

4. Save as new seeds if coverage increases

5. Repeat from step 2

/lcamtuf.coredump.cx/afl/https:/

American Fuzzy Lop

•  Support programs written in C/C++/Objective C and
variants for Python/Go/Rust/OCaml

https://lcamtuf.coredump.cx/afl/

American Fuzzy Lop

•  Support programs written in C/C++/Objective C and
variants for Python/Go/Rust/OCaml

•  Code instrumented to observe execution paths:
–  if source code is available, then use modified

compiler; otherwise, run code in an emulator

https://lcamtuf.coredump.cx/afl/

American Fuzzy Lop

•  Support programs written in C/C++/Objective C and
variants for Python/Go/Rust/OCaml

•  Code instrumented to observe execution paths:
–  if source code is available, then use modified

compiler; otherwise, run code in an emulator
•  Code coverage represented as a 64KB bitmap, where

control flow jumps are mapped to changes in this bitmap
–  different executions could lead to the same bitmap, but the

chance is small

https://lcamtuf.coredump.cx/afl/

American Fuzzy Lop

•  Support programs written in C/C++/Objective C and
variants for Python/Go/Rust/OCaml

•  Code instrumented to observe execution paths:
–  if source code is available, then use modified

compiler; otherwise, run code in an emulator
•  Code coverage represented as a 64KB bitmap, where

control flow jumps are mapped to changes in this bitmap
–  different executions could lead to the same bitmap, but the

chance is small

•  Mutation strategies: bit flips, incrementing/decrementing
integers, using pre-defined integer values (e.g., 0, -1,
MAX_INT,....), deleting/combining/zeroing input blocks

https://lcamtuf.coredump.cx/afl/

AFL’s instrumentation of
compiled code

•  Code is injected at every branch point in the code
 cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;

 shared_mem[cur_location ^ prev_location]++;

 prev_location = cur_location >> 1;

 where shared_mem is a 64 KB memory region

Bitwise exclusive OR

prev_location = 3;

cur_location = 5; 0101 (decimal 5)
XOR 0011 (decimal 3)
 = 0110 (decimal 6)

cur_location ^ prev_location

AFL’s instrumentation of
compiled code

•  Code is injected at every branch point in the code
 cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;

 shared_mem[cur_location ^ prev_location]++;

 prev_location = cur_location >> 1;

 where shared_mem is a 64 KB memory region

Shift right

prev_location = cur_location >> 1;

 0101 (decimal 5)
shift 0010 (decimal 2)

AFL’s instrumentation of
compiled code

•  Code is injected at every branch point in the code
 cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;

 shared_mem[cur_location ^ prev_location]++;

 prev_location = cur_location >> 1;

 where shared_mem is a 64 KB memory region

•  Intuition: for every jump from src to dest in the
code a different byte in shared_mem is changed

–  This byte is determined by the compile-time randoms
inserted at source and destination

Example of AFL instrumentation

#include <stdio.h>
#include <stdlib.h>
int main(int arc, char *argv[]) {
 ((atoi(argv[1]) % 2) == 1) ? printf("Odd") : printf("Even");
 return 0;
}

0:notifyFuzzer(“m
ain starting”)

1:notifyFuzzer("if
condition taken”)
printf("Odd");

2:notifyFuzzer(“m
ain starting”)
printf("Even");

3:return 0;

(atoi(argv[1]) % 2) == 1

(atoi(argv[1]) % 2) != 1

•  Consider a code fragment that determines a parameter
to be even or odd

Example of AFL instrumentation
•  AFL assigns a random compile time constant to each

basic block and uses a 64kB array to trace the
execution flow using the following logic

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

prev_location: 0
cur_location: 0
cur_location ^ prev_location: 0
shared_mem[0]: 1
prev_location: 0

0:

1: 2:

3:

Example of AFL instrumentation
•  AFL assigns a random compile time constant to each

basic block and uses a 64kB array to trace the
execution flow using the following logic

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

prev_location: 0
cur_location: 1
cur_location ^ prev_location: 1
shared_mem[1]: 1
prev_location: 0

0:

1: 2:

3:

Example of AFL instrumentation
•  AFL assigns a random compile time constant to each

basic block and uses a 64kB array to trace the
execution flow using the following logic

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

0:

1: 2:

3:

prev_location: 0
cur_location: 2
cur_location ^ prev_location: 2
shared_mem[2]: 1
prev_location: 1

Example of AFL instrumentation
•  AFL assigns a random compile time constant to each

basic block and uses a 64kB array to trace the
execution flow using the following logic

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

0:

1: 2:

3:

prev_location: 1
cur_location: 3
cur_location ^ prev_location: 2
shared_mem[2]: 2
prev_location: 1

Example of AFL instrumentation
•  AFL assigns a random compile time constant to each

basic block and uses a 64kB array to trace the
execution flow using the following logic

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

0:

1: 2:

3:

prev_location: 2
cur_location: 3
cur_location ^ prev_location: 1
shared_mem[1]: 2
prev_location: 1

•  Understand dynamic detection techniques to
identify security vulnerabilities

•  Generate executions of the program along
paths that will lead to the discovery of new
vulnerabilities

•  Explain black-box fuzzing: grammar-based and
mutation-based fuzzing

•  Explain white-box fuzzing: dynamic symbolic
execution

Intended learning outcomes

White-box fuzzing
The internal structure of the program is
analysed to assist in the generation of

appropriate input values

White-box fuzzing
The internal structure of the program is
analysed to assist in the generation of

appropriate input values

•  The primary systematic white-box fuzzing technique
is a dynamic symbolic execution
§  Executes a program with concrete input values and builds

at the same time a path condition
o  An expression that specifies the constraints on those input values

that have to be fulfilled to take this specific execution path

White-box fuzzing
The internal structure of the program is
analysed to assist in the generation of

appropriate input values

•  The primary systematic white-box fuzzing technique
is a dynamic symbolic execution
§  Executes a program with concrete input values and builds

at the same time a path condition
o  An expression that specifies the constraints on those input values

that have to be fulfilled to take this specific execution path

§  Solve input values that do not satisfy the path condition of
the current execution

o  the fuzzer can make sure that these input values will drive the
program to a different execution path, thus improving coverage

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

–  Run the code with some initial input

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

–  Run the code with some initial input
–  Collect constraints on input with symbolic execution

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

–  Run the code with some initial input
–  Collect constraints on input with symbolic execution

–  Generate new constraints

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

–  Run the code with some initial input
–  Collect constraints on input with symbolic execution

–  Generate new constraints
–  Solve constraints with constraint solver

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

–  Run the code with some initial input
–  Collect constraints on input with symbolic execution

–  Generate new constraints
–  Solve constraints with constraint solver
–  Synthesize new inputs

White-box Fuzzing
•  Combine fuzz testing with dynamic test generation

–  Run the code with some initial input
–  Collect constraints on input with symbolic execution

–  Generate new constraints
–  Solve constraints with constraint solver
–  Synthesize new inputs

–  Leverages Directed Automated Random Testing
(DART) ([…,Godefroid-Klarlund-Sen-05])

–  See also previous talk on EXE [Cadar-Engler-05,
Cadar-Ganesh-Pawlowski-Engler-Dill-06, Dunbar-
Cadar-Pawlowski-Engler-08,…]

Dynamic Test Generation

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();
}

input =
“good”

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();
}

input =
“good”

I0 != ‘b’

I1 != ‘a’
I2 != ‘d’

I3 != ‘!’

Collect constraints from trace
Create new constraints
Solve new constraints à new input.

Dynamic Test Generation

Depth-First Search

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();

}

I0 !=‘b’
I1 !=‘a’
I2 !=‘d’
I3 !=‘!’ good

Depth-First Search

goo! good

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();

}

I0 !=‘b’
I1 !=‘a’

I3 ==‘!’
I2 !=‘d’

Depth-First Search

godd

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();

}

I0 !=‘b’
I1 !=‘a’
I2 ==‘d’
I3 !=‘!’ good

goo!

godd

good

Depth-First Search

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();

}

I0 !=‘b’
I1 ==‘a’
I2 !=‘d’
I3 !=‘!’

gaod

goo!

godd

good

Depth-First Search

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();

}

I0 ==‘b’
I1 !=‘a’
I2 !=‘d’
I3 !=‘!’

gaod

bood

Key Idea: One Trace, Many Tests

Office 2007 application:
Time to gather constraints: 25m30s
Tainted branches/trace: ~1000

Time per branch to
solve,
generate new test,
check for crashes: ~1s

Therefore, solve+check all branches
for each trace!

Generational Search

goo!

godd

gaod

bood

good

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) crash();

}

I0 ==‘b’
I1 ==‘a’
I2 ==‘d’
I3 ==‘!’

 i0 ≠ 'b'

i3 ≠ '!'

 i0 = 'b'

i2 ≠ 'd'

 i1 = 'a'

i2 = 'd'

i3 = '!'

 i1 = 'a'
 i1 ≠ 'a' i1 ≠ 'a'

Search space for interesting inputs
Based on this one execution, combining all these constraints
now yields 16 test cases

Note: the initial execution with the input ‘good’ was not very
interesting, but these others are

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

C	and	
Java	 IR	

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

C	and	
Java	 IR	

Goals	

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

•  Symbolically execute IR to produce an SSA program

C	and	
Java	 IR	 Symex	

Goals	

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

•  Symbolically execute IR to produce an SSA program

•  Translate the resulting SSA program into a logical formula

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Goals	 SSA	

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

•  Symbolically execute IR to produce an SSA program

•  Translate the resulting SSA program into a logical formula

•  Solve the formula iteratively to cover different goals

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Cover	goals	

Goals	 SSA	

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

•  Symbolically execute IR to produce an SSA program

•  Translate the resulting SSA program into a logical formula

•  Solve the formula iteratively to cover different goals

•  Interpret the solution to figure out the input conditions

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Cover	goals	

Goals	 SSA	

BMC for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

•  Symbolically execute IR to produce an SSA program

•  Translate the resulting SSA program into a logical formula

•  Solve the formula iteratively to cover different goals

•  Interpret the solution to figure out the input conditions

•  Spit those input conditions out as a test case

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Cover	goals	

Goals	 SSA	

Coverage Test Generation
Example

file.c lib.h

lib.c

Application Library

Coverage Test Generation
Example

 1 #include "lib.h"
 2
 3 int64_t nondet_int64_t();
 4 int main() {
 5 int64_t a = nondet_int64_t();
 6 int64_t b = nondet_int64_t();
 7 int64_t r = nondet_int64_t();
 8 if (mul(a, b, &r)) {
 9 __ESBMC_assert(r == a * b, "Expected result
from multiplication");
 10 }
 11 return 0;
 12 }

file.c	

Coverage Test Generation
Example

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 *res = 0;
 6 return 1;
 7 } else if(a == 1) {
 8 *res = b;
 9 return 1;
 10 } else if(b == 1) {
 11 *res = a;
 12 return 1;
 13 }
 14 *res = a * b; // there exists an overflow
 15 return 1;
 16 }

lib.c	

Coverage Test Generation
Example

lib.h	

 1 #include<stdint.h>!
 2 _Bool mul(const int64_t a, const int64_t b,
int64_t *res);

esbmc main.c lib/lib.c --error-label GOALX -I lib/

Program Instrumentation
 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 GOAL1:;
 6 *res = 0;
 7 return 1;
 8 } else if(a == 1) {
 9 GOAL2:;
 10 *res = b;
 11 return 1;
 12 } else if(b == 1) {
 13 GOAL3:;
 14 *res = a;
 15 return 1;
 16 }
 17 GOAL4:;
 18 *res = a * b; // there exists an overflow
 19 return 1;
 20 }

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 GOAL1:;
 6 *res = 0;
 7 return 1;
 8 } else if(a == 1) {
 9 GOAL2:;
 10 *res = b;
 11 return 1;
 12 } else if(b == 1) {
 13 GOAL3:;
 14 *res = a;
 15 return 1;
 16 }
 17 GOAL4:;
 18 *res = a * b; // there exists an overflow
 19 return 1;
 20 }

Program Instrumentation (Goal1)

Generate Test Case for Goal1

Counterexample:

State 1 file main.c line 5 function main thread 0
--
 a = 1 (00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000001)

State 2 file main.c line 6 function main thread 0
--
 b = 0 (00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000)

State 3 file lib.c line 5 function mul thread 0
--
Violated property:
 file lib.c line 5 function mul
 error label
 0

esbmc main.c lib/lib.c --error-label GOAL1 -I lib/

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 GOAL1:;
 6 *res = 0;
 7 return 1;
 8 } else if(a == 1) {
 9 GOAL2:;
 10 *res = b;
 11 return 1;
 12 } else if(b == 1) {
 13 GOAL3:;
 14 *res = a;
 15 return 1;
 16 }
 17 GOAL4:;
 18 *res = a * b; // there exists an overflow
 19 return 1;
 20 }

Program Instrumentation (Goal2)

Generate Test Case for Goal2
esbmc main.c lib/lib.c --error-label GOAL2 -I lib/

Counterexample:

State 1 file main.c line 5 function main thread 0
--
 a = 1 (00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000001)

State 2 file main.c line 6 function main thread 0
--
 b = 1 (00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000001)

State 3 file lib.c line 9 function mul thread 0
--
Violated property:
 file lib.c line 9 function mul
 error label
 0

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 GOAL1:;
 6 *res = 0;
 7 return 1;
 8 } else if(a == 1) {
 9 GOAL2:;
 10 *res = b;
 11 return 1;
 12 } else if(b == 1) {
 13 GOAL3:;
 14 *res = a;
 15 return 1;
 16 }
 17 GOAL4:;
 18 *res = a * b; // there exists an overflow
 19 return 1;
 20 }

Program Instrumentation (Goal3)

Generate Test Case for Goal3
esbmc main.c lib/lib.c --error-label GOAL3 -I lib/

Counterexample:

State 1 file main.c line 5 function main thread 0
--
 a = -4537113969113143794 (11000001 00001000 11101110
11100010 00111101 10001100 01100110 00001110)

State 2 file main.c line 6 function main thread 0
--
 b = 1 (00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000001)

State 3 file lib.c line 13 function mul thread 0
--
Violated property:
 file lib.c line 13 function mul
 error label
 0

 1 #include "lib.h"
 2 _Bool mul(int64_t a, int64_t b, int64_t *res) {
 3 // Trivial cases
 4 if((a == 0) || (b == 0)) {
 5 GOAL1:;
 6 *res = 0;
 7 return 1;
 8 } else if(a == 1) {
 9 GOAL2:;
 10 *res = b;
 11 return 1;
 12 } else if(b == 1) {
 13 GOAL3:;
 14 *res = a;
 15 return 1;
 16 }
 17 GOAL4:;
 18 *res = a * b; // there exists an overflow
 19 return 1;
 20 }

Program Instrumentation (Goal4)

Generate Test Case for Goal4
esbmc main.c lib/lib.c --error-label GOAL4 -I lib/

Counterexample:

State 1 file main.c line 5 function main thread 0
--
 a = 6917247552664371199 (01011111 11111110 11111111 11111111
11111111 11111111 11111111 11111111)

State 2 file main.c line 6 function main thread 0
--
 b = -1 (11111111 11111111 11111111 11111111 11111111
11111111 11111111 11111111)

State 3 file lib.c line 17 function mul thread 0
--
Violated property:
 file lib.c line 17 function mul
 error label
 0

Generate Test Case for Overflow
esbmc main.c lib/lib.c --overflow-check -I lib/

Counterexample:

State 1 file main.c line 5 function main thread 0
--
 a = 4623516855184146434 (01000000 00101010 00001000
00010101 01010110 01001000 01000000 00000010)

State 2 file main.c line 6 function main thread 0
--
 b = 3 (00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000011)

State 3 file lib.c line 18 function mul thread 0
--
Violated property:
 file lib.c line 18 function mul
 arithmetic overflow on mul
 !overflow("*", a, b)

 Summary
•  Cost/precision tradeoffs

–  Blackbox is lightweight, easy and fast, but weak coverage

–  Whitebox is smarter but complex and slower

–  Recent “semi-whitebox” approaches
•  Less smart but more lightweight: Flayer (taint-flow analysis,

may generate false alarms), Bunny-the-fuzzer (taint-flow,
source-based, heuristics to fuzz based on input usage),
autodafe, etc.

 Summary
•  Cost/precision tradeoffs

–  Blackbox is lightweight, easy and fast, but weak coverage

–  Whitebox is smarter but complex and slower

–  Recent “semi-whitebox” approaches
•  Less smart but more lightweight: Flayer (taint-flow analysis,

may generate false alarms), Bunny-the-fuzzer (taint-flow,
source-based, heuristics to fuzz based on input usage),
autodafe, etc.

•  Which is more effective at finding bugs? It depends…
–  Many apps are buggy; any form of fuzzing finds bugs!

–  Once low-hanging bugs are gone, fuzzing must become smarter:
use whitebox and/or user-provided guidance (grammars, etc.)

 Summary
•  Cost/precision tradeoffs

–  Blackbox is lightweight, easy and fast, but weak coverage

–  Whitebox is smarter but complex and slower

–  Recent “semi-whitebox” approaches
•  Less smart but more lightweight: Flayer (taint-flow analysis,

may generate false alarms), Bunny-the-fuzzer (taint-flow,
source-based, heuristics to fuzz based on input usage),
autodafe, etc.

•  Which is more effective at finding bugs? It depends…
–  Many apps are buggy; any form of fuzzing finds bugs!

–  Once low-hanging bugs are gone, fuzzing must become smarter:
use whitebox and/or user-provided guidance (grammars, etc.)

•  Bottom line: in practice, use both!

