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•  Multi-core processors with scalable shared memory / 
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void *threadA(void *arg) { 
  lock(&mutex); 
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•  Verification: "Are we building the product right?” 
§  The software should conform to its specification 

•  Validation: "Are we building the right product?” 
§  The software should do what the user requires 

•  Verification and validation must be applied at each 
stage in the software process 
§  The discovery of defects in a system 

§  The assessment of whether or not the system is usable 
in an operational situation 

Verification vs Validation 
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•  Software inspections are concerned with the 
analysis of the static system representation to 
discover problems  (static verification) 
§  Supplement by tool-based document and code analysis 
§  Code analysis can prove the absence of errors but might 

subject to incorrect results 

•  Software testing is concerned with exercising and 
observing product behaviour (dynamic verification) 
§  The system is executed with test data  
§  Operational behaviour is observed 
§  Can reveal the presence of errors NOT their absence 
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Static and Dynamic Verification 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 Ian Sommerville. Software Engineering 
(6th,7th or 8th Edn) Addison Wesley 



•  Careful planning is required to get the most out of 
dynamic and static verification 
§  Planning should start early in the development 

process 
§  The plan should identify the balance between 

static and dynamic verification 

V & V planning 



•  Careful planning is required to get the most out of 
dynamic and static verification 
§  Planning should start early in the development 

process 
§  The plan should identify the balance between 

static and dynamic verification 
•  V & V should establish confidence that the software 

is fit for purpose 

V & V planning 



•  Careful planning is required to get the most out of 
dynamic and static verification 
§  Planning should start early in the development 

process 
§  The plan should identify the balance between 

static and dynamic verification 
•  V & V should establish confidence that the software 

is fit for purpose 

V & V planning 

V & V planning depends on system’s 
purpose, user expectations and 

marketing environment  



The V-model of development 

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

 Ian Sommerville. Software Engineering 
(6th,7th or 8th Edn) Addison Wesley 
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Detection of Vulnerabilities 

•  Detect the presence of vulnerabilities in the code 
during the development, testing, and maintenance 

•  Trade-off between soundness and completeness 
§  A detection technique is sound for a given category if it can 

correctly conclude that a given program has no vulnerabilities 

o  An unsound detection technique may have false negatives, i.e., 
actual vulnerabilities that the detection technique fails to find 

§  A detection technique is complete for a given category, if 
any vulnerability it finds is an actual vulnerability 

o  An incomplete detection technique may have false positives, i.e., it 
may detect issues that do not turn out to be actual vulnerabilities 
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Detection of Vulnerabilities 
•  Achieving soundness requires reasoning about all 

executions of a program (usually an infinite number)  
§  This can be done by static checking of the program code 

while making suitable abstractions of the executions 

•  Achieving completeness can be done by performing 
actual, concrete executions of a program that are 
witnesses to any vulnerability reported  
§  The analysis technique has to come up with concrete inputs 

for the program that triggers a vulnerability 

§  A typical dynamic approach is software testing: the tester 
writes test cases with concrete inputs and specific checks for 
the outputs 
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Detection of Vulnerabilities 

Detection tools can use a hybrid 
combination of static and dynamic 

analysis techniques to achieve a good 
trade-off between soundness and 

completeness 

Dynamic verification should be used in 
conjunction with static verification to 

provide full code coverage 
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Static analysis vs Testing/
Simulation 

•  Checks only some of the system executions 
§  May miss errors 

•  A successful execution is an execution that 
discovers one or more errors  

Simulation/ 
testing 

OK 
 

error 



Static analysis vs Testing/
Simulation 

•  Exhaustively explores all executions 
•  Report errors as traces 
•  May produce incorrect results 

Model 
Checking  

OK 
 
Error trace 

Specification Line 5: … 
Line 12: … 
… 
Line 41:… 



Avoiding state space 
explosion 

•  Bounded Model Checking (BMC)  
§ Breadth-first search (BFS) approach 

•  Symbolic Execution 
§   Depth-first search (DFS) approach 



Bounded Model Checking 

•  Bounded model 
checkers explore the 
state space in depth 

•  Can only prove 
correctness if all states 
are reachable within 
the bound 

k = 0 
k = 1 

k = 2 

k = 3 

k = 4 

k = 5 

k = 6 

A graph G = (V, E) consists of: 
•  V: a set of vertices or nodes 
•  E ⊆ V x V: set of edges connecting the nodes 



Breadth-First Search (BFS) 
BFS(G,s) 
01 for each vertex u ∈ V[G]-{s} // anchor (s) 
02    colour[u] ← white  // u colour 
03    d[u] ← ∞                         // s distance 
04    π[u] ← NIL        // u predecessor 
05 colour[s] ← grey 
06 d[s] ← 0 
07 π[s] ← NIL 
08 enqueue(Q,s) 
09 while Q ≠ ∅ do
10    u ← dequeue(Q) 
11    for each v ∈ Adj[u] do 
12       If colour[v] = white then 
13          colour[v] ← grey 
14          d[v] ← d[u] + 1 
15          π[v] ← u 
16          enqueue(Q,v) 
17    colour[u] ← blue 

Initialization of 
graph nodes 

Initializes the 
anchor node (s) 

Visit each adjacent 
node of u 
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Symbolic Execution 

•  Symbolic execution 
explores all paths 
individually 

•  Can only prove 
correctness if all paths 
are explored 



Depth-first search (DFS) 

Paint all vertices white and 
initialize the fields π with NIL 
where π [u] represents the 
predecessor of u 
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•  V & V and debugging are distinct processes 
•  V & V is concerned with establishing the absence or 

existence of defects in a program, resp. 
•  Debugging is concerned with two main tasks  

§  Locating and 
§  Repairing these errors 

•  Debugging involves  
§  Formulating a hypothesis about program behaviour  

§  Test these hypotheses to find the system error 

V&V and debugging 



The debugging process 

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

 Ian Sommerville. Software Engineering 
(6th,7th or 8th Edn) Addison Wesley 
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Circuit Satisfiability 
•  A Boolean formula contains  

§  Variables whose values are 0 or 1 
§  Connectives: ∧ (AND), ∨ (OR), and ¬ (NOT) 

•  A Boolean formula is SAT if there exists some 
assignment to its variables that evaluates it to 1 



Circuit Satisfiability 
•  A Boolean combinational circuit consists of 

one or more Boolean combinational elements 
interconnected by wires  

SAT: <x1 = 1, x2 = 1, x3 = 0> 
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Circuit-Satisfiability Problem 
•  Given a Boolean combinational circuit of 

AND, OR, and NOT gates, is it satisfiable? 
 
 
§  Size: number of Boolean combinational elements 

plus the number of wires 
o  if the circuit has k inputs, then we would have to check up to 

2k possible assignments 

§  When the size of C is polynomial in k, checking 
each one takes Ω(2k) 

o  Super-polynomial in the size of k  

CIRCUIT-SAT = {<C> : C is a satisfiable Boolean combinational circuit} 
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Formula Satisfiability (SAT) 

•  The SAT problem asks whether a given Boolean 
formula is satisfiable 

§  Example: 
o Φ = ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2 

o  Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1> 

o Φ = ((0 →0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧¬0 

o Φ = (1 ∨ ¬(1 ∨ 1)) ∧1 

o Φ = (1 ∨ 0) ∧1 

o Φ = 1 

SAT = {<Φ> : Φ is a satisfiable Boolean formula} 
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DPLL satisfiability solving 
Given a Boolean formula φ in clausal form (an AND of ORs) 

{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}} 

determine whether a satisfying assignment of variables to 
truth values exists. 

Solvers based on Davis-Putnam-Logemann-Loveland algorithm: 
1. If φ = ∅ then SAT 
2. If ⃞ ∈ φ then UNSAT 
3. If φ = φ’ ∪ {x} then DPLL(φ’[x ↦ true]) 

If φ = φ’ ∪ {¬x} then DPLL(φ’[x ↦ false]) 
4. Pick arbitrary x and return 

DPLL(φ[x ↦ false]) ∨ DPLL(φ[x ↦ true]) 

+  NP-complete but many heuristics and optimizations 
⇒  can handle problems with 100,000’s of variables 

 

 

 {{a, b}, {¬a, b}, {a,¬b}} 

{{b}, {¬b}} {{b}} 

{⃞} {⃞} ∅ 

a ↦ false a ↦ true 

 b ↦ false b ↦ true b ↦ true 



SAT solving as enabling technology 



SAT Competition 
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Bounded Model Checking (BMC) 

MC:   check if a property holds for all states 
BMC: check if a property holds for a subset of 
states 
 
 

Init error . . .  

k 
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Bounded Model Checking (BMC) 

IS THERE 
ANY 

ERROR? 

IS THERE 
ANY 

ERROR 
IN k 

STEPS? 

no 

yes 

completeness 
threshold reached 

k+1 still tractable 

k+1 intractable 
no 

yes 

M, S 

M, S 

ok 

ok 

fail 

fail 

bound 

MC: 

BMC: 

“never” happens 
in practice 



Bounded Model Checking 
Basic Idea: check negation of given property up to given depth 
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Bounded Model Checking 
Basic Idea: check negation of given property up to given depth 

 
•  transition system M unrolled k times 

–  for programs: unroll loops, unfold arrays, … 

•  translated into verification condition ψ such that 

ψ satisfiable iff ϕ has counterexample of max. depth k  

•  has been applied successfully to verify HW/SW systems 
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Satisfiability Modulo Theories (1) 

 SMT decides the satisfiability of first-order logic 
formulae using the combination of different background 
theories (building-in operators) 

Theory Example 

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3) 

Bit-vectors (b >> i) & 1 = 1 

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3) 

Arrays (j = k ∧ a[k]=2) ⇒ a[j]=2 

Combined theories (j ≤ k ∧ a[j]=2) ⇒ a[i] < 3 
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§  a quantifier-free formula ϕ 

 ϕ is T-satisfiable iff T ∪ {ϕ} is satisfiable, i.e., there exists a 
structure that satisfies both formula and sentences of T 
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Satisfiability Modulo Theories (2) 
•  Given 

§  a decidable ∑-theory T 
§  a quantifier-free formula ϕ 

 ϕ is T-satisfiable iff T ∪ {ϕ} is satisfiable, i.e., there exists a 
structure that satisfies both formula and sentences of T 

•  Given 
§  a set Γ ∪ {ϕ} of first-order formulae over T 

 ϕ is a T-consequence of Γ (Γ ⊧T ϕ) iff every model of T ∪ Γ  
is also a model of ϕ 

•  Checking Γ ⊧T ϕ can be reduced in the usual way to 
checking the T-satisfiability of Γ ∪ {¬ϕ} 
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Satisfiability Modulo Theories (3) 
•  let a be an array, b, c and d be signed bit-vectors of width 

16, 32 and 32 respectively, and let g be an unary function. 
 
 

 

 

 

 

b' extends b to the signed equivalent bit-vector of size 32 

replace b' by c−3 in the inequality 

using facts about bit-vector arithmetic 
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Satisfiability Modulo Theories (4) 

applying the theory of arrays 

( ) ( ) 413112 :4 −=+∧−∧≠ dccggstep

The function g implies that for all x and y,  
if x = y, then g (x) = g (y) (congruence rule). 

10)d 5,(c AT :5 ==Sstep

•  SMT solvers also apply: 
–  standard algebraic reduction rules  
–  contextual simplification 

  

falsefalser !∧

( ) ( )777 paapa ∧=∧= !

( )( )( ) ( ) 41331,12,, :3 −=+∧−=−∧≠ dcccgccastoreselectgstep



BMC of Software 
•  program modelled as state transition system 

–  state: program counter and program variables 
–  derived from control-flow graph 
–  checked safety properties give extra nodes 

•  program unfolded up to given bounds 
–  loop iterations 
–  context switches 

•  unfolded program optimized to reduce blow-up 
–  constant propagation 
–  forward substitutions 

int main() { 
  int a[2], i, x; 
  if (x==0) 
    a[i]=0; 
  else 
    a[i+2]=1; 
  assert(a[i+1]==1); 
} 

crucial 
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•  program modelled as state transition system 

–  state: program counter and program variables 
–  derived from control-flow graph 
–  checked safety properties give extra nodes 

•  program unfolded up to given bounds 
–  loop iterations 
–  context switches 

•  unfolded program optimized to reduce blow-up 
–  constant propagation 
–  forward substitutions 

•  front-end converts unrolled and 
optimized program into SSA 

int main() { 
  int a[2], i, x; 
  if (x==0) 
    a[i]=0; 
  else 
    a[i+2]=1; 
  assert(a[i+1]==1); 
} 

crucial 
g1 = x1 == 0 
a1 = a0 WITH [i0:=0] 
a2 = a0 
a3 = a2 WITH [2+i0:=1] 
a4 = g1 ? a1 : a3 
t1  = a4 [1+i0] == 1 



BMC of Software 
•  program modelled as state transition system 

–  state: program counter and program variables 
–  derived from control-flow graph 
–  checked safety properties give extra nodes 

•  program unfolded up to given bounds 
–  loop iterations 
–  context switches 

•  unfolded program optimized to reduce blow-up 
–  constant propagation 
–  forward substitutions 

•  front-end converts unrolled and 
optimized program into SSA 

•  extraction of constraints C and properties P 
–  specific to selected SMT solver, uses theories 

•  satisfiability check of C ∧ ¬P  

int main() { 
  int a[2], i, x; 
  if (x==0) 
    a[i]=0; 
  else 
    a[i+2]=1; 
  assert(a[i+1]==1); 
} 
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•  SMT solvers typically provide different encodings for 

numbers: 
–  abstract domains (Z, R) 
–  fixed-width bit vectors (unsigned int, …) 
▹ “internalized bit-blasting” 
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Encoding of Numeric Types 
•  SMT solvers typically provide different encodings for 

numbers: 
–  abstract domains (Z, R) 
–  fixed-width bit vectors (unsigned int, …) 
▹ “internalized bit-blasting” 

•  verification results can depend on encodings 

  (a > 0) ∧ (b > 0) ⇒ (a + b > 0)  

–  majority of VCs solved faster if numeric types are modelled 
by abstract domains but possible loss of precision 

–  ESBMC supports both types of encoding and also combines 
them to improve scalability and precision 

valid in abstract domains 
such as Z or R 

doesn’t hold for bitvectors, 
due to possible overflows 
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•  type casts and implicit conversions 

§  arithmetic conversions implemented using word-level functions 
(part of the bitvector theory: Extract, SignExt, …) 

o  different conversions for every pair of types 
o  uses type information provided by front-end 
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Encoding Numeric Types as Bitvectors 
Bitvector encodings need to handle 
•  type casts and implicit conversions 

§  arithmetic conversions implemented using word-level functions 
(part of the bitvector theory: Extract, SignExt, …) 

o  different conversions for every pair of types 
o  uses type information provided by front-end 

§  conversion to / from bool via if-then-else operator 
  t = ite(v ≠ k, true, false)  //conversion to bool 
  v = ite(t, 1, 0)   //conversion from bool 

•  arithmetic over- / underflow 
§  standard requires modulo-arithmetic for unsigned integer 

  unsigned_overflow ⇔ (r – (r mod 2w)) < 2w 
§  define error literals to detect over- / underflow for other types 

res_op ⇔ ¬ overflow(x, y) ∧ ¬ underflow(x, y) 
o  similar to conversions 
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•  Over-approximate floating-point by fixed-point numbers 

–  encode the integral (i) and fractional (f) parts 



Floating-Point Numbers 
•  Over-approximate floating-point by fixed-point numbers 

–  encode the integral (i) and fractional (f) parts 
•  Binary encoding: get a new bit-vector b = i @ f with the 

same bitwidth before and after the radix point of a. 

 
 

// m = number of 
bits of i 

// n = number of 
bits of f 

i =  
Extract(b, nb + ma – 1, nb)           :  ma ≤ mb 

SignExt(Extract(b, tb – 1, nb), ma – mb)    :  otherwise 

f =  
Extract(b, nb – 1, nb – nb)         :  na ≤ nb 

Extract(b, nb, 0) @ SignExt(b, na - nb)    :  otherwise 



Floating-Point Numbers 
•  Over-approximate floating-point by fixed-point numbers 

–  encode the integral (i) and fractional (f) parts 
•  Binary encoding: get a new bit-vector b = i @ f with the 

same bitwidth before and after the radix point of a. 

 
 
•  Rational encoding: convert a to a rational number 
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// p = number of decimal places 

// m = number of 
bits of i 

// n = number of 
bits of f 

i =  
Extract(b, nb + ma – 1, nb)           :  ma ≤ mb 

SignExt(Extract(b, tb – 1, nb), ma – mb)    :  otherwise 

f =  
Extract(b, nb – 1, nb – nb)         :  na ≤ nb 

Extract(b, nb, 0) @ SignExt(b, na - nb)    :  otherwise 
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Floating-point SMT Encoding 
•  The SMT floating-point theory is an addition to the 

SMT standard, proposed in 2010 and formalises: 
§  Floating-point arithmetic  
§  Positive and negative infinities and zeroes 
§  NaNs 
§  Comparison operators 
§  Five rounding modes: round nearest with ties 

choosing the even value, round nearest with ties 
choosing away from zero, round towards zero, round 
towards positive infinity and round towards negative 
infinity 
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o  fp.rem: remainder: x - y * n, where n in Z is nearest to x/y  
o  fp.fma: fused multiplication and addition; (x * y) + z  



Floating-point SMT Encoding 
•  Missing from the standard: 

§  Floating-point exceptions 
§  Signaling NaNs 

•  Two solvers currently support the standard: 
§  Z3: implements all operators 
§  MathSAT: implements all but two operators  

o  fp.rem: remainder: x - y * n, where n in Z is nearest to x/y  
o  fp.fma: fused multiplication and addition; (x * y) + z  

•  Both solvers offer non-standard functions: 
§  fp_as_ieeebv: converts floating-point to bitvectors 
§  fp_from_ieeebv: converts bitvectors to floating-point 



How to encode Floating-point 
programs? 

•  Most operations performed at program-level to encode 
FP numbers have a one-to-one conversion to SMT 

•  Special cases being casts to 
boolean types and the fp.eq 
operator 
§  Usually, cast operations are 

encoded using extend/extract 
operation 

§  Extending floating-point numbers 
is non-trivial because of the 
format  
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•  Simpler solutions: 
§  Casting floating-point numbers to booleans can be 

done using an equality and one not: 
true when the 

floating is not 0.0 



Cast to/from booleans 

•  Simpler solutions: 
§  Casting floating-point numbers to booleans can be 

done using an equality and one not: 

otherwise, the result is 
false 



Cast to/from booleans 

•  Simpler solutions: 
§  Casting floating-point numbers to booleans can be 

done using an equality and one not: 
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Variable declarations 

Floating-point Encoding: 
Illustrative Example 



Nondeterministic symbol  
declaration (optional) 

Floating-point Encoding: 
Illustrative Example 



Guard used to check  
satisfiability 

Floating-point Encoding: 
Illustrative Example 



Assignment of  
nondeterministic 

value to x 
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Assignment x to y 

Floating-point Encoding: 
Illustrative Example 



Check if the comparison 
satisfies the guard 

Floating-point Encoding: 
Illustrative Example 



•  Z3 produces: 
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Floating-point Encoding: 
Illustrative Example 



•  Introduce software verification and validation 

•  Understand soundness and completeness 
concerning detection techniques  

•  Emphasize the difference among static 
analysis, testing / simulation, and debugging 

•  Explain bounded model checking of software 

•  Explain precise memory model for software 
verification 

Intended learning outcomes 
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Encoding of Pointers 
•  arrays and records / tuples typically handled directly by 

SMT-solver 
•  pointers modelled as tuples 

–  p.o  ≙ representation of underlying object 
–  p.i  ≙ index (if pointer used as array base) 

int main() { 
  int a[2], i, x, *p; 
  p=a; 
  if (x==0) 
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  else 
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} 

p1 := store(p0, 0, &a[0]) 
∧ p2 := store(p1, 1, 0) 
∧ g2 := (x2 == 0)  
∧ a1 := store(a0, i0, 0) 
∧ a2 := a0 
∧ a3 := store(a2, 1+ i0, 1) 
∧ a4 := ite(g1, a1, a3) 
∧ p3 := store(p2, 1, select(p2 , 1)+2) 

C:= 

Store object at 
position 0 

 

Store index at 
position 1 

 Update index 
 



Encoding of Pointers 
•  arrays and records / tuples typically handled directly by 

SMT-solver 
•  pointers modelled as tuples 

–  p.o  ≙ representation of underlying object 
–  p.i  ≙ index (if pointer used as array base) 

int main() { 
  int a[2], i, x, *p; 
  p=a; 
  if (x==0) 
    a[i]=0; 
  else 
    a[i+1]=1; 
  assert(*(p+2)==1); 
} 

i0 ≥ 0 ∧ i0 < 2  
∧ 1+ i0 ≥ 0 ∧ 1+ i0 < 2  
∧ select(p3 , 0) == &a[0] 
∧ select(select(p3 , 0),  

 select(p3 , 1)) == 1 

P:= 

negation satisfiable 
(a[2] unconstrained) 
⇒ assert fails 
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level 
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–  m ≙ memory array 
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level 

•  each dynamic object do consists of 
–  m ≙ memory array 
–  s  ≙ size in bytes of m 
–  ρ  ≙ unique identifier 
–  υ  ≙ indicate whether the object is still alive 
–  l   ≙ the location in the execution where m is allocated 

•  to detect invalid reads/writes, we check whether 
–  do is a dynamic object 
–  i is within the bounds of the memory array 
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Encoding of Memory Allocation 
•  to check for invalid objects, we 

–  set υ to true if the function malloc can allocate memory (do is 
alive) 

–  set υ to false if the function free is called (do is not longer 
alive) 
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Encoding of Memory Allocation 
•  to check for invalid objects, we 

–  set υ to true if the function malloc can allocate memory (do is 
alive) 

–  set υ to false if the function free is called (do is not longer 
alive) 

•  to detect forgotten memory, at the end of the (unrolled) 
program we check 
–  whether the do has been deallocated by the function free 

ldeallocated_object ⇔  (lis_dynamic_object ⇒ ¬ do.υ) 

lvalid_object ⇔  (lis_dynamic_object ⇒ do.υ) 



Example of Memory Allocation 
#include <stdlib.h> 
void main() { 
  char *p = malloc(5);  // ρ = 1 
  char *q = malloc(5);  // ρ = 2 
  p=q; 
  free(p) 
  p = malloc(5);           // ρ = 3 
  free(p) 
} 

Assume that the malloc 
call succeeds  
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  char *p = malloc(5);  // ρ = 1 
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  p=q; 
  free(p) 
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  free(p) 
} 
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C:= 

¬do1.υ ∧ ¬do2.υ ¬do3.υ P:= 
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Align-guaranteed memory mode 
•  Alignment rules require that any pointer variable 

must be aligned to at least the alignment of the 
pointer type 
§  E.g., an integer pointer’s value must be aligned to at least 

4 bytes, for 32-bit integers 

•  Encode property assertions when dereferences 
occur during symbolic execution 
§  To guard against executions where an unaligned pointer is 

dereferenced 
§  This is not as strong as the C standard requirement, that a 

pointer variable may never hold an unaligned value 
o  But it provides a guarantee that any pointer dereference will either 

be correctly aligned or result in a verification failure 
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ESBMC’s memory model 
•  statically tracks possible pointer variable targets (objects) 

–  dereferencing a pointer leads to the construction of 
guarded references to each potential target 

•  C is very liberal about permitted dereferences 

•  SMT: sorts must be repeatedly unwrapped  

 struct foo {           
   uint16_t bar[2];           
   uint8_t baz;         
}; 

struct foo qux;         
char *quux = &qux;        
quux++;         
*quux; pointer and object types 

do not match 
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Byte-level data extraction in SMT 
•  access to underlying data bytes is complicated 

–  requires manipulation of arrays / tuples 
•  problem is magnified by nondeterministic offsets 

•  supporting all legal behaviors at SMT layer difficult 
–  extract (unaligned) 16bit integer from *fuzz 

•  experiments showed significantly increased memory 
consumption  

uint16_t *fuzz; 
if (nondet_bool()) { 
    fuzz = &qux.bar[0]; 
  } else { 
    fuzz = &qux.baz; 
  } 

─ chooses accessed field nondeterministically 
─ requires a byte_extract expression 
─ handles the tuple that encoded the struct 
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“Aligned” Memory Model 
•  framework cannot easily be changed to SMT-level 

byte representation (a la LLBMC) 
•  push unwrapping of SMT data structures to dereference 
•  enforce C alignment rules 

–  static analysis of pointer alignment eliminates need to 
encode unaligned data accesses 
 → reduces number of behaviors that must be modeled 

–  add alignment assertions (if static analysis not conclusive) 
–  extracting 16-bit integer from *fuzz if guard is true: 

–  offset = 0: project bar[0] out of foo 
–  offset = 1: “unaligned memory access” failure 
–  offset = 2: project bar[1] out of foo 
–  offset = 3: “unaligned memory access” failure 
–  offset = 4: “access to object out of bounds” failure 



•  Described the difference between soundness and 
completeness concerning detection techniques 
–  False positive and false negative  

•  Pointed out the difference between static analysis 
and testing / simulation 
–  hybrid combination of static and dynamic analysis 

techniques to achieve a good trade-off between 
soundness and completeness 

•  Explained bounded model checking of software 
–  they have been applied successfully to verify single-

threaded software using a precise memory model 

Summary 


