
Detection of Software
Vulnerabilities:

Static Analysis (Part II)

Lucas Cordeiro
Department of Computer Science

lucas.cordeiro@manchester.ac.uk

Systems and Software
Verification Laboratory

Static Analysis (Part II)
•  Lucas Cordeiro (Formal Methods Group)

§  lucas.cordeiro@manchester.ac.uk
§  Office: 2.28
§  Office hours: 15-16 Tuesday, 14-15 Wednesday

•  References:
§  Clarke et al., Model checking (Chapter 14)
§  Cordeiro and Fischer: Verifying multi-threaded

software using smt-based context-bounded model
checking. ICSE 2011

These slides are based on the lecture notes
“SAT/SMT-Based Bounded Model Checking of
Software” by Fischer, Parlato and La Torre

•  Introduce typical BMC architectures for
verifying software systems

Intended learning outcomes

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

Intended learning outcomes

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

•  Explain explicit schedule exploration of multi-
threaded software

Intended learning outcomes

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

•  Explain explicit schedule exploration of multi-
threaded software

•  Explain sequentialization methods to convert
concurrent programs into sequential ones

Intended learning outcomes

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

•  Explain explicit schedule exploration of multi-
threaded software

•  Explain sequentialization methods to convert
concurrent programs into sequential ones

Intended learning outcomes

SAT/SMT-based BMC tools for C
•  CBMC (C Bounded Model Checker)

§  http://www.cprover.org/
§  SAT-based (MiniSat) “workhorse”
§  also SystemC frontend

SAT/SMT-based BMC tools for C
•  CBMC (C Bounded Model Checker)

§  http://www.cprover.org/
§  SAT-based (MiniSat) “workhorse”
§  also SystemC frontend

•  ESBMC (Embedded Systems Bounded Model Checker)
§  http://esbmc.org
§  SMT-based (Z3, Boolector)
§  branched off CBMC, also (rudimentary) C++ frontend

SAT/SMT-based BMC tools for C
•  CBMC (C Bounded Model Checker)

§  http://www.cprover.org/
§  SAT-based (MiniSat) “workhorse”
§  also SystemC frontend

•  ESBMC (Embedded Systems Bounded Model Checker)
§  http://esbmc.org
§  SMT-based (Z3, Boolector)
§  branched off CBMC, also (rudimentary) C++ frontend

•  LLBMC (Low-level Bounded Model Checker)
§  http://llbmc.org
§  SMT-based (Boolector or STP)
§  uses LLVM intermediate language

⇒ share common high-level architecture

SAT/SMT-based BMC tools for C
Typical features:
•  full language support

§  bit-precise operations, structs, arrays, ...
§  heap-allocated memory
§  concurrency

SAT/SMT-based BMC tools for C
Typical features:
•  full language support

§  bit-precise operations, structs, arrays, ...
§  heap-allocated memory
§  concurrency

•  built-in safety checks
§  overflow, div-by-zero, array out-of-bounds indexing, ...
§  memory safety: nil pointer deref, memory leaks, ...
§  deadlocks, race conditions

SAT/SMT-based BMC tools for C
Typical features:
•  full language support

§  bit-precise operations, structs, arrays, ...
§  heap-allocated memory
§  concurrency

•  built-in safety checks
§  overflow, div-by-zero, array out-of-bounds indexing, ...
§  memory safety: nil pointer deref, memory leaks, ...
§  deadlocks, race conditions

•  user-specified assertions and error labels

SAT/SMT-based BMC tools for C
Typical features:
•  full language support

§  bit-precise operations, structs, arrays, ...
§  heap-allocated memory
§  concurrency

•  built-in safety checks
§  overflow, div-by-zero, array out-of-bounds indexing, ...
§  memory safety: nil pointer deref, memory leaks, ...
§  deadlocks, race conditions

•  user-specified assertions and error labels
•  non-deterministic modelling

§  nondeterministic assignments
§  assume-statements

SAT/SMT-based BMC tools for C
High-level architecture:

Parser Static Analysis

CNF-gen Solver

CEX-gen

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF
(bit blasting)

intermediate
program

equations
(path and safety
 conditions)

SAT/SMT-based BMC tools for C
General approach:
1. Simplify control flow
2. Unwind all of the loops
3. Convert into single static assignment (SSA) form
4. Convert into equations and simplify
5. (Bit-blast)
6. Solve with a SAT/SMT solver
7. Convert SAT assignment into a counterexample

Control flow simplifications
•  remove all side effects

§  e.g., j = ++i; becomes i = i+1; j = i;

Control flow simplifications
•  remove all side effects

§  e.g., j = ++i; becomes i = i+1; j = i;
•  simplify all control flow structures into core

forms
§  e.g., replace for, do while by while
§  e.g., replace case by if

Control flow simplifications
•  remove all side effects

§  e.g., j = ++i; becomes i = i+1; j = i;
•  simplify all control flow structures into core

forms
§  e.g., replace for, do while by while
§  e.g., replace case by if

• make control flow explicit
§  e.g., replace continue, break by goto
§  e.g., replace if, while by goto

Control flow simplifications
Demo: esbmc --goto-functions-only example-1.c

int main() {
 int i,j;
 for(i=0; i<6; i++) {
 j=i;
 }
 assert(j==i);
 return j;
}

main (c::main):
 int i;
 int j;
 i = 0;
 1: IF !(i < 6) THEN GOTO 2
 j = i;
 i = i + 1;
 GOTO 1
 2: ASSERT j == i
 RETURN: j
 END_FUNCTION

Loop unwinding
•  all loops are “unwound”, i.e., replaced by several

guarded copies of the loop body
§  same for backward gotos and recursive functions

§  can use different unwinding bounds for different loops

⇒ each statement is executed at most once

Loop unwinding
•  all loops are “unwound”, i.e., replaced by several

guarded copies of the loop body
§  same for backward gotos and recursive functions

§  can use different unwinding bounds for different loops

⇒ each statement is executed at most once

•  to check whether unwinding is sufficient special
“unwinding assertion” claims are added

⇒ if a program satisfies all of its claims and all
unwinding assertions then it is correct!

Loop unwinding
void f(...) {
 ...
 while(cond) {
 Body;
 }
 Remainder;
}

Loop unwinding
void f(...) {
 ...
 if(cond) {
 Body;
 while(cond) {
 Body;
 }
 }
 Remainder;
}

unwind one
iteration

Loop unwinding
void f(...) {
 ...
 if(cond) {
 Body;
 if(cond) {
 Body;
 while(cond) {
 Body;
 }
 }
 }
 Remainder;
}

unwind one
iteration unwind one

iteration

Loop unwinding
void f(...) {
 ...
 if(cond) {
 Body;
 if(cond) {
 Body;
 if(cond) {
 Body;
 while(cond) {
 Body;
 }
 }
 }
 }
 Remainder;
}

unwind one
iteration unwind one

iteration unwind one
iteration…

Loop unwinding
void f(...) {
 ...
 if(cond) {
 Body;
 if(cond) {
 Body;
 if(cond) {
 Body;
 assert(!cond);

 }
 }
 }
 }
 Remainder;
}

unwinding
assertion

unwind one
iteration unwind one

iteration unwind one
iteration…

•  unwinding assertion
§  inserted after last

unwound iteration
§  violated if program runs

longer than bound
permits
⇒  if not violated: (real)

correctness result!

Loop unwinding
void f(...) {
 ...
 for(i=0; i<N; i++) {
 ...
 b[i]=a[i];
 ...
 };
 ...
 for(i=0; i<N; i++) {
 ...
 assert(b[i]-a[i]>0);
 ...
 };
 ...
 Remainder;
}

•  unwinding assertion
§  inserted after last

unwound iteration
§  violated if program runs

longer than bound
permits
⇒  if not violated: (real)

correctness result!
⇒ what about multiple

loops?
§  use --partial-loops to

suppress insertion
⇒ unsound

Safety conditions

•  Built-in safety checks converted into explicit
assertions:
e.g., array safety:

 a[i]=...;
 ⇒ assert(0 <= i && i < N); a[i]=...;

Safety conditions

•  Built-in safety checks converted into explicit
assertions:
e.g., array safety:

 a[i]=...;
 ⇒ assert(0 <= i && i <= N); a[i]=...;

⇒ sometimes easier at intermediate representation

 or formula level
e.g., word-aligned pointer access, overflow, ...

SAT/SMT-based BMC tools for C
High-level architecture:

Parser Static Analysis

CNF-gen Solver

CEX-gen

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF
(bit blasting)

intermediate
program

equations
(path and safety
 conditions)

Transforming straight-line
programs into equations

•  simple if each variable is assigned only once:

•  still simple if variables are assigned multiple times:

 introduce fresh copy for each occurrence
(static single assignment (SSA) form)

x = a;
y = x + 1;
z = y – 1;

program constraints

x = a &&
y = x + 1 &&
z = y – 1

x = a;
x = x + 1;
x = x – 1;

program

x0 = a;
x1 = x0 + 1;
x2 = x1 – 1;

program in SSA-form

But what about control flow branches (if-statements)?

•  for each control flow join point, add a new variable

with guarded assignment as definition
§  also called ϕ-function

if(v)
 x = y;
else
 x = z;

w = x;

if(v0)
 x0 = y0;
else
 x1 = z0;

w1 = ?

introduce & use
new variable

Transforming loop-free programs
into equations

But what about control flow branches (if-statements)?

•  for each control flow join point, add a new variable

with guarded assignment as definition
§  also called ϕ-function

if(v)
 x = y;
else
 x = z;

w = x;

if(v0)
 x0 = y0;
else
 x1 = z0;
x2 = v0 ? x0 : x1;
w1 = x2;

introduce & use
new variable

Transforming loop-free programs
into equations

Bit-blasting
Conversion of equations into SAT problem:
•  simple assignments:
 |[x = y]| ≙ ⋀i xi ⇔ yi

⇒ static analysis must approximate effective bitwidth well

•  ϕ-functions:
 |[x = v ? y : z]| ≙ (v ⇒ |[x = y]|) ⋀ (¬ v ⇒ |[x = z]|)

•  Boolean operations:
 |[x = y | z]| ≙ ⋀i xi ⇔ (yi ⋁ zi)

Exercise: relational operations

effective
bitwidth

Bit-blasting arithmetic operations
Build circuits that implement the operations!

1-bit addition:

Full adder as CNF:

Bit-blasting arithmetic operations
Build circuits that implement the operations!

⇒ adds w variables, 6*w clauses
⇒ multiplication / division much more complicated

Handling arrays
Arrays can be replaced by individual variables,

with a “demux” at each access:

⇒ surprisingly effective (for N<1000) because value

of i can often be determined statically
–  due to constant propagation

int a[10];
...
x = a[i];

int a0, a1, a2, ... a9;
...
x = (i==0 ? a0
 : (i==1 ? a1
 : (i==2 ? a2
 : ...);

Handling arrays with theories
Arrays can be seen as ADT with two operations:
•  read: Array x Index → Element
•  write: Array x Index x Element → Array

“select”

“update”

...
a[i]=a[i]+1;
...

...
a1=write(a0,i,read(a0,i)+1);
...

Handling arrays with theories
Arrays can be seen as ADT with two operations:
•  read: Array x Index → Element
•  write: Array x Index x Element → Array

Axioms describe intended semantics:

⇒ requires support by SMT-solver

“select”

“update”

...
a[i]=a[i]+1;
...

...
a1=write(a0,i,read(a0,i)+1);
...

Handling arrays with λ-terms
How to handle memset and memcpy?
void *memset(void *dst, int c, size_t n);

void *memcpy(void *dst, const void *src, size_t n);

Handling arrays with λ-terms
How to handle memset and memcpy?
void *memset(void *dst, int c, size_t n);

void *memcpy(void *dst, const void *src, size_t n);

...
memcpy(a,b,4);
...

...
a1=write(a0,0,read(b,0));
a2=write(a1,1,read(b,1));
a3=write(a2,2,read(b,2));
a4=write(a3,3,read(b,3));
...

Handling arrays with λ-terms
How to handle memset and memcpy?
void *memset(void *dst, int c, size_t n);

void *memcpy(void *dst, const void *src, size_t n);

•  not scalable for large constants
•  need to encode as loop for non-constant block sizes

§  same problems for normal array-copy operations

...
memcpy(a,b,4);
...

...
a1=write(a0,0,read(b,0));
a2=write(a1,1,read(b,1));
a3=write(a2,2,read(b,2));
a4=write(a3,3,read(b,3));
...

Handling arrays with λ-terms
How to handle memset and memcpy?
void *memset(void *dst, int c, size_t n);

void *memcpy(void *dst, const void *src, size_t n);

•  similar for memset and array-copy loops
•  additional axiom describes intended semantics

⇒ requires integration into SMT-solver

...
a1=λi•(0<=i && i<4) ?
 read(b,i) : read(a0,i));
...

...
memcpy(a,b,4);
...

Abuse of notation

Lambdas, Arrays and Quantifiers

Mathias Preiner, Aina Niemetz, Armin Biere: Better Lemmas
with Lambda Extraction. FMCAD 2015: 128-135

Handling arrays with λ-terms

Stephan Falke, Florian Merz, Carsten Sinz: Extending the Theory of
Arrays: memset, memcpy, and Beyond. VSTTE 2013: 108-128

SAT vs. SMT
BMC tools use both propositional satisfiability (SAT)
and satisfiability modulo theories (SMT) solvers:

SAT vs. SMT
BMC tools use both propositional satisfiability (SAT)
and satisfiability modulo theories (SMT) solvers:
•  SAT solvers require encoding everything in CNF

§  limited support for high-level operations
§  easier to reflect machine-level semantics
§  can be extremely efficient (SMT falls back to SAT)

SAT vs. SMT
BMC tools use both propositional satisfiability (SAT)
and satisfiability modulo theories (SMT) solvers:
•  SAT solvers require encoding everything in CNF

§  limited support for high-level operations
§  easier to reflect machine-level semantics
§  can be extremely efficient (SMT falls back to SAT)

•  SMT solvers support built-in theories
§  equality, free function symbols, arithmetics, arrays,...
§  sometimes even quantifiers
§  very flexible, extensible, front-end easier
§  requires extra effort to enforce precise semantics
§  can be slower

Modeling with non-determinism
Extend C with three modeling features:
•  assert(e): aborts execution when e is false,

no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

Modeling with non-determinism
Extend C with three modeling features:
•  assert(e): aborts execution when e is false,

no-op otherwise

•  nondet_int(): returns non-deterministic int-value

void assert (_Bool b) { if (!b) exit(); }

int nondet_int () { int x; return x; }

Modeling with non-determinism
Extend C with three modeling features:
•  assert(e): aborts execution when e is false,

no-op otherwise

•  nondet_int(): returns non-deterministic int-value

•  assume(e): “ignores” execution when e is false,
no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ; }

Modeling with non-determinism
General approach:
•  use C program to set up structure and deterministic

computations

•  use non-determinism to set up search space
•  use assumptions to constrain search space
•  use failing assertion to start search

int main() {
 int x=nondet_int(),y=nondet_int(),z=nondet_int();
 __ESBMC_assume(x > 0 && y > 0 && z > 0);
 __ESBMC_assume(x < 16384 && y < 16384 && z < 16384);
 assert(x*x + y*y != z*z);
 return 0;
}

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

•  Explain explicit schedule exploration of multi-
threaded software

•  Explain sequentialization methods to convert
concurrent programs into sequential ones

Intended learning outcomes

Concurrency verification
Writing concurrent programs is DIFFICULT

•  programmers have to guarantee
§  correctness of sequential execution

of each individual process

§  with nondeterministic interferences
from other processes (schedules)

communication mechanism

…
P2 PN P1

processes

Concurrency verification
Writing concurrent programs is DIFFICULT

•  programmers have to guarantee
§  correctness of sequential execution

of each individual process

§  with nondeterministic interferences
from other processes (schedules)

•  rare schedules result in errors that are difficult
to find, reproduce, and repair
§  testers can spend weeks chasing a single bug

⇒  huge productivity problem

communication mechanism

…
P2 PN P2

processes

Concurrency verification

Which values can n
actually have?

What happens here...???
int n=0; //shared variable

void* P(void* arg) {
 int tmp, i=1;
 while (i<=10) {
 tmp = n;
 n = tmp + 1;
 i++;
 }
 return NULL;
}

int main (void) {
 pthread_t id1, id2;
 pthread_create(&id1, NULL, P, NULL);
 pthread_create(&id2, NULL, P, NULL);
 pthread_join(id1, NULL);
 pthread_join(id2, NULL);
 assert(n == 20);
}

Concurrency verification
What happens here...???
int n=0; //shared variable

void* P(void* arg) {
 int tmp, i=1;
 while (i<=10) {
 tmp = n;
 n = tmp + 1;
 i++;
 }
 return NULL;
}

int main (void) {
 pthread_t id1, id2;
 pthread_create(&id1, NULL, P, NULL);
 pthread_create(&id2, NULL, P, NULL);
 pthread_join(id1, NULL);
 pthread_join(id2, NULL);
 assert(n == 20);
}

Which values can n
actually have?

$gcc example-2.c -o
example-2
$./example-2
$./example-2
$./example-2
$./example-2
$./example-2
$./example-2
Assertion failed: (n
== 20), function main,
file example-2.c, line
22.

Concurrency verification
What happens here...???
int n=0; //shared variable

void* P(void* arg) {
 int tmp, i=1;
 while (i<=10) {
 tmp = n;
 n = tmp + 1;
 i++;
 }
 return NULL;
}

int main (void) {
 pthread_t id1, id2;
 pthread_create(&id1, NULL, P, NULL);
 pthread_create(&id2, NULL, P, NULL);
 pthread_join(id1, NULL);
 pthread_join(id2, NULL);
 assert(n >= 10 && n <= 20);
}

Concurrency verification
What happens here...???
int n=0; //shared variable
pthread_mutex_t mutex;
void* P(void* arg) {
 int tmp, i=1;
 while (i<=10) {
 pthread_mutex_lock(&mutex);
 tmp = n;
 n = tmp + 1;
 pthread_mutex_unlock(&mutex);
 i++;
 }
 return NULL;
}
int main (void) {
 pthread_t id1, id2;
 pthread_mutex_init(&mutex, NULL);
 pthread_create(&id1, NULL, P, NULL);
 pthread_create(&id2, NULL, P, NULL);
 pthread_join(id1, NULL);
 pthread_join(id2, NULL);
 assert(n == 20);
}

Concurrency errors
There are two main kinds of concurrency errors:
•  progress errors: deadlock, starvation, ...

§  typically caused by wrong synchronization
§  requires modeling of synchronization primitives

o mutex locking / unlocking
§  requires modeling of (global) error condition

Concurrency errors
There are two main kinds of concurrency errors:
•  progress errors: deadlock, starvation, ...

§  typically caused by wrong synchronization
§  requires modeling of synchronization primitives

o mutex locking / unlocking
§  requires modeling of (global) error condition

•  safety errors: assertion violation, ...
§  typically caused by data races (i.e., unsynchronized

access to shared data)
§  requires modeling of synchronization primitives
§  can be checked locally

Concurrency errors
There are two main kinds of concurrency errors:
•  progress errors: deadlock, starvation, ...

§  typically caused by wrong synchronization
§  requires modeling of synchronization primitives

o mutex locking / unlocking
§  requires modeling of (global) error condition

•  safety errors: assertion violation, ...
§  typically caused by data races (i.e., unsynchronized

access to shared data)
§  requires modeling of synchronization primitives
§  can be checked locally

⇒  focus here on safety errors

Shared memory concurrent
programs

Concurrent programming styles:
•  communication via message passing

§  “truly” parallel distributed systems
§  multiple computations advancing simultaneously

Shared memory concurrent
programs

Concurrent programming styles:
•  communication via message passing

§  “truly” parallel distributed systems
§  multiple computations advancing simultaneously

•  communication via shared memory
§  multi-threaded programs
§  only one thread active at any given time (conceptually), but

active thread can be changed at any given time
o  active == uncontested access to shared memory
o  can be single-core or multi-core

Shared memory concurrent
programs

Concurrent programming styles:
•  communication via message passing

§  “truly” parallel distributed systems
§  multiple computations advancing simultaneously

•  communication via shared memory
§  multi-threaded programs
§  only one thread active at any given time (conceptually), but

active thread can be changed at any given time
o  active == uncontested access to shared memory
o  can be single-core or multi-core

⇒  focus here on multi-threaded, shared memory programs

Multi-threaded programs
•  typical C-implementation: pthreads

Multi-threaded programs
•  typical C-implementation: pthreads
•  formed of individual sequential programs (threads)

§  can be created and destroyed on the fly
§  typically for BMC: assume upper bound
§  each possibly with loops and recursive function calls
§  each with local variables

Multi-threaded programs
•  typical C-implementation: pthreads
•  formed of individual sequential programs (threads)

§  can be created and destroyed on the fly
§  typically for BMC: assume upper bound
§  each possibly with loops and recursive function calls
§  each with local variables

•  each thread can read and write shared variables
§  assume sequential consistency: writes are immediately

visible to all the other programs
§  weak memory models can be modeled

Multi-threaded programs
•  typical C-implementation: pthreads
•  formed of individual sequential programs (threads)

§  can be created and destroyed on the fly
§  typically for BMC: assume upper bound
§  each possibly with loops and recursive function calls
§  each with local variables

•  each thread can read and write shared variables
§  assume sequential consistency: writes are immediately

visible to all the other programs
§  weak memory models can be modeled

•  execution is interleaving of thread executions
§  only valid for sequential consistency

Round-robin scheduling
•  context: segment of a run

 of an active thread ti

(l1,s1)

t1

(l1,s3)

t2
(l2,s1)

t3

(l3,s2)

(l4,s2)

(l5,s3)

(l0,s0)

(l3,s4) (l5,s5)

Round-robin scheduling
•  context: segment of a run

 of an active thread ti
•  context switch: change of active

thread from ti to tk
§  global state is passed on to tk
§  context switch back to ti resumes

at old local state (incl. pc)

(l1,s1)

t1

(l1,s3)

t2
(l2,s1)

t3

(l3,s2)

(l4,s2)

(l5,s3)

(l0,s0)

(l3,s4) (l5,s5)

Round-robin scheduling
•  context: segment of a run

 of an active thread ti
•  context switch: change of active

thread from ti to tk
§  global state is passed on to tk
§  context switch back to ti resumes

at old local state (incl. pc)
•  round: formed of one context of

each thread

(l1,s1)

t1

(l1,s3)

t2
(l2,s1)

t3

(l3,s2)

(l4,s2)

(l5,s3)

(l0,s0)

(l3,s4) (l5,s5)

Round-robin scheduling
•  context: segment of a run

 of an active thread ti
•  context switch: change of active

thread from ti to tk
§  global state is passed on to tk
§  context switch back to ti resumes

at old local state (incl. pc)
•  round: formed of one context of

each thread
•  round robin schedule: same order

of threads in each round

(l1,s1)

t1

(l1,s3)

t2
(l2,s1)

t3

(l3,s2)

(l4,s2)

(l5,s3)

(l0,s0)

(l3,s4) (l5,s5)

Round-robin scheduling
•  context: segment of a run

 of an active thread ti
•  context switch: change of active

thread from ti to tk
§  global state is passed on to tk
§  context switch back to ti resumes

at old local state (incl. pc)
•  round: formed of one context of

each thread
•  round robin schedule: same order

of threads in each round
•  can simulate all schedules by round robin schedules

(l1,s1)

t1

(l1,s3)

t2
(l2,s1)

t3

(l3,s2)

(l4,s2)

(l5,s3)

(l0,s0)

(l3,s4) (l5,s5)

Context-bounded analysis
Important observation:

i.e., require only few context switches

⇒ limit the search space by bounding the number of

•  context switches

•  rounds

Most concurrency errors are shallow!

Concurrency verification
approaches

•  Explicit schedule exploration (ESBMC)
§  lazy exploration

§  schedule recording

Concurrency verification
approaches

•  Explicit schedule exploration (ESBMC)
§  lazy exploration

§  schedule recording

•  Partial order methods (CBMC)

Concurrency verification
approaches

•  Explicit schedule exploration (ESBMC)
§  lazy exploration

§  schedule recording

•  Partial order methods (CBMC)
•  Sequentialization

§  KISS

§  Lal / Reps (eager sequentialization)

§  Lazy CSeq

§  memory unwinding

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

•  Explain explicit schedule exploration of multi-
threaded software

•  Explain sequentialization methods to convert
concurrent programs into sequential ones

Intended learning outcomes

BMC of Multi-threaded Software
Idea: iteratively generate all possible interleavings and
 call the BMC procedure on each interleaving

C/C++
source

scan,
parse, and
type-check

verification
conditions

SMT
solver

deadlock, atomicity
and order violations,
etc…

guide the
symbolic
execution

QF formula
generation

check satisfiability
using an SMT solver

stop the generate-and-
test loop if there is an
error

scheduler

multi-threaded
goto
programs

properties

IRep
tree

BMC

symbolic
execution
engine

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Running Example
•  the program has sequences of operations that need to be

protected together to avoid atomicity violation
–  requirement: the region of code (val1 and val2) should execute

atomically

program counter: 0
mutexes: m1=0; m2=0;
global variables: val1=0; val2=0;
local variabes: t1= -1; t2= -1;

A state s ∈ S consists of
the value of the program
counter pc and the values

of all program variables

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements:
val1-access:
val2-access:

program counter: 0
mutexes: m1=0; m2=0;
global variables: val1=0; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1
val1-access:
val2-access:

program counter: 1
mutexes: m1=1; m2=0;
global variables: val1=0; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2
val1-access: WtwoStage,2

val2-access:

write access to the shared
variable val1 in statement 2

of the thread twoStage

program counter: 2
mutexes: m1=1; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3
val1-access: WtwoStage,2

val2-access:

program counter: 3
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7
val1-access: WtwoStage,2

val2-access:

CS1

program counter: 7
mutexes: m1=1; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8
val1-access: WtwoStage,2

 - Rreader,8

val2-access:

read access to the shared
variable val1 in statement 8

of the thread reader

CS1

program counter: 8
mutexes: m1=1; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

val2-access:

CS1

program counter: 11
mutexes: m1=1; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= 1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

val2-access:

CS1

program counter: 12
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= 1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

val2-access:

CS1

program counter: 4
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= 1; t2= -1;

CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

val2-access:

CS1

program counter: 4
mutexes: m1=0; m2=1;
global variables: val1=1; val2=0;
local variabes: t1= 1; t2= -1;

CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5

val2-access: WtwoStage,5

CS1

program counter: 5
mutexes: m1=0; m2=1;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= -1;

CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

CS1

program counter: 6
mutexes: m1=0; m2=0;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= -1;

CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

CS3

CS1

program counter: 13
mutexes: m1=0; m2=0;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= -1;

CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6-13
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

CS1

program counter: 13
mutexes: m1=0; m2=1;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= -1;

CS3
CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6-13-14
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

 - Rreader,14

CS1

program counter: 14
mutexes: m1=0; m2=1;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= 2;

CS3
CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6-13-14-15
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

 - Rreader,14

CS1

program counter: 15
mutexes: m1=0; m2=0;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= 2;

CS3
CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6-13-14-15-16
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

 - Rreader,14

CS1

program counter: 16
mutexes: m1=0; m2=0;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= 2;

CS3
CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving Is
statements: 1-2-3-7-8-11-12-4-5-6-13-14-15-16
val1-access: WtwoStage,2

 - Rreader,8
- Rreader,11

- RtwoStage,5
val2-access: WtwoStage,5

 - Rreader,14

CS1

CS3
CS2

QF formula is unsatisfiable,
i.e., assertion holds

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements:
val1-access:
val2-access:

program counter: 0
mutexes: m1=0; m2=0;
global variables: val1=0; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements: 1-2-3
val1-access: WtwoStage,2

val2-access:

program counter: 3
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements: 1-2-3
val1-access: WtwoStage,2

val2-access:

CS1

program counter: 7
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= -1; t2= -1;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements: 1-2-3-7-8-11-12-13-14-15-16
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11

val2-access: Rreader,14

CS1

program counter: 16
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= 1; t2= 0;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements: 1-2-3-7-8-11-12-13-14-15-16
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11

val2-access: Rreader,14

CS2

CS1

program counter: 4
mutexes: m1=0; m2=0;
global variables: val1=1; val2=0;
local variabes: t1= 1; t2= 0;

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements: 1-2-3-7-8-11-12-13-14-15-16-4-5-6
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11

- RtwoStage,5

val2-access: Rreader,14
- WtwoStage,5

CS1

program counter: 6
mutexes: m1=0; m2=0;
global variables: val1=1; val2=2;
local variabes: t1= 1; t2= 0;

CS2

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

Lazy exploration: interleaving If
statements: 1-2-3-7-8-11-12-13-14-15-16-4-5-6
val1-access: WtwoStage,2

- Rreader,8
- Rreader,11

- RtwoStage,5

val2-access: Rreader,14
- WtwoStage,5

CS1

CS2

QF formula is satisfiable,
i.e., assertion does not hold

Idea: iteratively generate all possible interleavings and
 call the BMC procedure on each interleaving

... combines

•  symbolic model checking: on each individual interleaving

•  explicit state model checking: explore all interleavings

Lazy exploration of interleavings

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

execution paths

expansion rules in paper

interleaving completed, so
call single-threaded BMC

Lazy exploration of interleavings
– Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

CS1

CS2

backtrack to last unexpanded node
and continue

symbolic execution can statically
determine that path is blocked
(encoded in instrumented mutex-op)

Lazy exploration of interleavings
– Reachability Tree

active thread, context bound

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ4: treader,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

υ5: ttwoStage,2,
val1=0, val2=0,
m1=1, m2=0,…

υ6: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

CS1

CS2

Lazy exploration of interleavings
– Reachability Tree

active thread, context bound

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

Exploring the Reachability Tree

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

•  Each node in the RT is a tuple
for a given time step i, where: i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

Exploring the Reachability Tree

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

•  Each node in the RT is a tuple
for a given time step i, where:
–  Ai represents the currently active thread

i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

Exploring the Reachability Tree

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

•  Each node in the RT is a tuple
for a given time step i, where:
–  Ai represents the currently active thread

–  Ci represents the context switch number

i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

Exploring the Reachability Tree

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

•  Each node in the RT is a tuple
for a given time step i, where:
–  Ai represents the currently active thread

–  Ci represents the context switch number

–  si represents the current state

i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

Exploring the Reachability Tree

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

•  Each node in the RT is a tuple
for a given time step i, where:
–  Ai represents the currently active thread

–  Ci represents the context switch number

–  si represents the current state

–  represents the current location of thread j

i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

j
il

Exploring the Reachability Tree

•  Use a reachability tree (RT) to describe reachable
states of a multi-threaded program

•  Each node in the RT is a tuple
for a given time step i, where:
–  Ai represents the currently active thread

–  Ci represents the context switch number

–  si represents the current state

–  represents the current location of thread j

–  represents the control flow guards accumulated in thread j
along the path from to

i

n

j

j
i

j
iiii GlsCA ⎟

⎠
⎞⎜

⎝
⎛=

=1
,,,,υ

j
il
j
iG

jl0
j
il

Exploring the Reachability Tree

R1 (assign): If I is an assignment, we execute I, which
generates si+1. We add as child to υ a new node υ’

•  we have fully expanded υ if

-  I within an atomic block; or
-  I contains no global variable; or
-  the upper bound of context switches (Ci = C) is reached

•  if υ is not fully expanded, for each thread j ≠ Ai where
is enabled in si+1, we thus create a new child node

()
111 ,,,,'
+++=
i

j
i

j
iiii GlsCAυ

11 +=+
ii A

i
A
i ll

j
iG

()
11

' ,,,1,
+++=
i

j
i

j
iiij GlsCjυ

Expansion Rules of the RT

R2 (skip): If I is a skip-statement with target l, we increment
the location of the current thread and continue with it. We
explore no context switches:

()
11,,,,'
++=
i

j
i

j
iiii GlsCAυ ⎪⎩

⎪
⎨
⎧ =+

=+ otherwisel
Ajl

l
j
i

i
j
ij

i :

:1
1

Expansion Rules of the RT

R2 (skip): If I is a skip-statement with target l, we increment
the location of the current thread and continue with it. We
explore no context switches:

R3 (unconditional goto): If I is an unconditional goto-
statement with target l, we set the location of the current
thread and continue with it. We explore no context
switches:

()
11,,,,'
++=
i

j
i

j
iiii GlsCAυ ⎪⎩

⎪
⎨
⎧ =+

=+ otherwisel
Ajl

l
j
i

i
j
ij

i :

:1
1

()
11,,,,'
++=
i

j
i

j
iiii GlsCAυ ⎩

⎨
⎧ =

=+ otherwisel
Ajl

l j
i

ij
i :

:
1

Expansion Rules of the RT

R4 (conditional goto): If I is a conditional goto-statement with
test c and target l, we create two child nodes υ’ and υ’’.
- for υ’ , we assume that c is true and proceed with the target

instruction of the jump:

-  for υ’’, we add ¬c to the guards and continue with the next

instruction in the current thread

-  prune one of the nodes if the condition is determined
statically

()
11,,,,'
++ ∧=
i

j
i

j
iiii GclsCAυ ⎩

⎨
⎧ =

=+ otherwisel
Ajl

l j
i

ij
i :

:
1

()
11,,,,''
++ ∧¬=
i

j
i

j
iiii GclsCAυ ⎪⎩

⎪
⎨
⎧ =+

=+ otherwisel
Ajl

l
j
i

i
j
ij

i :

:1
1

Expansion Rules of the RT

R5 (assume): If I is an assume-statement with argument c,
we proceed similar to R1.
-  we continue with the unchanged state si but add c to all

guards, as described in R4

-  If evaluates to false, we prune the execution path j
iGc ∧

Expansion Rules of the RT

R5 (assume): If I is an assume-statement with argument c,
we proceed similar to R1.
-  we continue with the unchanged state si but add c to all

guards, as described in R4

-  If evaluates to false, we prune the execution path

R6 (assert): If I is an assert-statement with argument c, we
proceed similar to R1.
-  we continue with the unchanged state si but add c to all

guards, as described in R4

-  we generate a verification condition to check the validity of c

j
iGc ∧

Expansion Rules of the RT

R7 (start_thread): If I is a start_thread instruction, we add the
indicated thread to the set of active threads:

-  where is the initial location of the thread and

-  the thread starts with the guards of the currently active thread

1

1

111,,,,'
+

+

=++ ⎟
⎠
⎞⎜

⎝
⎛=

i

n

j

j
i

j
iiii GlsCAυ

1
1
+
+
n
il iA

i
n
i GG =+
+
1
1

Expansion Rules of the RT

R7 (start_thread): If I is a start_thread instruction, we add the
indicated thread to the set of active threads:

-  where is the initial location of the thread and

-  the thread starts with the guards of the currently active thread

R8 (join_thread): If I is a join_thread instruction with
argument Id, we add a child node:

-  where only if the joining thread Id has exited

1

1

111,,,,'
+

+

=++ ⎟
⎠
⎞⎜

⎝
⎛=

i

n

j

j
i

j
iiii GlsCAυ

1
1
+
+
n
il iA

i
n
i GG =+
+
1
1

()
11,,,,'
++=
i

j
i

j
iiii GlsCAυ

11 +=+
iA

i
j
i ll

Expansion Rules of the RT

Lazy exploration of interleavings
•  Main steps of the algorithm:

1.  Initialize the stack with the initial node ν0 and the initial
path π0 = 〈υ0〉
2.  If the stack is empty, terminate with “no error”.
3. Pop the current node υ and current path π off the stack and
compute the set υ’ of successors of υ using rules R1-R8.
4.  If υ’ is empty, derive the VC for π and call the SMT
solver on it. If is satisfiable, terminate with “error”;
otherwise, goto step 2.
5.  If υ’ is not empty, then for each node υ ∈ υ’, add ν to π,
and push node and extended path on the stack. goto step 3.

πϕk
πϕk

() () ()
!propertysconstraint

1100 ,, kkkk ssRssRsI φϕπ ¬∧∧∧∧= −

""""" #""""" $%

…{ }nυυπ …,1=

computation path

bound

•  naïve but useful:
–  bugs usually manifest with few context switches

[Qadeer&Rehof’05]

Observations about the lazy approach

•  naïve but useful:
–  bugs usually manifest with few context switches

[Qadeer&Rehof’05]

–  keep in memory the parent nodes of all unexplored paths only

Observations about the lazy approach

•  naïve but useful:
–  bugs usually manifest with few context switches

[Qadeer&Rehof’05]

–  keep in memory the parent nodes of all unexplored paths only

–  exploit which transitions are enabled in a given state

Observations about the lazy approach

•  naïve but useful:
–  bugs usually manifest with few context switches

[Qadeer&Rehof’05]

–  keep in memory the parent nodes of all unexplored paths only

–  exploit which transitions are enabled in a given state

–  bound the number of preemptions (C) allowed per threads

▹ number of executions: O(nc)

Observations about the lazy approach

•  naïve but useful:
–  bugs usually manifest with few context switches

[Qadeer&Rehof’05]

–  keep in memory the parent nodes of all unexplored paths only

–  exploit which transitions are enabled in a given state

–  bound the number of preemptions (C) allowed per threads

▹ number of executions: O(nc)

–  as each formula corresponds to one possible path only, its size
is relatively small

Observations about the lazy approach

•  naïve but useful:
–  bugs usually manifest with few context switches

[Qadeer&Rehof’05]

–  keep in memory the parent nodes of all unexplored paths only

–  exploit which transitions are enabled in a given state

–  bound the number of preemptions (C) allowed per threads

▹ number of executions: O(nc)

–  as each formula corresponds to one possible path only, its size
is relatively small

•  can suffer performance degradation:
-  in particular for correct programs where we need to invoke the

SMT solver once for each possible execution path

Observations about the lazy approach

•  explore reachability tree in same way as lazy approach
•  ... but call SMT solver only once
•  add a schedule guard tsi for each context switch block i

(0 < tsi ≤ #threads)
§  record in which order the scheduler has executed the program
§  SMT solver determines the order in which threads are simulated

•  add scheduler guards only to effective statements
(assignments and assertions)
§  record effective context switches (ECS)
§  ECS block: sequence of program statements that are executed

with no intervening ECS

Idea: systematically encode all possible interleavings
 into one formula

Schedule Recording

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements:
twoStage-ECS:
reader-ECS:

ECS block

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1
twoStage-ECS: (1,1)

reader-ECS:

ts1 == 1

guarded statement can only be
executed if statement 1 is
scheduled in ECS block 1

each program statement is
then prefixed by a schedule
guard tsi = j, where:
•  i is the ECS block number
•  j is the thread identifier

Schedule Recording – Interleaving #1

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2
twoStage-ECS: (1,1)-(2,2)
reader-ECS:

ts1 == 1
ts2 == 1

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3
twoStage-ECS: (1,1)-(2,2)-(3,3)
reader-ECS:

ts1 == 1

ts3 == 1
ts2 == 1

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7
twoStage-ECS: (1,1)-(2,2)-(3,3)
reader-ECS: (7,4)

CS ts4 == 2 ts1 == 1

ts3 == 1
ts2 == 1

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8
twoStage-ECS: (1,1)-(2,2)-(3,3)
reader-ECS: (7,4)-(8,5)

CS ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11
twoStage-ECS: (1,1)-(2,2)-(3,3)
reader-ECS: (7,4)-(8,5)-(11,6)

CS ts4 == 2

ts6 == 2

ts5 == 2
ts1 == 1

ts3 == 1
ts2 == 1

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12
twoStage-ECS: (1,1)-(2,2)-(3,3)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)

CS

ts7 == 2

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts6 == 2

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)

ts8 == 1

CS

CS

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts7 == 2
ts6 == 2

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4-5
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)

CS

CS
ts8 == 1

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts9 == 1
ts7 == 2
ts6 == 2

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4-5-6
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)

ts10== 1

CS

CS
ts8 == 1

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts9 == 1
ts7 == 2
ts6 == 2

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4-5-6-13
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)

CS

CS ts9 == 1
ts8 == 1

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts10== 1
ts11== 2
ts7 == 2
ts6 == 2

CS

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4-5-6-13-14
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)-(14,12)

ts12== 2

CS

CS ts9 == 1
ts8 == 1

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts10== 1

CS ts11== 2
ts7 == 2
ts6 == 2

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4-5-6-13-14-15
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)-(14,12)-(15,13)

ts13== 2

CS

CS ts9 == 1
ts8 == 1

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts10== 1

CS ts12== 2
ts11== 2
ts7 == 2
ts6 == 2

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-4-5-6-13-14-15-16
twoStage-ECS: (1,1)-(2,2)-(3,3)-(4,8)-(5,9)-(6,10)

reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,11)-(14,12)-(15,13)-(16,14)

ts14== 2

CS

CS ts9 == 1
ts8 == 1

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts10== 1

CS

ts13== 2
ts12== 2
ts11== 2
ts7 == 2
ts6 == 2

interleaving completed, so
build constraints for interleaving
(but do not call SMT solver)

Schedule Recording – Interleaving #1

Thread twoStage
1: lock(m1);
2: val1 = 1;
3: unlock(m1);
4: lock(m2);
5: val2 = val1 + 1;
6: unlock(m2);

Thread reader
7: lock(m1);
8: if (val1 == 0) {
9: unlock(m1);
10: return NULL; }
11: t1 = val1;
12: unlock(m1);
13: lock(m2);
14: t2 = val2;
15: unlock(m2);
16: assert(t2==(t1+1));

statements: 1-2-3-7-8-11-12-13-14-15-16-4-5-6
twoStage-ECS: (1,1)-(2,3)-(3,4)-(4,12)-(5,13)-(6,14)
reader-ECS: (7,4)-(8,5)-(11,6)-(12,7)-(13,8)-(14,9)-(15,10)-(16,11)

CS

CS

ts11== 2
ts10== 2
ts9 == 2

ts13== 1
ts12== 1

ts7 == 2

ts4 == 2
ts5 == 2

ts1 == 1

ts3 == 1
ts2 == 1

ts6 == 2
ts14== 1

ts8 == 2

twoStage, reader

twoStage, reader
ts1==1→lock(m1)

twoStage, reader
ts1==2→lock(m1)

twoStage, reader
ts1==1 ∧ ts2==1

→ val1=1

twoStage, reader
ts1==1 ∧ ts2==2
→ lock(m1)

twoStage, reader
ts1==2 ∧ ts2==1
→ lock(m1)

twoStage, reader
ts1==2 ∧ ts2==2
→ unlock(m1)

CS1

CS2

SMT solver
instantiates ts to

evaluate all possible
interleavings

If the guard of the parent node is
false then the guard of the child
node is false as well

thread
identifiers

program
statement

Schedule Recording: Execution Paths

•  systematically explore the thread interleavings as before, but:
§  add schedule guards to record in which order the scheduler

has executed the program

§  encode all execution paths into one formula

o  bound the number of context switches

o  exploit which transitions are enabled in a given state

•  number of threads and context switches grows very large
quickly, and easily “blow-up” the solver:
-  there is a clear trade-off between usage of time and memory

resources

Observations about the schedule
recoding approach

•  Introduce typical BMC architectures for
verifying software systems

•  Understand communication models and
typical errors when writing concurrent
programs

•  Explain explicit schedule exploration of multi-
threaded software

•  Explain sequentialization methods to convert
concurrent programs into sequential ones

Intended learning outcomes

Sequentialization
Observation:

 Building verification tools for full-fledged concurrent
languages is difficult and expensive...
 … but scalable verification techniques exist for
sequential languages
§  Abstraction techniques
§  SAT/SMT techniques (i.e., bounded model checking)

⇒ How can we leverage these?

Sequentialization
⇒ How can we leverage these?
Sequentialization:

•  replace control non-determinism by data non-determinism
•  P' simulates all computations (within certain bounds) of P
•  source-to-source transformation: T1 ∥ T2 ↝ T ̕1 ; T ̕2

⇒ reuse existing tools (largely) unchanged
⇒ easy to target multiple back-ends
⇒ easy to experiment with different approaches

convert concurrent programs into sequential
programs such that reachability is preserved

KISS: Keep It Simple and Sequential [Quadeer-Wu, PLDI’04]

Under-approximation (subset of interleavings)

Thread creation → function call
§  at context-switches either:

o  the active thread is terminated or
o a not yet scheduled thread is started
 (by calling its main function)

§  when a thread is terminated either:
o  the thread that has called it is resumed (if any) or
o a not yet scheduled thread is started

 A first sequentialization: KISS

(l1,s1)

T1

(l1,s3)

T2
(l2,s1)

T3

(l3,s2)

(l4,s2)

(l5,s3)

Schedule 1:
1. Start T1
2. Start T2
3. Terminate T2
4. start T3
5. terminate T3

6. Resume T1

T1 T2 T3

Schedule 2:
1. start T1
2. start T2
3. start T3
4. terminate T3

5. resume T2
6. terminate T2

7. resume T1

T1 T2 T3

Schedule 3:
1. start T1
2. start T2
3. terminate T2

4. resume T1

5. start T3
6. terminate T3

7. resume T1

KISS schedules

LR sequentialization
•  considers only round-robin schedules

with k rounds

T0 T1 Tn
...

 ...

 ...

 ...

 ...

LR sequentialization
•  considers only round-robin schedules

with k rounds
§  thread → function, run to completion

T0 T1 Tn

...

...

 ...

 ...

 ...

 ...

LR sequentialization
•  considers only round-robin schedules

with k rounds
§  thread → function, run to completion

•  global memory copy for each round
§  scalar → array

T0

S2,0

S0,0

S1,0

Sk,0

T1

S2,1

S0,1

S1,1

Sk,1

Tn

S2,n

S0,n

S1,n

Sk,n

...

...

 ...

 ...

 ...

 ...

LR sequentialization
•  considers only round-robin schedules

with k rounds
§  thread → function, run to completion

•  global memory copy for each round
§  scalar → array

•  context switch → round counter++ T0

S2,0

S0,0

S1,0

Sk,0

T1

S2,1

S0,1

S1,1

Sk,1

Tn

S2,n

S0,n

S1,n

Sk,n

...

...

 ...

 ...

 ...

 ...

LR sequentialization
•  considers only round-robin schedules

with k rounds
§  thread → function, run to completion

•  global memory copy for each round
§  scalar → array

•  context switch → round counter++
•  first thread starts with non-deterministic memory contents

§  other threads continue with content left by predecessor

T0 T1

S2,1

S0,1

S1,1

Sk,1

Tn

...

...

 ...

 ...

 ...

 ...

S2,0

S0,0

S1,0

Sk,0

S2,n

S0,n

S1,n

Sk,n

LR sequentialization
•  considers only round-robin schedules

with k rounds
§  thread → function, run to completion

•  global memory copy for each round
§  scalar → array

•  context switch → round counter++
•  first thread starts with non-deterministic memory contents

§  other threads continue with content left by predecessor
•  checker prunes away inconsistent simulations

§  assume(Sk+1,0 == S k,n);
§  requires second set of memory copies
§  errors can only be checked at end of simulation

o  requires explicit error checks

T0 T1

S2,1

S0,1

S1,1

Sk,1

Tn

...

...

 ...

 ...

 ...

 ...

S2,0

S0,0

S1,0

Sk,0

S2,n

S0,n

S1,n

Sk,n

LR sequentialization - implementation
//shared vars
typeg1 g1; typeg2 g2; …

//thread functions
t(){
 typex1 x1; typex2 x2; …
 stmt1 ;
 stmt2 ;
 …
} …

main(){
 …
}

//shared vars
typeg1 g1[K]; typeg2 g2[K]; …
uint round=0; bool ret=0; //aux vars

// context-switch simulation
cs() {
 unsigned int j; j= nondet();
 assume(round +j < K); round+=j;
 if (round==K-1 && nondet()) ret=1;
}

//thread functions
t(){
 typex1 x1; typex2 x2; …
 cs(); if (ret) return; stmt1[round];
 cs(); if (ret) return; stmt2[round];
 …
} …

main_thread(){
 …
}

main(){ … } //next slide

LR sequentialization - implementation
main(){
 typeg1 _g1[K]; typeg2 _g2[K]; …
									// first thread starts with non-deterministic memory contents
 for (i=1; i<K; i++){
 _g1[i] = g1[i] = nondet();
 _g2[i] = g2[i] = nondet();
 …
 }
 // thread simulations
 t[0] = main_thread;
 round_born[0] = 0; is_created[0] = 1;
 for (i=0; i<N; i++){
 if(is_created[i]){
 ret=0;
 round = round_born[i];
 t[i](); }
 }
 // consistency check
 for (i=0; i<K-1; i++){
 assume(_g1[i+1] == g1[i]);
 assume(_g2[i+1] == g2[i]);
 …
 }
 // error detection
 assert(err == 0); }

•  Corral (SMT-based analysis for Boogie programs)
–  [Lal–Qadeer–Lahiri, CAV’12]

–  [Lal–Qadeer, FSE’14]
•  CSeq (code-to-code translation for C + pthreads)

–  [Fischer–Inverso–Parlato, ASE’13]
•  Rek (for Real-time Embedded Software Systems)

–  [Chaki–Gurfinkel–Strichman, FMCAD’11]

•  Storm: implementation for C programs
–  [Lahiri–Qadeer–Rakamaric, CAV’09]

–  [Rakamaric, ICSE’10]

LR sequentialization - implementation

•  Described typical architectures employed by BMC
tools (e.g., CBMC, ESBMC and LLBMC):
§  language support, built-in safety checks, and non-

deterministic modelling

§ general approach to verify programs, including program
transformations and bit-blasting

Summary

•  Described typical architectures employed by BMC
tools (e.g., CBMC, ESBMC and LLBMC):
§  language support, built-in safety checks, and non-

deterministic modelling

§ general approach to verify programs, including program
transformations and bit-blasting

•  Introduced the difficulties to write concurrent
programs, typical concurrency errors and
communication models

Summary

•  Described typical architectures employed by BMC
tools (e.g., CBMC, ESBMC and LLBMC):
§  language support, built-in safety checks, and non-

deterministic modelling

§ general approach to verify programs, including program
transformations and bit-blasting

•  Introduced the difficulties to write concurrent
programs, typical concurrency errors and
communication models

•  Presented state-of-the-art concurrency verification
approaches, including: explicit schedule
exploration and sequentialization

Summary

