Systems and Software MANCHESTER
Verification Laboratory 1824
The University of Manchester

Detection of Software
Vulnerabilities:
Static Analysis (Part |)

Lucas Cordeiro
Department of Computer Science
lucas.cordeiro@manchester.ac.uk

Static Analysis

* Lucas Cordeiro (Formal Methods Group)

= Jucas.cordeiro@manchester.ac.uk
= Office: 2.28

= Office hours: 15-16 Tuesday, 14-15 Wednesday
* Textbook:
» Model checking (Chapter 14)
» Software model checking. ACM Comput. Surv., 2009

= The Cyber Security Body of Knowledge, 2019
» Software Engineering (Chapters 8, 13)

Motivating Example

* Functionality demanded increased significantly
— Peer reviewing and testing

Motivating Example

* Functionality demanded increased significantly
— Peer reviewing and testing

« Multi-core processors with scalable shared memory /
message passing
— Static and dynamic verification

Motivating Example

* Functionality demanded increased significantly
— Peer reviewing and testing

« Multi-core processors with scalable shared memory /
message passing
— Static and dynamic verification

void *threadA(void *arg) { void *threadB(void *arg) {
lock(&mutex); lock(&mutex);
X++; y++;
if (x == 1) lock(&lock); if (y == 1) lock(&lock);
unlock(&mutex); unlock(&mutex);
lock(&mutex); lock(&mutex);
X==3 Y-=:
if (x == 0) unlock(&lock); if (y == 0) unlock(&lock);
unlock(&mutex); unlock(&mutex);

b b

Motivating Example

* Functionality demanded increased significantly
— Peer reviewing and testing

« Multi-core processors with scalable shared memory /
message passing
— Static and dynamic verification

void *threadA(void *arg) { void *threadB(void *arg) {
lock(&mutex); lock(&mutex);
X++; y++;
if (x == 1) lock(&lock); if (y == 1) lock(&lock);
unlock(&mutex); (CS1) unlock(&mutex);
lock(&mutex); lock(&mutex);
X==3 Y-=:
if (x == 0) unlock(&lock); if (y == 0) unlock(&lock);
unlock(&mutex); unlock(&mutex);

b b

Motivating Example

* Functionality demanded increased significantly

— Peer reviewing and testing

« Multi-core processors with scalable shared memory /

message passing

— Static and dynamic verification

void *threadA(void *arg) {
lock(&mutex);
X++;
iIf (x == 1) lock(&lock);
unlock(&mutex); (CS1)
lock(&mutex);
X--;
iIf (x == 0) unlock(&lock),
unlock(&mutex);

void *threadB(void *arg) {
lock(&mutex);
y++;
if (y == 1) lock(&lock); (CS2)
unlock(&mutex);
lock(&mutex);
Y-=:
if (y == 0) unlock(&lock);
unlock(&mutex);

Motivating Example

* Functionality demanded increased significantly

— Peer reviewing and testing

« Multi-core processors with scalable shared memory /

message passing

— Static and dynamic verification

void *threadA(void *arg) {
lock(&mutex);
X++;
iIf (x == 1) lock(&lock);
unlock(&mutex); (CS1)
lock(&mutex); (CS3)
X==
iIf (x == 0) unlock(&lock),
unlock(&mutex);

void *threadB(void *arg) {

lock(&mutex);

y++;

iIf (y == 1) lock(&lock); (CS2)
unlock(&mutex);
lock(&mutex);

Y-=:

if (y == 0) unlock(&lock);
unlock(&mutex);

Motivating Example

* Functionality demanded increased significantly
— Peer reviewing and testing

« Multi-core processors with scalable shared memory /
message passing
— Static and dynamic verification

void *threadA(void *arg) { ‘ |void *threadB(void *arg) {
lock(&mutex); lock(&mutex);
X++; VL
if (x == 1) lock(&lock): ~o== 1) lock(&lock); (CS2)
unlock(&mutex); (CS1) Deadlock <qck(&mutex);
lock(&mutex); (CS3) ck(&mutex);
X-=; y=4;
if (x == 0) unlock(&lock); if (y == 0) unlock(&lock);

¥

unlock(&mutex); unlock(&mutex);

Intended learning outcomes

* |Introduce software verification and validation

Intended learning outcomes

* |Introduce software verification and validation

* Understand soundness and completeness
concerning detection techniques

Intended learning outcomes

* |Introduce software verification and validation

* Understand soundness and completeness
concerning detection techniques

* Emphasize the difference among static
analysis, testing / simulation, and debugging

Intended learning outcomes

Introduce software verification and validation

Understand soundness and completeness
concerning detection techniques

Emphasize the difference among static
analysis, testing / simulation, and debugging

Explain bounded model checking of software

Intended learning outcomes

Introduce software verification and validation

Understand soundness and completeness
concerning detection techniques

Emphasize the difference among static
analysis, testing / simulation, and debugging

Explain bounded model checking of software

Explain precise memory model for software
verification

Intended learning outcomes

* |Introduce software verification and validation

Verification vs Validation

* Verification: "Are we building the product right?”

= The software should conform to its specification

Verification vs Validation

* Verification: "Are we building the product right?”

= The software should conform to its specification

* Validation: "Are we building the right product?”

= The software should do what the user requires

Verification vs Validation

Verification: "Are we building the product right?”

= The software should conform to its specification

Validation: "Are we building the right product?”

= The software should do what the user requires

Verification and validation must be applied at each
stage in the software process

* The discovery of defects in a system

* The assessment of whether or not the system is usable
in an operational situation

Static and Dynamic Verification

* Software inspections are concerned with the
analysis of the static system representation to
discover problems (static verification)

= Supplement by tool-based document and code analysis

» Code analysis can prove the absence of errors but might
subject to incorrect results

Static and Dynamic Verification

* Software inspections are concerned with the
analysis of the static system representation to
discover problems (static verification)

= Supplement by tool-based document and code analysis

» Code analysis can prove the absence of errors but might
subject to incorrect results

* Software testing is concerned with exercising and
observing product behaviour (dynamic verification)

* The system is executed with test data
= Operational behaviour is observed

= Can reveal the presence of errors NOT their absence

Static and Dynamic Verification

lan Sommerville. Software Engineering
(6th,7th or 8th Edn) Addison Wesley

V & V planning

* Careful planning is required to get the most out of
dynamic and static verification

* Planning should start early in the development
process

* The plan should identify the balance between
static and dynamic verification

V & V planning

* Careful planning is required to get the most out of
dynamic and static verification

* Planning should start early in the development
process

* The plan should identify the balance between
static and dynamic verification

* \VV & V should establish confidence that the software
is fit for purpose

V & V planning

* Careful planning is required to get the most out of
dynamic and static verification

* Planning should start early in the development
process

* The plan should identify the balance between
static and dynamic verification

* \VV & V should establish confidence that the software
is fit for purpose

V & V planning depends on system’s
purpose, user expectations and
marketing environment

The V-model of development

System Detailed
design design

Requirements System
specification specification

System
integration
test plan

Sub-system Module and
integration unit code
test plan and tess

Acceptance
test plan

Acceptance System Sub-system
test integration test integration test

lan Sommerville. Software Engineering
(6th,7th or 8th Edn) Addison Wesley

Intended learning outcomes

* Understand soundness and completeness
concerning detection techniques

Detection of Vulnerabilities

* Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

Detection of Vulnerabilities

* Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

* Trade-off between soundness and completeness

Detection of Vulnerabilities

* Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

* Trade-off between soundness and completeness

= Adetection technique is sound for a given category if it can
correctly conclude that a given program has no vulnerabilities

o An unsound detection technique may have false negatives, i.e.,
actual vulnerabilities that the detection technique fails to find

Detection of Vulnerabilities

* Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

* Trade-off between soundness and completeness

= Adetection technique is sound for a given category if it can
correctly conclude that a given program has no vulnerabilities

o An unsound detection technique may have false negatives, i.e.,
actual vulnerabilities that the detection technique fails to find

» A detection technique is complete for a given category, if
any vulnerability it finds is an actual vulnerability

o An incomplete detection technique may have false positives, i.e., it
may detect issues that do not turn out to be actual vulnerabilities

Detection of Vulnerabilities

* Achieving soundness requires reasoning about all
executions of a program (usually an infinite number)

* This can be done by static checking of the program code
while making suitable abstractions of the executions

Detection of Vulnerabilities

* Achieving soundness requires reasoning about all
executions of a program (usually an infinite number)

* This can be done by static checking of the program code
while making suitable abstractions of the executions

* Achieving completeness can be done by performing
actual, concrete executions of a program that are
witnesses to any vulnerabillity reported

* The analysis technique has to come up with concrete inputs
for the program that triggers a vulnerability

= Atypical dynamic approach is software testing: the tester
writes test cases with concrete inputs and specific checks for

the outputs

Detection of Vulnerabilities

Detection tools can use a hybrid
combination of static and dynamic
analysis techniques to achieve a good
trade-off between soundness and
completeness

Detection of Vulnerabilities

Detection tools can use a hybrid
combination of static and dynamic
analysis techniques to achieve a good
trade-off between soundness and
completeness

Dynamic verification should be used in
conjunction with static verification to
provide full code coverage

Intended learning outcomes

* Emphasize the difference among static
analysis, testing / simulation, and debugging

Static analysis vs Testing/
Simulation

Simulation/ »
» testing » error

* Checks only some of the system executions
= May miss errors

* A successful execution is an execution that
discovers one or more errors

Static analysis vs Testing/

Simulation
@ Model
Checking Error trace
Specn‘/cat/on Line 5: ...
Line 12: ...
Line 41:...

* Exhaustively explores all executions
* Report errors as traces
* May produce incorrect results

Avoiding state space
explosion

* Bounded Model Checking (BMC)
* Breadth-first search (BFS) approach

* Symbolic Execution
= Depth-first search (DFS) approach

Bounded Model Checking

A graph G = (V, E) consists of:
* V: a set of vertices or nodes
« EC V xV: setof edges connecting the nodes

= X
Il Il

~\

=X
I

~ X X =
I I I

* Bounded model
checkers explore the
state space in depth

S

2

3 \2 b ;B‘ * Can only prove

4 \ %’? / correctness if all states
> é g éB are reachable within

° the bound

Breadth-First Search (BFS)

BF'S (G, s)

01
02
03
04

for each vertex u € V[G]-{s} // anchor (s)
colour[u] < white // u colour
dlu] < // s distance
n[u] < NIL // u predecessor

05
06
07
08

colour[s] < grey
d[s] < O

w[s] < NIL
engueue (Q, s)

Initialization of
graph nodes

Initializes the
anchor node (s)

Visit each adjacent
node of u

BFS Example

or

BFS Example

or

BFS Example

BFS Example

BFS Example

BFS Example

BFS Example

BFS Example

Symbolic Execution

* Symbolic execution
explores all paths
individually

* Can only prove
correctness if all paths
are explored

Depth-first search (DFS)

do if color[u] = WHITE
then DFS-VISIT(u)

DES-VISIT (1)

DFS(G) | | |
1 for each vertex u € V[G] Paint all vertices white and

2 do color{u] < WHITE initialize the fields s with NIL
3 m[u] < NIL

4 time < 0 where x [u] represents the

5 for each vertex u € V[G] predecessor of u

6

7

1 color[u] < GRAY > White vertex u has just been discovered.
2 time < time +1

3 dlu] <« time

4 for each v € Adjlu] > Explore edge (u, v).

5 do if color|v] = WHITE

6 then 7|v] < u

7 DFS-VisiT(v)

8 color[u] < BLACK > Blacken u; it is finished.

9 flu) < time « time +1

DFS Example

or

DFS Example

o

DFS Example

or

DFS Example

o

DFS Example

£

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

2/9

DFS Example

1/14

3/8

V&V and debugging

* V &V and debugging are distinct processes

V&V and debugging

* V &V and debugging are distinct processes

* V & V is concerned with establishing the absence or
existence of defects in a program, resp.

V&V and debugging

* V &V and debugging are distinct processes

* V & V is concerned with establishing the absence or
existence of defects in a program, resp.

* Debugging is concerned with two main tasks
* Locating and

= Repairing these errors

V&V and debugging

V & V and debugging are distinct processes

V & V is concerned with establishing the absence or
existence of defects in a program, resp.

Debugging is concerned with two main tasks

* Locating and

= Repairing these errors

Debugging involves

*» Formulating a hypothesis about program behaviour

» Test these hypotheses to find the system error

The debugging process

= Specification oSy
results cases
Locate Design Repair Re-test

error error repair error program

lan Sommerville. Software Engineering
(6th,7th or 8th Edn) Addison Wesley

Intended learning outcomes

* Explain bounded model checking of software

Circuit Satisfiability

* A Boolean formula contains

= Variables whose values are 0 or 1

* A Boolean formula contains

= Variables whose values are 0 or 1

Circuit Satisfiability

= Connectives: A (AND), V (OR), and = (NOT)

X —

y —

X

‘?

XAy

0 O

0

I 0

1

1

I

0
0
0

Xy

y '

XV y

0 O
0 1
1 0
11

0

Circuit Satisfiability

* A Boolean formula contains

= Variables whose values are 0 or 1

= Connectives: A (AND), V (OR), and = (NOT)

X —
X Z <
y —

X | —x X y|lxAYy

0 1 0 O 0
1 0 0 1 0
I 0 0
| 1

X y

y '

XV y

0 O
0 1
1 0
11

0
I
I
1

* A Boolean formula is SAT if there exists some
assignment to its variables that evaluates it to 1

Circuit Satisfiability

* A Boolean combinational circuit consists of
one or more Boolean combinational elements
iInterconnected by wires

1
0 L

1 1
1 1

SAT: <x,=1,x,=1, x3=0>

oYV

Circuit-Satisfiability Problem

* Given a Boolean combinational circuit of
AND, OR, and NOT gates, is it satisfiable?

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

Circuit-Satisfiability Problem

* Given a Boolean combinational circuit of
AND, OR, and NOT gates, is it satisfiable?

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

= Size: number of Boolean combinational elements
plus the number of wires

o if the circuit has k inputs, then we would have to check up to
2k possible assignments

Circuit-Satisfiability Problem

* Given a Boolean combinational circuit of
AND, OR, and NOT gates, is it satisfiable?

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

= Size: number of Boolean combinational elements
plus the number of wires

o if the circuit has k inputs, then we would have to check up to
2k possible assignments

* When the size of C is polynomial in k, checking
each one takes Q(2k)

0 Super-polynomial in the size of k

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

= Example:

0 @ = ((X1 =Xp) v = ((=X1 <> X3) V X4)) A=X,

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

= Example:
0 @ =((X4 =X;) v = ((=X1 <> X3) V X4)) A=X,

o Assignment: <x, =0, x,=0, x3=1, x,= 1>

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

= Example:
0 ® = ((X; =X;) v =((=Xq = X3) V X4)) A=X;
o Assignment: <x, =0, x,=0, x3=1, x,= 1>
0P=((0—=0)v -=((-0<1)v 1)) a-0

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

= Example:
0 ® = ((X; =X;) v =((=Xq = X3) V X4)) A=X;
o Assignment: <x, =0, x,=0, x3=1, x,= 1>
0P=((0—=0)v -=((-0<1)v 1)) a-0
od=(1v-=(1v1)) a1l

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

= Example:
0 ® = ((X; =X;) v =((=Xq = X3) V X4)) A=X;
o Assignment: <x, =0, x,=0, x3=1, x,= 1>
o0P=((0—=0)v-=((-0<1)v1))a-0
od=(1v-=(1v1)) a1l
o0dP=(1v0)a1

Formula Satisfiability (SAT)

* The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<®>:] is a satisfiable Boolean formula}

= Example:
0 ® = ((X; =X;) v =((=Xq = X3) V X4)) A=X;
o Assignment: <x, =0, x,=0, x3=1, x,= 1>
0P=((0—=0)v -=((-0<1)v 1)) a-0
od=(1v-=(1v1)) a1l
o0dP=(1v0)a1
od=1

DPLL satisfiability solving

Given a Boolean formula ¢ in clausal form (an AND of ORs)
{{a, b}, {7a, b}, {a,7b}, {ma,7b}}

determine whether a satisfying assignment of variables to
truth values exists.

DPLL satisfiability solving

Given a Boolean formula ¢ in clausal form (an AND of ORs)
{{a, b}, {ma, b}, {a,7b}, {ma,7b}}

determine whether a satisfying assignment of variables to

truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:

1.1f @ = @ then SAT
D e ot UNSAT {{a, b}, {~a, b}, {a, b}
3' L1 € ¢ then a HfalyyH true
Af @ =¢’ U {x} then DPLL(¢@’[x = true])
If @ =@ U {~x} then DPLL(@’[x - false]) (1P} {0} {{b}}
4. Pick arbitrary x and return b ~ false b ~ true Ib ~ true

DPLL(¢[x ~ false]) V DPLL(g[x ~ truel) s 7 o

DPLL satisfiability solving

Given a Boolean formula ¢ in clausal form (an AND of ORs)

{{a, b}, {a, b}, {a,~b}, {a,7b}}

determine whether a satisfying assignment of variables to
truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:

1.
2.

3.
4.

If @ =2 then SAT _
If ¢ =@ U {x} then DPLL(¢’[x ~ true]) . N
If @ = ¢ U {x} then DPLL(¢’[x - false]) (P} { 7P/ {{b}}

Pick arbitrary x and return b ~ false b ~ true Ib ~ true
DPLL(¢q[x ~ false]) V DPLL(@[x + true]) {7

NP-complete but many heuristics and optimizations
can handle problems with 100,000’s of variables

a

SAT solving as enabling technology

SAT/SMT Solver Research Story
A 1000x Improvement

¢ Solverdased programening inguages
* Compler opumizations using solvers
* Solvendased dedugpers

* Solverdased type systems

1,000,000 Constraints

100,000 Constraints

10,000 Constraints

1,000 Constraints
1998 2001 2004 2007 2010

CPU Time (s)

800

600

400

200

SAT Competition

|

1

¢

SATzilla2012 APP
SATzilla2012 ALL
Industrial SAT Solver
lingeling (SC11 Bronze)
interactSAT

glucose

SINN

ZENN

Lingeling

linge_dyphase

simpsat

glueminisat (SC11 Silver)
glucose (SC11 Gold)
CryptoMiniSat (REF.)
minisat (REF.)

+

EEARR

bt

0 100

number of solved instances

400

500

Bounded Model Checking (BMC)

MC: check if a property holds for all states

-

Bounded Model Checking (BMC)

MC: check if a property holds for all states

BMC: check if a property holds for a subset of
states

*
.
.
.
.
.

Bounded Model Checking (BMC)

— 0K

., fail

Bounded Model Checking (BMC)

RoRe | BB fa
—s fall
ERROR? : “never” happens
............................... in practice
BMC B P TE /
: k+1 still tractable completeness -
.], | threshold reached; >Ok
1 IS THERE no :
M, S s ANY i k+1 intractable - bound
- | ERROR yes — fail
IN k -'
STEPS?

Bounded Model Checking

Basic Idea: check negation of given property up to given depth

transition

vV @

_>O

M,

-

Qo v Q1 v Qv @y

O 40, »O ... O—
- My M, M, M4
_counterexample trace.))

__.-- property

"~ bound

Bounded Model Checking

Basic Idea: check negation of given property up to given depth

transition

vV @

_>O

M,

-

4)
Qo v Q1 v Qv @y
O » O »O ... O—

- My M, M, M4

_counterexample trace.))

 transition system M unrolled k times

— for programs: unroll loops, unfold arrays, ...

__.-- property

"~ bound

Bounded Model Checking

Basic Idea: check negation of given property up to given depth

vV @

_>O

M,

-

4)

@ v @1 v Qo v Qg
transition © " O O e O
system [Mo M, M, M4
_counterexample trace.))

 transition system M unrolled k times

— for programs: unroll loops, unfold arrays, ...

 translated into verification condition 1y such that

__.-- property

"~ bound

1 satisfiable iff ¢ has counterexample of max. depth k

Bounded Model Checking

Basic Idea: check negation of given property up to given depth

g) .- property
Qo Vv Q1 v Qo v Qg | V@
transition O >O >0 ... O——0O
system [Mo M, M, M, Me..
_counterexample trace.)) bound

 transition system M unrolled k times
— for programs: unroll loops, unfold arrays, ...
 translated into verification condition 1y such that
1 satisfiable iff ¢ has counterexample of max. depth k

* has been applied successfully to verify HW/SW systems

Satisfiability Modulo Theories (1)

SMT decides the satisfiability of first-order logic
formulae using the combination of different background

theories (building-in operators)

Satisfiability Modulo Theories (1)

SMT decides the satisfiability of first-order logic
formulae using the combination of different background

theories (building-in operators)

Theory Example

Equality X1=Xy A = (X4=X3) = —(X4=X3)

Satisfiability Modulo Theories (1)

SMT decides the satisfiability of first-order logic
formulae using the combination of different background

theories (building-in operators)

Theory Example

Equality X1=Xy A = (X4=X3) = —(X4=X3)

Bit-vectors (b>>i)&1="1

Satisfiability Modulo Theories (1)

SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example

Equality X4=Xo A = (X4=X3) = —(X4=X3)
Bit-vectors (b>>i)&1=1

Linear arithmetic (4y, + 3y, =4) v (Y, — 3y; < 3)

Satisfiability Modulo Theories (1)

SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example
Equality X1=Xy A = (X4=X3) = —(X4=X3)
Bit-vectors (b>>i)&1=1

Linear arithmetic (4y, + 3y, =4) v (Y, — 3y; < 3)
Arrays (j = k A a[k]=2) = a[j]=2

Satisfiability Modulo Theories (1)

SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example
Equality X1=Xy A = (X4=X3) = —(X4=X3)
Bit-vectors (b>>i)&1=1

Linear arithmetic (4y, + 3y, =4) v (Y, — 3y; < 3)
Arrays (j = k A a[k]=2) = a[j]=2
Combined theories |(j=k A a[j]=2) = a[i] <3

Satisfiability Modulo Theories (2)

* Given
= adecidable Y-theory T
» a quantifier-free formula o

@ is T-satisfiable iff T U {¢} Is satisfiable, i.e., there exists a
structure that satisfies both formula and sentences of T

Satisfiability Modulo Theories (2)

* Given
= adecidable Y-theory T
» a quantifier-free formula o
@ is T-satisfiable iff T U {¢} Is satisfiable, i.e., there exists a
structure that satisfies both formula and sentences of T
* Given
» asetI' U {g} of first-order formulae over T

@ is a T-consequence of I" (I' k7 @) iff every model of TU T’
IS also a model of ¢

Satisfiability Modulo Theories (2)

* Given
= adecidable Y-theory T
» a quantifier-free formula o

@ is T-satisfiable iff T U {¢} Is satisfiable, i.e., there exists a
structure that satisfies both formula and sentences of T

* Given
» asetI' U {g} of first-order formulae over T

@ is a T-consequence of I" (I' k7 @) iff every model of TU T’
IS also a model of ¢

* Checking I' £ @ can be reduced in the usual way to
checking the T-satisfiability of I' U {7}

Satisfiability Modulo Theories (3)

« leta be an array, b, ¢ and d be signed bit-vectors of width
16, 32 and 32 respectively, and let g be an unary function.

Satisfiability Modulo Theories (3)

« leta be an array, b, ¢ and d be signed bit-vectors of width
16, 32 and 32 respectively, and let g be an unary function.

g(select(store(a, c,l 2)), Si gnExt(b,l 6) + 3)
= g(SignExt(b,16)— Cc+ 4) A SignExt(b,16) =c—3Ac+1l=d -4

Satisfiability Modulo Theories (3)

« leta be an array, b, ¢ and d be signed bit-vectors of width
16, 32 and 32 respectively, and let g be an unary function.

g(select(store(a, c,l 2)), Si gnExt(b,l 6) + 3)
= g(SignExt(b,16)—c + 4) A SignExt(b,16) =c—3Ac+1=d-4

b' extends b to the signed equivalent bit-vector of size 32

step1: g(select(store(a, c,] 2), b'+3)) = g(b'—c + 4) Ab'=c-3Ac+]1=d-4

Satisfiability Modulo Theories (3)

« leta be an array, b, ¢ and d be signed bit-vectors of width
16, 32 and 32 respectively, and let g be an unary function.

g(select(store(a ,C,12)), Sign Ext (b,l 6) + 3)
o~ g(SignExt(b,16)— Cc+ 4) A SignExt(b,16) =c—3Ac+1=d-4

b' extends b to the signed equivalent bit-vector of size 32
step1: g(select(store(a, c,1 2), b'+3)) = g(b'—c + 4) Ab'=c-3Ac+]1=d-4
replace b' by c-3 in the inequality
step2:g(select(store(a,c,lZ),c—3+3))== g(c—3—c+4)/\c—3 =c-3Ac+l=d-4

Satisfiability Modulo Theories (3)

« leta be an array, b, ¢ and d be signed bit-vectors of width
16, 32 and 32 respectively, and let g be an unary function.

g(select(store(a ,C,12)), Sign Ext (b,l 6) + 3)
o~ g(SignExt(b,16)— Cc+ 4) A SignExt(b,16) =c—3Ac+1=d-4

b' extends b to the signed equivalent bit-vector of size 32
step1: g(select(store(a, c,l 2), b'+3)) = g(b‘—c + 4) Ab'=c-3Ac+]1=d-4
replace b' by c-3 in the inequality
step2:g(select(store(a,c,lZ),c—3+3))== g(c—3—c+4)/\c—3 =c-3Ac+l=d-4
using facts about bit-vector arithmetic

step3: g(select(store(a, cl 2), c)) = g(l)/\ c-3=c-3Ac+l=d-4

Satisfiability Modulo Theories (4)

step 3: g(Select(Store(a, c,l 2), c)) = g(l) ANc-3=c-3Ac+]1=d-4

Satisfiability Modulo Theories (4)

step 3: g(Select(store(a, c,l 2), c)) = g(l) ANc-3=c-3Ac+]1=d-4
applying the theory of arrays

Sl‘€p42g(12);ﬁ g(l)/\c—3/\c+1=d—4

Satisfiability Modulo Theories (4)

step 3: g(select(store(a, c,l 2), c)) = g(l) Ac-3=c-3Anc+l=d-4
applying the theory of arrays

Sl‘€p42g(12);ﬁ g(l)/\c—3/\c+1=d—4

The function g implies that for all x and vy,
if x =y, then g (x) = g (y) (congruence rule).

step 5:SAT (c=5,d=10)

Satisfiability Modulo Theories (4)

step 3: g(Select(Store(a, c,l 2), c)) = g(l) Ac-3=c-3Anc+l=d-4
applying the theory of arrays

Sl‘€p42g(12);ﬁ g(l)/\c—3/\c+1=d—4

The function g implies that for all x and vy,
if x =y, then g (x) = g (y) (congruence rule).

step 5:SAT (c=5,d=10)

« SMT solvers also apply:
— standard algebraic reduction rules |ra falset false

— contextual simplification a=T7npla)>a=7n p(7)

BMC of Software

* program modelled as state transition system int main() {
— state: program counter and program variables int a2}, I, X;

if (x==0)
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes el:;.,. 27=1;
« program unfolded up to given bounds assert(a[i+1]==1);
— loop iterations /
— context switches ﬂ
« unfolded program optimized to reduce blow-up
— constant propagation | [e |
— forward substitutions } crucial ' '—l

BMC of Software

program modelled as state transition system int main() {

_ - intal2], i, x;
— state: program counter and program variables ¢, -5,

— derived from control-flow graph a[i]=0;

— checked safety properties give extra nodes e;s[‘f+ 27=1:

program unfolded up to given bounds assert(a[i+1]==1);

— loop iterations /

— context switches ﬂ

unfolded program optimized to reduce blow-up

— constant propagation , g, =x,==0

— forward substitutions } crucial 21 7 %0 WITH [1o:=0]

front-end converts unrolled and ai = a, WITH [2+ip:=1]
a;=9g;?a;.as

optimized program into SSA £ = a, [1+4i] —=

BMC of Software

program modelled as state transition system int main() {
— state: program counter and program variables int a[2], I, x;

if (x==0)

— derived from control-flow graph a[i]=0;

— checked safety properties give extra nodes e;s[‘f+ 27=1;
program unfolded up to given bounds assert(a[i+1]==1);
— loop iterations /

— context switches ﬂ
unfolded program optimized to reduce blow-up

— constant propagation | ORI
— forward substitutions } crucial Colrama, |
front-end converts unrolled and _2:}lff:(rgel(fl;’,za;(”l)_
optimized program into SSA iy =0y <2
extraction of constraints C and properties P~ »=|"; =)/~
— specific to selected SMT solver, uses theories | select(ai, +1)=1

satisfiability check of C A 7P

Encoding of Numeric Types

« SMT solvers typically provide different encodings for
numbers:

— abstract domains (Z, R)

— fixed-width bit vectors (unsigned 1int, ...)
> “internalized bit-blasting”

Encoding of Numeric Types

« SMT solvers typically provide different encodings for
numbers:

— abstract domains (Z, R)

— fixed-width bit vectors (unsigned 1int, ...)
> “internalized bit-blasting”

« verification results can depend on encodings

(@>0)A(b>0)=(a+b>0)

Encoding of Numeric Types

« SMT solvers typically provide different encodings for

numbers:
— abstract domains (Z, R)

— fixed-width bit vectors (unsigned 1int, ...)

> “internalized bit-blasting”

« verification results can depend on encodings

(@>0)A(b>0)=(a+b>0) *"

*~.._ doesn’t hold for bitvectors,

valid in abstract domains

“suchasZ orR

due to possible overflows

Encoding of Numeric Types

« SMT solvers typically provide different encodings for
numbers:

— abstract domains (Z, R)

— fixed-width bit vectors (unsigned 1int, ...)
> “internalized bit-blasting”

« verification results can depend on encodings

valid in abstract domains
-~ suchas Z.or R

@>0)A(b>0)=>(@+b>0)
"-.._doesn’t hold for bitvectors,
due to possible overflows

— majority of VCs solved faster if numeric types are modelled
by abstract domains but possible loss of precision

— ESBMC supports both types of encoding and also combines
them to improve scalability and precision

Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle
* type casts and implicit conversions

= arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, ...)
o different conversions for every pair of types
o uses type information provided by front-end

Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle
* type casts and implicit conversions
= arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, ...)
o different conversions for every pair of types
o uses type information provided by front-end

= conversion to / from bool via if-then-else operator
t = ite(v = k, true, false) //conversion to bool
v =ite(t, 1, 0) //conversion from bool

Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle
* type casts and implicit conversions

= arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, ...)
o different conversions for every pair of types
o uses type information provided by front-end

= conversion to / from bool via if-then-else operator
t = ite(v = k, true, false) //conversion to bool
v =ite(t, 1, 0) //conversion from bool

* arithmetic over- / underflow

» standard requires modulo-arithmetic for unsigned integer
unsigned_overflow < (r — (r mod 2%)) < 2%

Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle
* type casts and implicit conversions

= arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, ...)
o different conversions for every pair of types
o uses type information provided by front-end

= conversion to / from bool via if-then-else operator
t = ite(v = k, true, false) //conversion to bool
v =ite(t, 1, 0) //conversion from bool

* arithmetic over- / underflow

» standard requires modulo-arithmetic for unsigned integer
unsigned_overflow < (r — (r mod 2%)) < 2%

= define error literals to detect over- / underflow for other types
res_op © 7 overflow(x, y) A 7 underflow(x, y)
o similar to conversions

Floating-Point Numbers

« Over-approximate floating-point by fixed-point numbers
— encode the integral (i) and fractional (f) parts

Floating-Point Numbers

« Over-approximate floating-point by fixed-point numbers
— encode the integral (i) and fractional (f) parts

* Binary encoding: get a new bit-vector b =i @ f with the
same bitwidth before and after the radix point of a.

—

Extract(b, n, + m_,— 1, n,) Dom,s=m, // m = number of

| SignExt(Extract(b, t,— 1, ny), m,—my) : otherwise bits of i
f= Extract(b, n, — 1, n,— ny) . n, =n, // n = number of
| Extract(b, n,, 0) @ SignExt(b, n,-n,) : otherwise bits of ¥

Floating-Point Numbers

« Over-approximate floating-point by fixed-point numbers
— encode the integral (i) and fractional (f) parts

* Binary encoding: get a new bit-vector b =i @ f with the
same bitwidth before and after the radix point of a.

—

Extract(b, n, + my =1, ny) . Mg=m, //m=number of
i= 7 o
| SignExt(Extract(b, t,— 1, n,), m,—m,) : otherwise bits of |

f= Extract(b, n, — 1, n,— ny) . n, =n, // n = number of
| Extract(b, n,, 0) @ SignExt(b, n,-n,) : otherwise bits of ¥

* Rational encoding: convert a to a rational number

(z‘ * D+ (/ 2*np + 1)) // p = number of decimal places
a = f = ()
p
i @ otherwise

Floating-point SMT Encoding

* The SMT floating-point theory is an addition to the
SMT standard, proposed in 2010 and formalises:

» Floating-point arithmetic

Floating-point SMT Encoding

* The SMT floating-point theory is an addition to the
SMT standard, proposed in 2010 and formalises:

» Floating-point arithmetic

» Positive and negative infinities and zeroes

Floating-point SMT Encoding

* The SMT floating-point theory is an addition to the
SMT standard, proposed in 2010 and formalises:

» Floating-point arithmetic

» Positive and negative infinities and zeroes
= NaNs

Floating-point SMT Encoding

* The SMT floating-point theory is an addition to the
SMT standard, proposed in 2010 and formalises:

» Floating-point arithmetic

» Positive and negative infinities and zeroes
= NaNs

= Comparison operators

Floating-point SMT Encoding

* The SMT floating-point theory is an addition to the
SMT standard, proposed in 2010 and formalises:

» Floating-point arithmetic
» Positive and negative infinities and zeroes

= NaNs
= Comparison operators

* Five rounding modes: round nearest with ties
choosing the even value, round nearest with ties
choosing away from zero, round towards zero, round
towards positive infinity and round towards negative
infinity

Floating-point SMT Encoding

* Missing from the standard:
* Floating-point exceptions
= Signaling NaNs

Floating-point SMT Encoding

* Missing from the standard:
* Floating-point exceptions
= Signaling NaNs
* Two solvers currently support the standard:
= /Z3: implements all operators
» MathSAT: implements all but two operators

o fp.rem: remainder: X - y * n, where n in Z is nearest to x/y
o fp.fma: fused multiplication and addition; (x *y) + z

Floating-point SMT Encoding

* Missing from the standard:
* Floating-point exceptions
= Signaling NaNs
* Two solvers currently support the standard:
= /Z3: implements all operators
» MathSAT: implements all but two operators

o fp.rem: remainder: X - y * n, where n in Z is nearest to x/y
o fp.fma: fused multiplication and addition; (x *y) + z

* Both solvers offer non-standard functions:

* fp_as ieeebv: converts floating-point to bitvectors
» fp _from ieeebv: converts bitvectors to floating-point

How to encode Floating-point
programs?

* Most operations performed at program-level to encode
FP numbers have a one-to-one conversion to SMT

* Special cases being casts to int main ()
boolean types and the fp.eq { I
_bool c;
operator
= Usually, cast operations are double b = 0.0f;
encoded using extend/extract b= c;
. assert(b != 0.0f);
operation
» Extending floating-point numbers c = b;
is non-trivial because of the assert(c != 0);

format }

Cast to/from booleans

* Simpler solutions:

» Casting booleans to floating-point numbers can be
done using an ite operator

(assert (= (ite |main::c|
(fp #b0 #b01111111111 #x0000000000000)
(fp #b0 #b00000000000 #x0000000000000))

|lmain: :bl))

Cast to/from booleans

* Simpler solutions:

» Casting booleans to floating-point numbers can be
done using an ite operator
If true, assign 1fto b

(assert (= (ite |main::c| l/
(fp #b0 #b01111111111 #x0000000000000)
(fp #bO #b0O0O000000000 #x0000000000000))
|main::bl))

Cast to/from booleans

* Simpler solutions:

» Casting booleans to floating-point numbers can be
done using an ite operator

(assert (= (ite |main::c|
(fp #b0 #b01111111111 #x0000000000000)
(fp #b0 #b00000000000 #x0000000000000))

|lmain::bl)) T

Otherwise, assign Of to b

Cast to/from booleans

* Simpler solutions:

» Casting floating-point numbers to booleans can be
done using an equality and one not:

(assert (= (not (fp.eq |main::b|
(fp #b0 #b00000000000 #x0000000000000)))
lmain::cl))

:note

"(fp.eq x y) evaluates to true if x evaluates to -zero and y

to +zero, or vice versa. fp.eq and all the other comparison op-
erators evaluate to false if one of their arguments is NaN."

Cast to/from booleans

* Simpler solutions:

» Casting floating-point numbers to booleans can be

done using an equality and one not:
true when the

(assert (= (not (fp.eq Imain::b| / floating is not 0.0
[fp #b0 #b00000000000 #x0000000000000))
|lmain::c|))

:note

"(fp.eq x y) evaluates to true if x evaluates to -zero and y

to +zero, or vice versa. fp.eq and all the other comparison op-
erators evaluate to false if one of their arguments is NaN."

Cast to/from booleans

* Simpler solutions:

» Casting floating-point numbers to booleans can be
done using an equality and one not:

(assert (= (not (fp.eq |main::b|
{fp #b0 #b00000000000 #x0000000000000))’
lmain::cl))

™~ otherwise, the result is

note false

"(fp.eq x y) evaluates to true if x evaluates to -zero and y
to +zero, or vice versa. fp.eq and all the other comparison op-
erators evaluate to false if one of their arguments is NaN."

Cast to/from booleans

* Simpler solutions:

» Casting floating-point numbers to booleans can be
done using an equality and one not:

(assert (= (not (fp.eq |main::b|
(fp #b0 #b00000000000 #x0000000000000)))
lmain::cl))

:note

"(fp.eq x y) evaluates to true if x evaluates to -zero and y

to +zero, or vice versa. fp.eq and all the other comparison op-
erators evaluate to false if one of their arguments is NaN."

Floating-point Encoding:
lllustrative Example

int main ()

{
float x:
float vy = x;
assert (x=y) ;
return O;

h

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondetO| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x ==
(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| [main::y[))))))
(or a!1)))

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun [main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent\’a nondeteministic number
(declare-fun |nondet_symex::nogdetO| () (_ FloatingPoint 8 24))

; Global guard, used for checkinf properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondetO| |

; assign x to y

(assert (= Imain::x| Imain::yD)) \/griable declarations

; assert x ==y
(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| |main::y[))))))
(or a'!1)))

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun [main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\euard_exec| () Bool)

; assign the nondeterministic symbol\ to x
(assert (= |nondet_symex::nondetO| |

; assign x to y

(assert (= Imain::x| Imain::y1)) Nondeterministic symbol
; assert x ==y declaration (optional)

(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| |main::y[))))))
(or a'!1)))

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun [main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic sym to x
(assert (= |nondet_symex::nondetO| [Rain::x|))

; assign x to y

(assert (= |main::x| |main::yl)) Guard used to check
; assert x ==y Sat|Sf|ab|||ty

(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| |main::y[))))))
(or a'!1)))

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun [main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondetO| |main::x|))

Assignment of

; assign x to y T

(assert (= |main::x| |main::y|)) nondetermlnlStlc
value to x

; assert x ==y

(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| |main::y[))))))
(or a'!1)))

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun [main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondetO| |main::x|))

; assign x to y < Assignment x fo y

(assert (= |main::x| |main::y|))

; assert x ==
(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| [main::y[))))))
(or a'!1)))

Floating-point Encoding:
lllustrative Example

; declaration of x and y
(declare-fun [main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol tc? X CheCk |f the Comparlson
(assert (= |nondet_symex::nondetO| |main::x|)) o
satisfies the guard

; assign x to y
(assert (= |main::x| |main::yl)) !z//'

; assert x ==y
(assert (let ((a!l (not (=> true
(=> |execution_statet::\\guard_exec|
(fp.eq Imain::x| |main::y[))))))

(or a!l)))

Floating-point Encoding:
lllustrative Example

* /3 produces:

sat
(model
(define-fun |main::x| () (_ FloatingPoint 8 24)
(_ NaN 8 24))
(define-fun |main::y| () (_ FloatingPoint 8 24)
(_ NaN 8 24))
(define-fun |nondet_symex::nondetO| () (_ FloatingPoint 8 24)
(_ NaN 8 24))
(define-fun |execution_statet::\\\\guard_exec| () Bool
true)

Floating-point Encoding:
lllustrative Example
* MathSAT produces:

sat

((|lmain::x| (_ NaN 8 24))
(Ilmain::y| (_ NaN 8 24))
(|nondet_symex: :nondetO| (_ NaN 8 24))
(lexecution_statet::\\guard_exec| true))

Floating-point Encoding:
lllustrative Example

Counterexample:

State 1 file main3.c line 3 function main thread O
main

main3: :main::1::x=-NaN (11111111100000000000000000000001)

State 2 file main3.c line 4 function main thread O
main

main3::main::2::y=-NaN (11111111100000000000000000000001)

State 3 file main3.c line 5 function main thread O
main
Violated property:

file main3.c line 5 function main

assertion

(_Bool) (x == y)

VERIFICATION FAILED

Intended learning outcomes

* Explain precise memory model for software
verification

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

e pointers modelled as tuples
— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

e pointers modelled as tuples
— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

int main() {
intal2], i, x, *p;
p=4a,
if (x==0)
ali]=0;
else
ali+1]=1;
assert(*(p+2)==1);
b

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

e pointers modelled as tuples

— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

int main() { [Py := store(py, 0, &a[0]) \
int a[2], i, x, *p; A p, := store(py, 1, 0)
p=a; A gyi= (X, ==0)

if ([X]= =00) [:> C:= 2 :1 i Ztore(aOI los 0)
allf=U, 2~ 9o
N\ a5 := store(a,, 1+ iy, 1)

else _
a[l+1]=1, A dy .= Ite(gll dy, a3)
assert(*(p+2)==1): \ A p5:= store(p,, 1, select(p,, 1)+2))

/

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

e pointers modelled as tuples

— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

Store object at }
position 0

int main() { [Py := store(py, 0, &a[0]) \
int a[2], i, x, *p; A p, := store(py, 1, 0)
p=a; A gyi= (X, ==0)

if ([X]= =00) l:> C:= 2 :1 i :tore(aOI los 0)
allf=U, 2~ 9o
N\ a5 := store(a,, 1+ iy, 1)

else _
a[l+1]=1, A dy .= Ite(gll dy, a3)
assert(*(p+2)==1): \ A p5:= store(p,, 1, select(p,, 1)+2))

/

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

e pointers modelled as tuples
— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

Store object at }
position 0

int main() { [Py := store(py, 0, &a[0])

int a[2], i, x, *p; Ap,:= :Ztore(pl, 1, 0)
=3 A g, := (X _

“ a’__ A aj:= stcz)re(ao . Store index at

i ([).(]_ _00) /) C:= A a,:= a position 1
alll= /' .

else N\ a5 := store(a,, 1+ iy, 1)
ali+1]=1; N a, 1= ite(gy, a;, a;)

assert(*(p+2)==1): \ A p;:= store(p,, 1, select(p,, 1)+2))

/

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

« pointers modelled as tuples
— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

Store object at
position 0

int main() { [Py:i= Store(Po, 0, &a[0])
—- A g, := (X _
p=d, A aj - stcz)re(ao . Store index at

if (x==0) :> tion 1
alij=0; C[Update index | postion
else a3 (@y, 1+ g, 1)

ali+1]=1, (Nagi=1 1, @y, A3)
assert(*(p+2)==1); A p5 := store(p,, 1, select(p,, 1)+2),

/

Encoding of Pointers

« arrays and records / tuples typically handled directly by
SMT-solver

e pointers modelled as tuples
— p.o 2 representation of underlying object
— p.i 2 index (if pointer used as array base)

negation satisfiable
(a[2] unconstrained)
= assert fails

int main() {
intal2], i, x, *p;

1t a iy 20 A<
,t.)—a, ANl+ig=20A1 2
if ()_<==0_) Em> P:= | A select(ps, 0) /< &a[0]
Ia[l]=0, A select(select(ps, 0),
else
select(p;, 1)) ==
afi+1]=1;) ’

assert(*(p+2)==1);
b

Encoding of Memory Allocation

* model memory just as an array of bytes (array theories)

— read and write operations to the memory array on the logic
level

Encoding of Memory Allocation

* model memory just as an array of bytes (array theories)

— read and write operations to the memory array on the logic
level

 each dynamic object d, consists of
— m £ memory array
— S 2 size in bytes of m
— p £ unique identifier
— v 2 indicate whether the object is still alive
— | 2 the location in the execution where m is allocated

Encoding of Memory Allocation

* model memory just as an array of bytes (array theories)
— read and write operations to the memory array on the logic
level
 each dynamic object d, consists of
— m £ memory array
— S 2 size in bytes of m
— p £ unique identifier
— v 2 indicate whether the object is still alive
— | 2 the location in the execution where m is allocated

* to detect invalid reads/writes, we check whether
— d, is a dynamic object

— i is within the bounds of tpe memory array

lis dynamic _object <~ (\ do'IO =]) A (O <i< n)
_ _ j=l

Encoding of Memory Allocation

 to check for invalid objects, we

— set v to frueif the function malloc can allocate memory (d, is
alive)

— set v to falseif the function free is called (d, is not longer
alive)

/ valid _object < (lis_dynamic_object = dO'U)

Encoding of Memory Allocation

 to check for invalid objects, we

— set v to frueif the function malloc can allocate memory (d, is
alive)

— set v to falseif the function free is called (d, is not longer
alive)

/ valid _object < (lis_dynamic_object = dO'U)

 to detect forgotten memory, at the end of the (unrolled)
program we check

— whether the d, has been deallocated by the function free

/deal/ocated_object < (Iis_dynamic_object = - dO'U)

Example of Memory Allocation

#include <stdlib.h>

void main() { Assume that the malloc

char *p = malloc(5); // p = 1 call succeeds
char *qg = malloc(5); // p =2

P=d,

free(p)

p = malloc(5), //p=3

free(p)

Example of Memory Allocation

memory leak: pointer
reassignment makes d_,.v
to become an orphan

#include <std
void main() {
char *p =
char * =77 77 F =
pP=4,
free(p)
p = malloc(5), //p=3
free(p)

/

Example of Memory Allocation

#include <stdlib.h>
void main() {
char *p = malloc(5), //p =1
char *qg = malloc(5); // p =2
p=q; [:> P:= (—-dol.v A -d,,.v —-do3.v)

free(p)
p = malloc(5), //p=3
free(p)

ﬂ (dyy.p=1 A dg;.5=5 A d,;.v=true A p=d,;

A d,,.p=2 A d,,.s=5 A d,,.v=true A q=d_,
C:= | N\ p=dy, A d,,.v=false

A d,5.p=3 A d,5.5=5 A d,;.v=true A p=d.;
| A dez.v=false

Example of Memory Allocation

#include <stdlib.h>

void main() {
char *p = malloc(5), //p =1
char *qg = malloc(5); // p =2

p=q; m=)> Pi= (~dgiv A ~dgyv ~do3y

free(p)
p = malloc(5), //p=3
free(p)

ﬂ (dy1.p=1 A dg;.5=5 A d,,.v=true A p=d,,
A d,,.p=2 A d,,.s=5 A d,,.v=true A q=d_,
C:= | A p=d, A d.v=false

A dg3.p=3 A d,5.5=5 A d,s.v=true A p=d,;
| A dez.v=false

Align-guaranteed memory mode

* Alignment rules require that any pointer variable
must be aligned to at least the alignment of the
pointer type

= E.g., an integer pointer’s value must be aligned to at least
4 bytes, for 32-bit integers

Align-guaranteed memory mode

* Alignment rules require that any pointer variable

must be aligned to at least the alignment of the
pointer type

= E.g., an integer pointer’s value must be aligned to at least
4 bytes, for 32-bit integers

* Encode property assertions when dereferences
occur during symbolic execution

= To guard against executions where an unaligned pointer is
dereferenced

Align-guaranteed memory mode

* Alignment rules require that any pointer variable
must be aligned to at least the alignment of the
pointer type

= E.g., an integer pointer’s value must be aligned to at least
4 bytes, for 32-bit integers

* Encode property assertions when dereferences
occur during symbolic execution

= To guard against executions where an unaligned pointer is
dereferenced

* This is not as strong as the C standard requirement, that a
pointer variable may never hold an unaligned value

o But it provides a guarantee that any pointer dereference will either
be correctly aligned or result in a verification failure

ESBMC’s memory model

« statically tracks possible pointer variable targets (objects)

— dereferencing a pointer leads to the construction of
guarded references to each potential target

ESBMC’s memory model

« statically tracks possible pointer variable targets (objects)

— dereferencing a pointer leads to the construction of
guarded references to each potential target

« Cis very liberal about permitted dereferences

struct foo {
uintl6_t bar[2];
uint8_t baz;

i

struct foo qux;
char *quux = &qux;
quux++;

*quux; «— pointer and object types

do not match

ESBMC’s memory model

« statically tracks possible pointer variable targets (objects)

— dereferencing a pointer leads to the construction of
guarded references to each potential target

« Cis very liberal about permitted dereferences

struct foo { struct foo qux;
uintl6_t bar[2]; char *quux = &qux;
uint8_t baz; quux++;

pointer and object types
do not match

I

*quux; <€<—

 SAT: immediate access to bit-level representation

Byte select via bit access

1 1

bar[0] bar[1] baz

ESBMC’s memory model

« statically tracks possible pointer variable targets (objects)

— dereferencing a pointer leads to the construction of
guarded references to each potential target

« Cis very liberal about permitted dereferences

struct foo {

uintl6_t bar[2];

uint8_t baz;

I

struct foo qux;
char *quux = &qux;
quux++;

*quux; «— pointer and object types

do not match

« SMT: sorts must be repeatedly unwrapped

uint8_t

Bit extraction

A

A

uintl6_t

Array select

A
'

uintl6_t bar[2]

Tuple
projection

struct foo

Byte-level data extraction in SMT

« access to underlying data bytes is complicated
— requires manipulation of arrays / tuples

Byte-level data extraction in SMT

« access to underlying data bytes is complicated
— requires manipulation of arrays / tuples

« problem is magnified by nondeterministic offsets

uintl16_t *fuzz; —chooses accessed field nondeterministically
if (nondet_bool()) {

fuzz = &qux.bar[0];
)} else { —handles the tuple that encoded the struct

—requires a byte extract expression

fuzz = &qux.baz;

»

Byte-level data extraction in SMT

« access to underlying data bytes is complicated
— requires manipulation of arrays / tuples

« problem is magnified by nondeterministic offsets

uintl16_t *fuzz; —chooses accessed field nondeterministically
if (nondet_bool()) {

fuzz = &qux.bar[0];
)} else { —handles the tuple that encoded the struct

—requires a byte extract expression

fuzz = &qux.baz;

b
« supporting all legal behaviors at SMT layer difficult

— extract (unaligned) 16bit integer from *fuzz

Byte-level data extraction in SMT

access to underlying data bytes is complicated
— requires manipulation of arrays / tuples

problem is magnified by nondeterministic offsets

uintl16_t *fuzz; —chooses accessed field nondeterministically

if (nondet_bool()) { B : .
fuzz = &qux.bar[0]: requires a byte extract expression
) else { —handles the tuple that encoded the struct
fuzz = &qux.baz;
¥
supporting all legal behaviors at SMT layer difficult

— extract (unaligned) 16bit integer from *fuzz

experiments showed significantly increased memory
consumption

“Aligned” Memory Model

« framework cannot easily be changed to SMT-level
byte representation (a la LLBMC)

“Aligned” Memory Model

« framework cannot easily be changed to SMT-level
byte representation (a la LLBMC)

« push unwrapping of SMT data structures to dereference

“Aligned” Memory Model

« framework cannot easily be changed to SMT-level
byte representation (a la LLBMC)

« push unwrapping of SMT data structures to dereference
+ enforce C alignment rules

— static analysis of pointer alignment eliminates need to
encode unaligned data accesses

— reduces number of behaviors that must be modeled

“Aligned” Memory Model

« framework cannot easily be changed to SMT-level
byte representation (a la LLBMC)

« push unwrapping of SMT data structures to dereference
+ enforce C alignment rules

— static analysis of pointer alignment eliminates need to
encode unaligned data accesses

— reduces number of behaviors that must be modeled
— add alignment assertions (if static analysis not conclusive)

“Aligned” Memory Model

« framework cannot easily be changed to SMT-level
byte representation (a la LLBMC)

« push unwrapping of SMT data structures to dereference
+ enforce C alignment rules

— static analysis of pointer alignment eliminates need to
encode unaligned data accesses
— reduces number of behaviors that must be modeled

— add alignment assertions (if static analysis not conclusive)

— extracting 16-bit integer from *fuzz if guard is true:
— offset = 0: project bar[0] out of foo
— offset = 1: “unaligned memory access” failure
— offset = 2: project bar[1] out of foo
— offset = 3: “unaligned memory access” failure
— offset = 4: "access to object out of bounds” failure

Summary

Described the difference between soundness and
completeness concerning detection techniques

— False positive and false negative

Pointed out the difference between static analysis
and testing / simulation

— hybrid combination of static and dynamic analysis
techniques to achieve a good trade-off between
soundness and completeness

Explained bounded model checking of software

— they have been applied successfully to verify single-
threaded software using a precise memory model

