
Detection of Software 
Vulnerabilities: 

Static Analysis (Part II) 

Lucas Cordeiro 
Department of Computer Science 

lucas.cordeiro@manchester.ac.uk 

Systems and Software  
Verification Laboratory 



Static Analysis (Part II) 
•  Lucas Cordeiro (Formal Methods Group) 

§  lucas.cordeiro@manchester.ac.uk 
§  Office: 2.28 
§  Office hours: 15-16 Tuesday, 14-15 Wednesday 

•  References:  
§  Clarke et al., Model checking (Chapter 14) 
§  Cordeiro and Fischer: Verifying multi-threaded 

software using smt-based context-bounded model 
checking. ICSE 2011 

These slides are based on the lecture notes 
“SAT/SMT-Based Bounded Model Checking of 
Software” by Fischer, Parlato and La Torre 
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SAT/SMT-based BMC tools for C 
•  CBMC (C Bounded Model Checker) 

§  http://www.cprover.org/ 
§  SAT-based (MiniSat) “workhorse” 
§  also SystemC frontend 

•  ESBMC (Embedded Systems Bounded Model Checker) 
§  http://esbmc.org 
§  SMT-based (Z3, Boolector) 
§  branched off CBMC, also (rudimentary) C++ frontend 

•  LLBMC (Low-level Bounded Model Checker) 
§  http://llbmc.org 
§  SMT-based (Boolector or STP) 
§  uses LLVM intermediate language 

⇒ share common high-level architecture 



SAT/SMT-based BMC tools for C 
Typical features: 
•  full language support 

§  bit-precise operations, structs, arrays, ... 
§  heap-allocated memory 
§  concurrency 



SAT/SMT-based BMC tools for C 
Typical features: 
•  full language support 

§  bit-precise operations, structs, arrays, ... 
§  heap-allocated memory 
§  concurrency 

•  built-in safety checks 
§  overflow, div-by-zero, array out-of-bounds indexing, ... 
§  memory safety: nil pointer deref, memory leaks, ... 
§  deadlocks, race conditions 

 



SAT/SMT-based BMC tools for C 
Typical features: 
•  full language support 

§  bit-precise operations, structs, arrays, ... 
§  heap-allocated memory 
§  concurrency 

•  built-in safety checks 
§  overflow, div-by-zero, array out-of-bounds indexing, ... 
§  memory safety: nil pointer deref, memory leaks, ... 
§  deadlocks, race conditions 

•  user-specified assertions and error labels 
 



SAT/SMT-based BMC tools for C 
Typical features: 
•  full language support 

§  bit-precise operations, structs, arrays, ... 
§  heap-allocated memory 
§  concurrency 

•  built-in safety checks 
§  overflow, div-by-zero, array out-of-bounds indexing, ... 
§  memory safety: nil pointer deref, memory leaks, ... 
§  deadlocks, race conditions 

•  user-specified assertions and error labels 
•  non-deterministic modelling 

§  nondeterministic assignments 
§  assume-statements 

 



SAT/SMT-based BMC tools for C 
High-level architecture: 

Parser Static Analysis 

CNF-gen Solver 

CEX-gen 

C Program 

SAFE 

UNSAFE + CEX 

SAT 

UNSAT CNF 
(bit blasting) 

intermediate 
program 

equations 
(path and safety 
 conditions) 



SAT/SMT-based BMC tools for C 
General approach: 
1. Simplify control flow  
2. Unwind all of the loops 
3. Convert into single static assignment (SSA) form 
4. Convert into equations and simplify 
5. (Bit-blast) 
6. Solve with a SAT/SMT solver 
7. Convert SAT assignment into a counterexample 
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Control flow simplifications 
•  remove all side effects 

§  e.g., j = ++i; becomes i = i+1; j = i; 
•  simplify all control flow structures into core 

forms 
§  e.g., replace for, do while by while  
§  e.g., replace case by if 

• make control flow explicit 
§  e.g., replace continue, break by goto 
§  e.g., replace if, while by goto 



Control flow simplifications 
Demo: esbmc --goto-functions-only example-1.c 
 
 
 
 
 
 
 
 
 

int main() { 
  int i,j; 
  for(i=0; i<6; i++) { 
   j=i; 
  } 
  assert(j==i); 
  return j; 
} 

main (c::main): 
          int i; 
          int j; 
          i = 0; 
     1: IF !(i < 6) THEN GOTO 2 
          j = i; 
          i = i + 1; 
        GOTO 1 
     2:   ASSERT j == i  
        RETURN: j 
        END_FUNCTION 
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Loop unwinding 
•  all loops are “unwound”, i.e., replaced by several 

guarded copies of the loop body 
§  same for backward gotos and recursive functions 

§  can use different unwinding bounds for different loops 

⇒ each statement is executed at most once 

•  to check whether unwinding is sufficient special 
“unwinding assertion” claims are added 

⇒ if a program satisfies all of its claims and all 
unwinding assertions then it is correct! 
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Loop unwinding 
void f(...) { 
  ... 
  if(cond) { 
    Body; 
    if(cond) { 
      Body; 
      if(cond) { 
        Body; 
        assert(!cond); 
 
        } 
      } 
    } 
  } 
  Remainder; 
} 

unwinding 
assertion 

unwind one 
iteration unwind one 

iteration unwind one 
iteration… 

•  unwinding assertion 
§  inserted after last 

unwound iteration 
§  violated if program runs 

longer than bound 
permits 
⇒  if not violated: (real) 

correctness result! 



Loop unwinding 
void f(...) { 
  ... 
  for(i=0; i<N; i++) { 
    ...   
    b[i]=a[i]; 
    ... 
  }; 
  ... 
  for(i=0; i<N; i++) { 
    ... 
    assert(b[i]-a[i]>0); 
    ... 
  }; 
  ... 
  Remainder; 
} 

•  unwinding assertion 
§  inserted after last 

unwound iteration 
§  violated if program runs 

longer than bound 
permits 
⇒  if not violated: (real) 

correctness result! 
⇒ what about multiple 

loops? 
§  use --partial-loops to 

suppress insertion 
⇒ unsound 



Safety conditions 

•  Built-in safety checks converted into explicit 
assertions: 
e.g., array safety:  

 a[i]=...;  
 ⇒ assert(0 <= i && i < N); a[i]=...; 



Safety conditions 

•  Built-in safety checks converted into explicit 
assertions: 
e.g., array safety:  

 a[i]=...;  
 ⇒ assert(0 <= i && i <= N); a[i]=...; 

 
⇒ sometimes easier at intermediate representation 

 or formula level 
e.g., word-aligned pointer access, overflow, ... 



SAT/SMT-based BMC tools for C 
High-level architecture: 

Parser Static Analysis 

CNF-gen Solver 

CEX-gen 

C Program 

SAFE 

UNSAFE + CEX 

SAT 

UNSAT CNF 
(bit blasting) 

intermediate 
program 

equations 
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 conditions) 



Transforming straight-line 
programs into equations 

•  simple if each variable is assigned only once: 

•  still simple if variables are assigned multiple times: 

 introduce fresh copy for each occurrence 
(static single assignment (SSA) form) 

x = a; 
y = x + 1; 
z = y – 1; 

program constraints 

x = a  && 
y = x + 1  && 
z = y – 1 

x = a; 
x = x + 1; 
x = x – 1; 

program 

x0 = a; 
x1 = x0 + 1; 
x2 = x1 – 1; 

program in SSA-form 



But what about control flow branches (if-statements)? 
 
 
 
 
 
 
 
•  for each control flow join point, add a new variable 

with guarded assignment as definition 
§  also called ϕ-function 

 

if(v) 
  x = y; 
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if(v0) 
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But what about control flow branches (if-statements)? 
 
 
 
 
 
 
 
•  for each control flow join point, add a new variable 

with guarded assignment as definition 
§  also called ϕ-function 

 

if(v) 
  x = y; 
else 
  x = z; 
 
w = x; 

if(v0) 
  x0 = y0; 
else 
  x1 = z0; 
x2 = v0 ? x0 : x1; 
w1 = x2; 

introduce & use 
new variable 

Transforming loop-free programs 
into equations 



Bit-blasting 
Conversion of equations into SAT problem: 
•  simple assignments:  
   |[ x = y ]| ≙ ⋀i xi ⇔ yi 

⇒ static analysis must approximate effective bitwidth well 

•  ϕ-functions: 
   |[ x = v ? y : z ]| ≙ (v ⇒ |[ x = y ]|) ⋀ (¬ v ⇒ |[ x = z ]|)  

•  Boolean operations:   
   |[ x = y | z ]| ≙ ⋀i xi ⇔ (yi ⋁ zi) 

Exercise: relational operations 

effective 
bitwidth 



Bit-blasting arithmetic operations 
Build circuits that implement the operations! 

1-bit addition: 

 

 

 
Full adder as CNF: 



Bit-blasting arithmetic operations 
Build circuits that implement the operations! 
 
 

 

 

 

 
⇒ adds w variables, 6*w clauses 
⇒ multiplication / division much more complicated 
 
 



Handling arrays 
Arrays can be replaced by individual variables, 

with a “demux” at each access: 
 
 
 
 
 
⇒ surprisingly effective (for N<1000) because value 

of i can often be determined statically 
–  due to constant propagation 

 
 
 

int a[10]; 
... 
x = a[i]; 

int a0, a1, a2, ... a9; 
... 
x = (i==0 ? a0 
     : (i==1 ? a1 
        : (i==2 ? a2  
           : ...); 



Handling arrays with theories 
Arrays can be seen as ADT with two operations: 
•  read:   Array x Index → Element 
•  write:   Array x Index x Element → Array 

 

“select” 

“update” 
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a[i]=a[i]+1; 
... 

... 
a1=write(a0,i,read(a0,i)+1); 
... 
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Arrays can be seen as ADT with two operations: 
•  read:   Array x Index → Element 
•  write:   Array x Index x Element → Array 

Axioms describe intended semantics: 
 
 
 
 

⇒ requires support by SMT-solver 

“select” 

“update” 

... 
a[i]=a[i]+1; 
... 

... 
a1=write(a0,i,read(a0,i)+1); 
... 
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•  not scalable for large constants 
•  need to encode as loop for non-constant block sizes 

§  same problems for normal array-copy operations 
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Handling arrays with λ-terms 
How to handle memset and memcpy? 
void *memset(void *dst, int c, size_t n); 

void *memcpy(void *dst, const void *src, size_t n); 

 

 

 

•  similar for memset and array-copy loops 
•  additional axiom describes intended semantics 

⇒ requires integration into SMT-solver 

... 
a1=λi•(0<=i && i<4) ? 
      read(b,i) : read(a0,i)); 
... 

... 
memcpy(a,b,4); 
... 

Abuse of notation 



Lambdas, Arrays and Quantifiers 

Mathias Preiner, Aina Niemetz, Armin Biere: Better Lemmas 
with Lambda Extraction. FMCAD 2015: 128-135 



Handling arrays with λ-terms 

Stephan Falke, Florian Merz, Carsten Sinz: Extending the Theory of 
Arrays: memset, memcpy, and Beyond. VSTTE 2013: 108-128 
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SAT vs. SMT  
BMC tools use both propositional satisfiability (SAT) 
and satisfiability modulo theories (SMT) solvers: 
•  SAT solvers require encoding everything in CNF 

§  limited support for high-level operations 
§  easier to reflect machine-level semantics 
§  can be extremely efficient (SMT falls back to SAT) 

•  SMT solvers support built-in theories 
§  equality, free function symbols, arithmetics, arrays,... 
§  sometimes even quantifiers 
§  very flexible, extensible, front-end easier 
§  requires extra effort to enforce precise semantics 
§  can be slower 
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Modeling with non-determinism 
Extend C with three modeling features: 
•  assert(e): aborts execution when e is false, 

no-op otherwise 

•  nondet_int(): returns non-deterministic int-value 

•  assume(e): “ignores” execution when e is false, 
no-op otherwise 

void assert (_Bool b) { if (!b)  exit(); } 

int nondet_int () { int x; return x; } 

void assume (_Bool e) { while (!e) ;  } 



Modeling with non-determinism 
General approach: 
•  use C program to set up structure and deterministic 

computations 

•  use non-determinism to set up search space 
•  use assumptions to constrain search space 
•  use failing assertion to start search 

int main() { 
  int x=nondet_int(),y=nondet_int(),z=nondet_int(); 
  __ESBMC_assume(x > 0 && y > 0 && z > 0); 
  __ESBMC_assume(x < 16384 && y < 16384 && z < 16384); 
  assert(x*x + y*y != z*z); 
  return 0; 
} 



•  Introduce typical BMC architectures for 
verifying software systems 

•  Understand communication models and 
typical errors when writing concurrent 
programs 

•  Explain explicit schedule exploration of multi-
threaded software  

•  Explain sequentialization methods to convert 
concurrent programs into sequential ones 

Intended learning outcomes 



Concurrency verification 
Writing concurrent programs is DIFFICULT 

•  programmers have to guarantee 
§  correctness of sequential execution 

of each individual process 

§  with nondeterministic interferences 
from other processes (schedules) 
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Concurrency verification 
Writing concurrent programs is DIFFICULT 

•  programmers have to guarantee 
§  correctness of sequential execution 

of each individual process 

§  with nondeterministic interferences 
from other processes (schedules) 

•  rare schedules result in errors that are difficult 
to find, reproduce, and repair 
§  testers can spend weeks chasing a single bug 

⇒  huge productivity problem  

communication mechanism 

… 
P2 PN P2 

processes 



Concurrency verification 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Which values can n 
actually have? 

What happens here...??? 
int n=0; //shared variable 
 
void* P(void* arg) { 
  int tmp, i=1; 
  while (i<=10) { 
    tmp = n; 
    n = tmp + 1; 
    i++; 
  } 
  return NULL; 
} 
 
int main (void) { 
  pthread_t id1, id2; 
  pthread_create(&id1, NULL, P, NULL); 
  pthread_create(&id2, NULL, P, NULL); 
  pthread_join(id1, NULL); 
  pthread_join(id2, NULL); 
  assert(n == 20); 
} 



Concurrency verification 
What happens here...??? 
int n=0; //shared variable 
 
void* P(void* arg) { 
  int tmp, i=1; 
  while (i<=10) { 
    tmp = n; 
    n = tmp + 1; 
    i++; 
  } 
  return NULL; 
} 
 
int main (void) { 
  pthread_t id1, id2; 
  pthread_create(&id1, NULL, P, NULL); 
  pthread_create(&id2, NULL, P, NULL); 
  pthread_join(id1, NULL); 
  pthread_join(id2, NULL); 
  assert(n == 20); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Which values can n 
actually have? 

$gcc example-2.c -o 
example-2
$./example-2 
$./example-2 
$./example-2 
$./example-2 
$./example-2 
$./example-2 
Assertion failed: (n 
== 20), function main, 
file example-2.c, line 
22.



Concurrency verification 
What happens here...??? 
int n=0; //shared variable 
 
void* P(void* arg) { 
  int tmp, i=1; 
  while (i<=10) { 
    tmp = n; 
    n = tmp + 1; 
    i++; 
  } 
  return NULL; 
} 
 
int main (void) { 
  pthread_t id1, id2; 
  pthread_create(&id1, NULL, P, NULL); 
  pthread_create(&id2, NULL, P, NULL); 
  pthread_join(id1, NULL); 
  pthread_join(id2, NULL); 
  assert(n >= 10 && n <= 20); 
} 



Concurrency verification 
What happens here...??? 
int n=0; //shared variable 
pthread_mutex_t mutex; 
void* P(void* arg) { 
  int tmp, i=1; 
  while (i<=10) { 
    pthread_mutex_lock(&mutex); 
    tmp = n; 
    n = tmp + 1; 
    pthread_mutex_unlock(&mutex); 
    i++; 
  } 
  return NULL; 
} 
int main (void) { 
  pthread_t id1, id2; 
  pthread_mutex_init(&mutex, NULL); 
  pthread_create(&id1, NULL, P, NULL); 
  pthread_create(&id2, NULL, P, NULL); 
  pthread_join(id1, NULL); 
  pthread_join(id2, NULL); 
  assert(n == 20); 
} 
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•  progress errors: deadlock, starvation, ... 
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§  requires modeling of synchronization primitives 

o mutex locking / unlocking 
§  requires modeling of (global) error condition 
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Concurrency errors 
There are two main kinds of concurrency errors: 
•  progress errors: deadlock, starvation, ... 

§  typically caused by wrong synchronization 
§  requires modeling of synchronization primitives 

o mutex locking / unlocking 
§  requires modeling of (global) error condition 

•  safety errors: assertion violation, ... 
§  typically caused by data races (i.e., unsynchronized 

access to shared data) 
§  requires modeling of synchronization primitives 
§  can be checked locally 

⇒  focus here on safety errors 
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Shared memory concurrent 
programs 

Concurrent programming styles: 
•  communication via message passing 

§  “truly” parallel distributed systems 
§  multiple computations advancing simultaneously 

•  communication via shared memory 
§  multi-threaded programs 
§  only one thread active at any given time (conceptually), but 

active thread can be changed at any given time  
o  active == uncontested access to shared memory 
o  can be single-core or multi-core  

⇒  focus here on multi-threaded, shared memory programs 
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Multi-threaded programs 
•  typical C-implementation: pthreads 
•  formed of individual sequential programs (threads) 

§  can be created and destroyed on the fly 
§  typically for BMC: assume upper bound 
§  each possibly with loops and recursive function calls 
§  each with local variables 

•  each thread can read and write shared variables 
§  assume sequential consistency: writes are immediately 

visible to all the other programs 
§  weak memory models can be modeled 

•  execution is interleaving of thread executions 
§  only valid for sequential consistency 
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(l5,s3) 

(l0,s0) 

(l3,s4) (l5,s5) 



Round-robin scheduling 
•  context: segment of a run  

  of an active thread ti  
•  context switch: change of active 

thread from ti to tk 
§  global state is passed on to tk 
§  context switch back to ti resumes 

at old local state (incl. pc) 
•  round: formed of one context of 

each thread 
•  round robin schedule: same order 

of threads in each round 

(l1,s1) 

t1 

(l1,s3) 

t2 
(l2,s1) 

t3 

(l3,s2) 

(l4,s2) 

(l5,s3) 

(l0,s0) 

(l3,s4) (l5,s5) 



Round-robin scheduling 
•  context: segment of a run  

  of an active thread ti  
•  context switch: change of active 

thread from ti to tk 
§  global state is passed on to tk 
§  context switch back to ti resumes 

at old local state (incl. pc) 
•  round: formed of one context of 

each thread 
•  round robin schedule: same order 

of threads in each round 
•  can simulate all schedules by round robin schedules 

(l1,s1) 

t1 

(l1,s3) 

t2 
(l2,s1) 

t3 

(l3,s2) 

(l4,s2) 

(l5,s3) 

(l0,s0) 

(l3,s4) (l5,s5) 



Context-bounded analysis 
Important observation: 

 

 

i.e., require only few context switches 

⇒ limit the search space by bounding the number of 

•  context switches 

•  rounds 

Most concurrency errors are shallow! 



Concurrency verification 
approaches 

•  Explicit schedule exploration (ESBMC) 
§  lazy exploration 

§  schedule recording 



Concurrency verification 
approaches 

•  Explicit schedule exploration (ESBMC) 
§  lazy exploration 

§  schedule recording 

•  Partial order methods (CBMC) 



Concurrency verification 
approaches 

•  Explicit schedule exploration (ESBMC) 
§  lazy exploration 

§  schedule recording 

•  Partial order methods (CBMC) 
•  Sequentialization 

§  KISS 

§  Lal / Reps (eager sequentialization) 

§  Lazy CSeq 

§  memory unwinding 



•  Introduce typical BMC architectures for 
verifying software systems 

•  Understand communication models and 
typical errors when writing concurrent 
programs 

•  Explain explicit schedule exploration of multi-
threaded software  

•  Explain sequentialization methods to convert 
concurrent programs into sequential ones 

Intended learning outcomes 



BMC of Multi-threaded Software 
Idea: iteratively generate all possible interleavings and  
         call the BMC procedure on each interleaving 

C/C++ 
source 

scan,  
parse, and   
type-check 

verification 
conditions 

SMT 
solver 

deadlock, atomicity 
and order violations, 
etc… 

guide the 
symbolic 
execution 

QF formula 
generation 

check satisfiability 
using an SMT solver 

stop the generate-and-
test loop if there is an 
error 

scheduler 

multi-threaded 
goto  
programs 

properties 

IRep 
tree 

BMC 

symbolic 
execution 
engine 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Running Example 
•  the program has sequences of operations that need to be 

protected together to avoid atomicity violation 
–  requirement: the region of code (val1 and val2) should execute 

atomically 

program counter: 0 
mutexes: m1=0; m2=0; 
global variables: val1=0; val2=0; 
local variabes: t1= -1; t2= -1; 

A state s ∈ S consists of 
the value of the program 
counter pc and the values 

of all program variables 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements:  
val1-access: 
val2-access:

 

program counter: 0 
mutexes: m1=0; m2=0; 
global variables: val1=0; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1 
val1-access: 
val2-access:

 

program counter: 1 
mutexes: m1=1; m2=0; 
global variables: val1=0; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2 
val1-access: WtwoStage,2 

 
val2-access:

 

write access to the shared 
variable val1 in statement 2 

of the thread twoStage 

program counter: 2 
mutexes: m1=1; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3 
val1-access: WtwoStage,2 

 
val2-access:

 

program counter: 3 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7 
val1-access: WtwoStage,2 

 
val2-access:

 

CS1 

program counter: 7 
mutexes: m1=1; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8 
val1-access: WtwoStage,2

 - Rreader,8 
 

val2-access:
 

read access to the shared 
variable val1 in statement 8 

of the thread reader 

CS1 

program counter: 8 
mutexes: m1=1; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11  

 
val2-access:

 

CS1 

program counter: 11 
mutexes: m1=1; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= 1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11  

 
val2-access:

 

CS1 

program counter: 12 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= 1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11  

 
val2-access:

 

CS1 

program counter: 4 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= 1; t2= -1; 

CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11  

 
val2-access:

 

CS1 

program counter: 4 
mutexes: m1=0; m2=1; 
global variables: val1=1; val2=0; 
local variabes: t1= 1; t2= -1; 

CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5
 

val2-access: WtwoStage,5 

CS1 

program counter: 5 
mutexes: m1=0; m2=1; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= -1; 

CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5 

CS1 

program counter: 6 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= -1; 

CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5 

CS3 

CS1 

program counter: 13 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= -1; 

CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6-13 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5 

CS1 

program counter: 13 
mutexes: m1=0; m2=1; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= -1; 

CS3 
CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6-13-14 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5

 - Rreader,14 

CS1 

program counter: 14 
mutexes: m1=0; m2=1; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= 2; 

CS3 
CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6-13-14-15 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5

 - Rreader,14 

CS1 

program counter: 15 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= 2; 

CS3 
CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6-13-14-15-16 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5

 - Rreader,14 

CS1 

program counter: 16 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= 2; 

CS3 
CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving Is 
statements: 1-2-3-7-8-11-12-4-5-6-13-14-15-16 
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11 

- RtwoStage,5  
val2-access: WtwoStage,5

 - Rreader,14 

CS1 

CS3 
CS2 

QF formula is unsatisfiable, 
i.e., assertion holds 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 
val1-access: 
val2-access:

 

program counter: 0 
mutexes: m1=0; m2=0; 
global variables: val1=0; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 1-2-3 
val1-access: WtwoStage,2

 
val2-access:

 

program counter: 3 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 1-2-3 
val1-access: WtwoStage,2

 
val2-access:

 

CS1 

program counter: 7 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= -1; t2= -1; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 1-2-3-7-8-11-12-13-14-15-16 
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11 

 
val2-access: Rreader,14 

CS1 

program counter: 16 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= 1; t2= 0; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 1-2-3-7-8-11-12-13-14-15-16 
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11

 
val2-access: Rreader,14 

CS2 

CS1 

program counter: 4 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=0; 
local variabes: t1= 1; t2= 0; 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 1-2-3-7-8-11-12-13-14-15-16-4-5-6 
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11 

- RtwoStage,5
 

val2-access: Rreader,14
- WtwoStage,5 

CS1 

program counter: 6 
mutexes: m1=0; m2=0; 
global variables: val1=1; val2=2; 
local variabes: t1= 1; t2= 0; 

CS2 



Thread twoStage 
1:  lock(m1); 
2:  val1 = 1; 
3:  unlock(m1); 
4:  lock(m2); 
5:  val2 = val1 + 1; 
6:  unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

Lazy exploration: interleaving If 
statements: 1-2-3-7-8-11-12-13-14-15-16-4-5-6 
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11 

- RtwoStage,5
 

val2-access: Rreader,14
- WtwoStage,5 

CS1 

CS2 

QF formula is satisfiable, 
i.e., assertion does not hold 



Idea: iteratively generate all possible interleavings and  
         call the BMC procedure on each interleaving 

... combines 

•  symbolic model checking: on each individual interleaving 

•  explicit state model checking: explore all interleavings 

Lazy exploration of interleavings 



υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

active thread, context bound 

CS1 

CS2 

execution paths 

expansion rules in paper 

interleaving completed, so 
call single-threaded BMC 

Lazy exploration of interleavings 
– Reachability Tree 



execution paths 
blocked execution paths (eliminated) 

υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

υ3: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

CS1 

CS2 

backtrack to last unexpanded node 
and continue 

symbolic execution can statically 
determine that path is blocked 
(encoded in instrumented mutex-op) 

Lazy exploration of interleavings 
– Reachability Tree 

active thread, context bound 



execution paths 
blocked execution paths (eliminated) 

υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ4: treader,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

υ3: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ5: ttwoStage,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ6: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

CS1 

CS2 

Lazy exploration of interleavings 
– Reachability Tree 

active thread, context bound 



•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

Exploring the Reachability Tree 



•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

•  Each node in the RT is a tuple                                   
for a given time step i, where: i
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•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

•  Each node in the RT is a tuple                                   
for a given time step i, where: 
–  Ai represents the currently active thread 

i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

Exploring the Reachability Tree 



•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

•  Each node in the RT is a tuple                                   
for a given time step i, where: 
–  Ai represents the currently active thread 

–  Ci represents the context switch number 
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•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

•  Each node in the RT is a tuple                                   
for a given time step i, where: 
–  Ai represents the currently active thread 

–  Ci represents the context switch number 

–  si represents the current state 
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•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

•  Each node in the RT is a tuple                                   
for a given time step i, where: 
–  Ai represents the currently active thread 

–  Ci represents the context switch number 

–  si represents the current state 

–     represents the current location of thread j    
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Exploring the Reachability Tree 



•  Use a reachability tree (RT) to describe reachable 
states of a multi-threaded program 

•  Each node in the RT is a tuple                                   
for a given time step i, where: 
–  Ai represents the currently active thread 

–  Ci represents the context switch number 

–  si represents the current state 

–     represents the current location of thread j 

–      represents the control flow guards accumulated in thread j 
along the path from     to  
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Exploring the Reachability Tree 



R1 (assign): If I is an assignment, we execute I, which 
generates si+1. We add as child to υ a new node υ’  
 
 
•  we have fully expanded υ if 

-  I within an atomic block; or 
-  I contains no global variable; or 
-  the upper bound of context switches (Ci = C) is reached 

•  if υ is not fully expanded, for each thread j ≠ Ai where    
is enabled in si+1, we thus create a new child node 
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Expansion Rules of the RT 



R2 (skip): If I is a skip-statement with target l, we increment 
the location of the current thread and continue with it. We 
explore no context switches: 
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R2 (skip): If I is a skip-statement with target l, we increment 
the location of the current thread and continue with it. We 
explore no context switches: 

 

 

R3 (unconditional goto): If I is an unconditional goto-
statement with target l, we set the location of the current 
thread and continue with it. We explore no context 
switches: 
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R4 (conditional goto): If I is a conditional goto-statement with 
test c and target l, we create two child nodes υ’ and υ’’.  
- for υ’ , we assume that c is true and proceed with the target 

instruction of the jump: 

 

 
-  for υ’’, we add ¬c to the guards and continue with the next 

instruction in the current thread 

-  prune one of the nodes if the condition is determined 
statically 
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R5 (assume): If I is an assume-statement with argument c, 
we proceed similar to R1. 
-  we continue with the unchanged state si but add c to all 

guards, as described in R4 

-  If            evaluates to false, we prune the execution path j
iGc ∧

Expansion Rules of the RT 



R5 (assume): If I is an assume-statement with argument c, 
we proceed similar to R1. 
-  we continue with the unchanged state si but add c to all 

guards, as described in R4 

-  If            evaluates to false, we prune the execution path 

R6 (assert): If I is an assert-statement with argument c, we 
proceed similar to R1. 
-  we continue with the unchanged state si but add c to all 

guards, as described in R4 

-  we generate a verification condition to check the validity of c 

 

j
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Expansion Rules of the RT 



R7 (start_thread): If I is a start_thread instruction, we add the 
indicated thread to the set of active threads: 

 

-  where       is the initial location of the thread and  

-  the thread starts with the guards of the currently active thread 
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R7 (start_thread): If I is a start_thread instruction, we add the 
indicated thread to the set of active threads: 

 

-  where       is the initial location of the thread and  

-  the thread starts with the guards of the currently active thread 

R8 (join_thread): If I is a join_thread instruction with 
argument Id, we add a child node: 

-  where                 only if the joining thread Id has exited 
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Expansion Rules of the RT 



Lazy exploration of interleavings 
•  Main steps of the algorithm: 

1.  Initialize the stack with the initial node ν0 and the initial 
path π0 = 〈υ0〉  
2.  If the stack is empty, terminate with “no error”. 
3. Pop the current node υ and current path π off the stack and 
compute the set υ’ of successors of υ using rules R1-R8. 
4.  If υ’ is empty, derive the VC      for π and call the SMT 
solver on it. If      is satisfiable, terminate with “error”; 
otherwise, goto step 2. 
5.  If υ’ is not empty, then for each node υ ∈ υ’, add ν to π, 
and push node and extended path on the stack. goto step 3. 

πϕk
πϕk

( ) ( ) ( )
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•  naïve but useful: 
–  bugs usually manifest with few context switches 

[Qadeer&Rehof’05] 
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•  naïve but useful: 
–  bugs usually manifest with few context switches 

[Qadeer&Rehof’05] 

–  keep in memory the parent nodes of all unexplored paths only 
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•  naïve but useful: 
–  bugs usually manifest with few context switches 

[Qadeer&Rehof’05] 

–  keep in memory the parent nodes of all unexplored paths only 

–   exploit which transitions are enabled in a given state 
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•  naïve but useful: 
–  bugs usually manifest with few context switches 

[Qadeer&Rehof’05] 

–  keep in memory the parent nodes of all unexplored paths only 

–   exploit which transitions are enabled in a given state 

–   bound the number of preemptions (C) allowed per threads 

▹ number of executions: O(nc) 
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•  naïve but useful: 
–  bugs usually manifest with few context switches 

[Qadeer&Rehof’05] 

–  keep in memory the parent nodes of all unexplored paths only 

–   exploit which transitions are enabled in a given state 

–   bound the number of preemptions (C) allowed per threads 

▹ number of executions: O(nc) 

–  as each formula corresponds to one possible path only, its size 
is relatively small 

Observations about the lazy approach 



•  naïve but useful: 
–  bugs usually manifest with few context switches 

[Qadeer&Rehof’05] 

–  keep in memory the parent nodes of all unexplored paths only 

–   exploit which transitions are enabled in a given state 

–   bound the number of preemptions (C) allowed per threads 

▹ number of executions: O(nc) 

–  as each formula corresponds to one possible path only, its size 
is relatively small 

•  can suffer performance degradation: 
-  in particular for correct programs where we need to invoke the 

SMT solver once for each possible execution path 

Observations about the lazy approach 



•  explore reachability tree in same way as lazy approach 
•  ... but call SMT solver only once 
•  add a schedule guard tsi for each context switch block i  

(0 < tsi ≤ #threads) 
§  record in which order the scheduler has executed the program 
§  SMT solver determines the order in which threads are simulated 

•  add scheduler guards only to effective statements 
(assignments and assertions) 
§  record effective context switches (ECS) 
§  ECS block: sequence of program statements that are executed 

with no intervening ECS 

Idea: systematically encode all possible interleavings  
         into one formula 

Schedule Recording 



Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 
twoStage-ECS: 
reader-ECS: 

ECS block 

Schedule Recording – Interleaving #1 



Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1 
twoStage-ECS: (1,1) 

reader-ECS: 

ts1 == 1 

guarded statement can only be 
executed if statement 1 is 
scheduled in ECS block 1 

each program statement is 
then prefixed by a schedule 
guard tsi = j, where: 
•  i is the ECS block number  
•  j is the thread identifier 

Schedule Recording – Interleaving #1 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2 
twoStage-ECS: (1,1)-(2,2) 
reader-ECS: 

ts1 == 1 
ts2 == 1 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3 
twoStage-ECS: (1,1)-(2,2)-(3,3) 
reader-ECS: 

ts1 == 1 

ts3 == 1 
ts2 == 1 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7 
twoStage-ECS: (1,1)-(2,2)-(3,3) 
reader-ECS: (7,4) 

CS ts4 == 2 ts1 == 1 

ts3 == 1 
ts2 == 1 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8 
twoStage-ECS: (1,1)-(2,2)-(3,3) 
reader-ECS: (7,4)-(8,5) 

CS ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11 
twoStage-ECS: (1,1)-(2,2)-(3,3) 
reader-ECS: (7,4)-(8,5)-(11,6) 

CS ts4 == 2 

ts6 == 2 

ts5 == 2 
ts1 == 1 

ts3 == 1 
ts2 == 1 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12 
twoStage-ECS: (1,1)-(2,2)-(3,3) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7) 

CS 

ts7 == 2 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts6 == 2 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7) 

ts8 == 1 

CS 

CS 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts7 == 2 
ts6 == 2 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4-5 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7) 

CS 

CS 
ts8 == 1 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts9 == 1 
ts7 == 2 
ts6 == 2 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4-5-6 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7) 

ts10== 1 

CS 

CS 
ts8 == 1 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts9 == 1 
ts7 == 2 
ts6 == 2 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4-5-6-13 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11) 

CS 

CS ts9 == 1 
ts8 == 1 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts10== 1 
ts11== 2 
ts7 == 2 
ts6 == 2 

CS 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4-5-6-13-14 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)-(14,12) 

ts12== 2 

CS 

CS ts9 == 1 
ts8 == 1 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts10== 1 

CS ts11== 2 
ts7 == 2 
ts6 == 2 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4-5-6-13-14-15 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)-(14,12)-(15,13) 

ts13== 2 

CS 

CS ts9 == 1 
ts8 == 1 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts10== 1 

CS ts12== 2 
ts11== 2 
ts7 == 2 
ts6 == 2 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-4-5-6-13-14-15-16 
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10) 

reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)-(14,12)-(15,13)-(16,14) 

ts14== 2 

CS 

CS ts9 == 1 
ts8 == 1 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts10== 1 

CS 

ts13== 2 
ts12== 2 
ts11== 2 
ts7 == 2 
ts6 == 2 

interleaving completed, so 
build constraints for interleaving 
(but do not call SMT solver) 



Schedule Recording – Interleaving #1 

Thread twoStage 
1: lock(m1); 
2: val1 = 1;     
3: unlock(m1); 
4: lock(m2);  
5: val2 = val1 + 1; 
6: unlock(m2); 

Thread reader 
7:  lock(m1); 
8:  if (val1 == 0) { 
9:    unlock(m1); 
10:  return NULL; } 
11: t1 = val1; 
12: unlock(m1); 
13: lock(m2); 
14: t2 = val2; 
15: unlock(m2); 
16: assert(t2==(t1+1));  

statements: 1-2-3-7-8-11-12-13-14-15-16-4-5-6 
twoStage-ECS: (1,1)-(2,3)-(3,4)-(4,12)-(5,13)-(6,14) 
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,8)-(14,9)-(15,10)-(16,11) 

CS 

CS 

ts11== 2 
ts10== 2 
ts9 == 2 

ts13== 1 
ts12== 1 

ts7 == 2 

ts4 == 2 
ts5 == 2 

ts1 == 1 

ts3 == 1 
ts2 == 1 

ts6 == 2 
ts14== 1 

ts8 == 2 



twoStage, reader 

twoStage, reader 
ts1==1→lock(m1) 

twoStage, reader 
ts1==2→lock(m1) 

twoStage, reader 
ts1==1 ∧ ts2==1 

→ val1=1 

twoStage, reader 
ts1==1 ∧ ts2==2 
→ lock(m1)  

twoStage, reader 
ts1==2 ∧ ts2==1 
→ lock(m1) 

twoStage, reader 
ts1==2 ∧ ts2==2  
→ unlock(m1) 

CS1 

CS2 

SMT solver 
instantiates ts to 

evaluate all possible 
interleavings 

 
If the guard of the parent node is 
false then the guard of the child 
node is false as well 

 

thread 
identifiers 

program 
statement 

Schedule Recording: Execution Paths 



•  systematically explore the thread interleavings as before, but: 
§  add schedule guards to record in which order the scheduler 

has executed the program 

§  encode all execution paths into one formula 

o   bound the number of context switches 

o   exploit which transitions are enabled in a given state  

•  number of threads and context switches grows very large 
quickly, and easily “blow-up” the solver: 
-  there is a clear trade-off between usage of time and memory 

resources 

Observations about the schedule  
recoding approach 



•  Introduce typical BMC architectures for 
verifying software systems 

•  Understand communication models and 
typical errors when writing concurrent 
programs 

•  Explain explicit schedule exploration of multi-
threaded software  

•  Explain sequentialization methods to convert 
concurrent programs into sequential ones 

Intended learning outcomes 



Sequentialization 
Observation: 

 Building verification tools for full-fledged concurrent 
languages is difficult and expensive... 
 … but scalable verification techniques exist for 
sequential languages 
§  Abstraction techniques 
§  SAT/SMT techniques (i.e., bounded model checking) 

 
⇒ How can we leverage these? 



Sequentialization 
⇒ How can we leverage these? 
Sequentialization: 
 
 

•  replace control non-determinism by data non-determinism 
•  P' simulates all computations (within certain bounds) of P 
•  source-to-source transformation: T1 ∥ T2 ↝ T ̕1  ; T ̕2 

⇒ reuse existing tools (largely) unchanged 
⇒ easy to target multiple back-ends 
⇒ easy to experiment with different approaches 

convert concurrent programs into sequential 
programs such that reachability is preserved 



 
KISS: Keep It Simple and Sequential [Quadeer-Wu, PLDI’04] 
 
Under-approximation (subset of interleavings) 
 
Thread creation → function call 
§  at context-switches either: 

o  the active thread is terminated or 
o a not yet scheduled thread is started  
   (by calling its main function)  
 

§  when a thread is terminated either: 
o  the thread that has called it is resumed (if any) or 
o a not yet scheduled thread is started  

 

 A first sequentialization: KISS 



(l1,s1) 

T1 

(l1,s3) 

T2 
(l2,s1) 

T3 

(l3,s2) 

(l4,s2) 

(l5,s3) 

Schedule 1: 
1. Start T1 
2. Start T2 
3. Terminate T2 
4. start T3 
5. terminate T3 

6. Resume T1 

T1 T2 T3 

Schedule 2: 
1. start T1 
2. start T2 
3. start T3  
4. terminate T3 

5. resume T2 
6. terminate T2 

7. resume T1 

T1 T2 T3 

Schedule 3: 
1. start T1 
2. start T2 
3. terminate T2 

4. resume T1 

5. start T3 
6. terminate T3 

7. resume T1 

KISS schedules 



LR sequentialization 
•  considers only round-robin schedules 

with k rounds 

T0 T1 Tn 
... 

 ...  

 ...  

 ...  

 ...  



LR sequentialization 
•  considers only round-robin schedules 

with k rounds 
§  thread → function, run to completion 

T0 T1 Tn 

... 

... 

 ...  

 ...  

 ...  

 ...  



LR sequentialization 
•  considers only round-robin schedules 

with k rounds 
§  thread → function, run to completion 

•  global memory copy for each round  
§  scalar → array 

T0 

S2,0 

S0,0 

S1,0 

Sk,0 

T1 

S2,1 

S0,1 

S1,1 

Sk,1 

Tn 

S2,n 

S0,n 

S1,n 

Sk,n 

... 

... 

 ...  

 ...  

 ...  

 ...  



LR sequentialization 
•  considers only round-robin schedules 

with k rounds 
§  thread → function, run to completion 

•  global memory copy for each round  
§  scalar → array 

•  context switch → round counter++ T0 

S2,0 

S0,0 

S1,0 

Sk,0 

T1 

S2,1 

S0,1 

S1,1 

Sk,1 

Tn 

S2,n 

S0,n 

S1,n 

Sk,n 

... 

... 

 ...  

 ...  

 ...  

 ...  



LR sequentialization 
•  considers only round-robin schedules 

with k rounds 
§  thread → function, run to completion 

•  global memory copy for each round  
§  scalar → array 

•  context switch → round counter++ 
•  first thread starts with non-deterministic memory contents 

§  other threads continue with content left by predecessor 

T0 T1 

S2,1 

S0,1 

S1,1 

Sk,1 

Tn 

... 

... 

 ...  

 ...  

 ...  

 ...  

S2,0 

S0,0 

S1,0 

Sk,0 

S2,n 

S0,n 

S1,n 

Sk,n 



LR sequentialization 
•  considers only round-robin schedules 

with k rounds 
§  thread → function, run to completion 

•  global memory copy for each round  
§  scalar → array 

•  context switch → round counter++ 
•  first thread starts with non-deterministic memory contents 

§  other threads continue with content left by predecessor 
•  checker prunes away inconsistent simulations 

§  assume(Sk+1,0 ==  S k,n);  
§  requires second set of memory copies 
§  errors can only be checked at end of simulation 

o  requires explicit error checks 

T0 T1 

S2,1 

S0,1 

S1,1 

Sk,1 

Tn 

... 

... 

 ...  

 ...  

 ...  

 ...  

S2,0 

S0,0 

S1,0 

Sk,0 

S2,n 

S0,n 

S1,n 

Sk,n 



LR sequentialization - implementation 
//shared vars
typeg1 g1; typeg2 g2; …

//thread functions
t(){
  typex1 x1; typex2 x2; …
  stmt1 ;
  stmt2 ;
  …
} …

main(){
  …
}

//shared vars
typeg1 g1[K]; typeg2 g2[K]; …
uint round=0; bool ret=0; //aux vars

// context-switch simulation
cs() {
  unsigned int j;  j= nondet();
  assume(round +j < K); round+=j;
  if (round==K-1 && nondet()) ret=1;
} 

//thread functions
t(){
  typex1 x1; typex2 x2; …
  cs(); if (ret) return; stmt1[round];
  cs(); if (ret) return; stmt2[round];
  …
} …

main_thread(){
  …
}

main(){ … }      //next slide



LR sequentialization - implementation 
main(){
   typeg1 _g1[K]; typeg2 _g2[K]; …
									// first thread starts with non-deterministic memory contents
   for (i=1; i<K; i++){
      _g1[i] = g1[i] = nondet();
      _g2[i] = g2[i] = nondet();
      …
   }
   // thread simulations
   t[0] = main_thread;
   round_born[0] = 0; is_created[0] = 1;
   for (i=0; i<N; i++){
      if(is_created[i]){
         ret=0;
         round = round_born[i];
         t[i](); }
   }
   // consistency check
   for (i=0; i<K-1; i++){
      assume(_g1[i+1] == g1[i]);
      assume(_g2[i+1] == g2[i]);   
      …
   }
   // error detection
   assert(err == 0);  }



•  Corral  (SMT-based analysis for Boogie programs)                                       
–  [ Lal–Qadeer–Lahiri, CAV’12 ] 

–  [ Lal–Qadeer, FSE’14 ] 
•  CSeq (code-to-code translation for C + pthreads)  

–  [ Fischer–Inverso–Parlato, ASE’13 ] 
•  Rek (for Real-time Embedded Software Systems) 

–  [ Chaki–Gurfinkel–Strichman, FMCAD’11 ] 

•  Storm: implementation for C programs                      
–  [ Lahiri–Qadeer–Rakamaric, CAV’09 ] 

–  [Rakamaric, ICSE’10] 

LR sequentialization - implementation 



•  Described typical architectures employed by BMC 
tools (e.g., CBMC, ESBMC and LLBMC):  
§  language support, built-in safety checks, and non-

deterministic modelling  

§ general approach to verify programs, including program 
transformations and bit-blasting   

Summary 



•  Described typical architectures employed by BMC 
tools (e.g., CBMC, ESBMC and LLBMC):  
§  language support, built-in safety checks, and non-

deterministic modelling  

§ general approach to verify programs, including program 
transformations and bit-blasting   

•  Introduced the difficulties to write concurrent 
programs, typical concurrency errors and 
communication models 

Summary 



•  Described typical architectures employed by BMC 
tools (e.g., CBMC, ESBMC and LLBMC):  
§  language support, built-in safety checks, and non-

deterministic modelling  

§ general approach to verify programs, including program 
transformations and bit-blasting   

•  Introduced the difficulties to write concurrent 
programs, typical concurrency errors and 
communication models 

•  Presented state-of-the-art concurrency verification 
approaches, including: explicit schedule 
exploration and sequentialization 

Summary 


