
Detection of Software
Vulnerabilities:

Static Analysis (Part I)

Lucas Cordeiro
Department of Computer Science

lucas.cordeiro@manchester.ac.uk

Systems and Software
Verification Laboratory

Static Analysis

•  Lucas Cordeiro (Formal Methods Group)
§  lucas.cordeiro@manchester.ac.uk
§  Office: 2.28
§  Office hours: 15-16 Tuesday, 14-15 Wednesday

•  Textbook:
§  Model checking (Chapter 14)
§  Software model checking. ACM Comput. Surv., 2009
§  The Cyber Security Body of Knowledge, 2019
§  Software Engineering (Chapters 8, 13)

•  Functionality demanded increased significantly
–  Peer reviewing and testing

Motivating Example

•  Functionality demanded increased significantly
–  Peer reviewing and testing

•  Multi-core processors with scalable shared memory /
message passing
–  Static and dynamic verification

Motivating Example

•  Functionality demanded increased significantly
–  Peer reviewing and testing

•  Multi-core processors with scalable shared memory /
message passing
–  Static and dynamic verification

void *threadA(void *arg) {
 lock(&mutex);
 x++;
 if (x == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 x--;
 if (x == 0) unlock(&lock);
 unlock(&mutex);
}

void *threadB(void *arg) {
 lock(&mutex);
 y++;
 if (y == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 y--;
 if (y == 0) unlock(&lock);
 unlock(&mutex);
}

Motivating Example

•  Functionality demanded increased significantly
–  Peer reviewing and testing

•  Multi-core processors with scalable shared memory /
message passing
–  Static and dynamic verification

void *threadA(void *arg) {
 lock(&mutex);
 x++;
 if (x == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 x--;
 if (x == 0) unlock(&lock);
 unlock(&mutex);
}

void *threadB(void *arg) {
 lock(&mutex);
 y++;
 if (y == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 y--;
 if (y == 0) unlock(&lock);
 unlock(&mutex);
}

(CS1)

Motivating Example

•  Functionality demanded increased significantly
–  Peer reviewing and testing

•  Multi-core processors with scalable shared memory /
message passing
–  Static and dynamic verification

void *threadA(void *arg) {
 lock(&mutex);
 x++;
 if (x == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 x--;
 if (x == 0) unlock(&lock);
 unlock(&mutex);
}

void *threadB(void *arg) {
 lock(&mutex);
 y++;
 if (y == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 y--;
 if (y == 0) unlock(&lock);
 unlock(&mutex);
}

(CS1)
(CS2)

Motivating Example

•  Functionality demanded increased significantly
–  Peer reviewing and testing

•  Multi-core processors with scalable shared memory /
message passing
–  Static and dynamic verification

void *threadA(void *arg) {
 lock(&mutex);
 x++;
 if (x == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 x--;
 if (x == 0) unlock(&lock);
 unlock(&mutex);
}

void *threadB(void *arg) {
 lock(&mutex);
 y++;
 if (y == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 y--;
 if (y == 0) unlock(&lock);
 unlock(&mutex);
}

(CS1)
(CS2)

(CS3)

Motivating Example

•  Functionality demanded increased significantly
–  Peer reviewing and testing

•  Multi-core processors with scalable shared memory /
message passing
–  Static and dynamic verification

void *threadA(void *arg) {
 lock(&mutex);
 x++;
 if (x == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 x--;
 if (x == 0) unlock(&lock);
 unlock(&mutex);
}

void *threadB(void *arg) {
 lock(&mutex);
 y++;
 if (y == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 y--;
 if (y == 0) unlock(&lock);
 unlock(&mutex);
}

(CS1)
(CS2)

(CS3)
Deadlock

Motivating Example

•  Introduce software verification and validation

Intended learning outcomes

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

Intended learning outcomes

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

Intended learning outcomes

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

Intended learning outcomes

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

•  Explain precise memory model for software
verification

Intended learning outcomes

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

•  Explain precise memory model for software
verification

Intended learning outcomes

•  Verification: "Are we building the product right?”
§  The software should conform to its specification

Verification vs Validation

•  Verification: "Are we building the product right?”
§  The software should conform to its specification

•  Validation: "Are we building the right product?”
§  The software should do what the user requires

Verification vs Validation

•  Verification: "Are we building the product right?”
§  The software should conform to its specification

•  Validation: "Are we building the right product?”
§  The software should do what the user requires

•  Verification and validation must be applied at each
stage in the software process
§  The discovery of defects in a system

§  The assessment of whether or not the system is usable
in an operational situation

Verification vs Validation

•  Software inspections are concerned with the
analysis of the static system representation to
discover problems (static verification)
§  Supplement by tool-based document and code analysis
§  Code analysis can prove the absence of errors but might

subject to incorrect results

Static and Dynamic Verification

•  Software inspections are concerned with the
analysis of the static system representation to
discover problems (static verification)
§  Supplement by tool-based document and code analysis
§  Code analysis can prove the absence of errors but might

subject to incorrect results

•  Software testing is concerned with exercising and
observing product behaviour (dynamic verification)
§  The system is executed with test data
§  Operational behaviour is observed
§  Can reveal the presence of errors NOT their absence

Static and Dynamic Verification

Static and Dynamic Verification

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 Ian Sommerville. Software Engineering
(6th,7th or 8th Edn) Addison Wesley

•  Careful planning is required to get the most out of
dynamic and static verification
§  Planning should start early in the development

process
§  The plan should identify the balance between

static and dynamic verification

V & V planning

•  Careful planning is required to get the most out of
dynamic and static verification
§  Planning should start early in the development

process
§  The plan should identify the balance between

static and dynamic verification
•  V & V should establish confidence that the software

is fit for purpose

V & V planning

•  Careful planning is required to get the most out of
dynamic and static verification
§  Planning should start early in the development

process
§  The plan should identify the balance between

static and dynamic verification
•  V & V should establish confidence that the software

is fit for purpose

V & V planning

V & V planning depends on system’s
purpose, user expectations and

marketing environment

The V-model of development

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

 Ian Sommerville. Software Engineering
(6th,7th or 8th Edn) Addison Wesley

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

•  Explain unbounded model checking of
software

Intended learning outcomes

Detection of Vulnerabilities

•  Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

Detection of Vulnerabilities

•  Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

•  Trade-off between soundness and completeness

Detection of Vulnerabilities

•  Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

•  Trade-off between soundness and completeness
§  A detection technique is sound for a given category if it can

correctly conclude that a given program has no vulnerabilities

o  An unsound detection technique may have false negatives, i.e.,
actual vulnerabilities that the detection technique fails to find

Detection of Vulnerabilities

•  Detect the presence of vulnerabilities in the code
during the development, testing, and maintenance

•  Trade-off between soundness and completeness
§  A detection technique is sound for a given category if it can

correctly conclude that a given program has no vulnerabilities

o  An unsound detection technique may have false negatives, i.e.,
actual vulnerabilities that the detection technique fails to find

§  A detection technique is complete for a given category, if
any vulnerability it finds is an actual vulnerability

o  An incomplete detection technique may have false positives, i.e., it
may detect issues that do not turn out to be actual vulnerabilities

Detection of Vulnerabilities
•  Achieving soundness requires reasoning about all

executions of a program (usually an infinite number)
§  This can be done by static checking of the program code

while making suitable abstractions of the executions

Detection of Vulnerabilities
•  Achieving soundness requires reasoning about all

executions of a program (usually an infinite number)
§  This can be done by static checking of the program code

while making suitable abstractions of the executions

•  Achieving completeness can be done by performing
actual, concrete executions of a program that are
witnesses to any vulnerability reported
§  The analysis technique has to come up with concrete inputs

for the program that triggers a vulnerability

§  A typical dynamic approach is software testing: the tester
writes test cases with concrete inputs and specific checks for
the outputs

Detection of Vulnerabilities

Detection tools can use a hybrid
combination of static and dynamic

analysis techniques to achieve a good
trade-off between soundness and

completeness

Detection of Vulnerabilities

Detection tools can use a hybrid
combination of static and dynamic

analysis techniques to achieve a good
trade-off between soundness and

completeness

Dynamic verification should be used in
conjunction with static verification to

provide full code coverage

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

•  Explain unbounded model checking of
software

Intended learning outcomes

Static analysis vs Testing/
Simulation

•  Checks only some of the system executions
§  May miss errors

•  A successful execution is an execution that
discovers one or more errors

Simulation/
testing

OK

error

Static analysis vs Testing/
Simulation

•  Exhaustively explores all executions
•  Report errors as traces
•  May produce incorrect results

Model
Checking

OK

Error trace

Specification Line 5: …
Line 12: …
…
Line 41:…

Avoiding state space
explosion

•  Bounded Model Checking (BMC)
§ Breadth-first search (BFS) approach

•  Symbolic Execution
§  Depth-first search (DFS) approach

Bounded Model Checking

•  Bounded model
checkers explore the
state space in depth

•  Can only prove
correctness if all states
are reachable within
the bound

k = 0
k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

A graph G = (V, E) consists of:
•  V: a set of vertices or nodes
•  E ⊆ V x V: set of edges connecting the nodes

Breadth-First Search (BFS)
BFS(G,s)
01 for each vertex u ∈ V[G]-{s} // anchor (s)
02 colour[u] ← white // u colour
03 d[u] ← ∞ // s distance
04 π[u] ← NIL // u predecessor
05 colour[s] ← grey
06 d[s] ← 0
07 π[s] ← NIL
08 enqueue(Q,s)
09 while Q ≠ ∅ do
10 u ← dequeue(Q)
11 for each v ∈ Adj[u] do
12 If colour[v] = white then
13 colour[v] ← grey
14 d[v] ← d[u] + 1
15 π[v] ← u
16 enqueue(Q,v)
17 colour[u] ← blue

Initialization of
graph nodes

Initializes the
anchor node (s)

Visit each adjacent
node of u

2

1

0

7

6

5 4

3

BFS Example

BFS Example

2

1

0

7

6

5 4

3

BFS Example

2

1

0

7

6

5 4

3

BFS Example

2

1

0

7

6

5 4

3

BFS Example

2

1

0

7

6

5 4

3

BFS Example

2

1

0

7

6

5 4

3

BFS Example

2

1

0

7

6

5 4

3

BFS Example

2

1

0

7

6

5 4

3

Symbolic Execution

•  Symbolic execution
explores all paths
individually

•  Can only prove
correctness if all paths
are explored

Depth-first search (DFS)

Paint all vertices white and
initialize the fields π with NIL
where π [u] represents the
predecessor of u

DFS Example

2

1

0

7

6

5 4

3

1/

DFS Example

2

1

0

7

6

5 4

3

1/

2/

DFS Example

2

1

0

7

6

5 4

3

1/

2/

3/

DFS Example

2

1

0

7

6

5 4

3

1/

4/

3/

2/

DFS Example

2

1

0

7

6

5 4

3

1/

3/

4/

5/

2/

DFS Example

2

1

0

7

6

5 4

3

1/

2/9

4/7

5/6

3/8

DFS Example

2

1

0

7

6

5 4

3

1/

2/9

4/7

5/6

3/8

10/

DFS Example

2

1

0

7

6

5 4

3

1/

2/9

4/7

5/6

3/8

10/

11/

DFS Example

2

1

0

7

6

5 4

3

1/

2/9

4/7

5/6

3/8

10/

11/12

DFS Example

2

1

0

7

6

5 4

3

1/

2/9

4/7

5/6

3/8

10/13

11/12

DFS Example

2

1

0

7

6

5 4

3

1/14

2/9

4/7

5/6

3/8

10/13

11/12

DFS Example

2

1

0

7

6

5 4

3

1/14

2/9

4/7

5/6

3/8

10/13

11/12

15/16

•  V & V and debugging are distinct processes

V&V and debugging

•  V & V and debugging are distinct processes
•  V & V is concerned with establishing the absence or

existence of defects in a program, resp.

V&V and debugging

•  V & V and debugging are distinct processes
•  V & V is concerned with establishing the absence or

existence of defects in a program, resp.
•  Debugging is concerned with two main tasks

§  Locating and
§  Repairing these errors

V&V and debugging

•  V & V and debugging are distinct processes
•  V & V is concerned with establishing the absence or

existence of defects in a program, resp.
•  Debugging is concerned with two main tasks

§  Locating and
§  Repairing these errors

•  Debugging involves
§  Formulating a hypothesis about program behaviour

§  Test these hypotheses to find the system error

V&V and debugging

The debugging process

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

 Ian Sommerville. Software Engineering
(6th,7th or 8th Edn) Addison Wesley

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

•  Explain precise memory model for software
verification

Intended learning outcomes

Circuit Satisfiability
•  A Boolean formula contains

§  Variables whose values are 0 or 1

Circuit Satisfiability
•  A Boolean formula contains

§  Variables whose values are 0 or 1
§  Connectives: ∧ (AND), ∨ (OR), and ¬ (NOT)

Circuit Satisfiability
•  A Boolean formula contains

§  Variables whose values are 0 or 1
§  Connectives: ∧ (AND), ∨ (OR), and ¬ (NOT)

•  A Boolean formula is SAT if there exists some
assignment to its variables that evaluates it to 1

Circuit Satisfiability
•  A Boolean combinational circuit consists of

one or more Boolean combinational elements
interconnected by wires

SAT: <x1 = 1, x2 = 1, x3 = 0>

Circuit-Satisfiability Problem
•  Given a Boolean combinational circuit of

AND, OR, and NOT gates, is it satisfiable?

CIRCUIT-SAT = {<C> : C is a satisfiable Boolean combinational circuit}

Circuit-Satisfiability Problem
•  Given a Boolean combinational circuit of

AND, OR, and NOT gates, is it satisfiable?

§  Size: number of Boolean combinational elements

plus the number of wires
o  if the circuit has k inputs, then we would have to check up to

2k possible assignments

CIRCUIT-SAT = {<C> : C is a satisfiable Boolean combinational circuit}

Circuit-Satisfiability Problem
•  Given a Boolean combinational circuit of

AND, OR, and NOT gates, is it satisfiable?

§  Size: number of Boolean combinational elements

plus the number of wires
o  if the circuit has k inputs, then we would have to check up to

2k possible assignments

§  When the size of C is polynomial in k, checking
each one takes Ω(2k)

o  Super-polynomial in the size of k

CIRCUIT-SAT = {<C> : C is a satisfiable Boolean combinational circuit}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

§  Example:
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

§  Example:
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

o  Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1>

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

§  Example:
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

o  Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1>

o Φ = ((0 →0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧¬0

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

§  Example:
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

o  Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1>

o Φ = ((0 →0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧¬0

o Φ = (1 ∨ ¬(1 ∨ 1)) ∧1

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

§  Example:
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

o  Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1>

o Φ = ((0 →0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧¬0

o Φ = (1 ∨ ¬(1 ∨ 1)) ∧1

o Φ = (1 ∨ 0) ∧1

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Formula Satisfiability (SAT)

•  The SAT problem asks whether a given Boolean
formula is satisfiable

§  Example:
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

o  Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1>

o Φ = ((0 →0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧¬0

o Φ = (1 ∨ ¬(1 ∨ 1)) ∧1

o Φ = (1 ∨ 0) ∧1

o Φ = 1

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

DPLL satisfiability solving
Given a Boolean formula φ in clausal form (an AND of ORs)

{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}}

determine whether a satisfying assignment of variables to
truth values exists.

DPLL satisfiability solving
Given a Boolean formula φ in clausal form (an AND of ORs)

{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}}

determine whether a satisfying assignment of variables to
truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:
1. If φ = ∅ then SAT
2. If ⃞ ∈ φ then UNSAT
3. If φ = φ’ ∪ {x} then DPLL(φ’[x ↦ true])

If φ = φ’ ∪ {¬x} then DPLL(φ’[x ↦ false])
4. Pick arbitrary x and return

DPLL(φ[x ↦ false]) ∨ DPLL(φ[x ↦ true])

 {{a, b}, {¬a, b}, {a,¬b}}

{{b}, {¬b}} {{b}}

{⃞} {⃞} ∅

a ↦ false a ↦ true

 b ↦ false b ↦ true b ↦ true

DPLL satisfiability solving
Given a Boolean formula φ in clausal form (an AND of ORs)

{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}}

determine whether a satisfying assignment of variables to
truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:
1. If φ = ∅ then SAT
2. If ⃞ ∈ φ then UNSAT
3. If φ = φ’ ∪ {x} then DPLL(φ’[x ↦ true])

If φ = φ’ ∪ {¬x} then DPLL(φ’[x ↦ false])
4. Pick arbitrary x and return

DPLL(φ[x ↦ false]) ∨ DPLL(φ[x ↦ true])

+  NP-complete but many heuristics and optimizations
⇒  can handle problems with 100,000’s of variables

 {{a, b}, {¬a, b}, {a,¬b}}

{{b}, {¬b}} {{b}}

{⃞} {⃞} ∅

a ↦ false a ↦ true

 b ↦ false b ↦ true b ↦ true

SAT solving as enabling technology

SAT Competition

Bounded Model Checking (BMC)

MC: check if a property holds for all states

Init error . . .

Bounded Model Checking (BMC)

MC: check if a property holds for all states
BMC: check if a property holds for a subset of
states

Init error . . .

k

Bounded Model Checking (BMC)

IS THERE
ANY

ERROR?

no

yes

M, S ok

fail

MC:

Bounded Model Checking (BMC)

IS THERE
ANY

ERROR?

IS THERE
ANY

ERROR
IN k

STEPS?

no

yes

completeness
threshold reached

k+1 still tractable

k+1 intractable
no

yes

M, S

M, S

ok

ok

fail

fail

bound

MC:

BMC:

“never” happens
in practice

Bounded Model Checking
Basic Idea: check negation of given property up to given depth

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk

counterexample trace

∨ ∨ ∨ ∨
transition
system

property

bound

Bounded Model Checking
Basic Idea: check negation of given property up to given depth

•  transition system M unrolled k times

–  for programs: unroll loops, unfold arrays, …

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk

counterexample trace

∨ ∨ ∨ ∨
transition
system

property

bound

Bounded Model Checking
Basic Idea: check negation of given property up to given depth

•  transition system M unrolled k times

–  for programs: unroll loops, unfold arrays, …

•  translated into verification condition ψ such that

ψ satisfiable iff ϕ has counterexample of max. depth k

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk

counterexample trace

∨ ∨ ∨ ∨
transition
system

property

bound

Bounded Model Checking
Basic Idea: check negation of given property up to given depth

•  transition system M unrolled k times

–  for programs: unroll loops, unfold arrays, …

•  translated into verification condition ψ such that

ψ satisfiable iff ϕ has counterexample of max. depth k

•  has been applied successfully to verify HW/SW systems

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk

counterexample trace

∨ ∨ ∨ ∨
transition
system

property

bound

Satisfiability Modulo Theories (1)

 SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Satisfiability Modulo Theories (1)

 SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Satisfiability Modulo Theories (1)

 SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Bit-vectors (b >> i) & 1 = 1

Satisfiability Modulo Theories (1)

 SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3)

Satisfiability Modulo Theories (1)

 SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3)

Arrays (j = k ∧ a[k]=2) ⇒ a[j]=2

Satisfiability Modulo Theories (1)

 SMT decides the satisfiability of first-order logic
formulae using the combination of different background
theories (building-in operators)

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3)

Arrays (j = k ∧ a[k]=2) ⇒ a[j]=2

Combined theories (j ≤ k ∧ a[j]=2) ⇒ a[i] < 3

Satisfiability Modulo Theories (2)
•  Given

§  a decidable ∑-theory T
§  a quantifier-free formula ϕ

 ϕ is T-satisfiable iff T ∪ {ϕ} is satisfiable, i.e., there exists a
structure that satisfies both formula and sentences of T

Satisfiability Modulo Theories (2)
•  Given

§  a decidable ∑-theory T
§  a quantifier-free formula ϕ

 ϕ is T-satisfiable iff T ∪ {ϕ} is satisfiable, i.e., there exists a
structure that satisfies both formula and sentences of T

•  Given
§  a set Γ ∪ {ϕ} of first-order formulae over T

 ϕ is a T-consequence of Γ (Γ ⊧T ϕ) iff every model of T ∪ Γ
is also a model of ϕ

Satisfiability Modulo Theories (2)
•  Given

§  a decidable ∑-theory T
§  a quantifier-free formula ϕ

 ϕ is T-satisfiable iff T ∪ {ϕ} is satisfiable, i.e., there exists a
structure that satisfies both formula and sentences of T

•  Given
§  a set Γ ∪ {ϕ} of first-order formulae over T

 ϕ is a T-consequence of Γ (Γ ⊧T ϕ) iff every model of T ∪ Γ
is also a model of ϕ

•  Checking Γ ⊧T ϕ can be reduced in the usual way to
checking the T-satisfiability of Γ ∪ {¬ϕ}

Satisfiability Modulo Theories (3)
•  let a be an array, b, c and d be signed bit-vectors of width

16, 32 and 32 respectively, and let g be an unary function.

Satisfiability Modulo Theories (3)
•  let a be an array, b, c and d be signed bit-vectors of width

16, 32 and 32 respectively, and let g be an unary function.

Satisfiability Modulo Theories (3)
•  let a be an array, b, c and d be signed bit-vectors of width

16, 32 and 32 respectively, and let g be an unary function.

b' extends b to the signed equivalent bit-vector of size 32

Satisfiability Modulo Theories (3)
•  let a be an array, b, c and d be signed bit-vectors of width

16, 32 and 32 respectively, and let g be an unary function.

b' extends b to the signed equivalent bit-vector of size 32

replace b' by c−3 in the inequality

Satisfiability Modulo Theories (3)
•  let a be an array, b, c and d be signed bit-vectors of width

16, 32 and 32 respectively, and let g be an unary function.

b' extends b to the signed equivalent bit-vector of size 32

replace b' by c−3 in the inequality

using facts about bit-vector arithmetic

Satisfiability Modulo Theories (4)
()()() () 41331,12,, :3 −=+∧−=−∧≠ dcccgccastoreselectgstep

Satisfiability Modulo Theories (4)

applying the theory of arrays

() () 413112 :4 −=+∧−∧≠ dccggstep

()()() () 41331,12,, :3 −=+∧−=−∧≠ dcccgccastoreselectgstep

Satisfiability Modulo Theories (4)

applying the theory of arrays

() () 413112 :4 −=+∧−∧≠ dccggstep

The function g implies that for all x and y,
if x = y, then g (x) = g (y) (congruence rule).

10)d 5,(c AT :5 ==Sstep

()()() () 41331,12,, :3 −=+∧−=−∧≠ dcccgccastoreselectgstep

Satisfiability Modulo Theories (4)

applying the theory of arrays

() () 413112 :4 −=+∧−∧≠ dccggstep

The function g implies that for all x and y,
if x = y, then g (x) = g (y) (congruence rule).

10)d 5,(c AT :5 ==Sstep

•  SMT solvers also apply:
–  standard algebraic reduction rules
–  contextual simplification

falsefalser !∧

() ()777 paapa ∧=∧= !

()()() () 41331,12,, :3 −=+∧−=−∧≠ dcccgccastoreselectgstep

BMC of Software
•  program modelled as state transition system

–  state: program counter and program variables
–  derived from control-flow graph
–  checked safety properties give extra nodes

•  program unfolded up to given bounds
–  loop iterations
–  context switches

•  unfolded program optimized to reduce blow-up
–  constant propagation
–  forward substitutions

int main() {
 int a[2], i, x;
 if (x==0)
 a[i]=0;
 else
 a[i+2]=1;
 assert(a[i+1]==1);
}

crucial

BMC of Software
•  program modelled as state transition system

–  state: program counter and program variables
–  derived from control-flow graph
–  checked safety properties give extra nodes

•  program unfolded up to given bounds
–  loop iterations
–  context switches

•  unfolded program optimized to reduce blow-up
–  constant propagation
–  forward substitutions

•  front-end converts unrolled and
optimized program into SSA

int main() {
 int a[2], i, x;
 if (x==0)
 a[i]=0;
 else
 a[i+2]=1;
 assert(a[i+1]==1);
}

crucial
g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0
a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3
t1 = a4 [1+i0] == 1

BMC of Software
•  program modelled as state transition system

–  state: program counter and program variables
–  derived from control-flow graph
–  checked safety properties give extra nodes

•  program unfolded up to given bounds
–  loop iterations
–  context switches

•  unfolded program optimized to reduce blow-up
–  constant propagation
–  forward substitutions

•  front-end converts unrolled and
optimized program into SSA

•  extraction of constraints C and properties P
–  specific to selected SMT solver, uses theories

•  satisfiability check of C ∧ ¬P

int main() {
 int a[2], i, x;
 if (x==0)
 a[i]=0;
 else
 a[i+2]=1;
 assert(a[i+1]==1);
}

crucial
()

()

()
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∧

+=∧

=∧

=∧

==

=

),,(:
1,2,:

:
0,,:

0:

:

3114

023

02

001

11

aagitea
iastorea

aa
iastorea

xg

C

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+∧

<+∧≥+∧

<+∧≥+∧

<∧≥

=

11,
2101
2202

20

:

04

00

00

00

iaselect
ii
ii

ii

P

Encoding of Numeric Types
•  SMT solvers typically provide different encodings for

numbers:
–  abstract domains (Z, R)
–  fixed-width bit vectors (unsigned int, …)
▹ “internalized bit-blasting”

Encoding of Numeric Types
•  SMT solvers typically provide different encodings for

numbers:
–  abstract domains (Z, R)
–  fixed-width bit vectors (unsigned int, …)
▹ “internalized bit-blasting”

•  verification results can depend on encodings

 (a > 0) ∧ (b > 0) ⇒ (a + b > 0)

Encoding of Numeric Types
•  SMT solvers typically provide different encodings for

numbers:
–  abstract domains (Z, R)
–  fixed-width bit vectors (unsigned int, …)
▹ “internalized bit-blasting”

•  verification results can depend on encodings

 (a > 0) ∧ (b > 0) ⇒ (a + b > 0)

valid in abstract domains
such as Z or R

doesn’t hold for bitvectors,
due to possible overflows

Encoding of Numeric Types
•  SMT solvers typically provide different encodings for

numbers:
–  abstract domains (Z, R)
–  fixed-width bit vectors (unsigned int, …)
▹ “internalized bit-blasting”

•  verification results can depend on encodings

 (a > 0) ∧ (b > 0) ⇒ (a + b > 0)

–  majority of VCs solved faster if numeric types are modelled
by abstract domains but possible loss of precision

–  ESBMC supports both types of encoding and also combines
them to improve scalability and precision

valid in abstract domains
such as Z or R

doesn’t hold for bitvectors,
due to possible overflows

Encoding Numeric Types as Bitvectors
Bitvector encodings need to handle
•  type casts and implicit conversions

§  arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, …)

o  different conversions for every pair of types
o  uses type information provided by front-end

Encoding Numeric Types as Bitvectors
Bitvector encodings need to handle
•  type casts and implicit conversions

§  arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, …)

o  different conversions for every pair of types
o  uses type information provided by front-end

§  conversion to / from bool via if-then-else operator
 t = ite(v ≠ k, true, false) //conversion to bool
 v = ite(t, 1, 0) //conversion from bool

Encoding Numeric Types as Bitvectors
Bitvector encodings need to handle
•  type casts and implicit conversions

§  arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, …)

o  different conversions for every pair of types
o  uses type information provided by front-end

§  conversion to / from bool via if-then-else operator
 t = ite(v ≠ k, true, false) //conversion to bool
 v = ite(t, 1, 0) //conversion from bool

•  arithmetic over- / underflow
§  standard requires modulo-arithmetic for unsigned integer

 unsigned_overflow ⇔ (r – (r mod 2w)) < 2w

Encoding Numeric Types as Bitvectors
Bitvector encodings need to handle
•  type casts and implicit conversions

§  arithmetic conversions implemented using word-level functions
(part of the bitvector theory: Extract, SignExt, …)

o  different conversions for every pair of types
o  uses type information provided by front-end

§  conversion to / from bool via if-then-else operator
 t = ite(v ≠ k, true, false) //conversion to bool
 v = ite(t, 1, 0) //conversion from bool

•  arithmetic over- / underflow
§  standard requires modulo-arithmetic for unsigned integer

 unsigned_overflow ⇔ (r – (r mod 2w)) < 2w
§  define error literals to detect over- / underflow for other types

res_op ⇔ ¬ overflow(x, y) ∧ ¬ underflow(x, y)
o  similar to conversions

Floating-Point Numbers
•  Over-approximate floating-point by fixed-point numbers

–  encode the integral (i) and fractional (f) parts

Floating-Point Numbers
•  Over-approximate floating-point by fixed-point numbers

–  encode the integral (i) and fractional (f) parts
•  Binary encoding: get a new bit-vector b = i @ f with the

same bitwidth before and after the radix point of a.

// m = number of
bits of i

// n = number of
bits of f

i =
Extract(b, nb + ma – 1, nb) : ma ≤ mb

SignExt(Extract(b, tb – 1, nb), ma – mb) : otherwise

f =
Extract(b, nb – 1, nb – nb) : na ≤ nb

Extract(b, nb, 0) @ SignExt(b, na - nb) : otherwise

Floating-Point Numbers
•  Over-approximate floating-point by fixed-point numbers

–  encode the integral (i) and fractional (f) parts
•  Binary encoding: get a new bit-vector b = i @ f with the

same bitwidth before and after the radix point of a.

•  Rational encoding: convert a to a rational number

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ +
∗

+∗

=

otherwisei

f
p

pfpi
a

n

:

0:
1

2
// p = number of decimal places

// m = number of
bits of i

// n = number of
bits of f

i =
Extract(b, nb + ma – 1, nb) : ma ≤ mb

SignExt(Extract(b, tb – 1, nb), ma – mb) : otherwise

f =
Extract(b, nb – 1, nb – nb) : na ≤ nb

Extract(b, nb, 0) @ SignExt(b, na - nb) : otherwise

Floating-point SMT Encoding
•  The SMT floating-point theory is an addition to the

SMT standard, proposed in 2010 and formalises:
§  Floating-point arithmetic

Floating-point SMT Encoding
•  The SMT floating-point theory is an addition to the

SMT standard, proposed in 2010 and formalises:
§  Floating-point arithmetic
§  Positive and negative infinities and zeroes

Floating-point SMT Encoding
•  The SMT floating-point theory is an addition to the

SMT standard, proposed in 2010 and formalises:
§  Floating-point arithmetic
§  Positive and negative infinities and zeroes
§  NaNs

Floating-point SMT Encoding
•  The SMT floating-point theory is an addition to the

SMT standard, proposed in 2010 and formalises:
§  Floating-point arithmetic
§  Positive and negative infinities and zeroes
§  NaNs
§  Comparison operators

Floating-point SMT Encoding
•  The SMT floating-point theory is an addition to the

SMT standard, proposed in 2010 and formalises:
§  Floating-point arithmetic
§  Positive and negative infinities and zeroes
§  NaNs
§  Comparison operators
§  Five rounding modes: round nearest with ties

choosing the even value, round nearest with ties
choosing away from zero, round towards zero, round
towards positive infinity and round towards negative
infinity

Floating-point SMT Encoding
•  Missing from the standard:

§  Floating-point exceptions
§  Signaling NaNs

Floating-point SMT Encoding
•  Missing from the standard:

§  Floating-point exceptions
§  Signaling NaNs

•  Two solvers currently support the standard:
§  Z3: implements all operators
§  MathSAT: implements all but two operators

o  fp.rem: remainder: x - y * n, where n in Z is nearest to x/y
o  fp.fma: fused multiplication and addition; (x * y) + z

Floating-point SMT Encoding
•  Missing from the standard:

§  Floating-point exceptions
§  Signaling NaNs

•  Two solvers currently support the standard:
§  Z3: implements all operators
§  MathSAT: implements all but two operators

o  fp.rem: remainder: x - y * n, where n in Z is nearest to x/y
o  fp.fma: fused multiplication and addition; (x * y) + z

•  Both solvers offer non-standard functions:
§  fp_as_ieeebv: converts floating-point to bitvectors
§  fp_from_ieeebv: converts bitvectors to floating-point

How to encode Floating-point
programs?

•  Most operations performed at program-level to encode
FP numbers have a one-to-one conversion to SMT

•  Special cases being casts to
boolean types and the fp.eq
operator
§  Usually, cast operations are

encoded using extend/extract
operation

§  Extending floating-point numbers
is non-trivial because of the
format

Cast to/from booleans

•  Simpler solutions:
§  Casting booleans to floating-point numbers can be

done using an ite operator

Cast to/from booleans

•  Simpler solutions:
§  Casting booleans to floating-point numbers can be

done using an ite operator
If true, assign 1f to b

Cast to/from booleans

•  Simpler solutions:
§  Casting booleans to floating-point numbers can be

done using an ite operator

Otherwise, assign 0f to b

Cast to/from booleans

•  Simpler solutions:
§  Casting floating-point numbers to booleans can be

done using an equality and one not:

Cast to/from booleans

•  Simpler solutions:
§  Casting floating-point numbers to booleans can be

done using an equality and one not:
true when the

floating is not 0.0

Cast to/from booleans

•  Simpler solutions:
§  Casting floating-point numbers to booleans can be

done using an equality and one not:

otherwise, the result is
false

Cast to/from booleans

•  Simpler solutions:
§  Casting floating-point numbers to booleans can be

done using an equality and one not:

Floating-point Encoding:
Illustrative Example

Floating-point Encoding:
Illustrative Example

Variable declarations

Floating-point Encoding:
Illustrative Example

Nondeterministic symbol
declaration (optional)

Floating-point Encoding:
Illustrative Example

Guard used to check
satisfiability

Floating-point Encoding:
Illustrative Example

Assignment of
nondeterministic

value to x

Floating-point Encoding:
Illustrative Example

Assignment x to y

Floating-point Encoding:
Illustrative Example

Check if the comparison
satisfies the guard

Floating-point Encoding:
Illustrative Example

•  Z3 produces:

Floating-point Encoding:
Illustrative Example

•  MathSAT produces:

Floating-point Encoding:
Illustrative Example

Floating-point Encoding:
Illustrative Example

•  Introduce software verification and validation

•  Understand soundness and completeness
concerning detection techniques

•  Emphasize the difference among static
analysis, testing / simulation, and debugging

•  Explain bounded model checking of software

•  Explain precise memory model for software
verification

Intended learning outcomes

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

int main() {
 int a[2], i, x, *p;
 p=a;
 if (x==0)
 a[i]=0;
 else
 a[i+1]=1;
 assert(*(p+2)==1);
}

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

int main() {
 int a[2], i, x, *p;
 p=a;
 if (x==0)
 a[i]=0;
 else
 a[i+1]=1;
 assert(*(p+2)==1);
}

p1 := store(p0, 0, &a[0])
∧ p2 := store(p1, 1, 0)
∧ g2 := (x2 == 0)
∧ a1 := store(a0, i0, 0)
∧ a2 := a0
∧ a3 := store(a2, 1+ i0, 1)
∧ a4 := ite(g1, a1, a3)
∧ p3 := store(p2, 1, select(p2 , 1)+2)

C:=

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

int main() {
 int a[2], i, x, *p;
 p=a;
 if (x==0)
 a[i]=0;
 else
 a[i+1]=1;
 assert(*(p+2)==1);
}

p1 := store(p0, 0, &a[0])
∧ p2 := store(p1, 1, 0)
∧ g2 := (x2 == 0)
∧ a1 := store(a0, i0, 0)
∧ a2 := a0
∧ a3 := store(a2, 1+ i0, 1)
∧ a4 := ite(g1, a1, a3)
∧ p3 := store(p2, 1, select(p2 , 1)+2)

C:=

Store object at
position 0

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

int main() {
 int a[2], i, x, *p;
 p=a;
 if (x==0)
 a[i]=0;
 else
 a[i+1]=1;
 assert(*(p+2)==1);
}

p1 := store(p0, 0, &a[0])
∧ p2 := store(p1, 1, 0)
∧ g2 := (x2 == 0)
∧ a1 := store(a0, i0, 0)
∧ a2 := a0
∧ a3 := store(a2, 1+ i0, 1)
∧ a4 := ite(g1, a1, a3)
∧ p3 := store(p2, 1, select(p2 , 1)+2)

C:=

Store object at
position 0

Store index at
position 1

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

int main() {
 int a[2], i, x, *p;
 p=a;
 if (x==0)
 a[i]=0;
 else
 a[i+1]=1;
 assert(*(p+2)==1);
}

p1 := store(p0, 0, &a[0])
∧ p2 := store(p1, 1, 0)
∧ g2 := (x2 == 0)
∧ a1 := store(a0, i0, 0)
∧ a2 := a0
∧ a3 := store(a2, 1+ i0, 1)
∧ a4 := ite(g1, a1, a3)
∧ p3 := store(p2, 1, select(p2 , 1)+2)

C:=

Store object at
position 0

Store index at
position 1

 Update index

Encoding of Pointers
•  arrays and records / tuples typically handled directly by

SMT-solver
•  pointers modelled as tuples

–  p.o ≙ representation of underlying object
–  p.i ≙ index (if pointer used as array base)

int main() {
 int a[2], i, x, *p;
 p=a;
 if (x==0)
 a[i]=0;
 else
 a[i+1]=1;
 assert(*(p+2)==1);
}

i0 ≥ 0 ∧ i0 < 2
∧ 1+ i0 ≥ 0 ∧ 1+ i0 < 2
∧ select(p3 , 0) == &a[0]
∧ select(select(p3 , 0),

 select(p3 , 1)) == 1

P:=

negation satisfiable
(a[2] unconstrained)
⇒ assert fails

Encoding of Memory Allocation
•  model memory just as an array of bytes (array theories)

–  read and write operations to the memory array on the logic
level

Encoding of Memory Allocation
•  model memory just as an array of bytes (array theories)

–  read and write operations to the memory array on the logic
level

•  each dynamic object do consists of
–  m ≙ memory array
–  s ≙ size in bytes of m
–  ρ ≙ unique identifier
–  υ ≙ indicate whether the object is still alive
–  l ≙ the location in the execution where m is allocated

Encoding of Memory Allocation
•  model memory just as an array of bytes (array theories)

–  read and write operations to the memory array on the logic
level

•  each dynamic object do consists of
–  m ≙ memory array
–  s ≙ size in bytes of m
–  ρ ≙ unique identifier
–  υ ≙ indicate whether the object is still alive
–  l ≙ the location in the execution where m is allocated

•  to detect invalid reads/writes, we check whether
–  do is a dynamic object
–  i is within the bounds of the memory array

()nijdl o

k

jobjectdynamicis <≤∧⎟
⎠
⎞

⎜
⎝
⎛ =∨⇔

=
0.

1__ ρ

Encoding of Memory Allocation
•  to check for invalid objects, we

–  set υ to true if the function malloc can allocate memory (do is
alive)

–  set υ to false if the function free is called (do is not longer
alive)

lvalid_object ⇔ (lis_dynamic_object ⇒ do.υ)

Encoding of Memory Allocation
•  to check for invalid objects, we

–  set υ to true if the function malloc can allocate memory (do is
alive)

–  set υ to false if the function free is called (do is not longer
alive)

•  to detect forgotten memory, at the end of the (unrolled)
program we check
–  whether the do has been deallocated by the function free

ldeallocated_object ⇔ (lis_dynamic_object ⇒ ¬ do.υ)

lvalid_object ⇔ (lis_dynamic_object ⇒ do.υ)

Example of Memory Allocation
#include <stdlib.h>
void main() {
 char *p = malloc(5); // ρ = 1
 char *q = malloc(5); // ρ = 2
 p=q;
 free(p)
 p = malloc(5); // ρ = 3
 free(p)
}

Assume that the malloc
call succeeds

Example of Memory Allocation
#include <stdlib.h>
void main() {
 char *p = malloc(5); // ρ = 1
 char *q = malloc(5); // ρ = 2
 p=q;
 free(p)
 p = malloc(5); // ρ = 3
 free(p)
}

memory leak: pointer
reassignment makes do1.υ
to become an orphan

Example of Memory Allocation
#include <stdlib.h>
void main() {
 char *p = malloc(5); // ρ = 1
 char *q = malloc(5); // ρ = 2
 p=q;
 free(p)
 p = malloc(5); // ρ = 3
 free(p)
}

do1.ρ=1 ∧ do1.s=5 ∧ do1.υ=true ∧ p=do1

∧ do2.ρ=2 ∧ do2.s=5 ∧ do2.υ=true ∧ q=do2

∧ p=do2 ∧ do2.υ=false
∧ do3.ρ=3 ∧ do3.s=5 ∧ do3.υ=true ∧ p=do3

∧ do3.υ=false

C:=

¬do1.υ ∧ ¬do2.υ ¬do3.υ P:=

Example of Memory Allocation
#include <stdlib.h>
void main() {
 char *p = malloc(5); // ρ = 1
 char *q = malloc(5); // ρ = 2
 p=q;
 free(p)
 p = malloc(5); // ρ = 3
 free(p)
}

do1.ρ=1 ∧ do1.s=5 ∧ do1.υ=true ∧ p=do1

∧ do2.ρ=2 ∧ do2.s=5 ∧ do2.υ=true ∧ q=do2

∧ p=do2 ∧ do2.υ=false
∧ do3.ρ=3 ∧ do3.s=5 ∧ do3.υ=true ∧ p=do3

∧ do3.υ=false

C:=

¬do1.υ ∧ ¬do2.υ ¬do3.υ P:=

Align-guaranteed memory mode
•  Alignment rules require that any pointer variable

must be aligned to at least the alignment of the
pointer type
§  E.g., an integer pointer’s value must be aligned to at least

4 bytes, for 32-bit integers

Align-guaranteed memory mode
•  Alignment rules require that any pointer variable

must be aligned to at least the alignment of the
pointer type
§  E.g., an integer pointer’s value must be aligned to at least

4 bytes, for 32-bit integers

•  Encode property assertions when dereferences
occur during symbolic execution
§  To guard against executions where an unaligned pointer is

dereferenced

Align-guaranteed memory mode
•  Alignment rules require that any pointer variable

must be aligned to at least the alignment of the
pointer type
§  E.g., an integer pointer’s value must be aligned to at least

4 bytes, for 32-bit integers

•  Encode property assertions when dereferences
occur during symbolic execution
§  To guard against executions where an unaligned pointer is

dereferenced
§  This is not as strong as the C standard requirement, that a

pointer variable may never hold an unaligned value
o  But it provides a guarantee that any pointer dereference will either

be correctly aligned or result in a verification failure

ESBMC’s memory model
•  statically tracks possible pointer variable targets (objects)

–  dereferencing a pointer leads to the construction of
guarded references to each potential target

ESBMC’s memory model
•  statically tracks possible pointer variable targets (objects)

–  dereferencing a pointer leads to the construction of
guarded references to each potential target

•  C is very liberal about permitted dereferences
 struct foo {
 uint16_t bar[2];
 uint8_t baz;
};

struct foo qux;
char *quux = &qux;
quux++;
*quux; pointer and object types

do not match

ESBMC’s memory model
•  statically tracks possible pointer variable targets (objects)

–  dereferencing a pointer leads to the construction of
guarded references to each potential target

•  C is very liberal about permitted dereferences

•  SAT: immediate access to bit-level representation

 struct foo {
 uint16_t bar[2];
 uint8_t baz;
};

struct foo qux;
char *quux = &qux;
quux++;
*quux; pointer and object types

do not match

ESBMC’s memory model
•  statically tracks possible pointer variable targets (objects)

–  dereferencing a pointer leads to the construction of
guarded references to each potential target

•  C is very liberal about permitted dereferences

•  SMT: sorts must be repeatedly unwrapped

 struct foo {
 uint16_t bar[2];
 uint8_t baz;
};

struct foo qux;
char *quux = &qux;
quux++;
*quux; pointer and object types

do not match

Byte-level data extraction in SMT
•  access to underlying data bytes is complicated

–  requires manipulation of arrays / tuples

Byte-level data extraction in SMT
•  access to underlying data bytes is complicated

–  requires manipulation of arrays / tuples
•  problem is magnified by nondeterministic offsets

uint16_t *fuzz;
if (nondet_bool()) {
 fuzz = &qux.bar[0];
 } else {
 fuzz = &qux.baz;
 }

─ chooses accessed field nondeterministically
─ requires a byte_extract expression
─ handles the tuple that encoded the struct

Byte-level data extraction in SMT
•  access to underlying data bytes is complicated

–  requires manipulation of arrays / tuples
•  problem is magnified by nondeterministic offsets

•  supporting all legal behaviors at SMT layer difficult
–  extract (unaligned) 16bit integer from *fuzz

uint16_t *fuzz;
if (nondet_bool()) {
 fuzz = &qux.bar[0];
 } else {
 fuzz = &qux.baz;
 }

─ chooses accessed field nondeterministically
─ requires a byte_extract expression
─ handles the tuple that encoded the struct

Byte-level data extraction in SMT
•  access to underlying data bytes is complicated

–  requires manipulation of arrays / tuples
•  problem is magnified by nondeterministic offsets

•  supporting all legal behaviors at SMT layer difficult
–  extract (unaligned) 16bit integer from *fuzz

•  experiments showed significantly increased memory
consumption

uint16_t *fuzz;
if (nondet_bool()) {
 fuzz = &qux.bar[0];
 } else {
 fuzz = &qux.baz;
 }

─ chooses accessed field nondeterministically
─ requires a byte_extract expression
─ handles the tuple that encoded the struct

“Aligned” Memory Model
•  framework cannot easily be changed to SMT-level

byte representation (a la LLBMC)

“Aligned” Memory Model
•  framework cannot easily be changed to SMT-level

byte representation (a la LLBMC)
•  push unwrapping of SMT data structures to dereference

“Aligned” Memory Model
•  framework cannot easily be changed to SMT-level

byte representation (a la LLBMC)
•  push unwrapping of SMT data structures to dereference
•  enforce C alignment rules

–  static analysis of pointer alignment eliminates need to
encode unaligned data accesses
 → reduces number of behaviors that must be modeled

“Aligned” Memory Model
•  framework cannot easily be changed to SMT-level

byte representation (a la LLBMC)
•  push unwrapping of SMT data structures to dereference
•  enforce C alignment rules

–  static analysis of pointer alignment eliminates need to
encode unaligned data accesses
 → reduces number of behaviors that must be modeled

–  add alignment assertions (if static analysis not conclusive)

“Aligned” Memory Model
•  framework cannot easily be changed to SMT-level

byte representation (a la LLBMC)
•  push unwrapping of SMT data structures to dereference
•  enforce C alignment rules

–  static analysis of pointer alignment eliminates need to
encode unaligned data accesses
 → reduces number of behaviors that must be modeled

–  add alignment assertions (if static analysis not conclusive)
–  extracting 16-bit integer from *fuzz if guard is true:

–  offset = 0: project bar[0] out of foo
–  offset = 1: “unaligned memory access” failure
–  offset = 2: project bar[1] out of foo
–  offset = 3: “unaligned memory access” failure
–  offset = 4: “access to object out of bounds” failure

•  Described the difference between soundness and
completeness concerning detection techniques
–  False positive and false negative

•  Pointed out the difference between static analysis
and testing / simulation
–  hybrid combination of static and dynamic analysis

techniques to achieve a good trade-off between
soundness and completeness

•  Explained bounded model checking of software
–  they have been applied successfully to verify single-

threaded software using a precise memory model

Summary

